Visualization of adaptive polymer flow and displacement in medium-permeable 3D core-on-a-chip

Citation:

Zhang, Y. ; Zhao, X. - Z. ; Han, P. - H. ; Zhang, L. - Y. ; Weitz, D. A. ; Feng, Y. - J. Visualization of adaptive polymer flow and displacement in medium-permeable 3D core-on-a-chip. Petroleum Science 2023, 20, 1018-1029. Copy at http://www.tinyurl.com/26v6ntjo
zhang2023.pdf4.41 MB

Abstract:

Polymer flooding has been witnessed an effective technology for enhancing oil recovery from medium-to low-permeability reservoirs; however, direct visualization of polymer solution flow in such reservoir condition is still lacking. In this work, a three-dimensional (3D) core-on-a-chip device with a permeability of around 200 mD was prepared and employed to visualize the pore-scale flow and displacement of a self-adaptive polymer (SAP, 8.7 × 106 g·mol−1)−whose microscopic association structure and macroscopic viscosity can reversibly change in response to shear action−versus partially hydrolyzed polyacrylamide(HPAM), by recording their flow curves, monitoring dynamic transportation process via particle imaging velocimetry, and building 3D structure of remaining oil. The results show that, in single-phase flow, all polymer solutions exhibit flow thinning and then thickening regions as flow rate increases, but the transition between two regimes occurs at a small Weissenberg number (10−3−10−1) in this medium-permeable condition. In contrast to HPAM-1 with close weight-average molecular weight (Mw), the adaptive character not only extends SAP's shear-govern region, allowing SAP to propagate piece by piece and achieve higher accessible pore volume, but it also enhances the elastic resistibility of polymer in the extension-dominated regime, increasing the microscopic displacement efficiency. These two effects result in 1.5–3 times more oil recovery factor for SAP than for HPAM-1. Regarding ultra-high-Mw HPAM-2 (25 × 106 g·mol−1), plugging and chain degradation do occur, thus producing lower oil recovery than SAP. This work provides a direct approach for in-situ assessment of polymer-based displacing system under a more authentic condition of practical reservoirs.

Publisher's Version