Macosko, E.  Z. ; Basu, A. ; Satija, R. ; Nemesh, J. ; Shekhar, K. ; Goldman, M. ; Tirosh, I. ; Bialas, A.  R. ; Kamitaki, N. ; Martersteck, E.  M. ; et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202 - 1214. Publisher's Version 2015_cell_macosko.pdf
Zhou, Y. ; Park, J. ; Shi, J. ; Chhowalla, M. ; Park, H. ; Weitz, D. A. ; Ramanathan, S. Control of Emergent Properties at a Correlated Oxide Interface with Graphene. Nano Letters 2015, 15, 1627-1634. Publisher's Version 2015_nanoletter_zhou.pdf
Russell, E. R. ; Spaepen, F. ; Weitz, D. A. Anisotropic elasticity of experimental colloidal Wigner crystals. Phys. Rev. E 2015, 91, 032310. Publisher's Version 2015_pre_russell.pdf
Bannwarth, M. B. ; Utech, S. ; Ebert, S. ; Weitz, D. A. ; Crespy, D. ; Landfester, K. Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled Nanoparticles. ACS Nano 2015, 9 2720-2728. Publisher's Version 2015_acsnano_bannwarth.pdf

PMID: 25695858

Kanai, T. ; Boon, N. ; Lu, P. J. ; Sloutskin, E. ; Schofield, A. B. ; Smallenburg, F. ; van Roij, R. ; Dijkstra, M. ; Weitz, D. A. Crystallization and reentrant melting of charged colloids in nonpolar solvents. Phys. Rev. E 2015, 91, 030301. Publisher's Version 2015_pre_kanai.pdf
Lee, W. C. ; Kim, K. ; Park, J. ; Koo, J. ; Jeong, H. Y. ; Lee, H. ; Weitz, D. A. ; Zettl, A. ; Takeuchi, S. Graphene-templated directional growth of an inorganic nanowire. Nature Nanotechnology 2015, 10, 423-428. 2015_natnanotech_lee.pdf
Fischer, A. E. ; Wu, S. K. ; Proescher, J. B. G. ; Rotem, A. ; Chang, C. B. ; Zhang, H. ; Tao, Y. ; Mehoke, T. S. ; Thielen, P. M. ; Kolawole, A. O. ; et al. A high-throughput drop microfluidic system for virus culture and analysis. Journal of Virological Methods 2015, 213, 111-117.Abstract

High mutation rates and short replication times lead to rapid evolution in RNA viruses. New tools for high-throughput culture and analysis of viral phenotypes will enable more effective studies of viral evolutionary processes. A water-in-oil drop microfluidic system to study virus–cell interactions at the single event level on a massively parallel scale is described here. Murine norovirus (MNV-1) particles were co-encapsulated with individual RAW 264.7 cells in 65 pL aqueous drops formed by flow focusing in 50 μm microchannels. At low multiplicity of infection (MOI), viral titers increased greatly, reaching a maximum 18 h post-encapsulation. This system was employed to evaluate MNV-1 escape from a neutralizing monoclonal antibody (clone A6.2). Further, the system was validated as a means for testing escape from antibody neutralization using a series of viral point mutants. Finally, the replicative capacity of single viral particles in drops under antibody stress was tested. Under standard conditions, many RNA virus stocks harbor minority populations of genotypic and phenotypic variants, resulting in quasispecies. These data show that when single cells are encapsulated with single viral particles under antibody stress without competition from other virions, the number of resulting infectious particles is nearly equivalent to the number of viral genomes present. These findings suggest that lower fitness virions can infect cells successfully and replicate, indicating that the microfluidics system may serve as an effective tool for isolating mutants that escape evolutionary stressors.

Köster, S. ; Weitz, D. A. ; Goldman, R. D. ; Aebi, U. ; Herrmann, H. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology 2015, 32, 82-91.Abstract

Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These ‘rod’ particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, that is, bending and stretching to a considerable degree, both in vitro and in the cell. Biophysical and computer modeling studies are beginning to unfold detailed structural and mechanical insights into these major supramolecular assemblies of cell architecture, not only in the ‘test tube’ but also in the cellular and tissue context.

Zieringer, M. A. ; Carroll, N. J. ; Abbaspourrad, A. ; Koehler, S. A. ; Weitz, D. A. Microcapsules for Enhanced Cargo Retention and Diversity. Small 2015, n/a–n/a. Publisher's Version 2015_small_microcapsules_for_cargo_retention.pdf
Polenz, I. ; Weitz, D. A. ; Baret, J. - C. Polyurea Microcapsules in Microfluidics: Surfactant Control of Soft Membranes. Langmuir 2015, 31, 1127–1134. Publisher's Version 2015_langmuir_polyurea_microcapsules.pdf

PMID: 25531127

Akartuna, I. ; Aubrecht, D. M. ; Kodger, T. E. ; Weitz, D. A. Chemically induced coalescence in droplet-based microfluidics. Lab Chip 2015, -. Publisher's VersionAbstract

We present a new microfluidic method to coalesce pairs of surfactant-stabilized water-in-fluorocarbon oil droplets. We achieve this through the local addition of a poor solvent for the surfactant{,} perfluorobutanol{,} which induces cohesion between droplet interfaces causing them to merge. The efficiency of this technique is comparable to existing techniques providing an alternative method to coalesce pairs of droplets.

Shimanovich, U. ; Efimov, I. ; Mason, T. O. ; Flagmeier, P. ; Buell, A. K. ; Gedanken, A. ; Linse, S. ; Åkerfeldt, K. S. ; Dobson, C. M. ; Weitz, D. A. ; et al. Protein Microgels from Amyloid Fibril Networks. ACS Nano 2015, Article ASAP. Publisher's Version [PDF]

PMID: 25469621

Ostafe, R. ; Prodanovic, R. ; Lloyd Ung, W. ; Weitz, D. A. ; Fischer, R. A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics 2014, 8 041102. Publisher's Version [PDF]
Fan, J. ; Li, Y. ; Bisoyi, H. K. ; Zola, R. S. ; Yang, Deng-ke, B. T. J. W. D. A. L. Q. Light-Directing Omnidirectional Circularly Polarized Reflection from Liquid-Crystal Droplets. Angewandte Chemie International Edition 2014. 2014_angew_fan.pdf
Kim, S. - H. ; Park, J. - G. ; Choi, T. M. ; Manoharan, V. N. ; Weitz, D. A. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nature communications 2014, 5 3068. 2014_natcomm_kim.pdf
Deng, N. - N. ; Wang, W. ; Ju, X. - J. ; Xie, R. ; Weitz, D. A. ; Chu, L. - Y. Reply to the ‘Comment on “Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics”’by J. Guzowski and P. Garstecki, Lab Chip, 2014, 14, DOI: 10.1039/C3LC51229K. Lab on a Chip 2014, 14, 1479–1480. 2014_loc_deng_rtc.pdf
Jensen, M. H. *; Morris, E. J. *; Goldman, R. D. ; Weitz, D. A. Emergent properties of composite semiflexible biopolymer networks. BioArchitecture 2014, 4 138-143. Publisher's Version 2015_bioarchitecture_composite_semiflexible_biopolymer_networks.pdf

[*Equal contribution]

Thon, J. N. ; Mazutis, L. ; Wu, S. ; Sylman, J. L. ; Ehrlicher, A. ; Machlus, K. R. ; Feng, Q. ; Lu, S. ; Lanza, R. ; Neeves, K. B. ; et al. Platelet bioreactor-on-a-chip. Blood 2014, 124, 1857–1867.Abstract

Jonathan N. Thon1,2,3, Linas Mazutis3,4,5, Stephen Wu1, Joanna L. Sylman6, Allen Ehrlicher4,7, Kellie R. Machlus1,2, Qiang Feng8, Shijiang Lu8, Robert Lanza8, Keith B. Neeves6,9, David A. Weitz4, and Joseph E. Italiano Jr1,2,3,101Department of Medicine, Brigham and Women’s Hospital, Boston, MA; 2Harvard Medical School, Boston, MA; 3Platelet BioGenesis, Chestnut Hill, MA; 4School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; 5Institute of Biotechnology, Vilnius University, Vilnius, Lithuania; 6Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO; 7Department of Bioengineering, McGill University, Montreal, Canada; 8Advanced Cell Technologies, Marlborough, MA; 9Department of Pediatrics, University of Colorado, Denver, Aurora, CO; and 10Department of Surgery, Vascular Biology Program, Boston Children’s Hospital, Boston, MAKey PointsWe have developed a biomimetic microfluidic platelet bioreactor that recapitulates bone marrow and blood vessel microenvironments.Application of shear stress in this bioreactor triggers physiological proplatelet production, and platelet release.AbstractPlatelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition, micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.Submitted May 9, 2014.Accepted July 8, 2014.© 2014 by The American Society of Hematology

Schmid, L. ; Weitz, D. A. ; Franke, T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 2014, 14, 3710-3718. Publisher's VersionAbstract

We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets{,} at rates as high as several kHz{,} into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers{,} yet{,} at the same time{,} enables a rich variety of more sophisticated applications.

Fan, J. ; Li, Y. ; Bisoyi, H. K. ; Zola, R. S. ; Yang, D. -ke; Bunning, T. J. ; Weitz, D. A. ; Li, Q. Light-Directing Omnidirectional Circularly Polarized Reflection from Liquid-Crystal Droplets. Angewandte Chemie 2014, n/a–n/a. Publisher's Version 2014_angewchem_liquid_crystal_droplets.pdf