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Summary

Knowing the location of sweet spots benefits the horizontal well drilling and the selection of perforation clusters. Generally, geoscien-
tists determine sweet spots from the well-logging interpretation. In this paper, a group of prevalent classifiers [extreme gradient boost-
ing (XGBoost), unbiased boosting with categorical features (CatBoost), and light gradient boosting machine (LightGBM)] based on
gradient-boosting decision trees (GBDTs) are introduced to automatically determine sweet spots based on well-log data sets. Compared
with linear support vector machines (SVMs), these robust algorithms can deal with comparative scales of features and learn nonlinear
decision boundaries. Moreover, they are less influenced by the presence of outliers. Another prevailing approach, named generative
adversarial networks (GANs), is implemented to augment the training data set by using a small number of training samples. An exten-
sive application has been built for the field cases in a certain oilfield. We randomly select 73 horizontal wells for training, and 13 fea-
tures are chosen from well-log data sets. Compared with conventional SVMs, the agreement rates of interpretation by XGBoost and
CatBoost are significantly improved. Without special preprocessing of the input data sets and conditional tabular GAN (CTGAN)
model fine tuning, the fake data set could still bring a relatively low agreement rate for all detections. Finally, we propose an ensemble-
learning framework concatenating multilevels of classifiers and improve agreement rate. In this paper, we illustrate a new tool for cate-
gorizing the reservoir quality by using GBDTs and ensemble models, which further helps search and identify sweet spots automatically.
This tool enables us to integrate experts’ knowledge to the developed model, identify logging curves more efficiently, and cover more
sweet spots during the drilling and completion treatment, which immensely decrease the cost of log interpretation.

Introduction

Rock properties spatially vary from microscale to field scale, which makes the reservoirs heterogeneous (Fanchi 2010). The microscale
heterogeneity, including variations in pore size, grain sorting, and impurities distribution, gives rise to a broad range of permeability in
different core samples (Satter and Iqbal 2015). In terms of the field-scale heterogeneity, it contains spatial variations of geological com-
ponents (such as natural fractures, bedding layers, faults, facies, and pinchouts), which have a remarkable influence on identifying the
sweet spots and assessing wells placement in the target formation (Suarez-Rivera et al. 2016; Tang et al. 2019; Zhang et al. 2019). In
other words, the selection of an optimal drilling location for oil and gas production is significantly determined by the distribution of
sweet spots. In the light of petroleum geoscience, sweet spots are regarded as areas of oil and gas reservoirs owning the best production
potential (Hauge and Hermansen 2017). Tahmasebi et al. (2017) think that sweet spots represent areas containing high total organic
carbon and rocks with high fracability. Aldrich and Seidle (2018) deem that sweet spots are usually referred to as the hydrocarbon
regions accounting for critical elements of commerciality and exploration risk. Alqahtani et al. (2018) hold the opinion that sweet spots
are the reservoir areas with the highest permeability and oil saturation.

On the basis of the different perspectives previously mentioned, the sweet spot can be defined/categorized into two types. One type is
the “geoscience” sweet spot, which can be defined as reservoir areas with the highest permeability, oil saturation, and total organic carbon.
The other is the “engineering” sweet spot, defining areas containing rocks with high fracability and brittleness. Finding sweet spots helps
achieve the highest productivity indices and recovery factors. Thus, it is of great importance to determine the locations of both “geoscience”
and “engineering” sweet spots accurately and effectively. Nevertheless, it is a challenging issue to ascertain their locations without human-
made errors according to the lithology, physical properties, electrical properties, fluid properties, rock fracability, and brittleness.

As a critical step of making decisions for the optimum production strategy, several conventional approaches are widely used for
sweet-spot delineation in the target reservoirs. All these methods are classified into two groups. Based on static properties (such as geo-
metrical, petrophysical, and spatial data), the first group aims to calculate geo-object properties (such as permeability, porosity, and
lithofacies) with consideration of geologic uncertainty or creating a productivity potential map (permeability, porosity, oil saturation,
etc.), by means of using a genetic unit approach or productivity proxy function (Alqahtani et al. 2018). The other group captures the
dynamic data for generating the quality map of the reservoir rock or maximizing the numerical and the field productivity indices to find
optimum well placement.

With the advent of the era of big data, machine-learning techniques occupy a fast-growing field in areas such as information, public
security, medical treatment, communication and transportation, agriculture, and image processing. All these approaches take advantage
of the processing capacity of modern computers, and their applications also prevail in the petroleum and mining industries (Tahmasebi
and Hezarkhani 2012; Jones 2018; Alkinani et al. 2019; Cheung 2020; Rahmanifard and Plaksina 2019). Preliminary results are
achieved in sweet-spot detection, well-log interpretation, seismic interpretation, lithology identification, sedimentary facies division,
geological modeling, well stimulation evaluation, reservoir simulation, and production forecasting (Fan et al. 2017; Ahmadi et al. 2018;
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Bao et al. 2018; Bhattacharya and Mishra 2018; Kemajou et al. 2019; Liang et al. 2019; Luo et al. 2019; Pan et al. 2019; Saporetti et al.
2019; Silva et al. 2019; Tripoppoom et al. 2019; Wang and Chen 2019; Zhang et al. 2019; Zhou et al. 2020).

Because the detection of sweet spots is regarded as a supervised learning problem, machine-learning-based methodology can be
applied to generate corresponding classifiers (Hauge and Hermansen 2017). On the basis of seismic, well logs, and production profiles,
Ketineni et al. (2015) propose a comprehensive artificial-neural-network-based reservoir characterization tool capable of creating spa-
tial oil maps for sweet spots. A model integrating with stepwise regression and a machine-learning-assisted tool is developed to deal
with large databases (well log data, core data, X-ray diffraction data, etc.) and helps to enhance the possibility of identifying sweet
spots (Tahmasebi et al. 2017). In consideration of microbes’ sensitivities to vertical microseepage, Te Stroet et al. (2017) put forward a
robust and reliable predictive DNA-based model for differentiating sweet spots and low productive areas in shale formations. Based on
a support vector machine approach, Qian et al. (2018) establish a machine learning model to achieve a multiattribute prediction of
sweet spot location. Tandon (2019) incorporates regression-based machine-learning algorithms into a hydraulic fracturing simulator to
improve the assessment of sweet spots in complex reservoirs.

In this paper, we first discuss gradient boosting (GB) algorithms, such as XGBoost, LightGBM, and CatBoost. GB sequentially adds
predictors and calibrates previous models. Compared with the linear SVM or random forest (RF), this robust algorithm can deal with
comparative scales of the features and learn nonlinear decision boundaries via boosting. Moreover, it is less influenced by the presence
of outliers. Then we introduce GANs, which have three types: traditional GANs, conditional GANs (CGANs), and CTGANs. After-
ward, we use the field data sets, including approximately 10,000 samples with four different labels (each sample has 13 features from
well logging) and conduct experiments to investigate the agreement rates of interpretation by different algorithms. Two types of GANs
(CGANs and CTGANs) are applied to generate synthetic data sets. Besides XGBoost, LightGBM, and CatBoost, we also use SVM and
multilayer perceptron (MLP) as the basic classifiers to sort the reservoir quality from the field data set. For synthetic data sets generated
by GANs, we only used XGBoost for classification. Conclusively, we establish an ensemble-learning framework concatenating multile-
vels of classifiers to improve the agreement rate.

All these preceding approaches are taken as efficient ways of automatically detecting sweet spots, which help to assist petrophysi-
cists to shorten the delivery time of work. If all features are selected, the agreement rate of interpretation by using CatBoost could reach
the highest value of 82.50%, which exceeds 3.15 and 6.69% of those from RF and SVM algorithms, respectively. However, XGBoost
ranks first with an 83.37% agreement rate as removing three well-log interpreted features (porosity, permeability, and oil saturation)
from the original data set. We also attempt to use the GANs algorithm in combination with XGBoost for data augmentation and train-
ing. However, the agreement rates from using synthetic data sets generated by CGANs and CTGANs are 27.44 and 68.58%, respec-
tively, which demonstrates that the GANs-based model may not be suitable for data augmentation on the oilfield data set and probably
more parameter tuning work is required to improve the agreement rate of interpretation. Finally, the ensemble-learning framework com-
bining a two-step classification is demonstrated as the best approach of improving the agreement rate.

Methodology

Because it is difficult for SVMs to pick the right kernel, GB reveals robustness to outliers and capability of modeling nonlinear decision
boundaries. Also, GB algorithms can save more computational cost compared with SVMs. Thus, we first bring in the GB algorithms
including XGBoost, unbiased boosting with categorical features (CatBoost), and LightGBM. Then a GAN is introduced to show its
advantage of data augmentation by using a relatively small number of training samples.

GB. The boosting algorithm aims at converting weak learners to a strong learner, which facilitates both the model performance and
accuracy (Kearns and Valiant 1994; Breiman 1996; Zhou 2012). In the case of multiclass categorization, this algorithm selects a classi-
fier of a single feature during each iteration by converting the multiclass problem to a binary classification (Torralba et al. 2007).
Breiman (1997) proposes the concept of GB because the boosting is regarded as an optimization algorithm on a loss function. The key
principle behind the GB algorithm is to find a new submodel to compensate for the residual error created by the previous submodel
(Breiman 1997; Mason et al. 1999; Friedman 2001). Fig. 1 illustrates the schematic diagram of the GB algorithm. As shown in Fig. 1a,
the first weak model M1, labeled with blue color, predicts the output, which has an obvious error with the desired output ytrue. This error
term, named as the first residual c1, is determined by Eq. 1:

ytrue ¼ a1M1ð~xÞ þ c1; ð1Þ

where a1 denotes the corresponding weight for the first weak model M1ð~xÞ. Then the new weak models (M2, M3, M4) would be gener-
ated sequentially based on the residual (c1, c2, c3) of the previous model. Finally, the fourth weak model M4 is created to predict the
residual of the third weak model M3, which is equivalent to c3.

c1 ¼ a2M2ð~xÞ þ c2

c2 ¼ a3M3ð~xÞ þ c3

c3 ¼ a4M4ð~xÞ: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð2Þ
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Fig. 1—Schematic diagram of GB algorithm.
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Based on Eq. 2, the predicted output would be equal to the predictions of all weak models.

ypred ¼
XN

i¼1

aiMið~xÞ; ð3Þ

where N denotes the number of weak models (N ¼ 4 in this example). Then the error loss function can be written as

el ¼
1

2
jypred � ytruej2: ð4Þ

After two decades of development, various types of algorithms, such as XGBoost, LightGBM, and CatBoost, have been derived
from the original GB algorithm. More details about these algorithms are illustrated in the following subsection.

XGBoost. XGBoost was initially put forward by Chen and He (2014) for supervised learning problems. Decision-tree ensembles, as
the default base learners of XGBoost, construct a set of classification and regression trees (Chen 2014; Chen and Guestrin 2016). Each
tree grows one after another and presents a distinct prediction score, and the final score can be obtained by summing up the scores of all
individual trees (Fig. 2).

In data set D, the number of samples is set to be n. Each sample has m features, and the label is denoted as y. In XGBoost, a tree
ensemble model is used by taking the summation of K additive functions, which are applied to predict the label for the ith sample xi as

ŷi ¼ / xið Þ ¼
XK

k¼1

fk xið Þ; fk 2 F; ð5Þ

where F ¼ ff ðxÞ ¼ wqðxÞg represents the space of classification and regression trees and q : Rm ! f1;2; 3;…;Tg denotes the mapping
from the feature space to the leaf nodes’ indices of trees. In XGBoost, an objective function consisting of a training loss and a regulari-
zation term is required to measure how well the predictive model fits the training data. Thus, the optimal tree structure is obtained by
minimizing the objective function

L /ð Þ ¼
Xn

i¼1

l ŷi; yið Þ þ
XK

k¼1

XðfkÞ

X fð Þ ¼ cT þ 1

2
kkwk2; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð6Þ

where l is a loss function for measuring the difference between the predicted label ŷi and the ground truth yi, X is a regularization term
to avoid overfitting, T represents the number of leaves for each tree, and w ¼ ½w1;w2;…;wT � is defined as a vector of scores from T
leaf nodes. An additive strategy is applied to fix what we have learned and add a new tree at a time. Let ŷ

ðtÞ
i be the prediction value from

the ith sample under the tth iteration, and the following objective function can be optimized as

L tð Þ ¼
Xn

i¼1

l yi; ŷ
t�1ð Þ

i þ ft xið Þ
h i

þ X ftð Þ; ð7Þ

where ft is a function added greedily to the loss, which significantly improves the model. Using a second-order approximation of the
Taylor expansion, the objective function at step t is simplified as

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 2—Structure of a single-tree ensemble model. GR 5 gamma ray.
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~L
tð Þ ¼

Xn

i¼1

gift xið Þ þ
1

2
hif

2
t xið Þ

� �
þ X ftð Þ; ð8Þ

where gi ¼ @ŷðt�1Þ lðyi; ŷ
ðt�1ÞÞ and hi ¼ @2

ŷ ðt�1Þ lðyi; ŷ
ðt�1ÞÞ are first-order and second-order gradients with respect to ŷðt�1Þ.

For problems of multiclass classification or regression, the leaf nodes are assigned with real scores, and each root node has two chil-
dren. Fig. 2 reveals the learned tree ensemble model for predicting Class 1 vs. the rest based on our selected data set. Each nonleaf node
(circle) includes one feature variable based on a splitting rule to decide whether it should go (left or the right branch) from top to
bottom. GBDTs algorithms automatically select east-west, south-north, shaliness, natural_gamma ray, and oil saturation as key features
for splitting. This figure shows eight leaf nodes (rectangles) in the given decision tree. The predicted score for each sample is normal-
ized through the softmax function before sending it to the objective function. For example, a sample with east-west ¼ 800, south-north
¼ –1400, and natural_gamma ray¼ 96 can be predicted with the leaf node with the value of –0.023192 (the leftmost leaf node).

For multiclass classification, we adopt the one-against-all approach for XGBoost. Let C be the number of classes and B be the
number of subtrees (base learners) used for classifying each class (target class’s label is treated as unity; the others are treated as zero).
In predicting each class’s score for each instance, the scores will be accumulated through all the B subtrees responsible for that class.
As shown in Fig. 3, we denote K¼B�C trees as the total number of subtrees. The red arrow represents the path of the scores predicted
from different classes and subtrees. Based on the multiclass softmax loss, the score for the ith instance of each label in the inference
stage can be predicted:

p ŷi ¼ yjjxi

� �
¼ e

PB

b¼1
wyj ;b
ðxiÞPC

j¼1 e
PB

b¼1
wj;bðxiÞ

; ð9Þ

where yj 2 f1;2;…;Cg and wj;kðxiÞ denotes the leaf value when the input is xi for the kth subtree used for predicting label j. Finally, the
predicted label is selected from the largest probability for each class:

~yi ¼ argmax
j2f1;2;:::;Cg

pðŷi ¼ jjxiÞ: ð10Þ

CatBoost. CatBoost (Dorogush et al. 2017; Prokhorenkova et al. 2018), utilizes oblivious trees (Wang et al. 2014) that are balanced
to predict labels and helps to reduce the time spent on parameter tuning. Dorogush et al. (2017) point out that CatBoost is developed for
categorical features. In this paper, we mainly discuss the improvements of using CatBoost compared with the XGBoost algorithm in
solving the biased gradients problem.

Let Fk be the model constructed by the first k trees and gk xi; yið Þ be the gradient from the ith training sample with respect to the
model Fk. In GBDT-based approaches, gradients gk xi; yið Þ are estimated based on xi; yið Þ to create the tree, which leads to unbiased gra-
dients for the model Fk (Friedman 2001). For each sample xi, a separate model Mk is trained and updated without using xi. Then Mk is
used to compute the scores of leaves. It can be seen from the following algorithm that Mk is updated and trained without using the data
point xi; yið Þ (i ¼ k).

LightGBM. According to Ke et al. (2017), XGBoost may not work well when the feature dimension is high and data size is huge
because it is time-consuming to scan all the possible split points to estimate the information gain. Ke et al. (2017) proposed a gradient-
based one-side sampling and exclusive feature bundling. Exclusive feature bundling is mainly developed to deal with sparse features.
In our experiments, we do not have too many sparse features. Thus, we mainly focus on gradient-based one-side sampling.

The idea of gradient-based one-side sampling is to improve data sampling quality by reducing the number of instances with small
gradients before computing information gain. Because the samples with small gradients are usually well trained to make a significant
contribution to the loss, the instances with large gradients are fully sampled. To use this rule, the data points with smaller gradients are
randomly sampled, but the larger ones are usually kept. However, this operation leads to the change of data distribution. Therefore, the

factor a ¼ 1� a

b
is used to control the balance between the smaller and larger gradients and make the data distribution unchanged in

computing information gain.

GANs. As a prevailing representative of unsupervised machine learning approaches, GANs adopt an indirect training method taking
the form of a downstream task over the true and the generated probability distributions, which then enforces the generated distribution
closer to the true distribution by training the generative network (Goodfellow et al. 2014). The benefit of using GANs is the data-set
augmentation by using a relatively small number of training samples (Goodfellow et al. 2014; Nielsen and Okoniewski 2019).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Class 1 Class CClass i

Tree 1

0.3 0.1 0.2

0.6

w1,1 (xi) = 0.3
w1,B (xi) = 0.1

wC,1 (xi) = 0.2
wC,B (xi) = 0.6

xi Tree B xi Tree 1 xi Tree B xi

Fig. 3—Example of B 3 C trees structure for the multiclass classification.
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Fig. 4 illustrates the workflow of GANs. The key components of GANs are generator and discriminator. The yellow arrow repre-
sents the forward transform of input variables (blue square) to the new data, and the red arrow denotes the backpropagation of matching
error to train the network. The error is defined as the distance between the true distribution (blue square) and the generated distribution
(purple square). The generative network attempts to fool the discriminator and aims at maximizing the final classification error. Con-
versely, the discriminative network minimizes the final classification error by identifying the fake generated data. It is worth mentioning
that two different neural networks can be jointly trained, and their corresponding weights are updated at each iteration. Ultimately, a
classifier (red dashed curve, a discriminator only distinguishes real from fake data) is established after the training process.

CGANs. In GANs (Fig. 5a), the discriminative model D is applied to discriminate the difference between the true data and the gen-
erated data. Concurrently, the generative model G aims at fooling the discriminator by producing more and more realistic data. The
error of the generator should be maximized, while the cost function of the discriminator should be minimized. Thus, it gives

max
G

min
D

E G;Dð Þ
� �

¼ max
G

min
D

1

2
Wz�pN

� 1� D GðzÞ½ �f g þ 1

2
Wx�pG

� D xð Þ½ �
� �� 	

¼ max
G

min
D

1

2
Wx�pR

� 1� D xð Þ½ � þ 1

2
Wx�pG

� D xð Þ½ �
� �� 	

¼ max
G

1

2
min

D

ð
R

pR xð Þ � 1� D xð Þ½ � þ pG xð Þ � D xð Þ½ �f gdx

0
@

1
A; ð11Þ

where, pG and pR represent the corresponding probability density of the generated data and the real data, respectively; and pN denotes a
prior noise distribution. Because the generative model G should be maximized, we have

max
G

ð
R

pR xð Þ � 1� D�G xð Þ

 �

þ pG xð Þ � D�G xð Þ

 �� 


dx

0
@

1
A ¼ max

G

ð
R

min
D

pRðxÞ; pGðxÞ½ �
� �

dx

0
@

1
A: ð12Þ

Because the probability density pR xð Þ is independent of the generative model G, it should satisfy that

pGðxÞ � pR xð Þ: ð13Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 4—Schematic diagram of the GAN.
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Fig. 5—(a) GANs architecture and (b) CGANs architecture.
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Finally, the maximized G can be written as

max
G

1

2

ð
R

min
D

pRðxÞ; pGðxÞ½ �
� �

dx

0
@

1
A ¼ ð

R

minD pRðxÞ; pGðxÞ½ �
pRðxÞ þ pGðxÞ

� pRðxÞ þ pGðxÞ
2

� �
dx: ð14Þ

CGANs were introduced by Mirza and Osindero (2014) to add extra information to make the generator and discriminator condi-
tioned. This kind of extra information can be regarded as the additional input layer (labeled as purple-colored “Y” in Fig. 5b), such as
class labels or data from other modalities. We can formulate the cost function of CGANs as

max
G

min
D

E G;Dð Þ
� �

¼ max
G

min
D

1

2
Wx�pR

� 1� D xjyð Þ½ � þ 1

2
Wx�pG

� D xjyð Þ½ �
� �

¼ max
G

1

2
min

D

ð
R

pR xð Þ � 1� D xjyð Þ½ � þ pG xð Þ � D xjyð Þ½ �f gdx

0
@

1
A; ð15Þ

where y denotes the conditional information, which facilitates both the generative model and discriminative model to operate in
certain modes.

The specific architectures of CGAN’s generator and discriminator are shown in Fig. 6. EMB represents an embedding layer of
which each label is first converted based on the embedding layer and then concatenated with a latent variable z or the original features
x. 	 is a concatenation operation, and the size of each feature vector is also included. For example, in the CGAN’s generator, the
dimensions of each feature vector are 10 (four from the conditional information y and six from the latent variables z), 4, 8, 16, and 13.
Likewise, for its discriminator, the corresponding dimensions are 17 (4 from the label y and 13 from the original feature space), 4, 8, 8,
and 1, respectively. The other operations for each layer are: fully connected layer (F), batch normalization (B), leaky Relu (L), dropout
(D), and tanh (T). The combinations of different operations are represented by just concatenating their first capital letters together. For
example, “FBL” means a fully connected layer followed by batch normalization and leaky Relu. “FDL” means a fully connected layer
followed by drop out and leaky Relu. “FT” means a fully connected layer followed by the tanh activation layer.

CTGANs. Traditional GANs or CGANs assume continuous variables to be Gaussian, which may lead to the failure in modeling the
tabular data when the continuous variables are non-Gaussian, or the data are imbalanced for discrete variables (categorical features). To
deal with the data set of a mixed type including continuous and discrete variables, a CTGAN (Xu and Veeramachaneni 2019) is pro-
posed, which is based on a CGAN and PacGAN (Lin et al. 2018). Before sending the raw table to CGAN model, the normalization
should be done. A variational Gaussian mixture model is first adopted to represent the distribution of the continuous variable.

PCi
ci;j

� �
¼
Xmi

k¼1
u kð ÞN ci;j; g

kð Þ
i ;/ðkÞi

h i
; ð16Þ

where ci;j is the value of the ith column and jth row from the input training table, and Ci is the vector from the ith column. u kð Þ, g kð Þ
i , and

/ðkÞi are the weights, means, and standard deviations from the kth component. Then a one-hot encoded vector bi;j is computed by sam-
pling from the categorical probability mass function of k with parameters b 1ð Þ

i;j ; b
2ð Þ

i;j ;…; b mið Þ
i;j as follows:

Cat k; b 1ð Þ
i;j ; b

2ð Þ
i;j ;…;b mið Þ

i;j

h i
; where b kð Þ

i;j ¼ u kð ÞN ci;j; g
kð Þ

i ;/ kð Þ
i

h i.
PCi

ci;j

� �
: ð17Þ

Then ci;j is normalized as

ai;j ¼
ci;j � g kð Þ

i

4/ðkÞi

: ð18Þ

One-hot encoding and concatenation are also used for multiple discrete variables’ representations. For example, if there is one dis-
crete variable D1 with three categories, and the second category is selected as a conditional label, the corresponding one-hot encoded
vector is [0 1 0]. In our problem, we only have one discrete variable, of which the labels are categorical features. The flow chart of the
CTGAN model with two continuous variables and one categorical variable (label) are shown in Fig. 7. As shown in this figure, the
CTGANs model generates fake data according to a specific label (a condition). At the same time, the real data set corresponding to that
label is also selected and normalized to send to the discriminator.

The specific structures of the CTGAN generator and discriminator are shown in Fig. 8. The input vector of the generator includes
the label (size is 4) and the hidden vector (size is 128). After the FBL layer (fully connected layerþ batch normalizationþ leaky Relu),
a feature vector of size 256 is generated and concatenated with the input feature vector as a new vector (size is 388) sent to the second
FBL layer. Then the second feature map with a size of 256 is produced and concatenated with the feature vector from its input. Finally,
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Fig. 6—Specific structures of CGAN’s generator and discriminator.
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the output vector of size 136 is generated using the fully connected layer. The output vector’s size is calculated according to the
number of modes for each continuous variable and the one-hot encoded vector’s dimension for each discrete variable, finally consisting
of a, b, and D. For the discriminator of CTGANs, its input can be the output from the generator or the real data set’s a, b, and D values
sampled multiple times based on the number of PAC size. After using two FLD (fully connected layerþ leaky Reluþ dropout) layers,
one can decide whether the input is real or not. More details can be found from Xu and Veeramachaneni (2019).

Experimental Results

Data Preparation. We randomly select 73 horizontal wells from a certain oil field for training purposes. Our selected formation has a
large thickness, areal continuity, laminated siltstone, and shale formations, with primary features as extremely low permeability, low
porosity, high oil saturation, strong heterogeneity, and high brittleness index. In each well, tens to hundreds of well logs are collected.
As we know, well logs indicate single-point measurements of physical properties, which are aperiodic and dependent on aspects, such
as mineral composition or lithology, presence of fluids, resistivity and conductivity, porosity and permeability, and cementation and
compaction. In our case, each well-log data set contains 13 features, including deep resistivity, interval transit time, density, natural_
gamma ray, shaliness, orientation, deviation, depth, east-west, south-north, porosity, permeability, and oil saturation. All these features
are continuous, and no categorical features (discrete values) are used in this paper. Statistics analysis (mean, standard deviation, mini-
mum and maximum) of these features are shown in Table 1.

Initially, a preprocessing pipeline is performed to filter out the well logs without any value to experts or machine-guided reservoir qual-
ity classification. After data cleaning, physical parameter (i.e., interval transit time), lithological parameter (i.e., shaliness), and electrical
parameter (i.e., deep resistivity) are adopted to establish a comprehensive index (CI), which can reflect the formation characteristics.

CI ¼ AC� ACLð Þ � VshU � Vshð Þ � log10ðRTÞ; ð19Þ

where AC and ACL denote the interval transit time and its lower bound, respectively; Vsh and VshU represent shaliness and its upper
bound; and RT is the deep resistivity. Then the comprehensive index, brittleness index, interval transit time, shaliness, porosity, and
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Fig. 7—Flow chart of the CTGANs model.
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permeability are used to categorized the reservoir quality into four types: water formation, oil formation, dry formation, and bad forma-
tion with corresponding labels as L0; L1; L2; L3. After interpretation and labeling, we train our selected algorithm with a data set gener-
ated via interactive labeling using human expert knowledge. The data sets include almost 10,000 samples with labels. In our
experiments, 80% data sets are used for training and validation, and the others for testing.

Data Visualization. In this section, we choose six features (permeability, porosity, oil saturation, shaliness, natural_gamma ray, sonic
travel time) and do 3D visualization for each feature after normalization (Figs. 9a through 9f). From Fig. 9a, we can observe that the
distribution of normalized permeability in the shallow layer is much larger than that in the deep area. This is because the effect of for-
mation compaction is positively correlated with formation depth, which would make the size of pores and throats much smaller in deep
areas and further reduce the permeability. Fig. 9b reveals the negative correlation between the normalized porosity and the formation
depth. Shales tend to have a lower porosity compared to sands, while density, Poisson’s ratio, and velocity values are much higher
(Bougher 2016). In Fig. 9c, the normalized oil saturation becomes much higher in the deep layer, which indicates that the area is the
productive zone. Shaliness represents the shale content in a dominantly nonshale formation. From Fig. 9d, we could observe that there
is no obvious difference of shaliness in the shallow layer and deep layer. Natural_gamma ray (GR), as a measured value of gamma-ray
radiation, can be used to identify the rock or sediment in the borehole. Because shale usually emits more gamma rays than other sedi-
mentary rocks, we could find that shale content dominates in the deep formation, as illustrated in Fig. 9e.

Moreover, the value of natural_gamma ray is positively related to the content of organic matters, which could explain why the deep
formation covering the productive zone owns a higher value of gamma ray. Interval transit time, as the reciprocal of wave velocity,
which is measured by acoustic log, reflects the amount of time for an elastic wave to travel a certain distance. This parameter can be
used for calibrating seismic data and determining the formation porosity. According to Fig. 9f, we could obtain the information that the
interval transit time has a negative correlation with the formation depth. This is because much more unconsolidated shales are distrib-
uted in the shallow layer, which contributes a higher transit time of P-wave.

Parameters Tuning. We mainly use two data sets: the real data sets and the synthetic data sets generated by two types of GANs
(CGANs and CTGANs) for classification. For classification on real data sets, besides XGBoost, LightGBM, and CatBoost, we also
apply SVMs and MLP. For synthetic data, we only use XGBoost. In all the following experiments, we ran a grid search to find the best
hyperparameters and used fivefold cross-validation to compute the average score (agreement rate of interpretation) from each set of
hyperparameters. The best parameters are chosen from the model giving the highest average agreement rate on the validation sets.
Table 2 reveals the parameter settings for different methods.

For SVMs, the best agreement rate of interpretation can be obtained by using the linear kernel. We use MLP with two and three
hidden layers. For the MLP with two hidden layers, the number of neurons in the first and the second hidden layers are set in the range
of (3, 40) and (2, 35). For the MLP with three hidden layers, the number of neurons in the first, second, and third layers are separately
set as (3, 40), (2, 28), and (2, 25). The maximum agreement rate for the MLP with two hidden layers is 64%, which is achieved when
the first layer and second layer have 37 and 10 neurons. For the three hidden layers in MLP, the best agreement rate is 68% with 14, 25,
and 20 neurons for each hidden layer.

There are more than 20 hyperparameters for the tree-based model. To reduce the searching space of the hyperparameters, we only
tune the significant ones. Because XBGoost, LightGBM, and CatBoost have similar hyperparameters, we use the same searching spaces
for them, for a fair comparison.

In XGBoost, LightGBM, and CatBoost, “max depth” determines the maximum depths the tree can grow for each model, which is
set from 4 to 10 with 2 as the interval. “Gamma” is the minimum loss reduction required to split a leaf node, which is usually better
than max depth in controlling overfitting. It is set in (0, 2). “Minimum child weight” defines the minimum sum of weights of all obser-
vations required in a child, and it is set between 1 and 20. “Subsample” denotes the fraction of observations that is randomly sampled
from each tree, which can also be used to handle overfitting, chosen between 0.7 and 1. “Col. sample by tree” denotes the fraction of
columns that is randomly sampled from each tree in the range of (0.3, 0.9). “Scale positive weight” controls the balance of positive and
negative weights. Usually, it is set as sum(neg) (summation of the number of negative samples) divided by sum(pos) (summation of the
number of positive samples). In this paper, they are chosen from 0.5 to 2 with 0.5 as the interval. It is worth noting that “Step Size” is
the sampling interval from a given range we use in selecting parameters.

Feature Name Mean Standard Deviation Minimum Maximum

Deep_resistivity (X �m) 63.186356 106.455652 3.44 6220.62

Interval_transit_time (ms/m) 213.783843 14.513890 98.990000 309.92

Density (g/cm3) 2.541494 0.072679 1.68 2.9

Natural_gamma ray (API) 86.237089 19.551168 20.2 145.95

Shaliness (%) 16.291963 5.206002 3.52 42.69

Orientation (degrees) 227.245555 97.614673 0.270 362.19

Deviation (degrees) 65.454329 32.824882 0.64 92.72

Depth (m) 1856.196817 266.654981 1015.36 2209.78

East-west (m) 12.589112 406.070219 –1748.42 1436.13

South-north (m) –75.88483 938.821799 –2567.46 2889.78

Porosity (%) 9.809155 2.785541 0.810000 25.200000

Permeability (md) 1.153005 3.313125 0.010000 55.680000

Oil_saturation (%) 42.906673 16.418168 0.100000 85.880000

Table 1—Statistics analysis of 13 features from well logging.
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Method Name of Parameters

Range of

Parameters

Step

Size

MLP two hidden layers First layer’s number of neurons (3, 40) 1

Second layer’s number of neurons (2, 35) 1

MLP three hidden layers First layer’s number of neurons (3, 40) 1

Second layer’s number of neurons (2, 28) 1

Third layer’s number of neurons (2, 25) 1

XGBoost/LightGBM/CatBoost Max depth (4, 10) 2

Gamma (0, 2) 1

Minimum child weight (1, 20) 1

Subsample (0.7, 1.0) 0.1

Column sample by tree (0.3, 0.9) 0.1

Scale positive weight (0.5, 2) 0.5

Table 2—Parameter settings for different methods (MLP, XGBoost, LightGBM, CatBoost).
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Fig. 9—Distribution of normalized (a) permeability, (b) porosity, (c) oil saturation, (d) shaliness, (e) natural_GR, and (f) interval
transit time.
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For both CGAN and CTGAN, we use adaptive moment optimization in training. The total number of epochs is 2,000, and the batch
size is 128. We set 0.0002 as the learning rate, with hyperparameters beta1 as 0.5 and beta2 as 0.999, which are used for computing
moving averages. Dropout, with a probability of 0.5, is applied to the generator and the discriminator.

It is worth noting that two types of hyperparameters have significant impacts on the experimental results. The first type of parameter
aims at defining the shape of the tree model (such as max depth and number of child nodes) and overcoming the overfitting issue by
using tree pruning and subsampling (such as “gamma,” “minimum child weight,” and “subsample”). The second type of parameter,
such as learning rate and batch size, is mainly used for optimization, which helps us to learn the weights (like the scores of the leaves)
of the model. Besides, the meta learner is mainly applied to control the contribution from each base learner. If the meta learner is an
MLP or a tree-based model, the tuning of the hyperparameters is still similar to the base learner.

Prediction Results. The agreement rate of different categories (L0; L1; L2; L3) from different classifiers is shown in Fig. 10 and
Table 3. In our experiments, we select all features (13 features) or partial features (10 features) for training and testing. As depicted in
Fig. 10, we have nine models as XGBoost (13f_xgb), RF (13f_rf), SVM with linear kernel (13f_svm), MLP with two hidden layers
(13f_mlp2), MLP with three hidden layers (13f_mlp3), LightGBM (13f_lgb), CatBoost (13f_catb), CGANs with XGBoost (cgan_xgb),
and CTGANs with XGBoost (ctgan_xgb). For the remaining two models, XGBoost (10f_xgb) and SVM with the linear kernel
(10f_svm), we remove highly correlated features (orientation, porosity, and depths) and keep the remaining 10 features for training. In
terms of category L0 (water formation), except CGANs and CTGANs, other eight base learners have a high agreement rate of interpre-
tation (more than 80%), which demonstrates that GANs would have low accuracy in predicting the reservoir quality and more parame-
ter tuning work is required to improve the agreement rate. From Fig. 10, we also observe that GB algorithms (XGBoost, CatBoost, and
LightGBM) have both high agreement rate and robustness to deal with a random numbers of large-scale data sets for each label, com-
pared with traditional SVMs and MLPs.

As shown in Fig. 11 and Table 3, CatBoost produces the highest total agreement rate of 82.5%, and XBGoost is the second best
with an agreement rate of 81.61%. However, the maximum agreement rate from LightGBM is only 74.99%, which is 6.62% lower than
the results from XBGoost. The main reason may be that the number of training samples is not large enough in our problem. Empirically,
one needs to use more than 10,000 samples for training LightGBM. SVM reveals better results than LightGBM by 0.82%, but it takes a
longer time to train. The time complexity of SVM is between Oðn2Þ and Oðn3Þ, where n is the number of training instances.
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Fig. 10—Agreement rates of interpretation of different labels for different models.

Features Model L0 (%) L1 (%) L2 (%) L3 (%)

Total Agreement

Rate (%)

All features XGBoost 90.34 88.66 79.15 70.19 81.61

All features RF 90.34 88.09 79.15 61.27 79.35

All features SVM linear kernel 87.93 84.12 76.15 56.81 75.81

All features MLP (two hidden layers) 88.62 84.88 66.08 18.54 64

All features MLP (three hidden layers) 88.28 80.72 66.08 42.72 68.42

All features LightGBM 85.52 88.85 73.85 52.11 74.99

All features CatBoost 89.31 90.55 80.21 70.89 82.5

10 features (remove highly

correlated features)

XGBoost 88.28 89.79 77.74 69.25 80.95

10 features (remove highly

correlated features)

SVMs linear kernel 90 83.93 71.55 43.43 71.51

All features (fake data from CGANs) XGBoost 0 51.04 0 53.29 27.44

All features (fake data from CTGANs) XGBoost 72.07 87.15 59.01 55.87 68.58

Table 3—Agreement rates of interpretation of different labels from 11 classifiers.
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For the GAN-based model, we do data augmentation, but it turns out that this model would reduce the data quality. GANs and
CGANs are not able to generate data sets similar to the input table. Many zeros appear in the Cols. of depth and shaliness, and the data
range is not similar to the one from the training data. What is worse, GANs does not use the labels as conditions, so we should generate
the training data for each label, which is time-consuming. Therefore, we only reported the interpretation results on the test data sets
from CGANs and CTGANs. We use them to generate two fake tables with 8,500 samples for each, and the agreement rate of CGANs
and CTGANs are 27.44 and 68.58%, respectively, by training on the fake data but testing on the real test data. Although the agreement
rate of interpretation is low, it is much better than GANs and CGANs.

Ensemble-Learning Framework

Agreement Rates of Interpretation from Different Ensemble-Learning Approaches. The other way of improving the agreement
rate of interpretation is to generate more sophisticated features and feed them to a meta learner, of which the new features can be the
concatenation of the outputs from each model or just the summation of them. This type of architecture is called the ensemble-learning
framework, as shown in Fig. 12. Because averaging and voting-based ensemble models can be divided into two steps (put averaging
and voting operations in the second level), we treat them as a two-step classification just as the stacking model, which is capable of con-
catenating multilevels and boosting the model performance. In our experiments, we use two levels. Let f1; f2;…; fB be the predictions
from B base learners on the first level. To combine the output values from multiple base learners, we consider two types of feature com-
binations. The first type is to concatenate all the feature vectors, and the second is to add all features elementwise. Hence, the combined
features as inputs to the second level classifier can be formulated as

g f1 	 f2 	 :::fB; wð Þor
XB

i¼1

fi;w

 !
; ð20Þ

where g is a mapping from the output of base learners to the final predictions in the second level, and 	 denotes the concatenation opera-
tion. The parameter w of the stacked model is learned by training a meta learner. During the training process of our selected stacking
model, we divide it into two stages. In the first level, we can use classifiers from XGBoost, LightGBM, CatBoost, and SVMs. The outputs
for each classifier can be probabilities for each class or just the predicted labels, which can be added together or concatenated to send to
the second level meta learner. To find the best models for each base learner, we employ the k-fold cross-validation and grid search in the
first stage. By fixing the base learner’s hyperparameters, we make use of the training data set to get all the predicted scores. After feature
combination, they become new features and are fed to the next stage. In the second level, we use MLP with four hidden layers. The
number of neurons for each layer are selected from [2, 12], [2, 11], [2, 10], and [2, 9]. The training of the second level is nearly the same
as the first level except for the training data set, which are changed to the features from the first level’s outputs. The predictions on the
test sets for the whole stacking model are achieved from the model, which generates the highest cross-validation score.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Original
features

Combine
features

MLP

XGBoost

CatBoost

LightGBM

SVM

Level 1 model Level 2 model

Fig. 12—Structure of an ensemble-learning framework.
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Fig. 11—Total agreement rates of interpretation for different models.
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Because the features with reduced dimensions do not improve the results (as shown in Table 3), we use all the features in the ensem-
ble experiments. According to Table 4, for the voting strategies, no matter which base learners are combined, it cannot outperform the
base learner with the highest agreement rate. For averaging, when the base learners are XGBoost and CatBoost, we can get an agree-
ment rate of 82.61%, which is 0.11% higher than the CatBoost model. When we use MLP as the meta learner in the second level, it can
mostly improve the agreement rate compared to that of only using one base learner. Specifically, when setting XGBoost, CatBoost, and
SVMs as the base learners, the ensemble-learning framework improves the interpretation results by 1.77%, and the final agreement rate
is 82.77%. Especially when combing XGBoost and CatBoost, we improve it by 0.66% compared to CatBoost. Correspondingly, the
agreement rate of interpretation is 83.16%, which is the highest agreement rate from both ensemble modeling and single
model prediction.

It is worth noting that porosity, permeability, and oil saturation (PPS) are parameters obtained from well-log interpretation. Thus,
these three parameters are recommended to remove from the original data set to reduce the error margin generated by the machine-
learning-based model. Then the remaining 10 parameters are used to determine the agreement rate of interpretation by different single
classifiers and ensemble models. The interpretation results from both the base models and the ensemble models are shown in Tables 5
and 6, respectively. From the interpretation result of different base models, it can be observed that only three of them (XGBoost,
CatBoost, RF) reach the agreement rates of more than 80%. The highest agreement rate of 83.37% can be obtained by using XGBoost.
CatBoost ranks second with 82.36% agreement rate. Compared with the GB algorithm, MLP shows an undesired result. Thus, it can be
concluded that GB (XGBoost and CatBoost) presents the best performance of interpretation. In the ensemble-learning model, XGBoost
and CatBoost are adopted as base learners, and MLP is the meta learner for the second level. According to the interpretation results
from ensemble model, we find that the total agreement rate can reach 84.48% by using the first concatenation approach, which exceeds
1.11% of the agreement rate from a single XGBoost model.

Features Level 1 Model Level 2 Features Level 2 Model

Agreement Rate

of Interpretation (%)

All XGBoost-LightGBM-SVM Class probabilities’ sum Average 80.95

All XGBoost-LightGBM-SVM Predicted labels Voting 78.8

All XGBoost-LightGBM-SVM Class probabilities’ sum MLP (four layers) 81.28

All XGBoost-LightGBM-SVM Class probabilities’ concatenation MLP (two and three layers) 82.61

All XGBoost-LightGBM-SVM Class probabilities’ concatenation XGBoost 81.45

All XGBoost-LightGBM-SVM Class probabilities’ sum XGBoost 80.18

All XGBoost-LightGBM-SVM Class probabilities’ sum Averaging 82.11

All XGBoost-LightGBM-SVM Predicted labels Voting 82.16

All XGBoost-LightGBM-SVM Class probabilities’ concatenation MLP 82.77

All XGBoost-LightGBM-SVM Class probabilities’ sum MLP 82.55

All XGBoost-CatBoost Class probabilities’ sum Averaging 82.61

All XGBoost-CatBoost Predicted labels Voting 82.05

All XGBoost-CatBoost Class probabilities’ concatenation MLP 83.05

All XGBoost-CatBoost Class probabilities’ sum MLP 83.16

Table 4—Interpretation results by using ensemble-learning approach.

Features Model L1 (%) L2 (%) L3 (%) Total Agreement Rate (%)

10 features (remove PPS) XGBoost 92.16 78.39 76.21 83.37

10 features (remove PPS) CatBoost 91.91 76.92 74.60 82.36

10 features (remove PPS) LightGBM 91.42 68.86 57.56 74.60

10 features (remove PPS) MLP (two hidden layers) 78.19 68.50 51.44 67.14

10 features (remove PPS) MLP (three hidden layers) 87.75 71.06 55.63 73.08

10 features (remove PPS) SVM linear 88.97 80.22 58.84 77.12

10 features (remove PPS) RF 91.18 79.85 68.49 80.95

Table 5—Agreement rates of different labels from base models after removing PPS data.

Features Level 1 Model Level 2 Model L1 (%) L2 (%) L3 (%)

Total

Agreement

Rate (%)

10 features (remove PPS) XGBoost-CatBoost MLPþ concatenation (four layers) 92.89 83.52 74.28 84.48

10 features (remove PPS) XGBoost-CatBoost MLPþaccumulation sum 93.38 84.62 72.03 84.27

Table 6—Agreement rates of different labels from ensemble models after removing PPS data.
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Case Study by Using Ensemble-Learning Method. One well is selected from 73 horizontal wells for the case study. We screen out
the candidate intervals with a deviation angle of approximately 90
 from the original data set, and more than 5,000 samples remain for
the classification procedure. For our selected wellbore, 84 samples of intervals are preserved to ensure that our studied intervals locate
at the horizontal region. The measure depth of selected intervals ranges from 2100 to 3700 m. Then we investigate the detection perfor-
mance of sweet spots for the horizontal intervals by using the ensemble-learning approach. Fig. 13 elaborates profiles of log responses
and corresponding prediction scores under two different types of variable selection approaches. All 13 well-log features are chosen in
Fig. 13a, and only 10 well-log parameters are used in Fig. 13b. The reason why PPS are removed from the case in Fig. 13b is that these
three key reservoir parameters can directly be obtained from well logging interpretation. Error margins would be generated during the
calculation procedure of these variables. Therefore, PPS should be deleted, and the remaining 10 variables can be used to determine the
agreement rate of interpretation by ensemble-learning framework. In Fig. 13, the abbreviations GR, AC, RT, GT, PV13, PV10 denote
natural_gamma ray, interval transit time, deep resistivity, ground truth, predicted values from the ensemble-learning approach by choos-
ing all 13 features, and predicted scores from ensemble learning by using 10 features, respectively. From both Figs. 13a and 13b, with
the variation of the measured depth, a good agreement can be observed between GT and PV values. To ensure the drawing continuity,
we define the nonreservoir interval as 4. Log responses of three components are regarded as a composite indicator for identifying loca-
tions of sweet spots. It is worth noting that the red and blue colors represent the interval of sweet spot and the interval without sweet
spot, respectively. If the log responses of GR, AC, and RT all show the red color, the corresponding interval has a great potential to be
the sweet spot. As shown in Fig. 13, several purple dashed ellipses are marked to show the locations of potential sweet spots. It can be
observed that removing the PPS from original data set would not affect the determination of sweet spots. Our created profiles not only
help engineers to understand the geologic and petrophysical context but also help them to find the locations of sweet spots based on the
color distributions.

Although the operators in the field practice can easily identify the sweet spots by using the available well-log data from GR logs, RT
logs, or logging-while-drilling (LWD) tools, our ensemble-learning framework integrates experts’ knowledge to the developed model,
identifies different logging curves more efficiently, decreases the cost of log interpretation, and minimizes erroneous judgment.

Discussion

Acquisition of formation properties (such as lithology, oiliness, physical properties, and electrical properties) from well logging is not
simple. The signal-to-noise ratio has an obvious impact on the reality and reasonability of acquired data. Thus, how to screen out the
fake data from the original data set is very challenging and also significant for the agreement rate of interpretation by different algo-
rithms. One efficient way of picking up outliers is to analyze data consistency of its adjacent data in the same layer based on the lithol-
ogy and physical properties. Moreover, it is of great importance to account for data dependency. For example, outliers can be
recognized by comparing the corresponding porosity values from neutron, acoustic, and density logs.

To obtain a more accurate classification of reservoir quality, we should differentiate the oil/water layer from pure oil formation.
Compared with oil formation, the oil/water layer has equivalent lithology, storage capacity, and permeability. In the oil/water layer, the
margin of spontaneous potential is larger than that of the adjacent oil formation. Moreover, the resistivity of the oil/water layer is rela-
tively low than that of its adjoining oil formation, in accordance with the logging curve of deep resistivity. Concurrently, high resistivity
appears at the upper oil/water layer, and a low value occurs at its bottom. Moreover, nuclear magnetic resonance logging can also be
regarded as a tool for identifying the oil-water layer based on the transverse relaxation (T2) value. Thus, spontaneous potential, deep

RT
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2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700
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PV13

GT

(a) All 13 well-log features

(b) Only 10 well-log features, removing porosity, permeability, and oil saturation

RT

AC

GR

PV10
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Fig. 13—Profiles showing the predicted scores by the ensemble-learning approach from selecting 13 features (a) and 10 features
(b), respectively.
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resistivity, and transverse relaxation T2 become the most significant input features for our selected classifiers. Related studies would be
conducted in our future work.

Among the data sorting out and meticulous classification, the selection of appropriate algorithms is also significant in improving the
agreement rate of interpretation of reservoir quality classification. The GAN algorithm, as a new endeavor in the petroleum industry,
enables us to create new data, which are generated from an almost equivalent distribution with the measured data but not an exact copy.

With respect to the decision tree’s structures, higher agreement rates of interpretation can be achieved, once using larger search
spaces of the hyperparameters from the decision trees, including max depth, gamma, minimum child weights, etc. In terms of using
multiple models together, one can use majority voting, unweighted averaging to combine results from different base learners (XGBoost,
CatBoost, LightGBM, SVM, etc.) to alleviate strengths for each classifier. This can also be seen from Table 3, in which the agreement
rate of label 0 (L0) from XGBoost is higher than CatBoost, but for the other three labels, CatBoost becomes better.

For testing our method on the custom data set, we suggest running the feature analysis to remove the less useful ones and then select
the model via k-fold cross-validation, because it can reduce the bias and overcome the overfitting issue. According to the interpretation
results shown in Table 3, the agreement rates of L0 and L1 are higher than that of L2 and L3. One of the reasons is probably that the cor-
responding number of training samples is smaller. In the future, we would oversample the data from L2 and L3.

Although the proposed ensemble-learning framework can improve the agreement rate of interpretation compared with the single
model, the design and the configuration of the base and meta learners also take more time and effort. The search space of the hyperpara-
meters may also increase if more base learners are included. Thus, it would be helpful to use advanced hyperparameter tuning tech-
niques such as Bayesian optimization (Snoek et al. 2012). In our experiments, we only consider MLP or XGBoost as the meta learner.
In our future work, we would attempt to use more meta learners and higher levels for model stacking (more than two levels) to boost
the performance. We would also improve the GAN model in generating the quality of the fake data set and merge both the fake and real
data sets in training to enhance the interpretation results.

Conclusions

In this paper, we first introduced different GB algorithms (XGBoost, CatBoost, and LightGBM) and discussed their benefits and disad-
vantages. Then a new algorithm, named GAN, was introduced to generate fake data sets and combine with XGBoost to predict the res-
ervoir quality. Afterward, we collected almost 10,000 samples (each sample has 13 features and corresponding labels) from 73
horizontal wells in a certain oil field. Eleven different classifiers (such as SVMs, RF, MLP, XGBoost, LightGBM, CatBoost, CGANs/
XGBoost, CTGANs/XGBoost) were implemented to predict the label of the corresponding reservoir quality. Conclusively, we estab-
lished an ensemble-learning framework combining a two-step classification for improving the agreement rate of interpretation. We
make the following conclusions:
1. In comparison with SVMs and MLP, GBDTs (XGBoost/CatBoost/LightGBM) not only offer high agreement rate of interpretation

but deal with the arbitrary size of the data set for each label.
2. CatBoost is first applied to classify reservoir quality based on the well-log data. This algorithm produces the highest agreement rate

of 82.5% among all classifiers because all features are selected for training. If the well-log interpreted parameters (porosity, per-
meability, and oil saturation) are removed from the original data set, the highest agreement rate of 83.37% is obtained by XGBoost.
Compared with SVMs, GBDTs could save almost 70% of the time complexity during training.

3. The agreement rates of interpretation from using synthetic data sets generated by CGANs and CTGANs are 27.44 and 68.58%,
respectively, which demonstrates that the GAN-based models probably show poor performance in identifying sweet spots. However,
it provides a guideline for the field engineers to implement this approach by carefully tuning the relevant parameters for improving
the agreement rate.

4. Among other base models (Tables 3 and 5) and ensemble models (Tables 4 and 6), the proposed ensemble-learning framework with
the combination of XGBoost and CatBoost as the first level and MLP as the second level owns the highest agreement rates of 83.16
and 84.48% from selecting 13 features and 10 features, respectively. Thus, it can be regarded as an effective algorithm of identifying
sweet spots based on the labeled reservoir quality, which is capable of saving the interpretation time.

5. Based on the color change of logging curves with the alteration of measured depth, the created profiles of predictions and log
responses vividly reflect the geologic and petrophysical context and visualize the intervals of sweet spots. Moreover, removing the
PPS parameters from the original data set would not affect the determination of sweet spots.
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