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ABSTRACT: Nanomedicines (i.e., Au@CoFeB-Rg3) were devel- ..
oped by conjugating multimode nanohybrids with active il
ingredients of natural herbs using Au@CoFeB nanoparticles as Au@CoFeB — Dark field
one model of multimode nanohybrids and the ginsenoside Rg3 as * CT and MRI microscope

one model of active ingredients of natural herbs. Au@CoFeB
nanoparticles were first synthesized using a temperature-
programmed microfluidics process. Then, the surface of Au@
CoFeB nanoparticles was modified via an amino-silane coupling
agent of (3-aminopropyl) trimethoxysilane (APTMS) and then
activated by the bifunctional amine-active cross-linker. They were
thereafter conjugated to ginsenosides preactivated by APTMS by
cross-linking the surface-activated nanohybrids, forming Au@
CoFeB-Rg3 nanomedicines. Their multimode imaging functions
were evaluated with the characterization of their magnetic and optical properties and the response to X-ray radiation. They can be
optically detected via dark-field microscopy and can be imaged through X-ray computed tomography. They can also be used as
magnetic resonance imaging contrast agents with excellent T2-weighted spin—echo imaging effects. Au@CoFeB-Rg3 nanomedicines
exhibited distinct cytotoxicity and inhibitory effects on the proliferation of human hepatocellular carcinoma cells (HepG2/C3) and
human chronic myeloid leukemia cells (K$62) but were less toxic to 3T3 cells than other cells at concentrations more than 200 pug/
mL. However, Au@CoFeB nanoparticles showed markedly lower cytotoxicity and inhibitory effects on the proliferation of these cell
lines, particularly at concentrations <100 ptg/mL, than Au@CoFeB-Rg3 nanomedicines. Clearly, there is a distinct synergistic effect
between nanohybrids and Rg3. Additionally, Au@CoFeB nanohybrids showed almost no toxicity to Jurkat-CT cells at low
concentrations (47 ug/mL), indicating that they may be used as multimode nanoprobes at a suitable concentration. These findings
provide an efficient alternative for the synthesis of multifunctional antitumor nanomedicines based on multimode nanohybrids and
active ingredients of natural resources.
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B INTRODUCTION

stability properties of a series of drug molecules that have been
widely used in various biomedical applications, including

Nanomedicines (NMs) are applicable to monitoring and
control, diagnosis and therapy, and tissue repair of biological
systems at the molecular level, owing to their controllable size,
large surface area-to-mass ratios, and unique physicochemical
properties.1 In recent years, the primary approaches to the
synthesis of NMs have been focused on the following aspects:
(1) diagnosis for obtaining coherent results by improving the
sensitivity and integration of analytical methods,”™"" (2) drug
delivery for carrying the bioactive agents,z’lz_16 (3) tissue
engineering and implants for overcoming limitations associated
with vascular grafts,'”” ™ and (4) bioavailability improve-
ment”' ™** and medical devices.”* In addition, a broad range of
nanomaterials have been used for the translation to NMs,
which include nanosuspensions,” polymeric nanoparticles
(NPs),”*"** iron oxide NPs,”” metallic NPs,*>*' nanopores,**
dendrimers,* liposomes,‘?’4 etc. Therefore, NMs have im-
proved and extended the pharmacokinetic, solubility and
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particular drug delivery, therapy, imaging, and diagnostics."*
However, the use of NMs continues to be characterized by
numerous unclear effects on human health and various
biological barriers to be overcome, which include stability,
surface modification and functionalization, multimode func-
tions, efficient drug delivery, a balance between the efficacy and
side effects, etc.”*°

Nanohybrids (NHs) consisting of noble metal and magnetic
components are promising for applications in a broad range of
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Scheme 1. Chemical Reaction Process of the Synthesis of the Au@CoFeB-Rg3 NMs
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areas including energy conversion,’ medical imaging,
and disease detection,”' ™"’ owing to their unique physico-
chemical properties, high stability, and multimode properties
(i.e., magnetic and electromagnetic sensitivity).44 Moreover,
proper modification of the surface of these NPs and/or
conjugation with certain medicines or organic components
leads to a wide therapeutic window and clinical application
with no or markedly reduced side effects on healthy cells and/
or tissues. These alterations have rendered certain NHs useful
as effective chemotherapeutic drugs for numerous diseases
owing to their appealing features for diagnosis, imaging, drug
delivery, therapy, and even the development of synthetic
vaccines.*® Thus, the controlled synthesis and functionalization
of multimode NHs have continuously received great attention
for expanding their interdisciplinary applications to funda-
mental studies and clinical application (e.g,, ultrasensitive
bioprobes,”*” high efficient NMs and nanoenzymes,** ultra-
sensitive biomedical molecule imaging and diagnosis of some
diseases** ™). These biomedical applications have been
primarily driven by the intrinsic physicochemical properties
and surface modification of NMs. These can be flexibly tailored
by altering their size, construction components, surface/
interface topography, and functionalization.”***** For these
goals, lots of advanced synthesis technologies have been
developed.”>™>* Among them, the well-established microfluidic
process has been recognized as an effective methodology rather
than the conventional batch processes owing to the precise
control of reaction conditions during nanomedicine syn-
thesis.”***~%® This approach affords narrow size distribution
and good control over the shape and size of the core—shell
NPs owing to the precise spatiotemporal resolution control of
the kinetic parameters of each stage during the NP
formation,>*%>%+%3

In this study, Au@CoFeB NHs were synthesized, and their
conjugation with ginsenoside Rg3 was conducted to form NMs
(i.e, Au@CoFeB-Rg3) for future use in multimode diagnosis

and cancer therapy. In contrast to gemcitabine, fluorouracil,
oxaliplatin, and nab-paclitaxel that fail to effectively inhibit
tumor progression, the ginsenoside Rg3 has become
increasingly popular in the treatment of cancer owing to its
broad efficacy and low side toxicity, as well as its boosting
effect on the immunity of patients.66 Ginsenoside Rg3, a
steroidal saponin with high pharmacologic activities, is an
efficient anticancer therapeutic agent. It can promote TRAIL-
induced apoptosis in several hepatocellular carcinoma cell
lines, including HepG2, SK-Hepl, Huh-7, and Hep3B,”’
suggesting that Rg3 sensitization to TRAIL might be specific
to cancer cells. Moreover, Rg3 exhibits excellent anticancer
activities in in vitro cell experiments and animal experiments in
vivo, and ginsenosides have been used to improve the
immunity of people.”® These activities include apoptosis,
angiogenesis suppression, metastasis inhibition, chemotherapy
efficacy enhancement, and survival prolongation.”””® The
mechanism underlying the increase in chemotherapy efficacy
improvement is postulated to be via its inhibitory effects on
NF-kB and AP-1.7° There are two stereoisomers in Rg3,
namely, 20(S)-Rg3 and 20(R)-Rg3. The main difference
between them lies in the spatial selectivity of the hydroxyl
group of carbon atom no. 20 on the molecular structure. In this
paper, 20(R)-Rg3, which has a good effect on liver cancer
therapy, was used.

The tiny Au nanoparticles that have already been
synthesized provide surface templates or substrates on which
CoFeB layers can deposit and grow. The alloyed metalloid
boron component that is a necessary dietary component for
humans and animals can provide a supplement used in
nanomedicine, possibly exhibiting a promising synergistic
therapeutic effect since borax has been widely used in
traditional Chinese drugs due to a heat-clearing and
detoxifying effect that is also beneficial to the immunological
system.”' Amazingly, it has been experimentally demonstrated
that Au@CoFeB NPs and Au@CoFeB-Rg3 NMs show

https://dx.doi.org/10.1021/acs.chemmater.0c00797
Chem. Mater. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.chemmater.0c00797?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c00797?fig=sch1&ref=pdf
pubs.acs.org/cm?ref=pdf
https://dx.doi.org/10.1021/acs.chemmater.0c00797?ref=pdf

Chemistry of Materials

pubs.acs.org/cm

50 (C) 54+0.4nm
? 40t
o
E
5 30+
E
8 201
c
3
S 10+
4.8 5.4 6.0 6.6
Diameter (nm)
50 g G
40
Fe
930 ¢
€
g
201
N
Cu, A 10+ Al - A AA' m
Fe Au Au 0 i
ol w Lk 2
10 0 5 10 15
Energy (KeV) Energy (KeV)

Figure 1. (a) Wide-viewed TEM image of the Au@CoFeB NPs. (b) HR-TEM image of one single NP showing the lattice fringe of 2.03 A in the
core and the lattice fringe of 2.02 and 2.83 A in the shell. (c) The histogram of the size distribution of the Au@CoFeB NPs. (d) The high-angle
annular dark field (HAADF) STEM image and (e) the corresponding HR-TEM image of one typical NP. (f) The EDS spectra of point 1 in the
center of the single NP and (g) the EDS spectra of point 2 in the outer shell of the single NP to show distinctly increased Au content and decreased

Co and Fe contents in the center of the single NP.

multimode imaging functions for medical diagnosis and exhibit
a marked effect on the treatment of cancer cells. These NHs
can be observed optically under a dark field microscope when
used to tag biological molecules for the precise study of cell—
medicine interaction. They can also be used in noninvasive
magnetic resonance imaging (MRI) for future clinical
applications. Particularly, the Au@CoFeB-Rg3 NMs enhance
computed tomography (CT), which can improve the accuracy
of clinical diagnosis/imaging. Furthermore, they exert distinct
antitumor effects that are significantly toxic to K562-CT cells
and Hep-G2/C3A cells, and distinctly inhibit the proliferation
of these cancer cells.

B EXPERIMENTAL SECTION

The synthesis process of the Au@CoFeB-R3 NMs was elucidated in
Scheme 1. Surface hydroxyl groups of Au@CoFeB NPs were modified
to become amino groups using modifier 3-aminopropyl trimethox-
ysilane (APTMS). Subsequently, they were activated by a bifunctional
amine-active cross-linker (i.e., disuccinimidyl suberate (DSS)).
Finally, the preactivated ginsenoside Rg3 with APTMS was
conjugated to the above surface modified NPs, forming the desired
Au@CoFeB-Rg3 NMs. Please refer to the details in the Supporting
Information.

B RESULTS AND DISCUSSION

Morphology, Structure, and Composition of Synthe-
sized NPs. The wide-viewed transmission electron micros-
copy (TEM) image shown in Figure Sla in the Supporting
Information reveals well-dispersed spherical CoFeB NPs.
According to the statistics of more than 100 randomly selected
NPs, these NPs have a narrow size distribution with an average
size of 2.4 + 0.6 nm, as shown in the histogram of sizes (Figure
S1b). The alloyed NPs are smaller than Co NPs due to the
higher reaction temperature in the process of CoFeB NPs
synthesis.”” This is attributed to the shortening of the growth
time of NPs by performing the synthesis of the CoFeB at a
relatively faster flow rate (3 mL/min) compared with that of

the Co NPs (0.8 mL/min). The NPs are clearly highly
crystalline as observed from the high resolution TEM (HR-
TEM) images, as evidenced by one typical particle image
inserted into Figure Sla. Furthermore, the lattice spacing of
2.02 A measured from the high-resolution image can be
indexed to the (110) plane of the body center cubic (bcc)
CoFeB alloy. As detailed in Figure Slc, the X-ray powder
diffraction (XRD) curve of the precursor CoFeB NPs indicates
that the peak positions which are located at 31.32° and 45.58°
can be indexed as the (100) and (110) planes (JCPDS: 44-
1433). The (110) plane in the XRD curve is determined to be
in good agreement with the HR-TEM image. In addition, the
positions located at 58.06°, 66.33°, 75.25°, and 84.17° are
found to correspond to the (111), (200), (210), and (211)
planes of the bcc CoFeB phase (JCPDS: 44-1433),
respectively.

According to the statistics of more than 100 randomly
selected NHs, the synthesized Au@CoFeB NPs display a
spherical shape (Figure 1a), with an average diameter of 5.4 +
0.4 nm (Figure 1c). The HR-TEM image (Figure 1b) clearly
reveals the core—shell structure and good crystallization, with a
lattice spacing of 2.03 A in the core (corresponding to the face
center cubic (fcc) Au (200)) and lattice spacings of 2.83 and
2.02 A on the surface (corresponding to the (100) and (110)
planes of bcc CoFeB, respectively). On the basis of the results
of this study, it is clear that the (110) plane of the becc CoFeB
matches the (200) plane of the fcc Au. The composition
distributions of the NPs were characterized by an energy
dispersive X-ray spectrum (EDS) to further confirm the
structures of the core—shell. Figure 1d—g show the high-angle
annular dark field (HAADF) scanning TEM images and EDS
spectra of the relative Co, Fe, and Au distributions in the
center and edges of a representative NH. The EDS spectrum
confirms that the central parts of the NHs are mainly
composed of Au, as well as some Co and Fe, as indicated by
the strong Au peaks and indistinct Co and Fe peaks (Figure
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Figure 2. (a) Wide view TEM image of Au@CoFe(B)-Rg3 NMs (the inserted are the HR-TEM image of one single NM and the histogram of the
size distribution). (b) X-ray diffraction, (c) full X-ray photoelectron spectroscopy (XPS) spectra (the inserted image is XPS of boron binding
energy of the NMs), (d) Fourier transform infrared spectroscopy (FT-IR), (e) hydrodynamic radius, and (f) zeta potential results of the prepared
Au@CoFe(B) (blue curve or column) and Au@CoFe(B)-Rg3 NMs (red curve or column).

1f). However, the intensity of the Au peak on the edges is
reduced compared with that of the peaks in the central parts of
the NPs, and the Co peak and the Fe peaks become the most
intensive peaks (Figure 1g). This result suggests that the core
of the sample is mainly composed of Au, while the shell is
mainly composed of CoFeB. The Au/Co/Fe/B atom ratio is
approximately 1/2.2/1.8/2.2, as confirmed by the inductively
coupled plasma optical emission spectrometer (ICP-OES) data
(detailed experimental process, see the Supporting Informa-
tion). As shown in the XRD spectrum of the Au@CoFeB NPs
in Figure S2a, the diffraction peaks corresponding to the
CoFeB and Au phases are observed, confirming the formation
of the Au@CoFeB NPs architecture in the microfluidic
reductions. The peak position at 44.83° can then be indexed
as the (110) plane of CoFeB, which matches the HR-TEM
image shown in Figure 1b. In addition, the peak positions
located at 65.26° and 82.66° can be indexed as the (200) and
(211) planes of the bcc-CoFeB (JCPDS: 44-1433), respec-
tively. The peak positions located at 38.75°, 44.88°, 65.50°,
78.08° and 82.42° are successfully indexed as the (111),
(200), (220), (311), and (222) planes of the fcc-Au (JCPDS:
04-0784), consistent with the previous reports.”” X-ray
photoelectron spectroscopy (XPS) was performed to deter-
mine the elemental composition, as well as the chemical and
electronic state. As shown in Figure S2b, the Au@CoFeB NPs
consist of Au, B, C, O, Fe, and Co, matching the proposed
reaction processes. The Au@CoFeB NPs were further
analyzed through Fourier-transform infrared spectroscopy
(FT-IR). The FT-IR spectrum of Au@CoFeB NPs was
investigated in the range from 500 cm™' to 4000 cm™'. As
detailed in Figure S2c, the peak at 3385 cm ™ is assigned to the
—OH group (surface —OH group of NPs). The peak at 2925

cm™! is ascribed to the CH;/CH, groups from the surface-
coated surfactant,”* while the peak at 1636 cm™ for the Au@
CoFeB NPs represents the stretching vibration of C=0 in the
polyethylene chain of PVP. Compared with the diameter (5.4
+ 04 nm) shown in the TEM image (Figure 1c), the
hydrodynamic radius of Au@CoFeB (~164 nm) NPs in Figure
S2d is markedly higher. This is because the magnetism in the
particles results in their accumulation into larger NPs in
ethanol. Moreover, as shown in Figure S2e, Au@CoFeB NPs
show positive electrical potential. This positive zeta potential
with the hydrodynamic radius favors the endocytosis of NPs
owing to the negative electrical potential exhibited by most
cells.

The wide-viewed TEM image of Au@CoFeB-Rg3 NMs
shown in Figure 2a reveals that these NMs can be well-
dispersed. Even after the surface modification and conjugation
with ginsenoside Rg3 that results in the lattice fringe being
unclear, the core—shell nanostructure is still distinct and the
NMs have a uniform size with a mean diameter of 6.6 + 0.7
nm (inserted images in Figure 2a). As shown in Figure 2b,
compared with the XRD pattern of the Au@CoFeB (blue
curve), the peaks in the Au@CoFeB-Rg3 (red curve) become
slightly sharper, revealing that the surface modification and
conjugation processes improve the crystallinity. XPS character-
ization was performed after modification of the surfaces of
Au@CoFeB NPs with (3-aminopropyl)trimethoxysilane
(APTMS)-modified ginsenoside Rg3. As shown in Figure 2c,
compared with the Au@CoFeB (blue curve), the Au@CoFeB-
Rg3 NMs (red curve) consist of Au, Si, B, C, N, O, Fe, and Co,
matching the proposed mechanisms of nanoparticle formation
and conjugation reaction, detailed in the Supporting
Information. The Au, Fe, Co, and B are derived from the
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Figure 3. (a) ZFC/FC curves and (b) magnetic hysteresis loops of CoFeB NPs, Au@CoFeB NPs, and Au@CoFeB-Rg3 NMs.

Au@CoFeB NPs. N is derived from the surface modification
agent (APTMS) and the linking agent (di(N-succinimidyl)
suberate), while Si is apparently derived from the surface
modification agent (APTMS). The NMs were further analyzed
by FT-IR. Figure 2d shows the FT-IR spectra of Au@CoFeB
NPs and Au@CoFeB-Rg3 NMs. As detailed in its FT-IR
spectrum of Au@CoFeB-Rg3 NMs, following the conjugation
with ginsenoside Rg3 to NPs modified by APTMS and DSS,
the typical dual absorbance peaks for ginsenoside Rg3 (at 1077
cm™! and 1042 ecm™)”* are 1042 cm™' and 1114 cm7},
respectively (Figure 2d, red curve). The combination of the
XPS and FT-IR analysis confirms the proposed conjugating
mechanism, and the Au@CoFeB-Rg3 NMs are successfully
synthesized.

As shown in Figure 2e, after the surface modification and
conjugation processes, the hydrodynamic radius of Au@
CoFeB-Rg3 (~342 nm) NMs (red curve) is markedly
increased by comparing with that of Au@CoFeB (~164 nm)
NPs after the introduction of the ginsenoside Rg3 onto the
NHs. Moreover, the coupling effect leads to a size increase of
nanomedicines as observed from their TEM image (Figure 2a).
Furthermore, as shown in Figure 2f, the positive electrical
potential of Au@CoFeB-Rg3 (red column) is increased due to
the introduction of —NH, on the surface of NHs during the
surface modification and coupling process. The positive zeta
potential favors the endocytosis of NPs and NMs owing to the
negative electrical potential exhibited by most cells.

Optical and Magnetic Properties. Figure S3 shows the
UV—vis absorbance spectra of the CoFeB NPs (curve i), pure
Au (curve ii), Au@CoFeB nanocolloids prepared through
centrifugation (curve iii) and after magnet adsorption (curve
iv), and Au@CoFeB-Rg3 NMs (curve v). There is no distinct
absorption peak observed for the CoFeB NPs from 400 to 900
nm. However, there is a resonance position for Au@CoFeB
NPs, and the peak positions exhibit a red shift, compared with
that of the pure Au NPs. A slight blue shift is noticed for the
sample prepared through centrifugation, compared with that of
the sample prepared through adsorption. This is attributed to
the mixing of the sample after centrifugation with Au and Au@
CoFeB NPs, and the small number of elemental Au particles in
the NPs in the solutions prepared through magnet adsorption.
It has been previously reported that Au NPs with a size ranging
3 to 20 nm showed distinct localized surface plasmon
resonance (LSPR) with absorbance positions at approximately
500—550 nm.”>”® It was shown that the amplitudes and peak
positions were obviously dependent on the sizes, shapes,

dielectrics, and orientation of the gold particles and their
interspacing, as well as the environmental medium around the
particles.””~*° The environmental media included the substrate
used to fix the gold particles, as well as the surrounding
medium or shells (e.g,, CoFeB in this study) attached to the
Au particle surfaces. In this study, as shown in curve ii, the Au
NPs display a distinct LSPR peak at 526 nm, which is
consistent with previous reports.””*" The coated magnetic
component CoFeB on the Au surfaces strongly affects surface
plasmon resonance. It is found that the presence of the CoFeB
shells endows the core—shell NPs with a strong red shift
(~558 nm; curve iii). This shift is assigned to variations in the
local dielectric environment of the gold and different refractive
indexes between the Au and CoFeB according to the Mie
theory for nanospheres.*"”** This type of phenomenon has
been observed in other core—shell NPs with Au cores.*’ In
addition, after the surface modification and conjugation with
ginsenoside Rg3, the LSPR peak can extend to ~563 nm
(curve v) due to the further change of the local dielectric
environment around the Au core.

The Au cores also endowed the Au@CoFeB NPs and Au@
CoFeB-Rg3 NMs with unique magnetic properties compared
with the pure CoFeB NPs (Figure 3a and b) by hybridization
and interface interaction. Their magnetic properties are
summarized in Table 1. The ZFC (zero-field cooling) and

Table 1. Magnetic Properties of NPs“

Hc, Oe M,, emu/g
M, Tb,
sample left right Mo, M), emu/g K
CoFeB -2.6 1.7 0.024 —0.019 7.98 90
Au@CoFeB -7.6 3.1 0.048 —0.021 4.36 290
Au@CoFeB-Rg3  —25.5 24.6 0.08 0.008 2.52 175

“Hc, coercivity; My, and M), magnetism at the zero field in the top
and bottom hysteresis; M,, magnetic saturation; Tb, blocking
temperature.

FC (field cooling) curves, measured under an applied field of
100 Oe (Figure 3a), suggest a superparamagnetic nature of the
CoFeB, Au@CoFeB, and Au@CoFeB-Rg3 samples at room
temperature. Furthermore, approximately estimated from the
ZFC and FC curves in Figure 3a, the blocking temperature
(Tb; temperature from the ferromagnetic to the paramagnetic
transition) of the Au@CoFeB NPs is increased to 290 K
compared to that of the pure CoFeB NPs (90 K). In
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Figure 4. LSPR real color images of (a-i) Au@CoFeB NPs and (b-i) Au@CoFeB-Rg3 NMs and their LSPR spectra (a-ii, Au@CoFeB; b-ii, Au@
CoFeB-Rg3) measured by dark-field microscopy and spectroscopy. MRI effects of Au@CoFeB and Au@CoFeB-Rg3 solutions. (c) The effective
metal (Co and Fe) concentration-dependent T, relaxation rates and MR images (top images) of Au@CoFeB NPs generated on a T,-weighted
spin—echo sequence with an echo time (TE) of 33 ms and a pulse repetition time (TR) of 2500 ms. (d) The effective metal (Co and Fe)
concentration-dependent T, relaxation rates and MR images (top images) of Au@CoFeB-Rg3 NPs generated on a T,-weighted spin—echo
sequence with a TE of 33 ms and a TR of 2500 ms and (e) CT signal intensity of Au@CoF(B)-Rg3 NPs depending on the overall contrast agent
concentration (500—4500 pg/mL; voltage, 80 kV; current, 499 uA; spot size, SO ym).
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accordance with the general expression of the Tb for magnetic
NPs, an increase in Tb should be mainly the consequence of
increased magnetic anisotropy, or possibly relatively increased
volumes of the magnetic shells in the NPs**™*° and the
enhanced ma§netic interactions among the particles after the
drying step.”” In this study, the increased Tb is mainly
attributed to the enhanced magnetic surface anisotropy caused
by the strong pinnin§ effects of the CoFeB spins at the
CoFeB/Au interface.”” In general, magnetic anisotropy
increases the coercivity of particles, whereas the magnetic
dipole interaction among garticles during measurements
induces the opposite effect.””***’ Therefore, the increased
coercivity of the Au@CoFeB NPs is assigned to the enhanced
magnetic anisotropy and the reduced interparticle dipole
interactions. It is also not surprising that there is a lower
magnetic saturation observed in the Au@CoFeB NPs (Ms:
4.36 emu/g) versus the CoFeB (Ms: 7.98 emu/g) NPs. This is
attributed to the diamagnetic contribution from the Au cores.
It is well established that the magnetic properties of NPs can
be strongly affected by structural distortions at the surfaces and
interfaces, as well as their structural order and disordered
spins.”’ In the cases of synthesized Au@CoFeB NPs, these
effects become more distinct. Furthermore, a large bias
appeared in the Au@CoFeB NPs, which can be explained by
the interactions between the ordered spins of the CoFeB shells,
and the disordered spins located in the CoFeB/Au interfaces
and outer surfaces of the CoFeB shells. Notably, after the
modification and conjugation processes, the Tb for the Au@
CoFeB-Rg3 NMs decreases, and their coercivity is increased.
This is mainly attributed to the effective isolation of magnetic
shells by drug molecules and reduction of magnetic dipole
interactions among magnetic particles.

Optical Imaging, MRI Imaging, and CT Imaging
Applications. LSPR colors of Au@CoFeB NHs and Au@
CoFeB-Rg3 NMs were observed using dark-field microscopy.
As shown in Figure 4a-i and b-i, the blue-green color for the
Au@CoFeB NPs turns to the yellow-green for the Au@
CoFeB-Rg3 NMs. According to the peak position statistics of
the LSPR spectra of 50 randomly selected particles, Au@
CoFe-Rg3 particles exhibit red-shifts by approximately 36 nm
after the surface modification and the conjugation process. The
typical LSPR spectra of the single Au@CoFeB NHs and single
Au@CoFeB-Rg3 NMs (i.e., bright spots in Figure 4a-i and b-i)
are shown in Figure 4a-ii and b-ii, respectively. As shown in
their LSPR spectra, after surface modification and conjugation
with Rg3, the spectrum becomes broader and exhibits a clear
red shift for the Au@CoFeB-Rg3 NMs. This effect is attributed
to further alterations in the environment of the Au cores.
Investigation of the plasmonic properties of Au@CoFeB NPs
and Au@CoFeB-Rg3 NMs provides an experimental LSPR
probe of the nanoparticle surrounding. Moreover, in some
cases, it also extends potential uses as components in a diverse
range of ultrasensitive chemical/biological sensors. Compared
with the fluorescence dyes and the quantum dots,”?* which
have to be excited by strong lasers and usually suffer from
photobleaching, these metallic NHs can be easily used as an
optical bioprobe for long-term tracking of the interactions
between cell and cell, as well as cell and biomolecule/medicine
under white light using dark-field microscopy. This also avoids
the phototoxicity to the living cells.”~> These metallic NHs
are easily conjugated with biomolecules and medicines using
our invented amino-silane combined DSS coupling reaction
methods, which result in the markedly enhanced stability

comparing to those of the traditional dye-based probes or
quantum dots excited by lasers at certain wavelengths that are
usually harmful to living cells under direct long-term
irradiation.

Our previous investigation demonstrated that magnetic
Fe;O, NPs can be used as MRI contrast enhancers by greatly
improving alternations of proton relaxation in the tissue
environment.”® Therefore, considering the unique magnetic
properties of the Au@CoFeB NPs and Au@CoFeB-Rg3 NMs,
apart from the aforementioned optical imaging application, we
further extended them to the clinical application as contrast
agents for MRI and CT imaging. Owing to its noninvasiveness,
high spatial resolution, and tissue-sensitive advantages,
molecular imaging is applicable to the diagnosis of numerous
diseases (e.g., cancer, neurological, and cardiovascular
diseases), enabling the visualization of the cellular function
in living organisms.”””” Among the molecular imaging
technologies, MRI is used for the morphological and functional
imaging of the anatomy and physiological processes of the
body. On the basis of the relaxation and biocompatibility in the
imaging process,gg’99 appropriate MRI contrast agents are
much required to realize high specificity. Thus, the MRI effects
of Au@CoFeB and Au@CoFeB-Rg3 were evaluated. The
effective-metal (Co and Fe) concentration-dependent T,-
weighted spin—echo imaging effects and the corresponding T,
relaxation rates of Au@CoFeB NPs (Figure 4c: T,™') and
Au@CoFeB-Rg3 (Figure 4d: T,™") are also shown in Figure 4.
It is demonstrated that their MRI images exhibit very high
signal intensities in the T,-weighted image (top images in
Figure 4c and d). These dual-mode MRI effects with high-
sensitivity are caused by the combined effects of the unique
magnetic properties and surface properties of the NDPs.
Additionally, their T, relaxations exhibit a perfect linear
relationship with their concentration, having the linear
coeflicients of 0.978 and 0.998 for Au@CoFeB NPs and
Au@CoFeB-Rg3 NMs, respectively. Furthermore, the T,
relaxation rates (slopes) are about 0.132 (ug-CoFe mL™")™
s' and 0.430 (ug-CoFe mL ™')™ s! for Au@CoFeB NPs and
Au@CoFeB-Rg3 NMs, respectively. These values are markedly
higher than that of commercial gadopentetate dimeglumine
(0.025 (ug-Gd mL™')™' s7') reported in our previous
research.”’ In addition, the combination of MRI and CT
strategies can achieve a highly accurate diagnosis of disease, by
providing complementary diagnostic information.'” There-
fore, the utilization of Au@CoFeB NPs as a dual contrast agent
in CT imaging, which can exhibit excellent imaging details, was
further investigated. Figure 4e shows the CT signal intensity of
Au@CoFeB-Rg3 NMs with different concentrations, demon-
strating a linear increase from 136 to 261 HU in response to an
increased concentration of the contrast agent (400—4,000 pg/
mL), whose linearly dependent coefficient is approximately
0.983. These results indicate that the Au@CoFeB-Rg NMs can
be multimode clinical nanomedicines, which have the potential
to permit MRI or CT imaging and tracing nanomedicines at
the three-dimensional depth within tissues or opaque
organisms at an enhanced resolution, possibly up to the
nanoscale.

Cell Viability Analysis. The cytotoxicity and antitumor
effects of the Au@CoFeB NPs and Au@CoFeB-Rg3 NM:s
were evaluated for a future in vivo animal study and final
clinical applications. Without a loss of generality, 3T3 cells and
Jurkat-CT cells were selected as healthy cell models, while
K562-CT cells and Hep-G2/C3A cells were chosen as tumor
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CT cells (blue curve), and HEP-G2/C3A cells (pink curve).

cell models. The selection of these cells was based on the
following reasons. 3T3 cells, belonging to the vascular
epithelial cells, are often used in the cultivation of keratinocytes
and can secrete (more vascular permeability factors in tumor
tissues than the healthy tissues) growth factors favorable to
these kinds of cells. Conventionally, this kind of cell is treated
via the injection method, and the drugs must pass through
these cells to target the solid tumors. Thus, the toxicity to such
healthy cells warrants investigation. Moreover, these cells are
also required for the growth of solid tumors and angiogenesis.
Therefore, the effect on these cells directly affects whether the
tumor sites can be used to enhance permeation and retention
effects to transport more drugs to the tumor and even to deep
tissues. Jurkat-CT cells are a kind of immune T cell that
generally exist as suspension cells in the blood. K562-CT cells
are a kind of human chronic myeloid leukemia cancer cell that
exist as suspension cells in the blood. Hep-G2/C3A cells are a
kind of hepatocellular cell, which are adherent and can become
a solid tumor.

The cytotoxicity data show that Au@CoFeB NPs at
concentrations < 95 pg/mL have low toxicity to all types of
cells (Figure Sa), indicating that these NPs can be used as
nanoprobes (optical nanoprobe, magnetic nanoprobe, and C-
ray nanoprobe) for observation within 24 h. However, owing
to their inhibition effect on cell proliferation (Figure Sc), it is
preferable to use these NPs as nanoprobes at concentrations <
47 pg/mL for observation of longer duration (i.e., 4 days). At
higher concentrations (e.g, 474 ug/mL), the NPs induce
marked toxicity to 3T3 cells and Hep-G2/C3A cells but not to
Jurkat-CT cells and KS562-CT cells. This result suggests that
the NPs are more toxic to adherent cells that can be grown on
tissues than to suspension cells. However, at high concen-

trations, they show significant inhibitory effects on these cells,
especially for cancer cells (i.e, K562-CT and Hep-G2/C3A).
Surprisingly, at a concentration of 47 pg/mL, the NPs inhibit
the proliferation of KS562-CT and Hep-G2/C3A cells more
than that of Jurkat-CT cells (Figure Sc). Especially for
concentrations < 95 ug/mlL, this type of nanoprobes can
even enhance the proliferation of Jurkat-CT cells, which can be
potentially used to enhance the effect of immunotherapy at low
concentrations.

The cytotoxicity suggests that Au@CoFe(B)-Rg3 NMs, at a
concentration of <95 ug/mL (having Au@CoFe (B) NPs of
47 ug/mL), are associated with low toxicity to all cells, except
KS62-CT (Figure Sb). This means that Au@CoFe (B)-Rg3
can also be used as nanoprobes for 3T3, Hep-G2/C3A, and
Jurkat cells at a certain low concentration. By comparing the
cytotoxicity of Au@CoFe (B)-Rg3 with that of Au@CoFe (B),
it is clear that conjugation of Rg3 to NHs for the formation of
NDMs can increase the toxicity to cells. Particularly, even at a
low concentration of 95 ug/mL, the NM for K562 showed
marked toxicity. At concentrations >190 ug/mL, the NM also
shows significant toxicity to Hep-G2/C3A and Jurkat-CT cells.
For cancer cells K562 and Hep-G2/C3A, the NMs at
concentrations >195 pg/mL show good therapeutic effects.
This kind of NM can also be used for the design of a combined
cancer therapy, particularly for those cancers involving Hep-
G2/C3A cells. However, based on the results, it is
recommended not to use such NMs simultaneously with
immunotherapy (e.g., programmed death-1, programmed
death-ligand 1, chimeric antigen receptor T). However, they
may be suitable for use after the completion of immunotherapy
to strengthen or consolidate their therapeutic effect. Interest-
ingly, this kind of NM has the potential to be used in
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combination with immunotherapy against some blood cancers
of the erythroleukemia type.

Considering the results shown in Figure 5b and d, it is clear
that the high concentration of Au@CoFe(B)-Rg3 exerts an
excellent cytotoxic effect against cancer cells, as well as
significant inhibition of proliferation for both suspension
cancer cells (i.e, K562) and adherent cancer cells (i.e.,, Hep-
G2/C3A). Particularly, according to the results of the
cytotoxicity analysis, this type of NM may induce marked
therapeutic effects against blood cancers involving adherent
cells even at a relatively low concentration (195 yg/mL; Figure
Sb) and inhibit the proliferation of K562 cells (Figure 5d).
Despite the excellent cytotoxic effect of Au@CoFeB-Rg3
against Hep-G2/C3A within 24 h (Figure Sb), the long-term
inhibitory effect on proliferation is not satisfactory at low
concentrations (e.g., 190 ug/mL) much lower than the effect
observed for K562 (Figure 5d). Hep-G2/C3A cells may be
more diverse than K562 cells. Another possibility is the
presence of super Hep-G2/C3A cells exhibiting greater
viability than common Hep-G2/C3A cells. Thus, even though
most of the common Hep-G2/C3A cells and many of the
super Hep-G2/C3A cells can be killed within the first 24 h at
low concentrations, the super Hep-G2/C3A cells may remain
alive and proliferate in the long term treatment of NMs at low
concentrations, showing a viable cell percentage < 63%,
relative to the control group at the concentration of 190 ug/
mL (Figure 5d). At high concentrations, even though most of
the super Hep-G2/C3A cells cannot be immediately killed at
the initiation of treatment with NMs, their routine cell
functions could be drastically affected, leading to enhanced
apoptosis of these supercells. This result suggests that the
concentration of NMs may have to be increased to 947 ug/mL
for excellent therapeutic effects against solid tumors.

B CONCLUSION

A simple, rapid, and feasible sequenced temperature-
programmed microfluidic process combining surface mod-
ification and functionalization of nanohybrids was developed to
prepare nanomedicines (e.g, Au@CoFeB-Rg3) with multi-
mode imaging functions and excellent antitumor effects. These
NMs can be visually traced via dark-field microscopy and
spectroscopy owing to the localized surface plasmon of the Au
cores. Moreover, they can be traced through MRI and CT
imaging owing to the superparamagnetic property of CoFeB
shells at room temperature and the strong interaction with X-
ray radiation. These functions render the diagnosis more
accurate and visible in both in vitro cell studies and in vivo
tissue/organ studies for the final clinical application. Addition-
ally, Au@CoFeB NPs and Au@CoFeB-Rg3 NMs exhibit
excellent antitumor effects or can be used to distinctly kill
cancer cells and inhibit the proliferation of cancer cells.
Notably, they also have a low cytotoxicity to 3T3 cells. It is
concluded that these magneto-plasmonic core—shell NPs
could potentially permit flexibility in the tuning of magnetic
and optical properties and interaction with X-ray radiation for
future clinical applications in molecule imaging and cancer
therapy. The in vivo antitumor effects of these NMs using
orthotropic hepatocarcinoma mice as an animal model are
currently under evaluation. These NMs can play a role as
clinically visible NMs that can be guided to the target using a
magnetic field and traced through MRI and/or CT imaging at
an enhanced special resolution for long-term function
evaluation of nanomedicines. A previous study revealed the

self-richness of Fe-based NMs in livers. Therefore, besides
their intrinsic role as antitumor agents, these NMs can also be
used in magnetic/photobased and radio frequency-based
therapy, particularly for the treatment of hepatocarcinoma,
since they have self-enrichment in livers based on our previous
study on Fe-based NMs.'" All of these studies are under
progress and will be published soon.
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