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ABSTRACT  

Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype 

to fitness.  However, a quantitative description of the landscape and the evolutionary forces on it 

remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and   

antibody binding affinity to predict the evolutionary pathway of norovirus escaping a 

neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a 

drop-based microfluidics that propagates millions of independent small viral sub-populations. 

We demonstrate that along the axis of binding affinity, selection for escape variants and drift due 

to random mutations have the same direction, an atypical case in evolution.  However, along 

folding stability, selection and drift are opposing forces whose balance is tuned by viral 

population size. Our results demonstrate that predictable epistatic tradeoffs between molecular 

traits of viral proteins shape viral evolution.  
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INTRODUCTION 

The evolution of microbes and viral pathogens is affected by a hierarchy of constraints on 

multiple levels of biological organization (1). Mutations and other genetics changes primarily 

affect the structure and function of macromolecules, and these consequently change the fitness of 

the organism. Whether these arising mutations survive or are purged is also determined by the 

population size and dynamics. The first layer of constraints is defined by the relationship 

between mutations in the viral genome and the fitness of the individual virions (2). This 

relationship is the fitness landscape, which is a complex, multidimensional function; however, 

this can rarely be quantitatively determined. Nevertheless, it is essential for predicting selection 

of the most probable mutants. Several works have tried to quantitatively map organismal fitness 

to molecular properties. For example, bacterial fitness can be mapped to biophysical properties 

of core metabolic enzymes using flux-balance theory (3-7). Bloom and coworkers also 

demonstrated with Influenza that viral growth is strongly dependent on the folding stability of its 

nucleoprotein, which then constrains possible mutational pathways in its evolution (8). Recent 

experimental techniques that enable high-throughput and comprehensive interrogation of the 

fitness landscape, such as deep mutational scanning, confirm the pervasive role of folding 

stability in evolution (7, 9-15).  

The second layer of constraint refers to how the fitness landscape itself is explored. The survival 

or purging of mutations in an evolving population is a function of competition, which is 

proportional to population size (16). In particular, population size changes the balance between 

the impact of random mutations on fitness and that of selection (17), and is thought to affect both 

the rate and direction of evolution (18). Recent studies have used microbial fitness landscapes (8, 

19, 20) or population structure (21, 22) to predict the course of evolution, but to date, none links 

these elements together. Without this quantitative link between the biophysical phenotypes of the 

viral fitness landscape and the viral population demography, further progress in determining the 

course of viral evolution is significantly hindered.  

 

In this paper, we quantitatively determine a biophysical fitness landscape for an RNA virus 

subjected to the pressure of a neutralizing antibody, and use it to account for the evolution of the 
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key biophysical traits of the viral antibody-binding epitope under conditions that constrain 

population size. The experimentally measured biophysical fitness landscape can be described by 

two biophysical parameters: the thermodynamics of folding of the capsid protein and its binding 

to the antibody. We probe the evolution of a model norovirus both in bulk, where population size 

is large, and in a microfluidic set-up that uses small drops to concurrently perform millions of 

evolution experiments (23-27) in very small population sizes. We show that the dynamics of 

viral adaptation is strongly dependent on population size. These results can be quantitatively 

described by a theoretical framework that combines protein biophysics and population genetics, 

providing the critical link between fitness landscape and population structure that enables 

exploring the quantitative interplay between the factors operating at different scales of biological 

organization—protein biophysics and viral population dynamics—in determining the course of 

viral evolution.  

We focus in this work on Murine Norovirus (MNV), a model for human RNA viruses, which are 

a major cause of gastrointestinal disease epidemics in the world (28-30). MNV is a non-

enveloped RNA virus that consists of 180 copies of the capsid protein assembled around a 7.5kb 

long positive-strand RNA genome. It mutates at ~1 base per genome per replication cycle and 

produces ~104 progenies in a single cell infection, of which ~100 are infectious viral particles, or 

plaque forming units (pfu) (23). 

 

RESULTS 

Lab evolution of Norovirus in large and small population sizes 

To study viral evolution, we propagate a viral isolate (MNV-1, denoted as wt) in the presence of 

a neutralizing antibody (mAb6.2, (31)) that binds to the protruding domain (P-domain) of the 

capsid, and prevents viral entry into the host cell (32, 33). This set-up allows us to study the way 

the virus evolves to adapt to a new environment. To investigate the dynamics of this escape from 

the antibody, we sequence a 376 bp fragment of the genome encoding the epitope containing the 

outermost part of the P-domain (residues 281 – 412 of VP1) and follow the frequency of 37,244 

unique haplotypes (see Figure S1 for a schema of the approach and Tables S1 and Table S2 for 
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data) observed over several passages, allowing us to follow the evolution over several 

generations. First, we propagate wt in standard bulk culture conditions, using ~108 virions per 

passage under Ab pressure (Figure 1A). The population is initially dominated by the wt (~90% 

of the population) with the rest of the viral quasi-species consisting of single and double mutants 

(Tables S1 and S2). After 2 passages the total number of surviving viruses has decreased by two 

orders of magnitude due to the neutralizing effect of the Ab (Figure S2); however, three single 

mutants E296K (A), D385G (B), T301I (C) as well as their double mutants (AB, AC, BC) occur 

at higher frequencies than the other haplotypes. By the fourth passage the triple mutant ABC, 

which first arises on passage 2, occurs at a frequency even higher than the other mutant 

haplotypes (86%); moreover, the total number of viruses increases to levels comparable to those 

observed after the first passage (Figure S2C). This suggests that ABC is an escape variant. 

Additionally, we note that the escape variant in bulk ABC is not present in the starting stock 

(Table S1), although some of the single- and double-mutants occur in the starting stock at low 

frequency. Thus, the escape variants arise from de novo mutations and not from standing genetic 

variation. 

A central tenet of evolutionary theory is that the way organisms explore their fitness landscape 

depends on the size of their population, which controls the balance between random drift (i.e., 

direction of randomly arising mutations) in the population and positive selection (i.e., direction 

of beneficial mutations) (16, 17). This balance determines the most likely evolutionary pathways 

on a given fitness landscape. Indeed, the population size may be particularly important for 

noroviruses where a single viral particle is sufficient to infect the host animal (34); thus it is 

possible that viruses propagate in very small populations as they adapt to a new environment 

prior to the emergence of an epidemic. We can directly probe this hypothesis experimentally by 

drastically reducing population size compared to typical laboratory bulk cultures, which 

propagate ~106 to 108 viruses (Figure S2C). To evolve viruses in small population sizes we use 

a novel microfluidics set-up, which propagates ~106 subpopulations of 1-10 infectious particles 

(pfu) in distinct and non-mixing compartments (Figure 2B, Figure S3, Movie S1 and Movie 

S2). The microfluidics system allows us to drastically reduce the population size without 

reducing the total number of viruses sampled, thereby maintaining the statistics comparable to 

that of a bulk experiment. 
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To ascertain that the effective population sizes between bulk and drops are indeed different, we 

measured the RNA titer (genomes/mL) in each passage, which fluctuates between 106 and 108 in 

bulk (Figure S2 C, D). Thus, a conservative estimate of the effective population size for the 

well-mixed bulk culture is Ne=106. On the other hand, the total number of viral genomes for all 

106 drops ranges from 106 to 108, thus the average number of MNV-1 genome in a drop is 1 to 

100. The effective population size in drops is therefore at least Ne=1 or at most Ne=102. Thus, the 

effective population sizes in drops and bulk differ by 4 to 6 orders of magnitude, which we 

estimate to be strong enough to give rise to different population dynamics. 

In stark contrast with the bulk experiments, amplification and hence growth of potential escape 

variants that sweep the population is precluded when each variant is confined in a single drop 

with just two host cells; as a result, the wt remains the dominant fraction of the observed viruses 

through all passages. Potential escape viruses are present, but are in complete isolation from each 

other, at population sizes of just a single infection event per generation. This partitioning of 

single variants in the microfluidic setup (Figure 1B, Figure 5D and Figure S3) weakens 

selection and increases genetic drift as sub-populations evolve without competition between 

drops.  

Next, we determine if the escapee is indeed more fit than the wild type. To address this question, 

we engineered the mutations ABC into the infectious clone and recovered mutant viruses. We 

then performed head-to-head competition of wt and ABC variants and show in Figure 2 the 

frequency of each of the clones at the end of the competition. Indeed, ABC is a true escape 

variant since it outcompetes wt under neutralizing antibody. However, without antibody, wt is 

more fit than ABC, which explains the observation that ABC does not spontaneously arise in 

serial passaging without Ab.  

Fitness landscape of norovirus escaping an antibody is projected onto the biophysical 
properties of its capsid domain  

In general, fitness is expected to be a complex function of multiple traits. Instead we focus on the 

dependence of viral fitness in the presence of a neutralizing antibody on two biophysical 

properties of the epitope containing P-domain: The folding energy, which is a measure of 

stability, and the binding affinity to the antibody, which is a measure of neutralization. While the 
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importance of binding affinity to antibody is apparent, the universal importance of protein 

folding stability for bacterial and viral fitness was also shown (7, 8). This choice of variables is 

further supported by the fact that all the mutations of the dominant escape variants we observe in 

our experiments are located within the binding site between the P-domain and the Ab, as shown 

by mapping the mutations on the 3D structure of the wt P-domain in Figure 3A.  

First, we calculate the folding energy of the P-domain and its binding affinity to the antibody for 

each haplotype sequence, using force field calculations based on the structural mapping in 

Figure 3A (35) to determine the change in folding energy ∆∆Gfold between the mutant and the 

wt; from this we determine ∆Gfold of the mutant by adding the folding energy of the wt, ∆Gwt. We 

also computationally determine the change in binding energy, ∆∆Gbind, between the mutated P-

domain-Ab complex and the wt; from this we determine the dissociation constant 

 where K0 is the dissociation constant of the wt. We test the accuracy of 

our calculations by comparing the calculated biophysical properties of the escape haplotypes to 

experimentally measured properties. To accomplish this, we express and purify the P-domain of 

each haplotype and measure its binding to the Ab to extract Kd; we also measure the melting 

temperature of the P-domain, Tm, which correlates inversely to ∆Gfold (Table S4 and ref. (36)). 

The measured values of the biophysical properties of the dominant escape haplotypes correlate 

strongly with the calculated values of the same haplotypes, as shown in Figure 3B-C. 

Importantly, we reverse engineer the escape viruses with their haplotype sequences on the 

background of the wt for the rest of the virus and confirm that the observed mutations in the 

P-domain are directly responsible for their increase in fitness both in vitro (Figure 4A and 

Figure S6A) and in vivo in mice (Figure 4B and Figure S6B); thus, our biophysical variables 

are relevant for viral fitness inside the real animal host. 

The biophysical fitness landscape describes the dependence of viral fitness in the presence of a 

neutralizing antibody on ∆Gfold and 1/(mKd), where the parameter m accounts for the multiple 

binding sites of the capsid. To arrive at a biophysical description of the viral fitness, we assume 

that the wt P-domain occurs in three specific states: folded and unbound, folded and bound, and 

unfolded (which is always unbound). The virus infects only when the P-domain is folded and 

unbound, hence, we can express the viral infectivity F at a given concentration of antibody [Ab] 

as (37): 

Kd = K0 exp βΔΔGbind( )
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 ,       (Equation 1) 

where the numerator is the Boltzmann factor describing the relative probability of being folded 

and unbound and the denominator is the partition function that sums over the probability of all 

three states, and β=1/kBT where kB is the Boltzmann constant and T is the temperature. The 

function F has two regimes as shown by the surface in Figure 3D. For low binding affinities and 

stable P-domain structures, viruses are expected to infect host cells at some fixed probability, 

0<b0<1, determined by the average effect of all remaining viral properties on the infection 

process, and F=b0. By contrast, when the binding to the Ab is strong or when the P-domain is 

unstable, the virus cannot infect its host and F=0.  

To compare the model to experiment, w e use sequencing data to determine the growth rate of 

each virus from the change in genome haplotype frequencies between successive generations 

(20). The growth rates distribute into two distinct groups with 87% of haplotypes exhibiting little 

or no growth and the rest exhibiting considerably larger growth. We take the first group to be 

non-infective, and take the second group to be infective (Figure S4A). For each haplotype 

sequence, we map the mutations to the 3D structure of the wt P-domain (35) and use force field 

calculations to determine the change in folding energy ∆∆Gfold between the mutant and the wt; 

from this we determine stability of the mutant ∆Gfold=∆Gfold,wt+∆∆Gfold, where ∆Gwt is the folding 

energy of the wt. We also determine the change in binding energy, ∆∆Gbind, between the mutated 

P-domain-Ab complex and the wt; from this we determine the dissociation constant 

Kd=K0eβ∆∆Gbind where K0 is the dissociation constant of the wt. We bin the haplotypes using 

∆∆Gfold and Kd and calculate F for each bin from the fraction of infective haplotypes. This 

binning exploits the large number of unique haplotypes to reduce the effects of errors in the 

calculations and of contributions from other biophysical properties. We fit the model by varying 

the three unknown parameters, b0, ∆Gwt and the multiplier m.  

We obtain excellent agreement between the model and the data, as shown by the dashed line in 

Figure 3E-F. The infectivity of haplotypes is zero at low Kd or high ∆Gfold, while at high Kd and 

low ∆Gfold, the landscape plateaus at F~0.25 independent of either of the biophysical coordinates. 
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The value of 1/m≈1.4% obtained from the fit reflects the fact that only about 3 of the 180 

P-domains on the capsid have to be blocked by the Ab to prevent infection (Figure 3E and 

ref. (23)). The value of F ~0.25 at the plateau is significantly less than the expected value of 

b0=1; this points to the role of factors not included in the model, such as biophysical 

requirements for successful virus assembly and/or the interaction of the capsid with the host-cell 

receptor, in successful infection. In the absence of the neutralizing antibody, we do not expect 

the fitness landscape to depend on Kd, which is indeed the case (Figure S5). Altogether, these 

results demonstrate that binding and folding energies are very good predictors of viral extinction; 

however they are less successful in predicting infectivity. This suggests that antibody escape and 

folding stability of the capsid protein are necessary but not sufficient for viral infection.  

We note that the parameter b0, being the height of the sigmoidal function, reflects the optimal 

fitness when the viral capsid is both stable (negative ΔG) and free from the antibody (high Kd). 

That is b0 is the fitness when the virus is on the plateau region of the landscape.  The ~104 new 

virions in a single burst are, however, not uniformly distributed on the binding-stability plane 

(Figure S4B). In fact, most new virions fall in the unstable rather than stable regime in a ratio of 

approximately 100:1 (Figure S4), which recapitulates previous estimate that of the ~104 

progenies in a single cell infection, ~100 are infectious viral particles, or plaque forming units 

(pfu) (23). 

Population dynamics on the viral fitness landscape 

We plot the position of viral haplotypes evolving on the landscape as a function of Kd and Tm and 

denote their allele frequencies by the size of the circles for each passage (see Figure 5C,D and 

Table S4). In the 5 independent bulk experiments, 4 evolved towards the fixation of variant ABC 

(represented also in Figure 1A) that has Tm~39.4°C and Kd~ 23,300 nM and one lead to the 

fixation of variant E (L386F) that has Tm ~ 45.0°C and Kd~ 1,080 nM (Table S4). These two 

dominant variants that fixed in independent evolutionary runs manifest as two large circles in 

Figure 5B. Altogether, there is a clear trajectory as the intermediate variants evolve, having 

increasingly weaker affinities and higher Tm, with the escape variants at passage 5 ultimately 

having the weakest affinity, with an overall average of Kd ~3,000 nM and the highest P-domain 

stability with an average of Tm ~ 43.5°C, as shown in Figure 5B (blue line).  
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We also plot the position of viral haplotypes evolving in ~1 million independent drop passaging 

experiments (Figure 5C), which shows that the predominant fraction of the population is wild 

type. The lack of clonal sweep is due to the fact that each lineage in the droplets is confined. For 

more quantitative comparison, shown in Figure 5E,F are the histograms of Kd and Tm in 

passage 5 of serial passaging only in bulk and in passage 5 of serial passaging only in drops. To 

ascertain that the population dynamics on the landscape under bulk and droplet conditions are 

distinct, we considered the ~106 independent serial passages of the droplet experiment as the null 

model. This large number of independent biological repeats achieved using the microfluidic 

setup provides statistical power. We estimate the likelihood of escape variants with Tm greater 

than or equal to Tm~39°C. This stability value is the threshold for the high fitness plateau of the 

landscape (Fig. 5E). Specifically, to estimate the probability of observing Tm≥39°C, we 

repeatedly draw 106 random variants from the null distribution, and then calculate this 

probability as the number of occurrences for variants with Tm≥39°C divided by 106. The 

resulting value of ~3x10-4 reflects the probability of observing an escape variant with Tm≥39°C 

in one experiment. Considering that the bulk escapee ABC (Tm=39.4°C) was observed in four out 

of 5 experiments and the escapee E (Tm=45.0°C) was observed in the remaining experiment, the 

overall probability of observing variants with Tm≥39°C in 5 independent experiments is 

~2x10-18.This analysis clearly indicates that higher folding stability of bulk escapee is the result 

of evolutionary selection rather than a random occurrence. 

Balance between selection and random drift on the viral fitness landscape: Theory and 
Simulation 

In general, the trajectories on the fitness landscape depend on the strength and direction of two 

evolutionary forces, drift and selection. To quantify the balance of these forces on the landscape, 

we use population genetics theory and calculate the ratio dN/dS, where dN is the rate of non-

synonymous evolutionary rate and dS is the synonymous evolutionary rate (38) (For greater 

details, see section on Balance between selection and mutational drift on the fitness landscape in 

the Materials and Methods). Assuming that synonymous mutations are neutral, dN/dS =1 implies 

that non-synonymous mutations are also neutral because they are fixed at the same rate as 

synonymous mutations. Deviation from this expectation implies selection. Specifically, dN/dS > 
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1, implies positive selection for non-synonymous mutations, while dN/dS < 1 implies purifying 

selection.  

We first limit ourselves to the simple case where a single mutation occurs on a monoclonal 

population, where the chance that the mutant eventually dominates is determined by its 

probability of fixation. To that end, we compare the probability of fixation of a non-synonymous 

mutation that changes folding stability and binding with the probability of fixation of a 

synonymous mutation, which we assume is neutral. We denote this ratio as ω. The underlying 

motivation for this ratio is that when ω=1, mutations are neutral at the level of fitness, and 

random drift dominates. Specifically, (39) 

 
    (Equation 2) 

where is the probability of fixation (16) and Ne is the effective population size and s is 

the selection coefficient. The selection coefficient defines the fitness advantage of an arising 

mutation relative to wildtype,

 

. Because we have a quantitative description of the 

fitness landscape (Equation 1), when a random mutation arises that changes the folding stability, 

∆Gfold = ∆Gfold,wt + ∆∆Gfold, and the binding affinity Kd=K0eβ∆∆Gbind , the selection coefficient can 

be calculated explicitly (Methods for details):  

      

(Equation 3) 

The fitness (dis)advantage s is a function of the wildtype folding stability  and binding 

affinity K0 and the changes induced by the mutation to folding stability and binding ∆∆Gbind and 

∆∆Gfold.  This also implies that the dN/dS ratio is a function of the biophysical properties of the 

wildtype (  and binding affinity K0), the changes induced by the mutation on folding and 

binding (∆∆Gfold and ∆∆Gbind, respectively), and effective population size. 
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The effect of random mutations on folding stability, denoted by the normalized probability 

density distribution p(∆∆Gfold), and on binding affinity, denoted by the normalized probability 

density distribution p(∆∆Gbind), are both well-characterized (40-42). Thus, we can derive the rate 

of protein evolution averaged over all possible effect of random mutations on folding and 

binding, that is, 

ω ΔGfold ;Kd ,wt ;Ne( ) = ω p ΔΔGfold( ) p ΔΔGbind( )d ΔΔGfold( )d ΔΔGbind( )∫∫    (Equation 4) 

Eq. 4 defines the average stringency of selection as a function of background, and hence the 

strength of epistatic interaction on the fitness landscape defined by protein folding and binding. 

We show in Figure 5A (color map) the value of the integral over the range of Kd,wt and ΔGfold,wt 

values.  

Indeed, positive selection is strongest when the wt P-domain is unstable (low ΔG) or tightly 

bound to the antibody.  At large population sizes, purifying selection and positive selection 

dominates in the regime of low folding stability and tight binding affinity (red colors in 

Figure 5A). The prediction is that if the population starts in the unstable regime, it would 

migrate away from the regime where selection is strong and towards the regime where it is more 

neutral. In large population sizes, dN/dS exhibits a strong gradient towards high Kd and high 

folding stability (Figure 5A). Consequently, a wt population that is initially unstable and 

neutralized by Ab is expected to evolve resistance by increasing both Kd and stability. However, 

in small population sizes the gradient of dN/dS is directed only towards high Kd  and the same 

initially unstable population will evolve resistance to Ab without increasing folding stability 

(Figure 5B).  

The effect of population size on the course of evolution can be explained by analyzing the 

balance between selection and mutational drift, the two forces driving evolution. The direction of 

drift and selection along the trait of folding stability and binding affinity to the antibody can be 

inferred from protein engineering and systematic studies on effects of random mutations on 

proteins. Along the axis of folding stability ΔGfold, beneficial mutations increase folding stability, 

but random de novo mutations in proteins tend to decrease stability(40-43). Thus, selection and 

drift act in opposite directions (Figure 5A-B, arrows), leading to mutation-selection balance. 
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Along the axis of binding affinity Kd, beneficial mutations for the virus lead to escape from Ab 

(towards high Kd), and random mutations on protein interfaces perturb binding (also towards 

high Kd). Thus, selection and drift act along the same direction (Figure 5A-B, arrows). We note 

that in general, and at the level of sequence space, the random genetic drift is indeed non-

directional by definition. However, at the level of biophysical properties of proteins, there is 

directionality. Random mutations are predominantly destabilizing, thus drift points towards 

lower stability (Figure 5A,B). Random mutations are also predominantly perturbing the 

interfaces of PPI, thus drift points towards lower affinity (higher Kd).  

For tractabilty, the theoretical analysis is done in the monoclonal regime, which holds only in the 

limit of weak mutation and strong selection(44), where mutations arise rarely and fix rapidly. 

This is not strictly applicable for an RNA virus like norovirus, which is polyclonal. Thus, to 

complement our theoretical analyses, we also simulate using a polyclonal viral population the 

trajectory for 4 sequential fixations of a single mutation starting from the position of the wt virus 

population on the viral fitness landscape (Figure S7; see also (37) for details). For large N, the 

simulations show that the norovirus population increases both its folding stability and 

dissociation constant, Kd, as it escapes the neutralizing antibody, following the trajectory shown 

by the solid points in Figure 5A-B (see also Figure S7 for simulations in the polyclonal regime). 

After 4 sequential single mutations the model shows a rise of 5 orders of magnitude in Kd and an 

increase of 3kcal/mol in ∆Gfold towards stabilization corresponding to a change of 9°C in Tm.  On 

the other hand, for small N the simulations show that the norovirus population increases its Kd to 

escape the antibody but exhibits only a small change in folding stability of less than 1 kcal/mol, 

corresponding to an increase in Tm of about 2°C, as shown by the trajectory in Figure 5B (see 

also Figure 5A). 

Most likely pathways on the viral fitness landscape agree with predictions by protein 

biophysics and population genetics 

We compare the theoretical prediction to the direction of evolution on the landscape in a bulk 

passaging that lead to ABC (Figure 5C). Indeed, the increase in Kd of the escapee in bulk ABC is 

accompanied by an increase in folding stability Tm=39.4°C  (Figure 5C, passage 5, red circle). 

The other bulk escapee E has an even more dramatic increase in folding stability Tm=45.0°C 
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(shown in Fig. 5C, passage 5, blue circle). The variants ABC and E are bona fide escapees from 

the neutralizing antibody with Kd values that lead to the peak of the fitness landscape (Figure 

5E). This result is supported by the head-to-head competition assays between WT and these 

variants in the presence and absence of antibody (Figure 2). Additionally, while the Tm values of 

the two bulk escapees ABC and E are different, they have comparable fitness because of the 

“plateau”-like or sigmoidal shape of the landscape.  

In contrast, the viral mutants that propagate in drops increase in Kd while maintaining original 

Tm. In Passage 5 of the droplet experiment (Figure 5D), excluding the dominant wt, the other 

segregating variants have an average of Kd ~1,000 nM and Tm~38.3°C. 

Strong epistasis and compensation among mutations that eventually lead to viral escape 

There is epistasis on the fitness landscape as shown from the non-additive effect of the single 

mutations compared to the double- or triple-mutants. For example, the double mutants AC, BC, 

and AB have less than additive Kd showing negative epistasis (Table S4). This also holds for the 

folding stability. Based on simple biophysics, we can develop expectations on the (non)additive 

effect of mutations on Kd. The binding constant Kd ~ exp(βΔΔGbinding), hence if two mutations A 

and B are non-interacting in the 3D structure (that is, non-epistatic), we can assume that they will 

have additive effect in the free energy of binding. Hence, for the ratio of the binding affinity of 

the double mutant to the binding affinity of the wildtype, Kd,AB/Kd,wt = exp(βΔΔGbinding, mutant A + 

βΔΔGbinding, mutant B) =(Kd,A/Kd,wt)(Kd,B/Kd,wt). Thus, under no epistasis, the increase in Kd of a 

double mutant is equal to the product of the increases on Kd of single mutants. The mathematical 

analog in evolutionary biology is the relationship Wright-Fisher fitness w and the Malthusian 

fitness b, which is w ~ exp(b). The absence of epistasis implied additive Malthusian fitness of 

multiplicative Wright-Fisher fitness. Indeed, the double- and triple-mutants have less than 

additive effect on Kd, which implies strong epistatic interactions among them (Table S4). These 

epistatic interactions have a structural basis because they are all found at the interface of the viral 

capsid-domain and the Fab domain of the neutralizing antibody.  Notwithstanding the epistatic 

interactions among the mutations, in bulk, all single and double-mutants of the eventual escapee 

have all higher Tm and Kd compared to wildtype (Figure 5).  
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DISCUSSION 

A key requirement in determining, and perhaps in our future ability in predicting, the 

evolutionary dynamics of viral and microbial pathogens is a quantitative description of their 

fitness landscape. This landscape, which is mapping of the full genotype-phenotype relationship, 

is complex. However, recent works have shown that in some biological and already very 

clinically relevant systems, such as evolution of bacterial resistance against antimicrobials (45) 

and evolution of viral resistance against antiviral treatments (8, 46), the fitness landscape may be 

quantitatively and systematically defined. Here, we have shown that the fitness landscape of a 

norovirus evolving against a neutralizing antibody is systematically described by the biophysical 

properties of its capsid domain, in particular, folding stability and binding affinity to the 

neutralizing antibody. These biophysical parameters are relevant to other viruses; for example, 

both binding (47) and folding stability (8) are relevant traits for the evolution of an influenza 

virus in the presence of a neutralizing antibody. Moreover, in this work, the dependence of 

fitness (viral infectivity) on these two traits is quantitatively predicted by theory based on the 

thermodynamics of protein folding and binding.  

The geometry of the fitness landscape is strongly affected by population size (Fig. 1). In general, 

competition for limited resources (media or mammalian cells to infect) is function to the number 

of individuals; hence the strength of purifying selection and adaptive evolution is also 

proportional to population size. Specifically, we find that the fitness landscape is flatter when the 

viral population is evolved in deep-bottlenecked population size of ~100 virions in microfluidics. 

The flat landscape did not result in clonal sweeps. In contrast, standard bulk cultures where there 

were ~108 virions competing and the landscape is not flat, we observed multiple clonal sweep 

events. The escape variants showed the coupling between folding stability and binding—an 

increase in Kd to escape the neutralizing antibody is accompanied by an increase in folding 

stability. This coupling is not manifested in the flat landscape under low population size, as 

predicted by our simple biophysical model. 

Projection of the fitness landscape on well-defined biophysical properties also enabled the 

quantification of the evolutionary forces on the landscape. As found by several groups, including 

ours (42, 48-50), the evolution of the folding stability as an evolutionary trait is determined by 
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the balance between selection for greater stability and mutational drift, which is predominantly 

destabilizing among random mutations (Fig. 5). This balance is tunable by population size 

because the magnitude of selection itself varies with population size (51, 52). The biophysical 

fitness landscape also allowed for the quantification of the evolutionary forces along the trait of 

binding affinity to the antibody. Unlike folding stability, the direction of selection (beneficial 

mutations) is in the same direction as random mutational drift (Fig. 5)—the supply of random 

mutations is predominantly biased towards perturbing the interface between the capsid and the 

antibody, and these same mutations are the most beneficial to viral escape. Thus, contrary to the 

classic notion that for a given trait, beneficial mutations are rare and evolution is the process of 

selection for these rare beneficial mutations, along the trait of binding affinity, beneficial 

mutations are in abundant supply. In essence, the evolutionary goal of the virus to escape against 

a neutralizing antibody is the opposite to the goals of enzyme design, which is to promote, 

instead of perturb, protein-protein interaction. To the best of our knowledge, this is the first 

definitive example in evolutionary biology, where selection and drift are in the same direction. 

However, we hypothesize that this may be ubiquitous and may also be found in evolution of 

antimicrobial resistance, where bacteria also want to escape an inhibitor. We note however, that 

in our experiments antibody itself did not evolve. The evolutionary force opposing pathogen 

escape– evolution of antibodies toward higher affinity to the antigen follow a more traditional 

intuitive scenario when selection and drift act in different directions (53).   

Although binding affinity and folding stability of the MNV-1 capsid protein quantitatively map 

to infectivity, these two biophysical traits account for only ~30 % of infectivity (Figure 3). What 

might be the next most relevant axes of the viral fitness landscape? Protein dynamics and 

conformational flexibility is a strong candidate. For example, in MNV-1, it has been shown from 

structural studies of viral isolates that loop regions of their capsid sample multiple 

conformations, only some of which could bind to neutralizing antibodies (31).  

We also found that the escape variant resistant to the neutralizing antibody is less fit in the 

absence of the antibody (Fig. 2). This suggests that there is a fitness cost to the evolution of 

resistance against the neutralizing antibody. The increase in frequency of intermediate escapees 

B and AC relative to the final escapee ABC in the absence of antibody (Fig. 2, Passage 3, -Ab ) 

suggest that ABC might have higher fitness cost than either B or AC.  More broadly, fitness cost 
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is well documented in the evolution of resistance against antibiotics(45, 54, 55). Although most 

resistant strains have a selective advantage in the presence of the antibiotic, they are often less fit 

in the absence of the drug. There is fitness cost associated with antimicrobial resistance because 

antibiotics target essential functions in the cell. Indeed, such is the case in our system—the 

neutralizing antibody targets the MNV-1 capsid’s P-domain which is crucial for viral entry into 

the host cell(28). 

Beyond the biophysical properties of the capsid proteins, viral fitness is also a function of 

replicative capacity inside the infected mammalian cell, the immune response of the host, and the 

fluctuations in effective concentration of neutralizing antibody. Altogether, combining our 

biophysical description of viral fitness landscape, together with these other factors, could lead to 

an integrative model of viral evolution. 

  

Downloaded from https://academic.oup.com/mbe/advance-article-abstract/doi/10.1093/molbev/msy131/5046249
by guest
on 02 July 2018



 18 

MATERIALS AND METHODS 

 

The materials and methods are described in detail within SI Materials and Methods. Briefly, to 

perform the lab evolution, we propagated a viral isolate (MNV-1) in the presence of a 

neutralizing antibody (mAb6.2, (31)) that binds to the protruding domain (P-domain) of the 

capsid, and prevents virus entry into the host cell (32, 33). And then, we deep sequenced using 

Illumina Miseq the 376 bp fragment of the genome encoding the outermost part of the P-domain 

(residues 281 – 412 of the VP1). We estimated the fitness (Pinfect) of each haplotype based on its 

frequency throughout the passaging. We also estimated how the mutations in the haplotype 

change the folding stability of the P-domain of capsid and its binding affinity to the neutralizing 

antibody. These computational estimations of the biophysical properties were performed using 

the crystal structure of the proteins and a physical force field. We also purified the dominant 

clones, and then assayed their folding stability using thermal unfolding and binding affinity using 

surface plasmon resonance (SPR). The construction of the microfluidics devices for the serial 

passaging of the viruses in picoliter emulsions is described in the SI Materials and Methods.  
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Figure 1. Viral evolution in large and small population sizes.  

A) Viral evolution in large populations. Top: 108 viruses evolving against a neutralizing 
antibody by serial propagation in bulk. Bottom: The allele frequencies of 1,364 distinct P-
domain haplotype sequences are plotted per passage (Figure S2A,B). B) Viral evolution in 
small populations. 106 pico-liter drops are loaded with on average 1 virus and 2 host cells per 
drop and the viruses evolve in drops for five passages (see also Figure S3 and Movie S1, S2). C) 
The perceived ruggedness of the fitness landscape depends on the population size. Haplotype 
legend: A: E296K, B: D385G, C: T301I, D: A382V. 
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Figure 2. Head-to-head competition between wildtype and escapee 

To perform pairwise competition of the clones, we mixed equal titers of the clone, propagate 
them for 3 passages, and then perform deep sequencing. Averages over 3 biological replicates 
are shown for each measurement. See also Table S3. 
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Figure 3. Fitness landscape of norovirus escaping a neutralizing antibody  

A) The P-domain Antibody complex structure. The SNPs of all dominant P-domain variants (red 
circles) are located on the docking site of the P-domain-antibody complex (PDB ID: 3LQE). 
B) A high correlation exists between Ab dissociation constant Kd that was experimentally 
measured using surface plasmon resonance (SPR) and the one computed from force field 
calculations. C) The anti-correlation between the experimentally measured P-Domain melting 
temperature (Tm) and the folding stability computed from force field calculations. Two outlier 
variants were excluded from the analysis. D) A 3D plot of the probability of infection F averaged 
over 2,076 distinct haplotypes binned according to their dissociation constant Kd and folding 
stability ∆Gfold (blue points) overlaid with the theoretical fit according to Equation 1 (gray 
surface). Cross sections (black frames) demark the regions used for the projections in E and F. E) 
The probability of infection for all haplotypes with ∆Gfold<4.5Kcal/mol (cross section parallel to 
Kd axis in A) is projected on the Kd-F plane, binned according to their Kd (blue points) and 
overlaid with the theoretical fit to Eq. 1 (dashed line). F) The probability of infection for all 
haplotypes with Kd>103nM (cross section parallel to ∆Gfold axis in A is projected on the ∆Gfold-F 
plane, binned according to their ∆Gfold (blue points) and overlaid with the theoretical fit to 
Equation 1 (dashed line). F is determined from deep sequencing lysates of in vitro experiments 
in the presence of neutralizing antibody. Kd and ∆Gfold are estimated from mapping the haplotype 
mutations to the 3D structure of the capsid P-domain in complex with the neutralizing antibody. 
Error bars in panels D, E and F denote Standard Error.  
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Figure 4. MNV-1 neutralization versus binding affinity of the P-domain to neutralizing 
antibody.  
A) In vitro neutralization of dominant haplotypes correlates to their Kd and the average ratio 
between them is ~120, in good agreement with the modeled value of m≈70 (see Figure 3E and 
Equation 1) (Supplementary Methods: In-vitro neutralization measurements). B) In vivo 
neutralization of dominant haplotypes in mice correlates to their Kd. Viral strains were 
neutralized in STAT-/- mice injected with 500ug mAb A6.2 and compared to their infection in 
mice injected with an isotype as described in (13). The decrease in viral titers was first 
standardized for each tissue across viral strains, before the average over all tissues within each 
strain was taken as its final neutralization score. 
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Figure 5.  Dominant haplotypes from bulk and droplet experiments.  
A and B) Average stringency of selection for several population sizes (see Text). For large 
population sizes, the increase in Kd is strongly coupled to the increase in Tm. However, for small 
population sizes, the selection for Kd is decoupled from the selection for folding stability. The 
white lines are the predicted trajectories from forward evolutionary simulations of an MNV 
population escaping an Ab, but with a P-domain that is unstable. Each trajectory is the average of 
1000 independent simulations. The direction of selection (black arrows) is towards greater 
folding stability and weaker affinity to the antibody. Selection is strong when the P-domain is 
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unstable and/or is tightly bound to the Ab. Selection pressure is approximately zero when the 
fitness landscape is flat (neutral). Along the direction of folding stability, most random mutations 
are destabilizing which lead to a random drift (white arrows) towards protein destabilization. 
Along binding affinity axis, most random mutations perturb the protein-protein interaction that 
leads to a random drift towards weaker binding. C and D) Density plots of all haplotypes 
grouped according to passages. Biophysical properties were measured and their size represents 
the allele frequency of each haplotype, see also legend inset. E and F). Histograms 
of Kd and Tm in passage 5 of serial passaging only in bulk and in passage 8 of the bulk expansion 
after rounds of evolution in drops. The positions of the escape variants are shown in the 
projection of the fitness landscape (green line, see also Figure 3E,F).  The variants ABC and E 
are bona fide escapees from the neutralizing antibody with Kd values that lead to the peak of the 
fitness landscape. Although the Tm values of the two bulk escapees ABC and E are different, they 
have comparable fitness because of the “mesa”-like nature of the landscape. To ascertain that the 
population dynamics on the landscape under bulk and droplet conditions are distinct, we 
considered the ~106 independent serial passages of the droplet experiment as the null model. We 
estimate the likelihood of escape variants with Tm greater than or equal to Tm~39°C. This 
stability value is the threshold for the high fitness plateau of the landscape (Fig. 6E). 
Specifically, to estimate the probability of observing an escapee with Tm≥39°C, we repeatedly 
draw 106 random variants from the null distribution, and then calculate this probability as the 
number of occurrences for variants with Tm≥39°C divided by 106. The resulting value of ~3x10-4 
reflects the probability of observing a bulk escapee with Tm≥39°C in one experiment. The overall 
probability of observing variants with Tm≥39°C in 5 independent experiments is ~2x10-18. 
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