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ABSTRACT

Fully three-dimensional, time-dependent, direct simulations of the non-ideal Navier-Stokes equations for a two-component
fluid shed light into the mechanism which inhibits droplet breakup in step emulsifiers below a critical threshold of the
width-to-height (w/h) ratio of the microfluidic nozzle. Below w/h ~ 2.6, the simulations provide evidence of a smooth
topological transition of the fluid from the confined rectangular channel geometry to an isotropic (spherical) expan-
sion of the fluid downstream the nozzle step. Above such threshold, the transition from the inner to the outer space
involves a series of dynamical rearrangements which keep the free surface in mechanical balance. Such rearrangements
also induce a backflow of the ambient fluid which, in turn, leads to jet pinching and ultimately to its rupture, namely,
droplet formation. The simulations show remarkable agreement with the experimental value of the threshold, which is found

around w/h ~ 2.56.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084797

The recent surge of experimental activity in microfluidics
has shown the possibility of producing controlled monodis-
perse oil-water emulsions, characterized by a substantial
throughput of highly ordered structures often referred to as
soft flowing crystals.’

Emulsions find widespread use in many fields of science
and engineering, from pharmaceuticals and cosmetics to the
production of scaffolds in tissue engineering, to mention but a
few.*>

In conventional microfluidic devices, such as T-junctions
and flow focusers, droplets can only be produced in com-
paratively small amounts, hence the need to parallelize them
to obtain higher throughput microfluidic systems. In these
devices, the shear-induced drop pinch-off results in pres-
sure fluctuations which determine shear force variations
that inevitably lead to droplets’ polydispersity. On the other
hand, with bulk methods,® based on centrifugal separation
processes, throughput is significantly higher, if only at the

expense of a very limited control over droplet size and
monodispersity.

Hence, new techniques capable of striking an optimal bal-
ance between the above conflicting requirements are actively
pursued. In this respect, step emulsification has recently cap-
tured significant interest, as a viable technique for the con-
trolled production of liquid droplets at substantial throughput
rates.”8

The main idea behind step emulsification is to exploit the
combined effect of pressure drop due to a sudden channel
expansion (i.e., the step) and the elongational backflow inside
the nozzle, to induce the pinch-off of the dispersed phase,
thus leading to droplet formation.

A recent paper? has highlighted the basic fluid phenom-
ena underpinning the step-emulsification process, namely,
(i) the backflow of the continuous phase from the external
reservoir to the confined microchannel, driven by an adverse
pressure gradient, (ii) the striction of the flowing jet within
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the channel and its subsequent rupture, and (iii) the rupture
suppression upon increasing the flow speed of the dispersed
phase within the channel, due to the stabilising effect of the
dynamic pressure.

However, an important question is still pending: What
is the mechanism which inhibits step emulsification at small
values of the width-to-height (w/h) ratio?

In this short communication, we propose a potential sce-
nario, partly based on geometrical considerations as sug-
gested by extensive numerical simulations. In particular, we
performed direct numerical simulations of the fully three
dimensional, time-dependent Navier-Stokes equations for a
microfluidic step emulsifier geometry, using a very recent
extension of the lattice Boltzmann (LB) equation for mul-
ticomponent flows, based on the color gradient method.'®
Before recalling the main aspects of the model employed,
it is worth noting that, very recently, Bertrandias et al.'’
experimentally studied drops formed from a nozzle into an
immiscible, cross-flowing phase. Depending on the operating
conditions, they found that the drops are generated either
in dripping or jetting mode, investigating the impact of the
continuous and dispersed phase velocities, dispersed phase
viscosity, and interfacial tension on the drop generation mode
and size.

In the color gradient LB for multicomponent flows, two
sets of distribution functions track the evolution of the two
fluid components, according to the usual streaming-collision
algorithm (for a comprehensive review of the lattice Boltz-
mann method, see Refs. 12 and 13),

fh(E+ dint, e+ at) = £ (% 1) + QE [ (%, )], <1>

where ff is the discrete distribution function, representing
the probability of finding a particle of the kth component at
position X and time t with discrete velocity ¢;.

The lattice time step is taken equal to 1, and i is the
index running over the lattice discrete directionsi =1, ..., b,
where b = 27 for a three dimensional 27 speed lattice (D3Q27).
The density o* of the kth component and the total momen-

tum of the mixture pil = ¥, p*uk are given by the zeroth and
the first order moment of the distribution functions p* (9?, t)
= Xiff (9?, t) and pil = 3 Sk ff(f, t)&;. The collision operator
splits into three components,'4-16

ol = (o) %[ ()" + (24)“]. @

) )]

In the above equation, (QiQ stands for the standard col-

.. . 2) . . .
lisional relaxation,'” (Qf)( ) is the perturbation step,’'# which
contributes to the buildup of the interfacial tension. Finally,

(Q’f)(s) is the recoloring step,’#'8 which promotes the segre-
gation between the two species, so as to minimise their mutual
diffusion.

By performing a Chapman-Enskog expansion, it can be
shown that the hydrodynamic limit of Eq. (1) converges to
a set of equations for the conservation of mass and linear
momentum with a capillary stress tensor of the form'®

scitation.org/journal/phf

T=-1) Z(Qf)(z)aa- - %pl(WpFI ~VpxVp), (3)
ik

with = being the collision relaxation time, related to the kine-
matic viscosity via the relation v = c2(r — 1/2) (cs = 1/V3
the sound speed of the model) and o being the surface
tension.'>17

The color gradient LB scheme is further regularized by
filtering out the high-order non-hydrodynamic (ghost) modes,
emerging after the streaming step (see Refs. 20-22 for further
details).

By exploiting the regularization procedure, i.e., by sup-
pressing the non-hydrodynamic modes, we recover the asso-
ciated loss of isotropy.'?23

We performed a set of simulations of the step emulsifier
in the dripping regime, as it occurs for low capillary numbers.
The inlet capillary number, defined as Ca = pinUinv /o (oin is
the density of the dispersed fluid, Uj, is the velocity of the dis-
persed phase at the inlet, v is the kinematic viscosity of the
dispersed phase, and o is the surface tension), was kept at a
constant value (Ca = 3 x 10-3), while the w/h ratio has been
varied between 1 and 6, in order to investigate its effect on the
step emulsification process. The nozzle height (h = 25 um) was
discretised with 20 grid points, while the width of the chan-
nel was varied between 20 and 120 grid points corresponding
to 25 pym and 150 pm, respectively (w/h =1to w/h = 6). The
simulations were run on a 240 x 100 x 120 (w/h = 1-4) and on
a 300 x 150 x 160 (w/h = 5-6) nodes grid. Two other relevant
non-dimensional numbers, the Reynolds (Re = Uy, R, /v) and
the Weber (We = mel.ZnRh/o-) numbers, with R, = wh/2(w + h)
being the hydraulic radius of the nozzle, range, respectively,
between 2.3-3 and 7 x 1073 to 9 x 1073, typical of microfluidic
devices.

In this work, we simulated a single nozzle out of the full
experimental device (see Fig. 1 for the sketch of the nozzle and
for a visual comparison between the experiment and simu-
lation), using periodic boundary conditions along cross-flow
directions, in order to mimic the effect of neighbour noz-
zles. At the inlet and outlet, we imposed uniform velocity
profiles via momentum-modified bounceback boundary con-
ditions.?# Other simulation parameters are the kinematic vis-
cosity v = 0.0333, the surface tension of the model o = 0.1,
and the inlet velocity U;, = 0.01 (the values are reported in
lattice units and chosen so as to match the inlet capillary
number Ca = 3 x 1073),

The outlet velocity was chosen in order for the total mass
in the system to be conserved, Uyt = Uin-Ain/Aout, where Ay,
and Aoy are the inlet and outlet sections, respectively. In I'ig. 2,
we report the time sequence of the dripping nozzles for dif-
ferent aspect ratios. In the dripping regime (second to fourth
row in Fig. 2), the continuous phase flows back from the exter-
nal reservoir to the confined microchannel (focusing stage)
and the flowing jet ruptures as a consequence of the striction
induced by such backflow. Note that the rupture is driven by
the negative curvature, which develops in the striction region
(pinching stage). In I'ig. 2, the build-up of a significant backflow
is apparent, amounting to about three times the inlet veloc-
ity. As the pinching progresses, the backflow speed decreases,
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FIG. 1. Sketch of the nozzle geometry in the simulation box,
along with the imposed boundary conditions [panel (a)]. The
above conditions reproduce a periodic array of independent
nozzles, which is consistent with the geometry of the vol-
cano device [panel (b)]. Here, the dispersed phase (red) is
pumped through the device, forming monodisperse drops
in a reservoir containing a continuous immiscible phase
(cyan). (c) Visual comparison between the simulation and
experiment of two nozzles (w/h ~ 5) in dripping mode.

simulation experiment

0.05
0.04
0.03
0.02
0.01

w/h=1

<

0.05
0.04

w/h=2.4

STeTS o
S
28

FIG. 2. Velocity field in a y-z mid-
plane taken between the two walls sep-
arated by a distance h. The first two
rows show two jetting nozzles. The liquid
jet expands isotropically after the sud-
den expansion and no backflow devel-
ops within the nozzle. The other rows
show breakup sequences for wh > 1,
from the focusing stage and pinching to
the final breakup. The counterflow in the
continuous phase within the nozzle is
clearly evidenced by the quiver plot. The
insets (1) and (2) show the flow field near
the solid wall of the nozzle in the x-z
midplane for two different aspect ratios,
namely, 1 and 4.
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due to the enlarged section available to the continuum phase.
Thus, as pointed out in Ref. 9, the breakup should not be inter-
preted as due to a Plateau-Rayleigh instability but rather to
the backflow of the continuum phase, triggered by the adverse
pressure gradient which arises in correspondence with the
focusing of the water jet. Indeed, the flow inside the nozzle can
be regarded essentially as a Hele-Shaw cell in which the noz-
zle height is the relevant curvature, determining the buildup
of the capillary pressure (p ~ o /h) inside the water meniscus.
On the other hand, outside the nozzle, the relevant curvature
is dictated by the radius of the forming droplet, which grows
very quickly thus determining a lower pressure (xo /R <« o /h,
with R being the radius of the drop) inside the newly form-
ing droplet. Consequently, large pressure gradients develop
between the dispersed phase inside the nozzle and the droplet
outside which lead to (a) the water drainage from the nozzle
and (b) the backflow of the oil from the ambient fluid; these
two effects finally lead to the droplet rupture.

It is worth mentioning that we have tested the conver-
gence of our simulations by carrying out a set of simula-
tions, for w/h = 1 and w/h = 4, by doubling the resolution
of the nozzle (see Fig. 3). To this aim, we employed a grid-
refinement procedure, as described in Ref. 25, with the addi-
tional requirement that not only the Reynolds number but
also the Capillary number are kept invariant in the transition
from one grid to another. To ensure this important condition,
the surface tension is scaled in such a way as to fulfill the
condition

Ca = pinUinVR/o'R = pinUim vio (4)

where vg and oy are the kinematic viscosity and surface ten-
sion of the refined grid, respectively. This permits to employ a

100 200 300 400

FIG. 3. Dripping nozzle simulations. Convergence test (w/h = 4, y—z mid-plane):
(@) normal resolution and (b) doubled resolution within the zone included in the
rectangular area.

scitation.org/journal/phf

refined grid only wherever needed (i.e., around the step emul-
sifier nozzle), thus significantly alleviating both memory and
computing time requirements.

It is now instructive to observe what happens when the
width-to-height ratio of the microfluidic nozzle is being var-
ied. The w/h ratio was varied between 1 (square section) and
6. When w/h < 2.56, the liquid jet expands isotropically after
the sudden expansion and no breakup occurs. The droplet
keeps expanding without breaking, in close agreement with
the experiments, which give a transition threshold around
w/h ~ 2.56. Below this value, the step emulsifier operates in
the jetting mode that occurs whenever the droplet does not
break up anymore and starts “ballooning.” Thus, in the jet-
ting mode, the step produces drops with much larger diame-
ter (characterized by a much lower degree of monodispersity)
than in the dripping regime. This is precisely what happens
both in experiments and simulations. Then, the aspect ratio
has been varied between w/h = 2.7 and w/h = 6: the sequences
reported in Fig. 2 show the nozzles in the dripping regime.
As expected, the droplet diameter is approximately constant
(roughly ~4h, see ['ig. 4) throughout the simulations, confirm-
ing that the droplet size is dictated by the height of the nozzle
alone, regardless of the aspect ratio, which is in line with other
experimental evidences.®> Moreover in Fig. 4, we report the
non-dimensional breakup frequency f4Rp, /Ui, with fy being
the breakup frequency, as a function of the nozzle aspect
ratio. The linear trend reflects the mass conservation, f3V = Q,
where Q is the inlet discharge which, once h is fixed, depends
linearly on w.

0.12 — : . f
0.1 | 15
0.08 | 14
5 AN
S <
= 006 f %1) 13 3
S
3 =
004 -2 12
0.02 | 1
TR = - -
1 2 3 4 5 6

FIG. 4. Dependence of the normalized droplet production frequency on the aspect
ratio (circles). Triangles: d/h as a function of the width-to-height ratio. Note that the
droplet diameter d ~ 4h is basically independent of the aspect ratio w/h, which
is in agreement with the experimental findings (see Refs. 3 and 9). The linear
trend of f4Ry/Uj, with w/h reflects mass conservation f;V = Q, with V being the
volume of the droplet and Q being the inlet discharge. The vertical dotted lines
(blue and orange) identify the experimental and simulation drip-to-jet thresholds,
respectively.
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The insets (1) and (2) in Fig. 2 show the flow field near the
solid wall of the nozzle in the x-z mid-plane for two differ-
ent aspect ratios, namely, w/h = 1 and w/h = 4. In the former
case, no re-entrant flow develops, due to the isotropic expan-
sion of the droplet, which prevents the jet from “focusing” and
the ambient fluid from entering the nozzle. As a result, no
elongational flow develops.

In the latter case (w/h = 4), the anisotropic expan-
sion of the outgoing droplet leads to the necking of the lig-
uid jet, which breaks up due to the combined effect of the
Laplace pressure and the elongational backflow inside the
nozzle.

A question naturally arises: What is the physical mecha-
nism preventing the jet focusing when w /h is small?

In the step emulsifier, when w/h ~ 1, the fluid can
continuously deform from a confined square-section shape
to a spherical droplet. Topologically speaking, the two fluid
objects are the same and therefore one can morph into
another via an isotropic expansion, as evidenced in Fig. 5.
On purely mathematical grounds, it would be interesting to
explore whether such isotropic expansion falls within the
class of Ricci flows,?® a subject that we leave for future
investigations.

On the other hand, when w/h is greater than a criti-
cal value, around w/h ~ 2.6, the dynamics (i.e., the backflow
driven by adverse pressure gradients) come into play and,
although the parallelepiped and the sphere are still homeo-
morphic, the fluid undergoes a dynamic rearrangement which
guarantees the curvature to be equilibrated everywhere in the
system, in such way that Laplace pressure jumps remain bal-
anced, until rupture occurs.? Thus, the liquid is subject to a
rearrangement at the nozzle exit, as evidenced in Fig. 5, which
shows the typical anisotropic expansion of the liquid jet in
the dripping emulsifier, due to the combined effects of two

(a)

K

scitation.org/journal/phf

different mechanisms, namely, a front recession along the flow
direction and a necking of the liquid jet occurring crossflow.
In this sense, surface tension is responsible for the topological
breakup, i.e., the fluid undergoes a series of (local) dynamical
rearrangements in order to balance the pressure differences
at the interface, which are not taken into account by a purely
topological transformation.

In conclusion, fully three-dimensional, time-dependent
simulations shed light on the mechanism which prevents
droplet rupture in step emulsification devices, whenever the
nozzle aspect ratio is below ~2.6, a value in close match with
the experimental findings, yielding w/h ~ 2.56. When w/h is
below such threshold, the liquid jet isotropically expands after
the step, inhibiting the necking and preventing the ambient
liquid from entering the nozzle and stretching the liquid jet
until rupture. Indeed, the dispersed fluid follows a smooth
transition from the confined nozzle geometry to the outer
ambient, which can be interpreted as a topological isomor-
phism. However, whenever w/h exceeds the threshold value,
a topological breakup is observed, i.e., although the paral-
lelepiped and the sphere are still homeomorphic, the fluid is
subject to a series of fluid-dynamical rearrangements, nec-
essary for the curvature at any point of the free surface to
keep in balance with the Laplace pressure. Eventually, these
rearrangements lead to jet dripping, due to the combined
effect of the backflow elongation and the Laplace gradients
at the fluid interface. Despite their topological equivalence,
this spontaneous symmetry breaking opens a gap between the
confined parallelepiped geometry and the outer sphere so that
jet breakup is the only possibility for the former to turn into
the latter.

Future work is needed to pin down the values of the
breakup threshold w/h ~ 2.6, as well as diameter vs step height
relation d/h ~ 4.

|
)  Isotropic expansion
X-Z a(homeomorphism)

FIG. 5. () When w/h ~ 1, the fluid can deform continu-
ously from a confined square-section shape to a spherical
droplet. (b) For w/h above a critical value (larger than ~2.6),
the fluid undergoes a dynamic rearrangement which guar-
antees the curvature to be equilibrated everywhere in the
system, balancing the Laplace pressure jumps, until rupture
oceurs.
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