Publications by Year: 2015

Sharma, Y. ; Vargas, D. A. ; Pegoraro, A. F. ; Lepzelter, D. ; Weitz, D. A. ; Zaman, M. H. Collective motion of mammalian cell cohorts in 3D. Integrative Biology 2015, 7 1526–1533. 2015_ib_sharma.pdf
Henderson, S. J. ; Xia, J. ; Stafford, A. R. ; Leslie, B. A. ; Fredenburgh, J. C. ; Weitz, D. A. ; Weitz, J. I. Zn2+ accelerates clot formation, modifies clot structure, and promotes clot stability. Journal of Thrombosis and Haemostasis 2015, 13, 56.
Amstad, E. ; Spaepen, F. ; Weitz, D. A. Crystallization of undercooled liquid fenofibrate. Physical Chemistry Chemical Physics 2015, 17, 30158–30161. 2015_pccp_amstad.pdf
Rotem, A. ; Ram, O. ; Shoresh, N. ; Sperling, R. A. ; Goren, A. ; Weitz, D. A. ; Bernstein, B. E. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature biotechnology 2015, 33, 1165–1172. 2015_natbiotech_rotem.pdf
Jensen, M. H. ; Morris, E. J. ; Weitz, D. A. Mechanics and dynamics of reconstituted cytoskeletal systems. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2015, 1853, 3038–3042. 2015_bba_jensen.pdf
Vogel, N. ; Utech, S. ; England, G. T. ; Shirman, T. ; Phillips, K. R. ; Koay, N. ; Burgess, I. B. ; Kolle, M. ; Weitz, D. A. ; Aizenberg, J. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proceedings of the National Academy of Sciences 2015, 112, 10845–10850. 2015_pnas_vogel.pdf
Hackelbusch, S. ; Rossow, T. ; Steinhilber, D. ; Weitz, D. A. ; Seiffert, S. Hybrid Microgels with Thermo-Tunable Elasticity for Controllable Cell Confinement. Advanced healthcare materials 2015, 4 1841–1848. 2015_advhealthmater_hackelbusch.pdf
Zhang, H. ; Cockrell, S. K. ; Kolawole, A. O. ; Rotem, A. ; Serohijos, A. W. R. ; Chang, C. B. ; Tao, Y. ; Mehoke, T. S. ; Han, Y. ; Lin, J. S. ; et al. Isolation and analysis of rare norovirus recombinants from co-infected mice using drop-based microfluidics. Journal of virology 2015, JVI–01137. 2015_jvi_zhang.pdf
Abbaspourrad, A. ; Zhang, H. ; Tao, Y. ; Cui, N. ; Asahara, H. ; Zhou, Y. ; Yue, D. ; Koehler, S. A. ; Ung, W. L. ; Heyman, J. ; et al. Label-free single-cell protein quantification using a drop-based mix-and-read system. Scientific reports 2015, 5. 2015_srep_abbaspourrad.pdf
Utech, S. ; Prodanovic, R. ; Mao, A. S. ; Ostafe, R. ; Mooney, D. J. ; Weitz, D. A. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Advanced healthcare materials 2015, 4 1628–1633. 2015_advancedhealthcarematerials_utech.pdf
Mazutis, L. ; Vasiliauskas, R. ; Weitz, D. A. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release. Macromolecular Bioscience 2015, n/a–n/a. Publisher's Version 2015_macromolecularbioscience_mazutis.pdf
Chang, C. B. ; Wilking, J. N. ; Kim, S. - H. ; Shum, H. C. ; Weitz, D. A. Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth. Small 2015, 11, 3954–3961. Publisher's Version 2015_small_chang.pdf
Wagner, O. ; Zieringer, M. ; Duncanson, W. J. ; Weitz, D. A. ; Haag, R. Perfluoroalkyl-Functionalized Hyperbranched Polyglycerol as Pore Forming Agents and Supramolecular Hosts in Polymer Microspheres. International journal of molecular sciences 2015, 16, 20183–20194. 2015_ijms_wagner.pdf
Tao, Y. ; Rotem, A. ; Zhang, H. ; Chang, C. B. ; Basu, A. ; Kolawole, A. O. ; Koehler, S. A. ; Ren, Y. ; Lin, J. S. ; Pipas, J. M. ; et al. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics. Lab on a Chip 2015, 15, 3934–3940. 2015_labchip_tao.pdf
Arriaga, L. R. ; Amstad, E. ; Weitz, D. A. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells. Lab on a Chip 2015, 15, 3335–3340. 2015_labchip_arriage.pdf
Park, J. - A. ; Kim, J. H. ; Bi, D. ; Mitchel, J. A. ; Qazvini, N. T. ; Tantisira, K. ; Park, C. Y. ; McGill, M. ; Kim, S. - H. ; Gweon, B. ; et al. Unjamming and cell shape in the asthmatic airway epithelium. Nature materials 2015, 14, 1040–1048. 2015_natmater_park_ja.pdf
Han, H. - S. ; Cantalupo, P. G. ; Rotem, A. ; Cockrell, S. K. ; Carbonnaux, M. ; Pipas, J. M. ; Weitz, D. A. Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample. Angewandte Chemie 2015. 2015_angewchem_han.pdf
Tao, Y. ; Rotem, A. ; Zhang, H. ; Cockrell, S. K. ; Koehler, S. A. ; Chang, C. B. ; Ung, L. W. ; Cantalupo, P. G. ; Ren, Y. ; Lin, J. S. ; et al. Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based Microfluidics. ChemBioChem 2015, n/a–n/a. Publisher's Version 2015_chembiochem_tao.pdf
Licup*, A. J. ; Münster*, S. ; Sharma*, A. ; Sheinman, M. ; Jawerth, L. M. ; Fabry, B. ; Weitz, D. A. ; Mackintosh, F. C. Stress controls the mechanics of collagen networks. Proceedings of the National Academy of Sciences 2015, 112, 9573-9578. Publisher's VersionAbstract

Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.


[*Equal contribution]

Amstad, E. ; Gopinadhan, M. ; Holtze, C. ; Osuji, C. O. ; Brenner, M. P. ; Spaepen, F. ; Weitz, D. A. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science 2015, 349, 956-960. Publisher's VersionAbstract

Amorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficult to formulate in an amorphous structure without stabilizers. We fabricated a microfluidic nebulator that can produce amorphous NPs from a wide range of materials, even including pure table salt (NaCl). By using supersonic air flow, the nebulator produces drops that are so small that they dry before crystal nuclei can form. The small size of the resulting spray-dried a-NPs limits the probability of crystal nucleation in any given particle during storage. The kinetic stability of the a-NPs—on the order of months—is advantageous for hydrophobic drug molecules.