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ABSTRACT

We numerically investigate the rheological response of a noncoalescing multiple emulsion under a symmetric shear flow. We find that the
dynamics significantly depends on the magnitude of the shear rate and on the number of the encapsulated droplets, two key parameters whose
control is fundamental to accurately select the resulting nonequilibrium steady states. The double emulsion, for instance, attains a static steady
state in which the external droplet stretches under flow and achieves an elliptical shape (closely resembling the one observed in a sheared
isolated fluid droplet), while the internal one remains essentially unaffected. Novel nonequilibrium steady states arise in a multiple emulsion.
Under low/moderate shear rates, for instance, the encapsulated droplets display a nontrivial planetarylike motion that considerably affects
the shape of the external droplet. Some features of this dynamic behavior are partially captured by the Taylor deformation parameter and the
stress tensor. Besides a theoretical interest on its own, our results can potentially stimulate further experiments, as most of the predictions
could be tested in the lab by monitoring droplets’ shapes and position over time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134901

I. INTRODUCTION

A multiple emulsion is an intriguing example of soft material
in which smaller drops of an immiscible fluid are dispersed within
a larger one." © A well-known example is the double emulsion in
which, for instance, a water/oil emulsion is dispersed in a water-
continuous phase.” "> Higher complex systems are emulsions made
of multidistinct inner cores (such as a triple W/O/W/O emulsion)
and monodisperse or polydisperse droplets encapsulated in a larger
One.lﬁ—l(»

Due to their unique hierarchical structure, these systems are
highly desirable in a wide number of applications, including drug

delivery of chemical and biological compounds,' """ triggered
reaction and mixing,” ' cell-based '[herapies,“\”I waste water treat-
1,34-38 27,39

ment,”>** cosmetics, and food science.””””** Unlike rigid
colloids, they possess additional shape flexibility, adjustable, for

instance, by carefully modulating the thickness and viscosity of the
shell of fluid."*"" This is a crucial requirement in many applications
where a precise control of the rate of permeability, as well as on
mechanical stability, is necessary.””*"**

Although inherently out of equilibrium, these systems can be
stabilized by means of suitable surfactants adsorbed onto the droplet
interfaces. Indeed, the design of a well-defined multiple emulsion,
with the controlled size and number of secondary droplets, is fun-
damental for the correct functioning of devices in which inner
droplets’ coalescence or cross-contamination of their content must
be avoided.”"” In this context, it is crucial to investigate the dynamic
behavior of the internal droplets, since their reciprocal interaction,
mediated by the surfactant and by the surrounding fluid, may affect
the rate of release of the cargo carried within as well as the sta-
bility of the entire emulsion.”*® This is a must in high internal
phase multiple emulsions (of interest in food science and cosmetics)
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in which fluid interfaces occupy large portions of the system
and long-range effects may dramatically affect functionality and
design."”*

Besides their technological relevance, multiple emulsions hold a
great theoretical interest, due to the capability of exhibiting nontriv-
ial interface topologies associated with a complex hydrodynamics,
especially when subject to an external flow field.”” >

Yet, despite the impressive progress in production and design
of encapsulated droplets, to date, their dynamics under an imposed
flow has been only partially investigated. While significant efforts
have been addressed to understand the rheological response of sin-
gle phase droplets™ ™ as well as of double emulsions,”””*”* " much
less is known for higher complex systems, such as those reported
in Fig. 1, which shows an example of a multiple emulsion with two
and three cores fabricated in a microfluidic device.”” In the regime
of low or moderate shear forces, for instance, the internal droplet
of a double emulsion remains approximately spherical and motion-
less at the steady state, in contrast to the external one that attains a
final ellipsoidal shape’>”* and may acquire motion. However, what
is the scenario if two or more inner fluid droplets are included?
More specifically, what is their dynamics under flow? Impor-
tantly, how do they affect the shape and stability of the external
droplet?

In this work, we investigate, by means of lattice Boltzmann
simulations, the dynamic response of a multicore emulsion under
an externally imposed shear flow. The basic physics of this sys-
tem is captured by a multiphase field continuum model,”*’ based
on a Landau free-energy description of the equilibrium proper-
ties of immiscible fluids employed to compute the thermodynamic
forces (pressure tensor and chemical potential) governing the time
evolution of the system.”’

By varying the shear rate and the number of inner droplets,
we observe new nonequilibrium steady states in which the encap-
sulated droplets showcase a persistent periodic planetarylike motion
triggered by the fluid vorticity. Such dynamics is rather robust since
it occurs regardless of the initial position of the internal droplets
and of their volume fraction, as long as this is sufficiently far from

FIG. 1. Double emulsion with two and three cores, fabricated in a coflowing
microfluidic device.' Here, the continuous phase and the inner droplets are both
water, whereas the middle phase is HFE 7500, a fluorinated oil. The interface is
stabilized by adding 10% neat (undissolved) 008-FluoroSurfactant to the oil phase.

ARTICLE scitation.org/journal/phf

the close packing limit. Remarkably, this behavior leads to nontriv-
ial modifications of the external droplet, whose steady-state shape
significantly departs from the usual elliptical geometry, due to the
presence of periodic local deformations occurring at its interface.
These results suggest that the rheological response of a multiple
emulsion is by far more complex than that of single or double emul-
sions, even in the regime where weak deformations are expected
to occur.

The paper is organized as follows: In Sec. II, we describe the
computational model used to simulate their rheological behavior,
while in Sec. 111, we show the main numerical results. We start by
investigating the rheology of a single isolated fluid droplet, and after-
wards, we elucidate the dynamics of a double emulsion under shear
flow. Subsequently, we report the results on the nonequilibrium
steady states observed in a multiple emulsion, in particular, when
two and three fluid droplets are encapsulated. A discussion about
the shape deformation and dynamic behavior of the external fluid
interface is also provided. Finally, we conclude with some remarks
and perspectives.

Il. METHOD
A. Free energy and equations of motion

Here, we illustrate the physics and the modeling of a com-
pound emulsion made of a suspension of immiscible fluid droplets
encapsulated in a larger drop. Such droplets are described by using
a multiphase field approach®*** in which a set of scalar phase-
field variables ¢i(r,t), i = 1, ..., N (where N is the total number
of droplets), accounts for the density of each droplet at position r
and time t, while a vector field v(r, t) describes the underlying fluid
velocity.

By assuming local equilibrium,”* the properties of this mixture
can be described by an effective coarse-grained free energy density

a N 2 2 k N 2
RS PIACRIORSPULREPILL AN

i,j,i<j

The first term is a double-well potential ensuring the existence of two
coexisting minima: ¢; = ¢y inside the ith droplet and 0 outside. The
second term gauges the energetic cost associated with the droplet
fluid interface. The parameters a and k are two positive constants
controlling the interfacial thickness £ = 5y/k/2a of each droplet

and their surface tension o = 1/8ak/9.°>”” The last term in Eq. (1)
represents a soft-core repulsion whose strength is measured by the
positive constant e.

The dynamics of the order parameters ¢;(r, t) is governed by a
set of convection-diffusion equations

Dipi ==V -], (2)
where D; = 0/0; + v- V is the material derivative and
J; = —-MVu; (3)

is the current, which is proportional to the product of the mobility
M and the gradient of the chemical potential
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of the ith drop. Finally, F = [yfdV is the total free energy.
The fluid velocity v(r, t) obeys the continuity and the Navier-
Stokes equations, which, in the incompressible limit, are

V-v=0, (5)

)

i=

p(%ww)v:v-n. (6)
In Eq. (6), p is the fluid density and IT is the total stress tensor given
by the sum of three further terms. The first one is the isotropic pres-
sure IT" = —pd,p and the second one is viscous stress II"" = 5(9,vg +
8ﬁwa), where 7 is the shear viscosity (Greek indices denote the Carte-
sian components). Finally, the last term takes into account interfacial
contributions between different phases and is given by

znter _ (f Z(/)’ ) af ~ Z 8(6 ¢ )8a([), (7)

Note, in particular, that v - mter = — Y i¢iVui, representing the driv-
ing force due to the presence of spatially varying contributions of the
order parameters.

B. Simulation details and numerical mapping

Equations (2), (5), and (6) are solved by using a hybrid numer-
ical approach, in which the convection-diffusion equations are
integrated by using a finite difference scheme while the continu-
ity and the Navier-Stokes equations via a lattice Boltzmann algo-
rithm.”””* This method has been successfully adopted to simu-
late a wide variety of soft matter systems, ranging from binary
fluids” ’® and liquid crystals” * to active gels,”**” and has been
recently extended to describe the physics of noncoalescing droplet
suspensions.””*’

All simulations are performed on two dimensional rectangular
lattices (see Fig. 2) in order to minimize interference effects due to
the periodic image of the droplets. These systems are sandwiched
between two parallel flat walls placed at distance L., where we set
no-slip conditions for the velocity field v and neutral wetting for
the fields ¢;. The former means that v,(z = 0, z = L;) = 0, and the
latter means that n - Vpi|.=or, = 0 (no flux through the bound-
aries) and n - V(V2¢:)|.=01, = 0 (droplet interface perpendicular

scitation.org/journal/phf

at the boundaries), where n is an inward normal unit vector at the
boundaries.

In Fig. 2(a), an isolated isotropic fluid droplet (yellow) is ini-
tially placed at the center of the lattice and is surrounded by a second
isotropic fluid (black). In this configuration, only one order parame-
ter field ¢ is considered (i.e., N = 1). A double emulsion [Fig. 2(b)] is
produced by means of two fields ¢; (N = 2). One is positive (equal to
~2) within the smaller droplet (placed at the center of the lattice)
and zero everywhere else, while the other one is positive outside
the larger droplet and zero elsewhere. Analogous setups have been
employed for the other multiple emulsion, when two (N = 3) and
three (N = 4) droplets are included. The radii of the droplets have
been chosen as follows: (a) R = 30, (b) R;; = 10 and Ry,r = 30, [(c)
and (d)] Rix = 15 and Royr = 56. The corresponding emulsion vol-

(a) Vf =0, (b) Vf ~ (.11, (C) Vf ~ (.15,

ume fraction Vy = Z;fi is
and (d) V;~022.

Starting from these initial conditions, the mixtures are first let
to relax for ~5 x 10° time steps to achieve a (near) equilibrium
state. Afterwards, a symmetric shear is applied, by moving the top
wall along the positive y-axis with velocity v,, and the bottom wall
along the opposite direction with velocity —v.,. This sets a shear rate
= 20y /L.. In our simulations, v., ranges between 0.01 (low shear)
and 0.05 (moderate/high shear), which means that y varies between
~2 x 10"* and ~107% when L, = 110 and between ~1.1 x 10™* and ~6
x 107* when L, = 170. As in previous works,”* we define a dimen-
sionless time t* = j(t — tey), where t., is the relaxation time after
which the shear is switched on. Unless otherwise explicitly stated,
the following thermodynamic parameters have been used: a = 0.07,
M =0.1, = 1.67, k = 0.1, and € = 0.05. In addition, throughout
our simulations, time step and lattice spacing are fixed to unit value,
Ax=1,At=1.

By following previous studies,””*’ an approximate mapping
between simulation units and physical ones can be obtained by
assuming a droplet of diameter roughly equal to 10> gm immersed
in a background fluid of viscosity ~1072 Pa s (assumed, for simplic-
ity, equal to the viscosity of the fluid inside the droplet) and in which
the surface tension o, equal to ~0.08 (for k = 0.1) in simulations, cor-
responds to ~0.5-1 mN/m. With these parameters, a speed of 107°
in simulation units corresponds to approximately 1 mm/s in real
values. Further details are reported in the Appendix. A dimension-
less quantity capturing droplet deformation is the capillary number
Ca = 1, measuring the strength of the viscous forces relative to the

(a) (b)

Z

b

(c) (d)

FIG. 2. Equilibrium profiles of different emulsions. (a) Isolated droplet, (b) double emulsion, (c) two-core multiple emulsion, and (d) three-core multiple emulsion. Lattice

dimensions are [(a) and (b)] Ly = 150, L, =

110; and [(c) and (d)] L, = 220, L, = 170. Droplet radii are (a) R = 30; (b) Ri» =

10, Rout = 30; () Rin = 15, Royt = 56; and (d) Rip =

15, Rout = 56. Colors correspond to the values of the order parameter ¢, ranging from 0 (black) to ~2 (yellow).
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surface tension. If, for example, v = 0.01, Ca ~ 0.2 (with k = 0.1). In
addition, the Reynolds number Re = pvmaxL/n (where L is the system
size and vax is the maximum speed measured) may vary from ~1 to
~10, the latter describing a regime for which inertial forces are much
higher than the viscous ones and the condition of laminar flow is
generally not fulfilled.

Ill. RESULTS

Here, we discuss the rheological response of the emulsions
shown in Fig. 2 subject to a symmetric shear flow. To validate our
model, we initially investigate the dynamics of an isolated fluid
droplet and afterwards we move on to study the dynamical response
of the other compound emulsions.

A. Isolated fluid droplet

As a first benchmark test, we simulate the effect produced
by a symmetric shear flow to an isolated fluid droplet surrounded
by a second immiscible fluid. A well-known result is that, for
low/moderate values of j, at the steady state, the droplet attains an
elliptical shape and aligns along the imposed shear flow. In Figs. 3(a)
and 3(b) (Multimedia view), we show the steady state of the droplet
and the corresponding fluid flow profile after imposing a shear rate
7 =~ 1.8 x 107", As expected, the droplet elongates and the major
axis tilts and forms an angle of 6 ~ 30° with the shear direction.
This is in very good agreement with the values reported in the litera-
ture for Re ~ 2 (see, for example, Ref. 57). The velocity field exhibits
the typical structure observed for such a system, i.e., it is large and
unidirectional near both walls and weaker in the center of the lat-
tice, where a clockwise recirculation emerges within the droplet. The
droplet position is mildly affected by the shear flow (see Fig. 4),
which only slightly pushes the droplet rightwards with respect to the
initial location.

As long as the droplet shape remains rather well-defined (like
an ellipse), one can quantify its deformation in terms of the Taylor
parameter D = %, where a and b represent the length of the major
and the minor axis, respectively. It ranges between 0 (no deforma-
tion) and 1 (“needle” shape). In Fig. 4, it is shown that D attains a
steady state value of ~0.18, in line with experimental values observed
when Ca ~ 0.2.7%%

For higher values of  (but low enough to avoid the droplet
breakup’’), the droplet, once more, aligns with the flow direction
and attains the elliptical shape but with a higher deformation at the
steady state. If, for example, y ~ 1073, one gets 6 ~ 40° and D ~ 0.65,

ARTICLE

scitation.org/journal/phf

0.21 ; ‘
I) —
0.18 .
0.15 | e
0.12 Xem — 1
ﬁl ycn1
0.09 ] ]
0.06 205 (. 1]
049
0.03 0 5 10 15 20 25 30 35 40 4
t*
O L

FIG. 4. Time evolution of the Taylor parameter D. Inset: Time evolution of the y
and z components of the droplet center of mass. They are defined as y. () =

Z, ()¢ (at) ; 2, - _
’Z}'NT:;Z) and zg, (t) = %,whemy- 1,00 L,z=1, .., L,

and ¢(y, z, t) > 0.1.

values close to the experimental ones for Re = 107 [see movie MS
“(Multimedia view)” in supplementary material].

These preliminary numerical tests reproduce with very good
accuracy some aspects of the dynamic response under shear of an
isolated fluid droplet. In Sec. I1I B, we extend this study to a Newto-
nian double emulsion in which a second droplet is included within a
larger one.

B. Double emulsion

Due to the presence of an inner droplet, more complex hydro-
dynamics and interfacial deformations are expected with respect
to the single-phase case. The effect of a moderate shear flow (y ~
1.8 x 107 on a double emulsion is shown in Figs. 5(a) and 5(b)
(Multimedia view). After the shear is imposed, the outer droplet is,
once more, slightly advected rightwards (see Fig. 6, left) and, simul-
taneously, tilted and stretched along the shear direction until the
elliptical steady-state shape is attained at approximately t* ~ 100.

Here, we measure 6, ~ 42° and D, ~ 0.2 (Fig. 6, right, green
plot), values comparable with those of the single phase droplet.
Hence, as long as y is sufficiently small, the presence of the inner
fluid droplet has a mild effect on the outer one, whose interface
acts as an effective “shield” preventing deformations of the former.

(a)

FIG. 3. (a) Steady state profile of an isolated droplet

S NN

NN
a
o
/
/
/
/
4
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|
/
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/
/
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=] immersed in a second immiscible fluid subject to a sym-
metric shear flow with y ~ 1.8 x 10~*. In addition, Re =~
2, Ca~0.21,and k = 0.1. The angle 0 indicates the direc-
tion of the droplet major axis with the shear flow. The color
map is the same as that of Fig. 2. (b) Steady state veloc-
ity profile under shear. Intense opposite unidirectional flows
are produced near the walls, whereas a much weaker fluid
recirculation is observed within the droplet. Multimedia view:

NN
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FIG. 5. [(a)—(c)] Steady state profiles of a double emul-

sion under a symmetric shear flow with (a) y ~ 1.8 x

107 and (¢)  ~ 4.5 x 107 Here, Re ~ 2, Ca

~ 0.21 in (@) and Re ~ 4.5, Ca ~ 0.52 in (c). [(b)-

(d)] Steady state velocity profiles under shear. Multime-

(c)

dia views: (a) and (c): https://doi.org/10.1063/1.5134901.2;

https://doi.org/10.1063/1.5134901.3

Indeed, the shape of the internal droplet remains almost unaltered
throughout the process (we measure 6; ~ 85° and D; ~ 0.03, see
Fig. 6, right). This is mainly due to the large interfacial tension
(higher than that of the outer droplet) induced by the small curva-
ture radius, thus preventing deformations that would be favored by
the shear flow. A further source of shape stabilization stems from
the (weak) vorticity formed within the smaller droplet [in addition
to the larger one mainly located in the layer between the droplets,
see Fig. 5(b)], an effect known to inhibit deformations produced by
the shear stress.”*’

Doubling the shear rate can produce substantial shape defor-
mations of the inner droplet as well as of the outer one. In Figs. 5(c)
and 5(d) (Multimedia view), we show the steady state of a dou-
ble emulsion when j ~ 4.5 x 1074, Here, we got 6, ~ 30° and
0; ~ 40°, while D; ~ 0.1 and D, ~ 0.4 (Fig. 6, right). Once again,
due to its higher surface tension, the inner droplet is less deformed
than the outer one, but, unlike the previous case, a visible rounded

clockwise recirculation, clearly distinct from the large elliptical one,
forms inside.

Note that increasing j produces a temporary peak in D, soon
after the shear force is switched on. While, for low values of the shear
rate, droplet elongation and alignment to the flow direction occurs
gradually, for high values, it stretches rather abruptly and later on
relaxes toward its steady state shape. As also observed in previous
works,””* this initial deformation overshoot is necessary to over-
come the additional inertia displayed by the droplet after an intense
stretching.

Despite its comparatively simple design, the double emulsion
displays a nontrivial rheological behavior, in which interface defor-
mations and shape changes crucially depend on the elasticity and on
the complex structure of the fluid velocity.

A largely unexplored physics is that of higher complex multi-
ple emulsions, in which, for instance, two (or more) smaller fluid
droplets are included within a larger external one. Section III C is

Yem(@): 7= 1.8x107 0.45
Zem(). 7= 181077 & 0.4
Yem(0), Y= 1.8x10°, = 0.35 | . 4
(@, 7= 1810 -~ Dy U
Yo (i), y=4.5x1074 0.3 o V= 1.8x107
Zam(i), 7= 4.5x107 0.25 Dj, ¥ = 4.5x107;
o). 7=~ 4.5x1074 o D,, ¥~ 4.5x10
oy = 43107 027
e 0.15 |
0.1 . .
: - 005+ ~ o
0.5 U 0.46 0 K ‘ :
0 10 20 30 40 50 60 70 80 0 2 4 6 8 10

t

t¥

FIG. 6. (Left) Time evolution of the y and z components of the droplet centers for mass in the double emulsion for two different values of §. In both cases, the droplet position
is mildly affected by the fluid flow. (Right) Time evolution of deformation parameter D of the inner and the outer droplets.
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FIG. 7. [(a)—(d)] Steady state profiles of the fields ¢; of a two-droplet oscillatory dynamics under a symmetric shear flow with y ~ 3 x 10~*. Snapshots are taken at (a) t* = 3,

(b) t* =7.8, (c) t* =12, and (d) t* = 18. Here, Re ~ 2.6 and Ca ~ 0.21. [(e)—(h)] Steady state velocity profiles under shear. [Inset of (g)] A zoomed-in view of the two weak
recirculations rotating clockwise formed nearby the inner droplets. Multimedia view: https://doi.org/10.1063/1.5134901.4

precisely dedicated to investigate the rheology of such a system in
the presence of low/moderate shear flows.

C. Higher complex states: Multiple emulsion
1. Nonequilibrium steady states

We first consider likely the simplest example of a multiple
emulsion, namely, two collinear fluid droplets located symmetrically
with respect to an axis, parallel to z, passing through the center of
mass of a surrounding larger droplet [see Fig. 2(c)]. Despite its essen-
tial design, a nontrivial rheological behavior emerges when subject
to a shear flow.

Once a moderate shear is switched on, the two inner cores
acquire motion, initially proceeding along opposite directions
[Figs. 7(a) and 7(b)] and, later on, rotating periodically clock-
wise around the center of mass of the outer droplet by following
roughly elliptical orbits [Figs. 7(c) and 7(d), (Multimedia view)].
As in a typical periodic motion, internal droplets attain the min-
imum speed (local minima of green and magenta plots of Fig. 8)

at the points of inversion of motion, while the highest speed
is achieved halfway (maxima and minima of red and blue plots
of Fig. 8).

Such planetlike oscillatory motion, observed during the tran-
sient dynamics and persistently at the steady state, is primarily
caused by the confined geometry in which the internal droplets are
constrained to move and, likewise, by the purely droplet-droplet
repulsive interaction (an effect captured by the term proportional
to ¢ in the free energy) combined with a nontrivial structure of
the internal velocity field. Indeed, unlike the double emulsion, it
exhibits a large fluid recirculation near the interface of the exter-
nal droplet and two temporary recirculations within the emul-
sion, appearing faraway when the droplets invert their motion
and merging into a single one when they are sufficiently close to
each other.

Intriguingly, this dynamics produces significant effects on the
external droplet shape. Although, like in the double emulsion,
the droplet elongates and aligns along the direction imposed by
the shear, at the steady state, it shows periodic shape deforma-
tions characterized by local interfacial bumps, more intense when

180 YNNI 3.8x10° B0 FT T A L AT A ] 38x107
i ST 8 [ - LAy, #0431, 7% , .
170 H‘« ‘I % I o ; 3.3x107 170 1. ;%”D [T R 3.3x107° FIG. 8. Time evolution of the center of
160 1 i 4 \ i E | 3 60 F =% % i i 3 mass rem and of its speed ven when
1s0 \ | & I b j 2.8x10 _ G T - A 2.8x10 7 = 3 x 107* for droplet 1 (left) and
= ‘i i *% Lo FolI 22x107 2 @ PO o Lo Lol ofaae?a droplet 2 (right) of Fig. 7. Red (plusses)
5 140 | I % [ Il I 3 >§ E 40 |+ § & LI 5 5 and green (crosses) correspond, respec-
i ; L o IS L.6x10 = £ Po m FL oo Fe BT ) 1610 > tively, to the center of mass and speed
130 I t } i f[ i i 1 1 1x107 130 E*Dﬁﬂn L T :DDEE:} Lix107 of droplet 1, while blue (asterisks) and
120 L @1 1 tj ﬁg' ¥ ’ . 120 b1 i i o® %ﬁ f i,f °g H ' magenta (squares) correspond, respec-
1o ¥ 1 5.5x10° 110 ’ig ® ¥ B g 5.5x10™ tively, to the center of mass and speed of
[ P droplet 2.
— —— 0 — 19
0 10 20 30 40 50 0 10 20 30 40 50

t*

t*

Phys. Fluids 32, 017102 (2020); doi: 10.1063/1.5134901
Published under license by AIP Publishing

32,017102-6


https://scitation.org/journal/phf
https://doi.org/10.1063/1.5134901.4

Physics of Fluids

ARTICLE

scitation.org/journal/phf

FIG. 9. [(a)~(d)]Steady state profiles of the fields ¢; of a three-droplet oscillatory dynamics emulsion under a symmetric shear flow with  ~ 3 x 10~*. Snapshots are
taken at (a) t* =6, (b) t* = 12, (c) t* = 18, and (d) t* = 27. Here, Re ~ 6.6 and Ca ~ 0.52. [(e)-(h)] Steady state velocity profiles under shear. Multimedia view:

https://doi.org/10.1063/1.5134901.5

internal droplets approach the interface of the external one. When
this occurs, the shape of the external droplet considerably departs
from the typical ellipsoidal one observed in single and double emul-
sions, a geometry only temporary restored when internal droplets
are far from the external interface.

These results suggest a scenario in which (i) novel nonequi-
librium steady states emerge whenever a multiple emulsion
is subject to a shear flow and (ii) nontrivial deformations
of the external interface emerge as a result of the internal
droplets’ motion. However, how robust is this dynamics? In addi-
tion, how does it depend on the arrangement of the internal
droplets? Is the parameter D still a reliable quantity to capture
droplet shape deformations even for moderate values of shear
rates?

To partially address these questions, we study the dynam-
ics under a moderate shear flow of a multiple emulsion in which
three fluid droplets are encapsulated [see Fig. 2(d) for the initial
condition]. The effect of the shear is overall similar to the previ-
ous case. During the transient dynamics, the external droplet elon-
gates and stretches along the shear flow, while the internal ones
acquire a clockwise rotating motion around the center of mass of the
former.

At the steady state, such motion becomes, once again, periodic
(see Fig. 9) (Multimedia view), with the internal droplets persistently
moving along elliptical trajectories dragged by the large fluid recir-
culation formed near the external interface, where local deforma-
tions occur more frequently. Further weak fluid vortices also appear
mainly located around the interface of the internal droplets. Hence,
as long as j is low enough to prevent the emulsion rupture, the
periodic motion of the internal droplets is preserved, regardless of
the droplets’ arrangement. Even so, it is worth noting that increas-
ing the number of internal droplets causes a sensible decrease in
the tilt angle of the external droplet at the steady state. Indeed, we
measure 0, ~ 27° for the two-core emulsion and 8, ~ 18° for the
three-core one.

2. Interface deformation and stress tensor

An estimate of the shape deformation of the external droplet
can be obtained by looking at the time evolution of parameter D.
Interestingly, while for a single and a double emulsion, D rapidly
attains a constant value, in a multiple emulsion, the periodic motion
of the internal droplets leaves a tangible signature on it, which
now displays periodic oscillations, more frequent as the number
of the encapsulated droplets’ augments (see Fig. 10). However,
such behavior provides only partial knowledge about the correct
shape of the external droplet, since it only captures a periodic
elongation/contraction mechanism but misses the local interfacial
bumps.

Further insights can be gained by computing the in plane com-
ponent of the stress tensor IT,,. Major contributions stem from the
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FIG. 10. Time evolution of the deformation D of the external droplet when j ~ 4.5
x 10~*. Periodic oscillations emerge when two and three droplets are included.
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off diagonal term of IT,;" and from the cross derivative terms of

IT;/%, proportional to dyv. + O:vy. The former is generally found
to be more than one order of magnitude larger than the latter and
is largely confined at the fluid interfaces of the external and inter-
nal droplets (see Fig. 11). Interestingly, the stress tensor exhibits a
self-similar pattern, an indication that the coupling between fluid
flow and interface deformations weakly depends on the number of
internal droplets. These results suggest that the interfacial stress can
describe the important aspects of the dynamics of the emulsion, such
as periodic motion and interface deformations.

IV. CONCLUSIONS

To summarize, we have investigated the dynamics of a 2D mul-
ticore multiple emulsion under an imposed symmetric shear flow.
We have kept the shear rate low enough to avoid the emulsion
rupture but sufficiently intense to observe sizeable shape deforma-
tions. The physics of the steady states is crucially influenced by
the shear rate and by the motion of the internal droplets. In the
double emulsion, for instance, the latter undergoes shape deforma-
tions much weaker than the external one, which generally elon-
gates until it attains an elliptical shape aligned with the shear
flow, a behavior similar to that observed in an isolated single fluid
droplet.

On the other hand, higher complex systems exhibit novel
nonequilibrium steady states. If, for instance, two smaller droplets
are dispersed in a large one, an oscillatory steady state is produced,
in which the internal droplets periodically rotate around the center
of mass of the latter. This dynamics is rather robust, since it occurs
regardless of the initial droplet arrangement and at higher shear
rates. In addition, for moderate values of the shear rate, marked local
deformations are produced at the interface of the external droplets of
a multiple emulsion, due to the dynamic interaction with the inter-
nal ones. This result suggests that, alongside the Taylor parameter
D (a global quantity usually assumed to describe droplet deforma-
tions at low shear rates), further quantities, such as the stress ten-
sor, may be necessary to accurately capture these local interfacial
bendings.

scitation.org/journal/phf

FIG. 11. Contour plot of ITy, at the steady state for (a) iso-
lated droplet, (b) double emulsion, (c) two-droplet monodis-
perse emulsion, and (d) three-droplet monodisperse emul-
sion. Color map ranges from 2 x 10~2 (yellow) to —2 x
102 (black). Negative values at the interface depend on
the sign of derivative term in the stress tensor, proportional
to 9y¢0,¢. The arrows represent the velocity field of the
fluid.

Our analysis shows that the dynamics of multiple emulsions
shows nontrivial qualitatively new phenomena as compared to the
case of double emulsions, thereby raising a number of open ques-
tions.

Is there, for example, a feasible strategy favoring an alternative
dynamic behavior of the internal droplets, keeping the shear rate at
low/moderate values? A potential route worth exploring would be to
increase the volume fraction of the internal droplets up to the close-
packing limit to possibly trigger a chaoticlike dynamics. This point
will be investigated in a future work.

Furthermore, a more careful control of the droplet deformation
is experimentally achieved by either gelling or hardening the state of
the fluid in the layer, an effect that could be modeled by releasing
the approximation of single viscosity adopted for both fluid com-
ponents. Deformations are also notably affected by the physics of
the droplet-droplet repulsive interactions, whose structure is deter-
mined by the nature of surfactants. A weak surfactant, for example,
may favor a partial droplet merging, an effect that could, in princi-
ple, be controlled by properly tuning the strength e of the repulsive
term. Even more intriguing would be the study of the effect pro-
duced by the simultaneous presence of different surfactants, whose
physics can be modeled by allowing each phase field with its own
repulsive strength e(i).

Although still preliminary, we hope that our results may stim-
ulate further experiments on multicore emulsions in microfluidic
devices, which is of potential interest in applications relevant to drug
delivery or in food processing.

SUPPLEMENTARY MATERIAL

See supplementary material for movie MS. It shows the
dynamics of an isolated fluid droplet under symmetric shear for
: -3
y~10".
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TABLE I. Typical values of the physical quantities used in the simulations.

Model parameters Simulation values Physical values
Inner droplet radius, R, 10 10 ym
Outer droplet radius, Rou 50 50 ym
Fluid viscosity, 7 5/3 ~10 *Pas
Surface tension, o 0.08 ~1 mN/m
Shear rate, § 10" ~0.02/s

Framework Programme (No. FP/2014-2020) ERC Grant Agreement
No. 739964 (COPMAT).

APPENDIX: MAPPING TO PHYSICAL UNITS

In Table I, we provide an approximate mapping between sim-
ulation parameters and real units. Parameters have been chosen in
agreement with the values reported in previous simulation works,
such as in Refs. 13, 62, and 63. Realistic values can be obtained by
fixing the length scale, the time scale, and the force scale as L = 1 ym,
T =10 ps, and F = 100 nN (in simulations units, these scales are all
equal to one), respectively.
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