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Colour is one of the most important visual attributes of food
and is directly related to the perception of food quality. The
interest in natural colourants, especially β-carotene that not
only imparts colour but also has well-documented health
benefits, has triggered the research and development of
different protocols designed to entrap these hydrophobic
natural molecules to improve their stability against oxidation.
Here, we report a versatile microfluidic approach that uses
single emulsion droplets as templates to prepare microparticles
loaded with natural colourants. The solution of β-carotene
and shellac in the solvent is emulsified by microfluidics
into droplets. Upon solvent diffusion, β-carotene and shellac
co-precipitates, forming solid microparticles of β-carotene
dispersed in the shellac polymer matrix. We substantially
improve the stability of β-carotene that is protected from
oxidation by the polymer matrix and achieve different colour
appearances by loading particles with different β-carotene
concentrations. These particles demonstrate great promise for
practical use in natural food colouring.
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1. Introduction
Colour is used by consumers as an indicator of both the quality and safety of foods and people expect
processed foods to be coloured attractively with shades that are typical of their product variety. Synthetic
dyes are added to foods to improve their appearance, making them more appealing. However, these
dyes may results in health issues such as sensitivity, intolerance and carcinogenicity [1]. They are
thus preferentially avoided and substituted by natural colourants, such as β-carotene (E160a, the food
additive code), which is the most widespread naturally sourced food colourant with health-promoting
effects, the provitamin A activity and the antioxidant action [2,3]. β-Carotene has a strong red-orange
colour due to its large sequence of conjugated double bonds [4]; however, the nature of double bonds
makes β-carotene very sensitive to degradation, particularly to oxidation, which strongly limits its
application. The oxidation of β-carotene includes firstly isomerization, secondly production of radical
species, and then apparition of cleavage products [5,6]. The breakdown products include a number of
small molecules with extremely low odour thresholds [7]. The use of β-carotene as a colourant is thus
severely limited in food applications where the flavour profile is particularly mild [8].

Encapsulation has been widely used to remedy such problems by which certain sensitive ingredients
are entrapped in a polymer matrix and protected from ambient conditions such as light, temperature,
oxygen and humidity [9–17]. In general, the polymers must possess three critical features: they should
be food grade, able to provide a good protection for the natural colourants and able to tune the
property of the final product such as the colour appearance. Numerous efforts have been devoted
to find the proper polymer matrix for β-carotene microencapsulation [18–20], and to develop the
desired microencapsulation techniques [21–25]. The polymer matrices studied so far are mainly carbon
hydrates; however, due to their hydrophilic nature, these polymers are not compatible with hydrophobic
β-carotene. As a result, the protection provided by these polymers is not optimal because β-carotene
cannot be well dispersed in the polymer matrix.

Here we use shellac (E904, the food additive code), a natural resin, to achieve the desired protection.
Shellac is a hydrophobic polymer that consists of a complex mixture of polyhydroxy polycarboxylic
esters, lactones and anhydrides [26,27], as shown in figure 1a, and is compatible with β-carotene. To
encapsulate β-carotene, we develop microfluidic and solvent-diffusion techniques to fabricate shellac
particles with β-carotene uniformly dispersed in the polymer matrix. We improve the stability of
β-carotene substantially and control the colour appearance of the particles by tuning the β-carotene
concentrations in the polymer matrix.

2. Materials and methods
2.1. Materials
β-Carotene is used as the food colourant (Type I, synthetic, ≥93% (UV), powder; Sigma-Aldrich, USA).
Shellac is employed as the encapsulant (wax free, tested according to Ph. Eur.; Sigma-Aldrich, USA).
β-Carotene and shellac are dissolved in a mixture of ethyl acetate (anhydrous, 99.8%; Sigma-Aldrich,
USA) and ethanol (200 proof, anhydrous KOPTEC USP, Multicompendial; Koptec, USA). Nile red (TCI,
Japan) is used as a β-carotene equivalent to visualize the distribution of hydrophobic molecules inside
the shellac matrix using fluorescence microscopy. Polyvinyl alcohol (PVA, MW: 13 000–23 000 g mol−1,
87–89% hydrolysed; Sigma-Aldrich, USA) is dissolved in distilled water (Milli-Q system; Millipore
Corporation, USA) and used as the outer phase in the emulsification device.

2.2. Methods

2.2.1. Sample preparation

β-Carotene slowly degrades during storage. Undegraded β-carotene is insoluble in ethanol, while
degraded β-carotene is soluble in ethanol. Therefore, β-carotene is purified before every use using
ethanol as a washing solution due to the low solubility of β-carotene in it (0.03 mg ml−1). Washing
steps are applied until the colour of the ethanol washing solution remains unchanged. Shellac is barely
soluble in ethyl acetate. However, a small amount of ethanol in ethyl acetate, for example a 4 to 1 volume
ratio, makes it a fair solvent for shellac and barely affects the solubility of β-carotene (0.5 mg ml−1).
Therefore, 100 mg of shellac is dissolved in 1 ml of a mixture of ethyl acetate and ethanol at a 4 to
1 volume ratio, respectively. The shellac solution is then saturated with β-carotene. The solubility of
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Figure 1. Production of monodisperse shellac particles loaded withβ-carotene in the polymer matrix using single oil/water emulsions
as templates. (a) The general chemical structures of shellac. (b) Schematic illustration of the glass capillary device used to produce
monodisperse single emulsions in the dripping regime. (c) Schematic representation of solidification of shellac particles loaded with
β-carotene upon solvent diffusion. (d) SEM image showing monodisperse shellac particles synthesized using single emulsions as
templates. (e) Natural orange colour obtained by encapsulatingβ-carotene in the shellac matrix.
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β-carotene in the ethyl acetate/ethanol mixture is approximately of 0.5 mg ml−1. The β-carotene that
remains undissolved is removed from the shellac solution using a filter with a typical pore size of 0.25 µm.

2.2.2. Encapsulation

The experiments are carried out using glass microfluidic devices. Cylindrical capillaries (World Precision
Instruments, Inc., USA) with inner and outer diameters of 0.58 and 1.0 mm, respectively, are used
to fabricate the devices. These cylindrical capillaries are tapered to the desired size using a puller
(Flaming/Brown Micropipette Puller, Model P-97; Sutter Instrument Co., USA). The tapered cylindrical
capillaries are inserted into a square capillary (Atlantic International Technology, Inc., USA); the latter
has an inner dimension only slightly larger than the outer diameter of the cylindrical capillaries, which
facilitates their alignment. We use the glass capillary device to produce an emulsion: the inner phase
consists of 0.5 mg ml−1 β-carotene and 100 mg ml−1 shellac in the ethyl acetate/ethanol mixture and it
is pumped through the tapered cylindrical capillary; the outer phase consists of a 10 wt% polyvinyl
alcohol (PVA) aqueous solution and it is pumped through the square capillary. All fluids are pumped
into the microfluidic device using syringe pumps (Harvard PHD 2000 series; Harvard Apparatus, USA).
Oil/water single emulsions are formed when the outer aqueous phase converges at the collection
capillary. The resulting emulsions are collected in a water reservoir to rapidly solidify the particles as
the solvent diffuses into the water phase.

2.2.3. Morphology of the microparticles

The production of single emulsion drops is monitored using an inverted microscope (DM-IRB; Leica,
USA) equipped with a fast camera (Phantom 9; Vision Research, USA). After microparticle preparation,
optical images are obtained using an inverted microscope (TE2000-E; Melville, USA). Scanning electron
microscope (SEM) images are obtained using an Ultra55 Field Emission Scanning Electron Microscope
(FESEM Ultra55; Carl Zeiss, USA). The particle size is measured using ImageJ program and averaged
over at least 60 microparticles. Confocal images are obtained using an inverted fluorescence microscope
with an excitation wavelength of 485 nm (Leica, USA).

2.2.4. Stability of the encapsulated material

After sample preparation, equal amounts of shellac particles loaded with β-carotene are stored in
separate vials at 4°C. To measure the UV-vis absorption of β-carotene, 1 ml ethyl acetate/ethanol mixture
is added to each vial. The concentration of undegraded β-carotene in each vial is determined by the UV-
vis absorption of β-carotene in the ethyl acetate/ethanol mixture measured at 454 nm. The stability of
microencapsulated β-carotene together with unprotected β-carotene is monitored at 0, 7, 35, 79 and 129
days. All experiments are performed in duplicate.

3. Results and discussion
3.1. Preparation of monodisperse colour particles
To prepare colour particles, we dissolve β-carotene and shellac together in an ethyl acetate/ethanol
mixture, which is then emulsified into single drops using a flow-focusing glass capillary device, as shown
in figure 1b. Droplet formation in the microfluidic device results from the Rayleigh instability [28]. In
the dripping regime, monodisperse oil/water single emulsions are generated, as shown in electronic
supplementary material, figure S1. Following droplet generation, ethyl acetate and ethanol continuously
diffuse into the outer aqueous medium, resulting in the co-precipitation of shellac and β-carotene
(figure 1c). The resultant solid, spherical microparticles consist of a shellac matrix uniformly loaded with
β-carotene, as shown in figure 1d, and exhibit the desired orange colour, as shown in figure 1e.

The advantage of using microfluidics is to control the drop size; this is particularly important in food
applications, as the tongue is unable to resolve the texture of the particles provided they are smaller
than 20 µm [29]. Since the particles are synthesized using single emulsions as templates, particles of
desired size are achieved by controlling the size of single emulsions through adjusting the flow rate and
changing the size of the device or varying the concentration of polymer in the single emulsions. We
obtain monodisperse shellac particles with an average diameter of d ∼ 84 ± 6 µm using single emulsions
of average size d ∼ 167 µm as templates, as shown in figure 2a. When we increase the flow rate of the
outer aqueous phase to apply a stronger shear force to the inner phase and thus break it into smaller



5

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170919

................................................

200 mm 20 mm

2 mm 200 nm

(a)

(c) (d)

(b)

Figure 2. SEM images of monodisperse shellac particles loaded withβ-carotene. (a,b) Monodisperse shellac particles achieved from
single oil/water emulsions. (c) Cross section and (d)magnified image of a shellac particle. The polymermatrix formed by solvent diffusion
is intense.

droplets, we obtain small shellac particles with an average size of d ∼ 19 ± 4 µm, which is satisfactory in
the case where the texture of food needs to be smooth (electronic supplementary material, figure S2a–d).

3.2. Enhanced stability of encapsulatedβ-carotene
To achieve the desired protection, solid matrix is desired to exclude oxygen. We use microscopy to verify
that our technique produces solid particles with β-carotene uniformly dispersed in a densely packed
shellac polymer matrix, which is important to prevent oxidation of β-carotene. We cut the particles and
image their cross section using SEM. The particles are solid with distinct cutting edges, as shown in
figure 2b,c, and the polymer matrix is very dense, as shown by the close-up in figure 2d. To directly
visualize the distribution of the colourants inside the polymer matrix, we use Nile red (figure 3a) as a β-
carotene equivalent. Both Nile red and β-carotene are hydrophobic, insoluble in water and both of them
are small molecules compared with the polymer. Therefore, we expect that the distribution of Nile red
in the shellac particles is similar to that of β-carotene. We prepare shellac particles loaded with Nile red,
following the same procedure as for β-carotene. The red colour of Nile red observed under fluorescent
confocal microscope is homogeneously distributed inside the shellac matrix, as shown in figure 3b–d,
suggesting that hydrophobic molecules are uniformly dispersed in the polymer matrix. We conclude
that β-carotene is uniformly dispersed in the shellac particles and the dense polymer matrix is therefore
expected to provide an effective barrier to β-carotene against the oxidation.

To demonstrate the stability of β-carotene dispersed in the shellac particles, we monitor over time the
fraction of undegraded β-carotene using UV-vis spectroscopy. When exposed to ambient conditions in
the absence of any shellac protection, β-carotene degrades significantly within four months, as shown
by the large decrease of the undegraded fraction in figure 4. In contrast, β-carotene dispersed in the
shellac matrix is stable for a long period of time; we observe at least 80% of the encapsulated β-carotene
remains intact and is not oxidized after four months also shown in figure 4. For these samples, most
of the degradation occurs within the first week which is followed by a much slower degradation. This
observation suggests that β-carotene close to the surface is more susceptible to oxidation than β-carotene
deeper within the polymer matrix [30–32]. Since β-carotene is uniformly dispersed in the polymer
matrix and protected from the ambient conditions, there is no obvious difference observed between the
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Figure 3. Distribution of hydrophobic molecules microencapsulated in the shellac matrix prepared by solvent diffusion. (a) Chemical
structure of Nile red, a hydrophobic molecule used as an equivalent ofβ-carotene. (b) Optical, (c) fluorescence and (d) overlay images of
shellac particles loaded with Nile red, which are prepared following the same procedure as used forβ-carotene. The fluorescence colour
suggests the uniform distribution of the hydrophobic molecules in the polymer matrix. The intensity of the red colour decreases towards
the particle centre as less light transmits through the particle centre.
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Figure4. Retentionofβ-carotenemicroencapsulated in the shellacmatrix over a longperiodof time. Retentionofβ-caroteneprotected
by the shellac matrix is significantly higher than that in the control experiments. Dry shellac particles and shellac particles dispersed in
water show roughly the same performance and the enhanced performance also has very little dependence on the particle size. For the
purpose of comparison, the results are expressed in percentage.

stability of β-carotene encapsulated in small (d ∼ 20 µm) and large (d ∼ 47 µm) particles. In addition, its
stability is also independent of whether the particles are dry or wet. However, the stability of β-carotene
generally decreases as the temperature increases [30]. Compared with previous techniques used to
prevent the oxidation of β-carotene [33,34], the performance of the method introduced here is very good.
For example, about 33% β-carotene encapsulated within nanoemulsions stabilized by β-lactoglobulin
degraded within 6 days when stored at 5°C [33]. Therefore, the observed considerable reduction in
degradation confirms the effectiveness of protecting β-carotene from oxidation by embedding within
a dense polymer matrix.

Shellac is not soluble in acidic or neutral water, in which its carboxylic groups are only partially
ionized, and these particles are stable [35]. However, shellac particles dissolve in alkaline water and
β-carotene could thus be released in the intestine. We have observed that shellac particles dissolve at
pH = 8 [35]. Therefore, shellac particles are able to protect β-carotene from degradation during storage
and release β-carotene in the intestine when they are taken.
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Figure 5. Different colour appearances of shellac particles loaded with different concentrations ofβ-carotene. Colour appearances of
the particles loadedwith (a) 5µg mg−1 β-carotene (5 µgβ-carotene permg shellac) and (b) 50µg mg−1 β-carotenewhen dispersed
in water. (c) 5µg mg−1 β-carotene and (d) 50 µg mg−1 β-carotene samples when dried in air.

3.3. Particles with tunable colour
The colours of the particles can be tuned by changing the concentration of β-carotene dispersed into the
shellac matrix. Due to the long sequence of conjugated double bonds, β-carotene is a natural pigment
that strongly absorbs blue and purple light, as shown in electronic supplementary material, figure S3. The
absorbance is linearly proportional to the β-carotene concentration in solution and therefore obeys Beer–
Lambert’s Law, as shown in electronic supplementary material, figure S4. The colour that β-carotene
displays arises from the intensities of transmitted wavelengths, while the absorbance by β-carotene
is proportional to the concentration of β-carotene, as shown in the inset of electronic supplementary
material, figure S3. Because β-carotene is uniformly dispersed in the shellac matrix, we expect that
similar to solutions, the colour of particles is tunable by changing the concentration of β-carotene in the
shellac matrix. For example, when we increase the concentration of β-carotene in the polymer matrix
from 5 µg mg−1 (5 µg β-carotene per mg shellac) to 50 µg mg−1, the colour of the resultant particles
changes from yellow orange (figure 5a) to red orange (figure 5b). The measured colour spectrum by
Photoshop shows that the spectrum changes from yellow orange (Red:160, Green:110 and Blue:5) to red
orange (Red:170, Green:80 and Blue:10) is mainly attributed to the increased adsorption of green colour
by β-carotene at higher concentration. The difference in colour is also apparent in dried samples, as
shown in figure 5c,d. We have demonstrated that the colour appearance of these particles can be tailored
by selectively changing the β-carotene concentration, which makes them suitable for a range of natural
colourants.

4. Conclusion
A current challenge for the food industry is replacing synthetic colour with natural alternatives, because
natural colourants are generally sensitive to light, temperature, pH and redox agents. We demonstrate
that shellac, which is of hydrophobic nature, is compatible with the hydrophobic β-carotene; this
allows us to uniformly disperse β-carotene in the polymer matrix that constitutes the microparticles.
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The designed shellac particles prevent β-carotene from degradation during storage and show tunable
colour when loaded with different β-carotene concentrations. We speculate that encapsulating with a
sacrificial antioxidant such as caffeine or propyl gallate will further improved β-carotene’s stability.
The ability to extend the microfluidic technique to spray drying makes these colour particles feasible
for industrial mass production and further facilitates the industrial application of these particles
(electronic supplementary material, figures S5a–i and S6a–i). The capability of shellac particles to
implement a diverse set of natural colourants that are generally hydrophobic should make them valuable
for natural food colouring. Our work thus represents an important step towards the fabrication of
microencapsulated natural food colourants with extended shelf life and tunable colour.
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