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SUMMARY
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for describing cell states. Identifying the
spatial arrangement of these states in tissues remains challenging, with the existing methods requiring niche
methodologies and expertise. Here, we describe segmentation by exogenous perfusion (SEEP), a rapid and
integrated method to link surface proximity and environment accessibility to transcriptional identity within
three-dimensional (3D) disease models. The method utilizes the steady-state diffusion kinetics of a fluores-
cent dye to establish a gradient along the radial axis of diseasemodels. Classification of sample layers based
on dye accessibility enables dissociated and sorted cells to be characterized by transcriptomic and regional
identities. Using SEEP, we analyze spheroid, organoid, and in vivo tumor models of high-grade serous
ovarian cancer (HGSOC). The results validate long-standing beliefs about the relationship between cell state
and position while revealing new concepts regarding how spatially unique microenvironments influence the
identity of individual cells within tumors.
INTRODUCTION

High-throughput single-cell RNA sequencing (scRNA-seq) is

used to describe complex tissues by characterizing the tran-

scriptional states of individual cells. scRNA-seq yields unparal-

leled granularity with regards to understanding cellular identity

and function in complex tissues as well as informing on mecha-

nisms of pathology in disease.1,2 Common high-throughput

scRNA-seq methods, however, require tissue dissociation prior

to sequencing and, consequently, decouple cells from their orig-

inal positions within tissues.1–3 Defining a cell location, relative to

tissue margins, vascularization networks, and social context, is

essential for understanding the variables that influence its tran-

scriptional identity. In cancer, significant spatial genomic hetero-
464 Cell Systems 14, 464–481, June 21, 2023 Published by Elsevier I
This is an open access article under the CC BY license (http://creative
geneity exists within tumors, arising both from distinct clones

and the response of these clones to their environment.4 Tissue

architectures impact disease induction and progression and

are used for morphological classifications of disease pathology

via immunohistochemistry and immunocytology.5,6

Ideally, methods for correlating spatial cell position with tran-

scriptional identity would couple methods accessible to most

laboratories with next-generation sequencing technologies.

Methods are emerging to extend the flexibility, breadth, and res-

olution of spatially resolved transcriptomic profiling. Technolo-

gies that integrate scRNA-seq data onto in situ hybridization

(ISH) gene expression data of similar tissues have been success-

fully applied to tissues with organized morphology but are less

applicable for tumors.7,8 Slide-based methods capture mRNA
nc.
commons.org/licenses/by/4.0/).
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Figure 1. Segmentation by exogenous perfusion overview

(A) Cartoon schematic of the SEEP workflow for spheroid cultures. Visualized steps include calcein AM bathing, dissociation, sorting, binning, sequencing, and

analysis.

(B) Example image showing the difference in fluorescent intensity of a representative HGSOC spheroid across a time course (5 and 60 min) resolved using

confocal microscopy. At t = 60 min, cells on the surface are over 700 relative fluorescent units (RFU) brighter than core cells.

(C) At t = 60 min, spheroids were segmented into four concentric shells using a convoluted neural network.

(D) The fluorescence intensity of each layer (n = 60 spheroids) was monitored in time. At t = 60 min, each layers’ mean fluorescence differed by over 5% and

remained stable for over 100min. Linear fits from 0/ 50min (gray, R2 valuesR 0.97) show a linear accumulation of calcein as predicted by the integrated form of

Equation (3) CffAt +Bwhere A = k1C. A = (0.015, 0.0093, 0.0054, 0.0044) and B = (0.053,�0.0012,�0.0046,�0.0034) for the surface, outer, inner, and center

layers of the spheroids respectively.

(E) Example image showing the fluorescent intensity of a representative HGSOC spheroid at t = 60 min resolved using confocal microscopy (top). An intensity

profile of an individual spheroid (middle) and a FACS profile of 192 dissociated spheroids (bottom) show the distribution of fluorescence intensities across in-

dividual cells and the thresholds (dashed blue lines) used for segmentation. A hyperbolic sine fit to the middle panel (red, R2 > 0.99) shows a fluorescence

distribution profile predicted by Equation (2). The fit corresponds to the equation,C = ACR
R sinhð41 r=RÞ
r sinhð41Þ +B, where A and B are the scaling factors 119501 RFU and

4150 RFU respectively. Scale bars, (B and C) 150 mm, (E) 100 mm.
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on spatially patterned grids of pre-defined barcodes and are

useful for spatially resolving 2D tissue slices with increasing

fine resolution.9–11 These methods can be performed iteratively

on consecutive tissue slices to reveal three-dimensional (3D) tis-

sue architectures. Other innovative methods includemultiplexed

error-robust fluorescence in situ hybridization (MERFISH) and

fluorescent in situ sequencing (FISSEQ) that enable highly multi-

plexed ISH and de novo sequencing in intact tissues.12,13 These

approaches provide high-resolution spatial maps but are limited

in their ability to interrogate 3D tissue architectures and require

significant laboratory specialization.

Here, we describe Segmentation by Exogenous Perfusion

(SEEP), an integrated method for correlating environmental

accessibility of cells within 3D disease models with scRNA-seq

data. SEEP utilizes the diffusion kinetics of the small-molecule

dye, calcein acetoxymethyl (AM), to establish a stable dye

gradient within 3D tissues that varies in intensity according to

radial-spatial cell position as a function of accessibility to the tis-

sue surface. This gradient is used with fluorescence-activated
cell sorting (FACS) to sort and bin dissociated cells by diffusion

distance to tissue surfaces. Single cells are then barcoded and

sequenced using any standard scRNA-seq protocol (Figure 1A).

The method can define the surface accessibility and radial-

spatial positions of cells in both symmetric and asymmetric cell

cultures (e.g., spheroids and organoids) and linear tissue sam-

ples (e.g., punch biopsies). We use SEEP to study the transcrip-

tional architecture of high-grade serous ovarian cancer (HGSOC)

cells located at defined layers of three different 3D HGSOC

models including spheroids, organoids, and patient-derived

xenograft (PDX) tumors. We explore how transcriptional identity

is dependent on cells’ surface accessibility in HGSOC disease

models arising from both individual clones (e.g., cultured spher-

oids) and ascites-derived cell populations (e.g., organoid and

PDX models). In doing so, we show how cellular identity varies

along an axis defining tissuemargins and nutrient accessibility.14

HGSOC, the most lethal gynecological cancer, is character-

ized by genomic instability from ubiquitous TP53 mutations

and a high percentage of BRCA1/2 mutations.15,16 Despite
Cell Systems 14, 464–481, June 21, 2023 465
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advancements in the genomic characterization of HGSOC, sig-

nificant improvements in disease outcomes have not emerged

over the past 30 years. In particular, metastatic disease remains

a significant clinical challenge and is associated with resistance

to therapy and decreased life expectancy.15–17 HGSOC cells

disseminate into patients’ ascites and natively cluster into 3D

spheroid-like bodies that are believed to be responsible for met-

astatic disease found in the peritoneum and beyond.18 HGSOC

cell clusters persist in the peritoneal cavity years after a primary

tumor is removed and are capable of surviving both immune

recognition and chemotherapy.17 Understanding the transcrip-

tional architectures of these 3D cell clusters and the metastatic

lesions they form will provide insights into HGSOC disease pro-

gression and potentially inspire new therapeutic concepts to

combat this disease.

RESULTS

Diffusion-mediated accessibility staining for spatial
segmentation
To preserve surface and environmental proximity information

from 3D HGSOC models throughout a high-throughput

scRNA-seq assay, we developed a perfusion method capable

of segmenting tissues into concentric shells and an inner core

based on cellular accessibility to a cell-permeable fluorescent

dye. In this way, cells could be sorted and binned as a function

of their diffusion distance from a tissue surface (Figures 1A–

1D). Although SEEP can be performed using a variety of small-

molecule dyes, we established the method using calcein AM, a

non-fluorescent analog of calcein that utilizes an AM ester moi-

ety to allow for passive diffusion across cell membranes.19,20

Once inside a cell, intracellular esterases convert calcein AM

to the pH-independent fluorescent calcein and trap the dye in-

side cells.21 To properly enable the SEEP methodology, it was

critical to define the diffusion parameters of each model upon

exposure to calcein AM. With no barriers to diffusion, calcein

AM and calcein (diffusivity, De = 260 and 500 mm2/s in media,

respectively) would diffuse into a spherical cavity in time, t =

Cr2D=6De (the equivalent of 58 and 30 s to diffuse into a 600 mm

diameter sphere). 3D cell cultures and tissue samples, however,

create heterogeneous and complex barriers to diffusion which

complicate the parameters that govern inward flux and dye up-

take.22 For calcein AM, uptake into a spherical cell cluster is

dependent on both its effective diffusion through the complex

barrier and the reaction rate for converting calcein AM to calcein.

The reaction-diffusion equation for C (calcein AM) undergoing

diffusional transport and conversion into the fluorescent product

calcein in a spherically symmetric system is:

vC

vt
=

De

r2
v

vr

�
r2
vC

vr

�
� k1C: (Equation 1)

Given the large excess of calcein AM in the media surrounding

our samples, we estimate the external dye concentration to be

fixed at the surface of the sphere, r = R. That is, we impose

C(R) = CR, and Equation (1) will attain a steady state given by:

C = CR

R sinh
�41r

R

�
r sinhð41Þ

(Equation 2)
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and illustrated by the hyperbolic sine curve fit to the radial fluo-

rescent profiles observed in the spheroid dye accumulation (Fig-

ure 1E, red line, R2 > 0:99). In equation (2), 41 = R
ffiffiffiffi
k1
De

q
. This is a

special case (for the first-order reaction n = 1 of calcein AM /

calcein) of the Thiele modulus, 42
n, where 42

n = knR
2Cn� 1

As =De.

Here, k is the rate constant of an n order reaction, R is the radius

of the sphere, CAS is the concentration of calcein AM at the sur-

face of the spherical cell cluster, and De is the effective diffu-

sivity.23–25 42
n describes the ratio of a systems rate of reaction

to rate of diffusion. When the reaction is slower than the effective

diffusion, 42
n << 1, calcein (the product) fills the entire volume of

the spherical cell cluster. When the reaction is faster than the

effective diffusion, 42
n >> 1, calcein cannot reach the core of

the spherical cell cluster and a non-uniform steady state is

reached. Achieving a steady state in dye distribution is critical

for the SEEP method and facilitates the correlation of cell bright-

ness with exogenous accessibility and, by extension, radial-

spatial cell positioning. Experimentally, we found that for each

of the ascites-derived HGSOC samples analyzed, 42
n >> 1 and

a steady state was achieved and maintained for time scales

appropriate for tissue processing (Figures S1 and S2). Non-fluo-

rescent calcein AM constantly diffuses into the system at a

steady state and is converted into calcein. Because of this, the

accumulation of fluorescent dye, Cf is linear and satisfies the

following equation:

vCf

vt
= k1C: (Equation 3)

Therefore, once the steady state of C is realized, the model

predicts a linear accumulation in the fluorescent form, calcein.

Indeed, we observe a linear accumulation of calcein from 0 /

50min (Figure 1D, gray lines,R2 > 0:97). Above�50min, we attri-

bute the fall of fluorescent calcein accumulation to calcein

degradation within the live cells. This decrease in fluorescence

is clearly observed from 160 / 300 min; however, the mean

fluorescent stratification between layers remains resolved

throughput this time period. By fitting Equation (2) to the fluores-

cence distribution across the spheroids as a hyperbolic sine

curve (Figure 1E), we found the ratio of k1/De to be

0.0004 mm�2 and 42
1 to be 31.36 corresponding to the fluores-

cence profile of Figure 1E. The uptake and conversion of calcein

AM into calcein were determined by fitting the integration of

Equation (3) to the linear accumulation of fluorescence on the

surface layer of the spheroids (Figure 1D).

Of practical importance, SEEP relies on the distance to the

environmental interface of tissue rather than on the distance to

the center of a tissue to segment populations into concentric

layers. This allows the assay to be performed on irregularly

shaped tissues rather than relying on tissue symmetry for accu-

rate segmentation. In addition, the method’s extension via

Punch-SEEP enables spatial segmentation to be performed on

biopsy punches harvested from a variety of tissue sizes and

geometries.

Calibrating diffusion kinetics
SEEP requires an imaging-based calibration step for observing

dye penetration kinetics and a measurement step for sorting

and sequencing cells based on their fluorophore accessibility.
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Each of the different 3D HGSOC cell models examined in this

study (spheroids, organoids, and PDX solid tumors) required a

unique collection of calibrating steps to define the specific diffu-

sion kinetics associated with each model. We exposed each

model to calcein AM dye and monitored dye penetration using

light sheet or confocal microscopy (Figures 1B–1E, S1A–S1C,

and S2A–S2E). The time that each model system needed to

reach a maximum change in the fluorescence intensity between

the center and surface was monitored and recorded across mul-

tiple replicates.

Fluorescence images acquired during the calibration step

were normalized to signal attenuation incurred with imaging

depth. High-content confocal microscopy imaged 100s of well-

defined and homogenously stained (ex/em: 353/466 nm, 492/

517 nm, and 630/650 nm) spheroid samples to calculate the

attenuation parameters (Figures S1D and S1E). Signal decay

for homogenously stained spheroid samples was calculated in

depth and described by the exponential yz1:11e� 0:21x �
0:018(residual standard error: 0.029 on 27� of freedom)

(Figures S1F and S1G). Attenuation was subtracted up to

�100 mm. Beyond this point, signal normalization was no longer

an appropriate estimate for dye accumulation, and levels beyond

this threshold were not used in the segmentation calculations.

After sample attenuation was calculated, the fluorescence inten-

sity measurements of the diffusion kinetics were normalized for

signal attenuation.We then divided the 3D cell and tissuemodels

into concentric rings, or sections, of equal volume; the average

intensity (�I) of each layer and the central core were calculated

(Figures S1H–S1k). To ensure adequate fluorescence separation

between layers, volumes were segmented so that the D�I be-

tween adjacent layers exceed 5% (Figure 1D). This parameter

also determined the binning process for equal volumetric sorting

based on fluorescent intensity. Similar methods were used to

define the calibration kinetics and binning parameters for the or-

ganoid and biopsy models (Figure S2).

Binning, sorting, sequencing, and clustering
For the measurement step, pre-calibrated 3D models were

stained, sorted based on fluorescent shell thresholds, and sin-

gle-cell barcoded for RNA sequencing. Briefly, following expo-

sure to a fixed concentration of calcein AM for the calibrated

time, the sample was washed of excess dye, dissociated using

Accutase and gentle agitation (spheroid and organoid) or the

gentleMACS dissociator (PDX biopsies), and sorted via FACS

into a pre-defined number of bins (Figures 1D and 1E). No calcein

diffusion between cells was observed post-dissociation, and im-

aging post-sorting confirmed accurate binning (Figures S1L and

S1M). We also reviewed potential confounding factors like cell

size and intracellular esterase expression patterns and found

that these variables were consistent across layers (Figure S1M).

We collected the sorted cells as aliquots of individual layers and

immediately processed the layers through the inDrop platform.3

We fabricated and quality controlled the necessary microfluidics

and barcoded hydrogel beads in house (Figure S1F; Tables S1A–

S1G).We indexed each layer independently, pooled the libraries,

and sequenced across 7 NextSeq 500/550 High-Output v2 Kits

(75 cycles). To control for possible technical bias incurred during

SEEP, we examined the effect of staining and sorting (via FACS)

on single-cell transcriptional patterns of HGOSCPEO1 cells (Fig-
ure S3).We subjected cells fromaPEO1monolayer to conditions

imposed by SEEP and examined if these conditions affected sin-

gle-cell transcriptional patterns. We found that sorting, staining,

and sorting + staining had a negligible effect on global gene

expression patterns (Figures S3A–S3C), average gene expres-

sion among clustered transcriptional groups (Figures S3G–

S3I), and single-cell expression patterns across genes of signif-

icant variability in our HGSOC model systems (Figures S3J).

Additionally, we found that significant gene expression changes

existed between clustered transcriptional states within a single

condition (Figures S3D and S3E) but not between technical rep-

licates of a single condition (Figures S3F). The only gene found to

have significantly variable mean expression between conditions

wasHIST1H4C that encodes for a replication-dependent histone

of the H4 family. HIST1H4C was found to be depleted in sort +

stain cells compared with control cells; however, HIST1H4C

was not one of the variable genes analyzed in this study. In addi-

tion, HIST1H4C was not a member of the key gene sets used to

define cells in this study.

To enable the identification of transcriptional state variations

with respect to positioning and environmental accessibility, we

first identified highly variable genes for each model and used

them to drive principal component analysis (PCA) for dimen-

sional reduction. Dimensionally reduced cell identities were

embedded in a k-nearest neighbor (KNN) graph of Euclidean

distances defined by the PCA. Jaccard similarity was used to

optimize the KNN graph, after which we used the Louvain algo-

rithm to cluster cells by optimizing the standard modularity

function (Figure S4).26–28 T-distributed stochastic neighbor

embedding (t-SNE) and uniform manifold approximation and

projection (UMAP) were used to visualize cell clusters in two

dimensions.29–31

We identified differentially expressed genes within each clus-

ter and used them to define transcriptional states via over-repre-

sentation analysis (ORA) and gene set enrichment analysis

(GSEA) (Tables S2A–S2f). We incorporated the environmental

accessibility information with the gene expression data by per-

forming a chi-square test for independence to determine the de-

gree of association between each spatially defined layer and

transcriptionally defined cell cluster. As a visualization aid, we

overlaid the positional information on top of t-SNE plots that rep-

resented gene expression data. This revealed correlations be-

tween cell positions and transcriptional patterns.

SEEP-enabled mapping of transcriptional states in
HGSOC spheroids
Although 2D (monolayer) cell culturemethods remain a dominant

experimental platform, cells compelled into 3D (spheroid or

near-spheroid) cultures have re-emerged over the past decade

thanks to new methods and compelling evidence that 3D cul-

tures are superior models of many disease phenotypes.32,33

Although spheroid cultures lack key elements of in vivo disease

(e.g., cell heterogeneity, stromal components), they have found

particular utility in modeling solid tumors including HGSOC.34,35

Here, we utilized the HGSOC cell line PEO1 to generate spher-

oids to assess the SEEP methodology and explore positional in-

fluence on cell identity. The PEO1 cell line was derived from a

malignant effusion from peritoneal ascites and revealed through

Tagged AMplicon deep sequencing (TAm-Seq) to have an allele
Cell Systems 14, 464–481, June 21, 2023 467
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Figure 2. Positional analysis of HGSOC cultured PEO1 spheroids

(A) Cartoon schematic of the dye perfusion of a solitary spheroid in a calcein AM bath and a confocal image of a spatially segmented HGSOC spheroid.

(B) Composition chart showing the seven transcriptionally defined cell clusters and the retrospective, layer-specific composition of each resolved cluster. Red,

core; green, inside; blue, outside; purple, surface.

(C) Bar-chart visualization of chi-square test of independence defined associations between gene expression clusters and spheroid layers. Blue, over-repre-

sentation; red, under-representation; gray, null hypothesis in the cross tabulation. Bar width illustrates relative cluster size (n = 1,178 center cells, n = 2,471 inside

cells, n = 2,736 outside cells, and n = 2,667 surface cells).

(D) t-SNE visualization of gene expression clusters (left) and radial cell position (right) (n = 7,908 cells).

(E) Heatmap visualization of selected gene expression clusters and their layer-specific composition (by %). Significant transcriptional Hallmark gene signatures

from gene ontology (GO) are highlighted for clusters #3 (77% core cells), #4 (29% inside, 52% outside cells), #5 (73% surface cells), and #6 (82% surface cells).

Color scale is linear. (Full accounting of Hallmark GO signatures can be found in Tables S3A–S3G, and Hallmark signatures from GSEA can be found in Figure S3

and Tables S3H–S3N.) Scale bar, (A) 100 mm. GEO: GSE157299.
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fraction > 99% mutated TP53 and BRCA2 genes signifying a

nearly pure tumor fraction.36,37 Spheroidal cultures of PEO1 offer

potential insight into the transcriptional programs that support

metastases, including dissemination, migration, invasion, and

seeding.We hoped that SEEPwould reveal the radial-spatial dis-

tribution of transcriptional states across these spheroids.

We compelled PEO1 cells into compact spheroids and pro-

cessed the spheroids via SEEP by sorting cells into 4 different

layers based on the calibration parameters (surface, outer, inner,

and core) (Figures 2A and S1A). Following sequencing, we

aggregated the data from the 4 spheroid layers and identified

highly variable genes to establish principal components (PCs)

of transcriptional variation within the entire, aggregate spheroid

sample (Figure S4A). Once processed, the scRNA-seq data

revealed 7 clusters when grouped by functional state, each

occupying a distinct proportion of each spheroid layer

(Figures 2B–2D).
468 Cell Systems 14, 464–481, June 21, 2023
These data revealed multiple associations between selected

transcriptional states and spheroid layers via a chi-square test

of independence (e.g., strong association between transcrip-

tional cluster #3 and the spheroid core) (Figure 2C). In addition,

t-SNE dimensional reduction revealed overlap of transcriptional

clusters with a positional layer of origin (Figure 2D). ORA, GSEA,

and gene set variation analysis (GSVA) were used to infer tran-

scriptional signatures and active pathways within individual

layers and clusters.38,39 We observed variable enrichments of

the Hallmark gene sets across layers (Figures 2E and S5;

Tables S3A–S3N). Clusters significantly associated with specific

layers via the chi-square test of independence are highlighted on

the heatmap. Enrichment in transcriptional programs associated

with hypoxia, mTORC1 signaling, and the unfolded protein

response (UPR) was found for cluster #3 which, as noted, had

a strong association with spheroidal core cells. Cluster #4, which

had a strong association with middle layer (inside/outside) cells,



ll
OPEN ACCESSArticle
showed strong enrichments for cell cycle pathways including

G2/M checkpoints, E2F targets, andmitotic spindle. Histological

analysis of intact PEO1 spheroids confirmed the enrichment of

cycling cells in the outside layer using both Hematoxylin and

Eosin (H&E) and KI67 staining (fig. S6). Surface cells existed pri-

marily in clusters #5 and #6 and possessed transcriptional pro-

grams associated with the epithelial to mesenchymal transition

(EMT), suggesting a higher metastatic potential at spheroid sur-

faces. Surface cells also displayed immune-response-related

programs including TNFa via NFkB and interferon alpha and

gamma (IFNa, IFNg) responses. We utilized histological analysis

to orthogonally confirm key SEEP outcomes. We first explored

antileukoproteinase (secretory leukocyte protease inhibitor,

SLPI), an emerging target of interest in metastatic cancer.40

SLPI expression patterns visualized using a validated RNAscope

probe and detailed image analysis of multiple spheroids demon-

strated enriched expression on spheroid surface cells, consis-

tent with the SEEP profiling (Figures S7A–S7D; Table S4). A sec-

ond histological survey of the IFNg responsive gene CXCL10

confirmed limited focal expression patterns as predicted by

SEEP (Figures S7E and S7F). Taken together, these data support

the accuracy of the SEEP method.

Spheroid cultures represent a moderately ‘‘controlled’’ cell

culture format, and the presence of hypoxia and UPR character-

istics in core cells supports long-held beliefs that core cells,

separated from oxygen and nutrients, exist with relatively height-

ened oxidative and proteolytic stress. Enrichments in cell cycling

signatures among outside cells suggest that growth and turn-

over are supported in this region of the spheroid culture at the

time of analysis. The inside/outside spheroid regions also

showed enrichment for gene targets of the transcriptional regu-

lator YAP1 (Figure S8). YAP1 is regulated by the Hippo signaling

pathway and is a key mediator of cell proliferation. Its activation

within the intermediate spheroid layers sheds light on the aber-

rant and broader activation of YAP1 in cancer models and in

situ disease.41 Interestingly, surface cells demonstrate an upre-

gulation in apoptotic programs suggesting surface-related cell

death events that would require replenishment from those layers

directly underneath. Furthermore, the presence of EMT, inflam-

mation, and immune response signatures found on the surface

layer suggested that these cells, even when devoid of the host

microenvironment, are primed for possible dissemination and

broader exposure to the immune system.

SEEP-enabled mapping of transcriptional states in
HGSOC organoids
To expand our initial SEEP findings to a more physiologically

relevant disease model, we collected sphere-forming tumor

cells from the ascitic fluids of HGSOC patients and grew

them in Matrigel-media for several passages to establish

HGSOC organoids. TAm-Seq revealed a > 99% allele fraction

of TP53mutated HGSOCwithin the sample, confirming a highly

pure tumor fraction within the ascites-derived organoids. We

gently bathed individual organoids in calcein AM for 55 min at

37�C (Figure 3A). For organoid samples, pre-calibration sup-

ported the collection of 3 concentric shells of equal volume

(surface, middle, and core). As in the spheroid samples, we pro-

cessed the organoids via SEEP and analyzed the transcrip-

tional states of single cells on 3D radial positions. Organoid
samples separated into 7 natural clusters when grouped by

gene expression (Figures 3B and S4C).

Using the chi-square test of independence, we found strong

associations between distinct transcriptional clusters and or-

ganoid layers. Clusters #3, 4, and 5 were associated with sur-

face cells, cluster #2 with middle cells, and cluster # 1 with

core cells (Figure 3C). t-SNE dimensional reduction visualiza-

tions revealed an overlap between transcriptional clusters

and a positional layer of origin (Figure 3D). Furthermore, we

used ORA, GSEA, and GSVA to reveal key transcriptional sig-

natures enriched in each layer (Figures 3E and S9;

Tables S5A–S5N). Several spatial transcriptional characteris-

tics paralleled those found in the spheroid model. We found

the expression of mTORC1 genes was enriched in the organoid

core, and all organoid surface clusters included signatures

involving inflammatory and immune-response-related pro-

grams. These included TNFa via NFkB, IFNa/IFNg responses,

and estrogen responses (early and late). Compared with the

spheroid model, however, there was less variance between

the middle and core of the organoid model, with both regions

showing enrichments among MYC targets V1 and cell cycle

signatures (e.g., G2M checkpoint in core cells, E2F targets,

and mitotic spindle genes in middle cells).

The organoids, unlike the spheroids, possibly retained ele-

ments of their in vivo origin. Due to the smaller size and increased

complexity of this model, the clustering was performed using a

3-shell layering and each cluster was more homogenous relative

to those determined for the spheroid samples. Nevertheless,

there were coherent signature enrichments found for each posi-

tional domain. The organoid surface demonstrated compelling

evidence of inflammation, stress, and immune responsiveness

traits. This may relate to a cellular ‘‘memory’’ of exposure to

the host microenvironment. However, the existence of similar

characteristics in the spheroid models, where no such ‘memory’

would exist, suggests that the stress/inflammation/immune

responsiveness traits were cell intrinsic and derived solely from

surface positioning.

SEEP-enabled mapping of transcriptional states in
HGSOC PDX biopsies
Finally, we applied SEEP to punch biopsies from HGSOC PDX

models with the aim of understanding how transcriptional states

vary according to surface accessibility in HGSOC in vivo tumor

models. In addition to extending the applicability of SEEP and

exploring the transcriptional architecture of a solid tumor grown

from ascites-derived cells, we wanted to develop a method

capable of preserving spatial information from samples collected

in a clinical setting while adding negligible experimental burden.

The collection and characterization of biopsy samples is a stan-

dard first-line approach to gain insight into abnormal or diseased

tissues. When anatomically possible to collect, biopsies provide

physical samples for histopathology and genomic analysis.

Although histopathology retains positional relationships via vi-

sual analysis, the diagnostic breadth of data is limited.

Conversely, the various genomic analyses done on biopsy tis-

sues offer more information while sacrificing the spatial context

of the sample. In hopes of combining elements of both methods,

we evaluated the ability of SEEP to provide spatial context to

transcriptional evaluations of punch biopsies.
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Figure 3. Positional analysis of HGSOC cultured organoids derived from patient ascites

(A) Cartoon schematic of the dye perfusion of a solitary organoid in a calcein AM bath and a confocal image of a spatially segmented HGSOC organoid.

(B) Composition chart showing the seven transcriptionally defined cell clusters and the retrospective, layer-specific composition of each resolved cluster. Red,

core; green, middle; blue, surface.

(C) Bar-chart visualization of chi-square test of independence defined associations between gene expression clusters and organoid layers. Blue, over-repre-

sentation; red, under-representation; gray, null hypothesis in the cross tabulation. Bar width illustrates relative cluster size (n = 2,285 center cells, n = 2,819middle

cells, and n = 2,667 surface cells).

(D) t-SNE visualization of gene expression clusters (left) and radial cell position (right) (n = 7,771 cells).

(E) Heatmap visualization of selected gene expression clusters and their layer-specific composition (by %). Significant transcriptional Hallmark gene signatures

from GO are highlighted for clusters #1 (64% core cells), #2 (76% middle cells), #4 (62% surface cells), and #5 (65% surface cells). Color scale is linear. (Full

accounting of Hallmark GO signatures can be found in Tables S5A–S5G, and Hallmark signatures from GSEA can be found in Figure S4 and Tables S5H–S5N.)

Scale bar, (A) 50 mm. GEO: GSE157299.
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Several up-front challenges were encountered, including the

reality that biopsies are often taken from large, asymmetric tis-

sue masses. The subcutaneous HGSOC PDX tumors we used

for the Punch-SEEP method were derived from ascites samples

and revealed to have a >99% TP53 mutated allele fraction via

TAm-Seq. Biopsies were taken as a single plug from the surface

of carefully resected tumor samples to explore the radial-spatial

distribution of cells states within solid tumors formed from asci-

tes-derived cells. Simple immersion of biopsy samples in a cal-

cein AM bath would expose core cells and surface cells simulta-

neously, failing to produce a dye gradient descriptive of cells’

original positions. To mimic the radial-like diffusion of spheroid

and organoid methods (i.e., surface exposure of the tissue

model) we preloaded a calcein AM-saturated gelatin plug into

a punch biopsy and allowed the plug to melt following contact

with the tumor sample. Thus, exposure of the tumor surface to

the calcein AM payload followed by diffusion through the sample
470 Cell Systems 14, 464–481, June 21, 2023
provided an imitation of the spheroid and organoid protocols.

The dye loading was performed immediately prior to tissue har-

vesting, and after biopsy-punching and dye exposure the sam-

ple was incubated for 75 min at 37�C (Figure 4A). Gelatin plugs

melted completely during the incubation period which was fol-

lowed by tissue ejection from the punch biopsy, washing, disso-

ciation, sorting, and sequencing.

The accuracy associated with the biopsy pre-calibration was

coarser relative to the spheroid and organoid samples, likely

due to inhomogeneities in vasculature and tissue density.

Furthermore, because of necrosis within the tumors we

analyzed, the number of cells that passed scRNA-seq filtering

criteria was variable per layer. Thus, although we segmented tu-

mors to contain equivalent numbers of cells per layer, the num-

ber of cells analyzed per layer was different. Specifically, cells

characterized as surface more often passed scRNA-seq filtering

and, therefore, appeared to be more prevalent than cells in other
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Figure 4. Positional analysis of HGSOC PDX-derived biopsy samples

(A) Cartoon schematic of the dye perfusion of a punch biopsy in a calcein AM bath and a confocal image of a spatially segmented HGSOC biopsy sample.

(B) Composition chart showing the six transcriptionally defined cell clusters and the retrospective, layer-specific composition of each resolved cluster. Red, core;

green, middle; blue, surface.

(C) Bar-chart visualization of chi-square test of independence defined associations between gene expression clusters and biopsy layers. Blue, over-repre-

sentation; red, under-representation; gray, null hypothesis in the cross tabulation. Bar width illustrates relative cluster size (n = 280 center cells, n = 677 middle

cells, and n = 1,010 surface cells).

(D) t-SNE visualization of gene expression clusters (left) and radial cell position (right) (n = 1,967 cells).

(E) Heatmap visualization of selected gene expression clusters and their layer-specific composition (by%). Significant transcriptional Hallmark gene signatures from

GOarehighlighted for clusters#2 (43%middlecells), #5 (59%surfacecells), and#4 (83%surfacecells).Color scale is linear. (Full accountingofHallmarkGOsignatures

can be found in Tables S6A–S6G and Hallmark signatures from GSEA can be found in Figure S5 and Tables S6H–S6N.) Scale bar, (A) 400 mm. GEO: GSE157299.
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layers. In addition, most oxygen-deprived cells collected from

the center of the biopsies did not pass scRNA-seq filtering due

to necrosis. This led to depleted hypoxia signatures within the bi-

opsy cores. SEEP pre-calibration supported a three-shell seg-

mentation (surface, middle, and core) that revealed 6 clusters

with organized gene expression patterns (Figures 4B and S5C).

Mouse cells and mouse-human doublets were identified and

removed from downstream analysis. Using the chi-square test

of independence, we found associations between distinct tran-

scriptional clusters and the biopsy layers. Clusters #1, 4, and 5

were associated with surface cells, clusters #2 and 3 with middle

cells, and clusters # 0 and 3 with core cells (Figure 4C). Despite

the coarse segmentation, t-SNE dimensional reduction visuali-

zations revealed an overlap between transcriptional clusters

and positional layer of origin (Figure 4D). As with the spheroids

and organoids, we used ORA, GSEA, and GSVA to reveal key

transcriptional signatures enriched in each layer (Figures 4E

and S11; Tables S6A–S6L). Surface cluster #4 (83% surface
cells), like those in spheroid and organoid models, was enriched

for EMT and inflammatory and immune-response-related pro-

grams, including TNFa via NFkB, IFNa/IFNg responses, and

IL6 JAK/STAT3 signaling gene sets.

The Punch-SEEP data, derived from the most sophisticated

and relevant HGSOCmodel, was also themost complex to inter-

pret due to inhomogeneities in bin size. Surface-associated clus-

ters #1 and 4 possessed similar traits to the surface cells noted in

both the spheroid and organoid cultures. These included inflam-

matory-, immune-, and EMT-related gene sets. Genes associ-

ated with apoptosis also emerged on the surface of the biopsy

sample akin to both the spheroid and organoid surfaces.

Position-defined transcriptional states conserved
across 3D HGSOC models
To examine transcriptional states that were consistently associ-

atedwith a radial position in all threemodels (spheroid, organoid,

and PDX biopsy), we compared segmented gene expression
Cell Systems 14, 464–481, June 21, 2023 471
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data from all layers in eachmodel directly, irrespective of expres-

sion-defined clustering. We hoped to explore how the spatial

distribution of functional states might be retained across similar

positional microenvironments in different settings. This analysis

confirmed the presence of individual genes and gene signatures

consistently enriched in the surface and core layers of all the

models analyzed. A comparison of the log-normalized average

gene expression values between surface and core cells from

each model revealed several similarities (Figures 5A–5C, and

S10; Table S7). Surface cells in all models possessed upregula-

tion of genes associated with immune and inflammation-related

signatures including Hallmark gene sets for TNFa via NFkB and

EMT. There was also a strong overlap in IFNa/IFNg leading edge

genes on the surfaces of the spheroid and organoid cells

(Figures 2E, 3E, S5, S9, and S10). Although core cells had fewer

coherent trends, there was consistent increased expression of

several genes involved in mTORC1 and KRAS signaling (from

spheroid and organoid models, respectively) and genes involved

in the cell cycle process (Figures 2E, 3E, S5, and S9). Although

core-enrichment for a hypoxia gene set was noted in the

spheroid and organoid models only, we found upregulation of

selected hypoxia-related genes in the core cells of each model.

A more detailed examination of EMT-related genes

demonstrated a remarkable anti-correlation of epithelial and

mesenchymal markers, as expected. This is most prominently

demonstrated by the model-agnostic expression of the epithe-

lial-related E-cadherin (CDH1) in core cells relative to the expres-

sion of the mesenchymal-related N-cadherin (CDH2) on surface

cells (Figures 5D–5F). This trendwasmaintained for other epithe-

lial-related genes [e.g., desmoplakin (DSP) and tight-junction

protein 1 (TJP1)] and mesenchymal-related genes [e.g., matrix

metalloproteinases 3 and 9 (MMP3/9) and zinc-finger protein

SNAI1 (SNAI1)]. The biopsy model demonstrated an expanded

breadth of mesenchymal-related genes on surface cells

including fibronectin 1 (FN1), vimentin (VIM) and twist-related

protein 1 (TWIST1). We hypothesized that EMT marker genes

were enriched across tissue surfaces in response to the stress

and inflammatory signatures found to be upregulated on these

surfaces. This hypothesis was supported by in situ hybridization

data including the aforementioned surface layer enrichment of

antileukoproteinase (SLPI) (Figure S7).40

To better understand the pan-model relationship of enriched

gene sets, we employed single-cell GSVA across all samples.

Useful for visualizing small changes in gene expression but sig-

nificant changes in gene set expression, GSVA allowed us to

explore cell states independently from cluster identity and

explore correlative relationships among gene sets (Figures 5G–

5I, S12, S13, and S14). Several trends were revealed across

each HGSOC model including correlations between IFNg and

EMT Hallmark gene sets and between inflammatory response

and apical surface Hallmark gene sets. Examining gene set cor-

relations across MSigDB gene sets, we found a variety of strong

correlations across single cells.42,43 Of note, in the spheroid

model, we found an inverse correlation (R = �0.63) between

Cell Cycle and IFNg Response gene sets (Figure S12B), a rela-

tionship found to be demonstrated in the slowly cycling sur-

face-residing spheroid cells that expressed many IFNa and

IFNg response genes. In the organoidmodel, we found a positive

correlation (R = 0.87) between Cellular Response to Stress and
472 Cell Systems 14, 464–481, June 21, 2023
Positive Regulation of EMT gene sets (Figure S13B). This rela-

tionship was found on surface-residing cells across all three

models with cells co-expressing both stress response genes

and EMT-associated genes. In the PDX-biopsy models, we

found a positive correlation (R = 0.58) between IL6 JAK/STAT3

signaling and TNFa via NF-kB signaling gene sets (Figure S14B).

This relationship was also noted in a survey of disseminated tu-

mor cell clusters in the ascites of HGSOC patients.44 In the PDX-

biopsy models, we also found a positive correlation (R = 0.60)

between the P53 Pathway and a Positive Regulation of EMT.

As P53 was ubiquitously mutated across all our model systems,

this relationship suggests a possible connection between aber-

rant P53 signaling (known to cause broad genomic instability in

HGSOC) and EMT.45 GSVA also confirmed that inflammatory

response, TNFa via NFkB, and EMT signatures were enriched

in surface cells, whereas mTORC1 and angiogenesis signatures

were enriched in core cells (Figures 5J–5L). These correlations

allowed us to explore the relatedness of gene expression signa-

tures found within various regions of the tumor models. Although

we did not perform experiments to reveal the causal nature of

these correlations, we hoped that this analysis could generate

hypotheses about the local effect of upregulated gene sets on

HGSOC tumors.

Next, we integrated each dataset to further extract spatially

resolved expression features conserved across the model sys-

tems. We utilized the Seurat integration algorithm8,26 to identify

pair-wise mutual nearest neighbors (MNN) in a low-dimensional

space from canonical correlation analysis (CCA). We then

computed the anchor transformation matrix to align the

spheroid, organoid, and biopsy SEEP datasets and subse-

quently embedded the cells into a common space through

UMAP.31 The 2D UMAP projections of the corresponding inte-

grated model colored according to data source or layer source

are shown in Figures 6A, 6B, and S15A. Applying the multiscale

analysis methodology ‘‘Differentially Abundant-seq’’ (DA-seq) to

this integrated model revealed a subcluster of cells with differen-

tial abundance between surface and center compartments

(Figures 6C and S15A).46 To reveal gene expression patterns in

the most regionally distinct cell populations (surface and center

cells), we isolated layer-specific differentially abundant (DA) sub-

populations with a DA-seq score >0.8 and used the Seurat gene

scoring method to identify enriched transcriptional signatures.26

These analyses revealed three coherent surface layer cell pop-

ulations and a single center layer cell population from the joined

SEEP scRNA-seq models (spheroid, organoid, and biopsy data

collections) (Figures 6C, 6D, and S15B). Hallmark pathway anal-

ysis highlighted a surface subpopulation with strong enrichment

for IFN response and TNFa signaling via NF-kB (surface cluster

#1) and a second subpopulation with strong enrichment in cell cy-

cle signatures (surface cluster #2). The third surface layer subpop-

ulation showed enrichment for Hallmark Apical Junction, EMT,

and estrogen responses. The center subpopulation was less

resolved with coherent enrichments for only Oxidative Phosphor-

ylation and MYC targets V1 (Figures 6D and S15B; Table S8).

SEEP-derived signatures are a conserved feature of
ascites isolated from HGSOC cells
Finally, we sought to compare the SEEP-derived spatially

dependent signatures with published observations from primary
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Figure 5. Consistency in regional transcriptomics profiles across HGSOC models

(A) Correlation of log-normalized gene expression traits between surface and core cells in HGSOC spheroid models.

(B) Correlation of log-normalized gene expression traits between surface and core cells in HGSOC organoid models.

(C) Correlation of log-normalized gene expression traits between surface and core cells in biopsy of HGSOC PDX models.

(D) Expression trends for epithelial and mesenchymal marker genes across 3D layers in HGSOC spheroid models.

(E) Expression trends for epithelial and mesenchymal marker genes across 3D layers in HGSOC organoid models.

(F) Expression trends for epithelial and mesenchymal marker genes across 3D layers in biopsy of HGSOC PDX models.

(G) Correlation of key gene expression signatures across all cells using GSVA in HGSOC spheroid models (n = 7,908 cells).

(H) Correlation of key gene expression signatures across all cells using GSVA in HGSOC organoid models (n = 7,771 cells).

(I) Correlation of key gene expression signatures across all cells using GSVA in biopsy of HGSOC PDX models (n = 1,967 cells).

(J) Violin plots highlighting the distribution of all cells binned by 3D layer using GSVA signatures for EMT and IFNa response in HGSOC spheroid models (n = 1,178

center cells, n = 2,471 inside cells, n = 2,736 outside cells, and n = 2,667 surface cells).

(K) Violin plots highlighting the distribution of all cells binned by 3D layer using GSVA signatures for angiogenesis andmTOR signaling in HGSOC organoidmodels

(n = 2,285 center cells, n = 2,819 middle cells, and n = 2,667 surface cells).

(L) Violin plots highlighting the distribution of all cells binned by 3D layer using GSVA signatures for TNFa signaling via NFkB and IFNg response in biopsy of

HGSOC PDX models (n = 280 center cells, n = 677 middle cells, and n = 1,010 surface cells).
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HGSOC samples. We mapped our signatures to scRNA-seq

profiles of primary HGSOC ascites samples to explore if these

spatial profiles were present in primary patient ascites. This
served to both validate our consensus signatures and to impute

spatial information onto a spatially naı̈ve HGSOC scRNA-seq da-

taset. To do this, we utilized a recent report by Izar et al. detailing
Cell Systems 14, 464–481, June 21, 2023 473
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the scRNA-seq signatures of malignant and non-malignant cell

clusters collected from the ascites of HGSOC patients.44 In the

report, a total of 22 ascites specimens were isolated from 11 pa-

tients. scRNA-seq analysis revealed both intra- and inter-tumor

heterogeneity with subpopulations of cells enriched for immuno-

reactive and inflammatory pathway signatures. Spatial informa-

tion was not collected in this study. To map and compare the

pan-model SEEP signatures with this dataset, we refined the in-

tegrated HGSOC model to retain only highly DA subpopulations

(Figures 6C and 7A) and performed reference-based single-cell

data integration. This integration mapped our DA-seq subpopu-

lations to the primary HGSOC ascites dataset reported by Izar

et al. We integrated our subpopulation signatures onto Izar’s ‘‘to-

tal ascites’’ dataset containing CD45+ depleted ascites cells

(Figure 7B) and onto their ‘‘malignant ascites’’ dataset containing

stringently enriched EPCAM+ and CD24+ cancer cells

(Figure 7C).

Integration identified populations of cells within the total asci-

tes and malignant ascites datasets which mapped to our sub-

populations. Pathway analysis of these cells mirrored the SEEP

pathway enrichment outcomes (Figure 7D). The strongest align-

ments were noted for the surface cluster #1 population that was

strongly enriched for both IFN response and TNFa signaling via

NF-kB signatures in both the total and malignant ascites data-

sets. Surface cluster #2 also revealed a well-defined population

of cells that were enriched for cell cycling signatures in both da-

tasets. The alignment for surface cluster #3 revealed a small

population of cells enriched for EMT and apical surface signa-

tures, whereas the center cluster demonstrated a large popula-

tion of cells sporadically enriched for oxidative phosphorylation,

MYC targets, and MTORC1 signaling. A more granular compar-

ative assessment of the top 30 gene markers from the DA-seq

pan-model SEEP signatures reinforced a strong alignment with

the primary ascites HGSOC cell populations (Figure 7E). A com-

parison of the expression patterns for TNFa induced protein 2

(TNFAIP2) in the four pan-model SEEP clusters and the total as-

cites and malignant ascites cell populations illustrates the align-

ment of these data. Each dataset shows pronounced expression

in surface cluster #1 with progressively lower expression in sur-

face clusters #3, #2, and center cluster #1 (Figure 7F). TNFAIP2 is

a bona fide TNFa inducible gene with demonstrated associa-

tions to cell migration and metastasis. Utilizing the reference

UMAP projections to visualize subpopulations associated with

the Hallmark G2M-Checkpoint and E2F-Targets signatures

further demonstrated the strong overlap between the SEEP
Figure 6. Conservation of positional transcriptomics profiles across H
(A and B) UMAP projections of cultured PEO1 spheroids, patient-derived organoid

integration by data source47. Cell embeddings were color coded by data source (A

n = 8,805.

(C) DA cell subpopulations identified in the integrated HGSOC model. Top: UM

indicate a high abundance of cells from the center/surface layers, respectively. B

absolute DA-seq score greater than 0.8. Total cells from all models in DA regions: n

(D) Heatmap of layer-specific genes conserved across the three HGSOC models

gene functional over-representation48 in theMSigDBHallmark collection (statistic

cells. Color scale is linear.

(E) Gene-pathway network of Hallmark gene sets enriched in the integrated m

conserved markers overlapping a pathway. Gene set nodes are labeled circles,

cording to the DA subpopulation clusters: blue, surface cluster 1; orange, sur

enrichment analysis are included in Table S8.
and the primary ascites datasets (Figures S16A and S16B).

The comparative expression patterns for cell division marker

ZW10 interacting kinetochore protein (ZWINT) are illustrative of

this overlap with strong enrichment within surface cluster #2 in

the SEEP pan-model dataset and both the total ascites and ma-

lignant ascites cell populations (Figure S16C). Extracting the

Hallmark signature for IFNg response also exhibited a prominent

overlap between these datasets (Figure S16D).

Given the significant enrichment of IFN response and other

immunoreactive pathways in our 3D HGSOCmodels and the pri-

mary HGSOC ascites samples, we sought to understand

whether immunoreactive expression was generally enriched in

3D models or a unique product of HGSOC models. To interro-

gate this question, we explored thewell-studied IFNg gene prod-

uct indoleamine 2,3-dioxygnease 1 (IDO1) using qPCR analysis

of monolayer and spheroid models of HGSOC (PEO1, CIOV1,

and CIOV3), melanoma (A375), and pancreatic cancer

(PANC1). These data showed pronounce IDO1 expression in

each of the 3D HGSOC spheroid models, whereas the mela-

noma and pancreatic cell models did not display this trend

(Figures S16E). In addition, none of the monolayer cultures dis-

played pronounced IDO1 expression. These data suggest that

immunoreactive cell populations may be a unique feature of 3D

models of HGSOC and in situ disease and that these signatures

are driven by selected cell subpopulations that are enriched on

the surface of the 3D cell/tissue clusters. Collectively, these re-

sults show that recognizable cell populations within the primary

ascites samples reasonably align with SEEP-revealed spatially

distinct cell populations across model systems.

DISCUSSION

Modeling cancer using cultured cells or in vivo models offers a

non-invasive approach to study these diseases and gain insights

into their origin, progression, and treatment. Genomic character-

izations, including single-cell sequencing technologies, provide

a powerful tool to understand both in vitro and in vivo models

and compare them with human samples. It remains challenging,

however, to associate the transcriptional, proteomic, and meta-

bolic identity of cells with their contextual environment. To over-

come this challenge, various methods and technologies have

emerged, such as physically selecting cells from defined coordi-

nates within tissue sections, multiplexed fluorescence ISH,7,13

targeted in situ sequencing of RNA fragments,49 spatial recon-

struction of scRNA-seq data from ISH patterns,8 and multimodal
GSOC models
s, and PDX-derived biopsy samples before (top) and after (bottom) scRNA-seq

) and spatial segmentation (B). Total cells from all models (center and surface):

AP embeddings of cells were colored by DA-seq score46; small/large values

ottom: layer-specific DA subpopulations were detected by clustering cells with

= 2,105 (n = 1,019 center cells and n = 1,086 surface cells). Color scale is linear.

. The markers were selected using the FindConservedMarkers method47 and

al test results are included in Table S8). Heatmap dimension: 364 genes3 2,002

odel (adjusted p value < 0.05). Size of the nodes depends on the number of

and gene nodes are squares without label. Nodes and edges are colored ac-

face cluster 2; green, surface cluster 3; red, center cluster 1. Details of the
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Figure 7. Conservation of integrated HGSOC spatial models in primary HGSOC ascites samples

(A–C) Reference-based transfer was used to map subpopulations from our integrated HGSOCmodel (n = 2,083; 812 surface cluster 1, 218 surface cluster 2, 42

surface cluster 3, 1,011 center cluster) (A) to primary single-cell data from total ascites collections (n = 7,144; 1,878 surface cluster 1, 247 surface cluster 2, 20

(legend continued on next page)
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spatial profiling.50 Each of these pioneering techniques have

yielded insights into the models they explore.

Here, we endeavored to add to these approaches using a

‘paint, sort, sequence’ method that combines the power of

scRNA-seq with positional stratification based on environmental

accessibility. Our method, called SEEP, is enabled by a cell

penetrant, pro-fluorescent dye (calcein AM) and a series of

pre-calibration steps that accurately and robustly define

positional layering of both in vitro culture models and in vivo

biopsy samples. Utilizing traditional FACS methods, volumetri-

cally defined cell layers can be collected and analyzed via

scRNA-seq.

We used SEEP to characterize the positional/transcriptional

heterogeneity of cells in three distinct HGSOC models (spher-

oids, organoids, and PDX tumor biopsies). Position-associated

transcriptional signatureswere examined for eachmodel individ-

ually and through comparative analyses acrossmodel types. The

spheroid model yielded the greatest level of accuracy in terms of

spatial resolution. A total of four distinct layers (surface, outside,

inside, and core) were captured and each possessed a unique

transcriptional identity. Several previously established concepts

in spheroid biology were confirmed including the hypoxic nature

of core cells. Cells in the middle domains (outside and inside)

were noted to be enriched for multiple gene sets related to cell

proliferation. Finally, surface cell identity was enriched for tran-

scriptional traits associated with inflammation (TNFa signaling

via NFkB), immune responsiveness (IFNa, IFNg), and genes

associated with EMT. Inflammation has been shown to be bene-

ficial for tumor seeding, invasion, and metastasis in ovarian and

other cancers but, to our knowledge, has not been reported to be

associated with tumor surfaces.51,52 These features were

conserved among surface cells on an organoid and biopsy

model, suggesting that the surface microenvironment alone is

sufficient to drive these characteristics in an intrinsic fashion.

As cells from uniform spheroids cultures are driven into divergent

functional states based on cell position, it seems likely that intra-

tumoral position can determine cell state, and spatial heteroge-

neity across tumors cannot be fully explained by the migration of

pre-determined cell types to preferred positions.

Transcriptional signatures enriched in specific layers were

found to be correlated with each other including associations

of EMT with IFNg responsive genes and apical surfaces with in-

flammatory response genes. Analysis of EMT-related genes

highlighted the epithelial-like nature of core cells and the mesen-

chymal-like nature of surface cells across each model. This sug-

gests that surface cells, with primed transcriptional states and

fewer physical barriers to dissemination, may play critical roles

in metastasis. Nonetheless, it is remarkable that the surface cells
surface cluster 3, 4,999 center cluster) (B) andmalignant-enriched ascites collecti

404 center cluster) (C) from HGSOC patients. From each data source, top 99% c

addition, the ascites cells with maximal transfer score greater than 0.5, and a di

embedded and visualized across two UMAP dimensions, and the top 99% of ce

(D) Signature scores (69) calculated for the top Hallmark gene sets enriched in the

cluster were used (the top 95% of cells with the strongest contribution to the first

zero mean and one SD across cells. Color scale is linear. (E) Dot plot showing the

model SEEP signatures. Expression is shown across the integrated SEEP data,

(F) Violin plots overlaid with boxplots and averages (horizontal segments) of TNFAI

and the malignant ascites data.
of HGSOC models surveyed in this study natively adopt this

identity, particularly in spheroid models where there are no

host-related factors involved. Pan-model analysis added addi-

tional validation that cell subpopulations exist in all three models

including distinct surface subpopulations of either immunoreac-

tive cells or cells undergoing cycling and division. Many of the

pan-model transcriptional signatures found in this study broadly

align with previously reported bulk-sequencing and pathway

characteristics.53,54 Izar et al. recently reported on a collection

of scRNA-seq data from ascites-derived HGSOC cells that re-

vealed a widespread inflammatory program among the most

common signatures associated with captured malignant cells.44

We utilized this study as a comparator to validate the accuracy of

the SEEP method, although also probing further the inflamma-

tory and immunoreactive nature of HGSOC cell clusters. Our

comparative analyses revealed distinct cell populations in the

captured ascites HGSOC cells similar to the pan-model cell pop-

ulations identified using the SEEP method. The results suggest

the presence of inflammatory/immunoreactive, cell cycle ma-

chinery, and cellular differentiation and organization pathways

on the surfaces of HGSOC tumors from patient ascites samples.

These data validate the SEEP method and demonstrate the abil-

ity of complex 3D models to replicate complex disease pheno-

types, such as intratumoral heterogeneity, although also high-

lighting the existence of distinct druggable phenotypes across

different cell subpopulations.

We believe that SEEPwill be applicable to a variety of different

models not only as a stand-alone method but also as a comple-

ment to previously described techniques that relate transcrip-

tional identity to cell position. Furthermore, as SEEP does not

rely on transcriptional variation to infer position, it will comple-

ment and refine computational methods for defining spatial

genomic relationships. Unlike ISH methods, SEEP retains a link

between cDNA and cell barcodes enabling genotyping or the

identification of gene fusions using long-read sequencing. In

addition, the method can be performed at scale and is compat-

ible with high-throughput pharmacological testing (e.g., in

conjunctionwith CITE-seq to define screening conditions). Using

existing spatial methods, these experiments are arduous to

conduct across whole structures and many conditions. SEEP

does require extra steps in the binning, sorting, and indexing

stage. However, because these steps do not require niche

equipment or expertise, the SEEP method lowers the barrier

for non-specialized labs to acquire spatially resolved scRNA-

seq data. Thus, the SEEP method can enable studies designed

to identify variation in cell states as a function of environmental

accessibility and adaptation to perturbation as influenced by

the tissue shape. However, it is important to note that the
ons (n = 1,015; 463 surface cluster 1, 128 surface cluster 2, 20 surface cluster 3,

ells with the strongest contribution to the first UMAP dimension were used. In

fference from the next largest score of at least 0.25 were selected. Data were

lls with the highest contribution to the first UMAP dimension were used.

integrated HGSOC model (p value rank% 3). Up to 2,000 top cells from each

UMAP dimension). The signature scores displayed are scaled and centered to

relative expression of the top 30 markers (p value rank) from the DA-seq pan-

the total ascites data, and the malignant ascites data. Color scale is linear.

P2 normalized expression from the integrated SEEP data, the total ascites data,
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SEEP method does not reveal how transcriptional heterogeneity

is influenced solely by tissue shape. SEEP’s intrinsic ability to

permanently stain cells is advantageous for optimizing dissocia-

tion methods. Dissociation of complex tissue types is a limitation

for scRNA-seq experiments, and methods with stable spatial

demarcation strategies will be advantageous for optimizing the

dissociation protocol of a given tissue. The use of a multicolor

system may be able to extend the scope of SEEP where pulsed

additions of dye could allow for finer radial segmentation. Grid-

segmentation along cartesian coordinates may be possible by

two-dimensional staining (e.g., exposing a 3D tissue to dye

fronts from a perpendicular axis) and/or the embedding of

point-source dyes throughout a tissue (e.g., embedding fluoro-

phore releasing hydrogels throughout a 3D tissue). The diffusion

characteristics of calcein AM dye may be limiting for certain ap-

plications. Fortunately, a multitude of bio-orthogonal dyes exists

that greatly expand the range of the SEEP method when used

creatively to solve distinctive experimental goals.55 For instance,

the coupling of the SEEPmethod with the field of ‘‘activity-based

diagnostics’’ may greatly expand the data capture capacity of

the probes used in that emerging research platform.56

Exchanging colored dyes for synthetic DNA oligos could be

used to segment 3D tissues and would eliminate the need for

FACS as synthetic oligo concentrations could be quantified dur-

ing sequencing. In addition, dissociating and reforming spher-

oids stained via SEEP may add insights into whether surface-

primed cells would retain their previous functional state, adopt

a new state, or migrate to the ‘‘new’’ spheroid surface. Expand-

ing the SEEP methods into more complex tissue and/or whole

tumor systems will be complicated by extensive vascularization

networks that will alter dye accessibility. This reality may, howev-

er, offer a means to correlate phenotypes associated with oxy-

gen, nutrient, or drug accessibility to cell transcriptional identity

and response following perturbation. Despite the inherent limita-

tions discussed above, the feasibility and flexibility of the SEEP

method can enable the creative expansion of spatial scRNA-

seq queries. For appropriate systems, the accuracy and robust

nature of SEEP should enable a variety of explorations and reveal

insights into environmental accessibility, spatial identity, hetero-

geneity, and the unique relationship of single cells with the

broader system.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
478
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Cell culture and tissue handling

B SEEP calibration staining

B Imaging dye penetration

B SEEP controls for examining the effect of staining and

sorting on transcription

B SEEP measurement, dissociation, and FACS
Cell Systems 14, 464–481, June 21, 2023
B Indrop deployment for scRNA-sequencing

B Data preprocessing and filtering

B Immunohistochemical evaluation of formalin-fixed

paraffin-embedded spheroids (FFPE)

B In situ hybridization-based detection of SLPI and

CXCL10

B Spheroid image analysis

B Data analysis and visualization

B Patient HGSOC Mapping

B GSEA analysis

B GSVA analysis
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cels.2023.05.003.

ACKNOWLEDGMENTS

This work was supported by the Division of Preclinical Innovation, National

Center for Advancing Translational Sciences, and the Center for Cancer

Research, National Cancer Institute. The work at Harvard was supported by

the NSF (DMR-1708729) and through the Harvard MRSEC (DMR-2011754).

The work at Cambridge was supported by the BBSRC, the Newman Founda-

tion, the Wellcome Trust, and the European Research Council under the Euro-

pean Union’s Seventh Framework Programme (FP7/2007-2013) through the

ERC grant PhysProt (agreement no. 337969). D.B.M. was supported by the

National Institute of Health Oxford-Cambridge Scholars Program and the Cer-

tara Biomedical Research Scholarship.

AUTHOR CONTRIBUTIONS

Conceptualization: D.B.M, M.C., D.A.W., T.P.J.K., and C.J.T.; methodology:

D.B.M., A.M.M., M.C., J.D.J., C.M., M.V., S.B., D.A.W., J.D.B., J.B.,

T.P.J.K., and C.J.T.; investigations: D.B.M., A.M.M., M.C., J.D.J., C.M.,

M.V., D.B., T.D.-H., T.V., S.P., and S.B.; data curation: D.B.M., A.M.M., T.V.,

and M.C.; writing – original draft preparation: D.B.M., M.C., T.P.J.K., and

C.J.T.; writing – review and editing: D.B.M., A.M.M., M.C., J.D.J, C.M., M.V.,

S.P., S.B., D.A.W., J.D.B., J.B., T.P.J.K., and C.J.T.; visualizations: D.B.M.,

A.M.M., M.C., T.P.J.K., and C.J.T.; supervision: M.C., D.A.W., J.D.B., J.B.,

T.P.J.K., and C.J.T.; project administration: T.P.J.K. and C.J.T.; funding acqui-

sition: D.B.M., D.A.W., T.P.J.K., and C.J.T.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

While citing references scientifically relevant for this work, we also actively

worked to promote gender balance in our reference list. We support inclusive,

diverse, and equitable conduct of research.

Received: December 29, 2021

Revised: January 22, 2023

Accepted: May 17, 2023

Published: June 21, 2023

REFERENCES

1. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman,M.,

Tirosh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly

parallel genome-wide expression profiling of individual cells using nanoli-

ter droplets. Cell 161, 1202–1214. https://doi.org/10.1016/j.cell.2015.

05.002.

2. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson,

R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017).

https://doi.org/10.1016/j.cels.2023.05.003
https://doi.org/10.1016/j.cels.2023.05.003
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002


ll
OPEN ACCESSArticle
Massively parallel digital transcriptional profiling of single cells. Nat.

Commun. 8, 14049. https://doi.org/10.1038/ncomms14049.

3. Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V.,

Peshkin, L., Weitz, D.A., and Kirschner, M.W. (2015). Droplet barcoding

for single-cell transcriptomics applied to embryonic stem cells. Cell 161,

1187–1201. https://doi.org/10.1016/j.cell.2015.04.044.

4. Gerlinger, M., Rowan, A.J., Horswell, S., Math, M., Larkin, J., Endesfelder,

D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., et al. (2012).

Intratumor heterogeneity and branched evolution revealed by multiregion

sequencing. N. Engl. J. Med. 366, 883–892. https://doi.org/10.1056/

NEJMoa1113205.

5. Bissell, M.J., Kenny, P.A., and Radisky, D.C. (2005). Microenvironmental

regulators of tissue structure and function also regulate tumor induction

and progression: the role of extracellular matrix and its degrading en-

zymes. Cold Spring Harb. Symp. Quant. Biol. 70, 343–356. https://doi.

org/10.1101/sqb.2005.70.013.

6. Hayat, M.A. (2004). Handbook of Immunohistochemistry and In Situ

Hybridization of Human Carcinomas, First Edition (Elsevier

Academic Press).

7. Achim, K., Pettit, J.B., Saraiva, L.R., Gavriouchkina, D., Larsson, T.,

Arendt, D., and Marioni, J.C. (2015). High-throughput spatial mapping of

single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503–509.

8. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015).

Spatial reconstruction of single-cell gene expression data. Nat.

Biotechnol. 33, 495–502. https://doi.org/10.1038/nbt.3192.

9. Vickovic, S., Eraslan, G., Salmén, F., Klughammer, J., Stenbeck, L.,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

HGSOC ascites-derived organoid samples Laboratory of James Brenton N/A

Chemicals, peptides, and recombinant proteins

Calcein AM ThermoFisher Cat#L3224

Ethidium Homodimer-1 ThermoFisher Cat#L3224

RPMI media Gibco Cat#11-875-085

Pen Strep Gibco Cat#15140-122

FBS Gibco Cat#16000044

BSA Gibco Cat#15260037

TrypLE Select Gibco Cat#12563-011

Accutase Millipore Sigma Cat#A6964-100ML

L-Glutamine (200 mM) Gibco Cat#25030081

Sodium Pyruvate (100 mM) Gibco Cat#11360070

PDMS Momentive Performance

Materials

Cat#RTV615A

Trichloromethylsilane Millipore Sigma Cat#M85301-5G

solvents: SU-8 developer, AZ 300MIF developer,

molecular biology grade 100% ethanol,

IPA, acetone

Various Various

common salts & detergents: KCl, MgCl2,

NaCl, TRIS-HCl, TRIS acetate, magnesium

acetate, potassium acetate, sodium acetate,

EDTA, Tween-20, IGEPAL

Various Various

inDrop V2 reagents Various Zilionis et al.57

Deposited data

PEO1 spheroid SEEP scRNA-seq reads this study GEO: GSE157299

HGSOC organoid SEEP scRNA-seq reads this study GEO: GSE157299

HGSOC solid tumor Punch-SEEP scRNA-seq reads this study GEO: GSE157299

PEO1 calcein staining controls scRNA-seq reads this study GEO: GSE157299

Experimental models: Cell lines

PEO1 cells (ECACC 10032308) MilliporeSigma Cat#10032308-1VL

Experimental models: Organisms/strains

Adult NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice CRUK PDX biobank N/A

Oligonucleotides

inDrop v3 oligonucleotides Laboratory of Allon Klein Custom Orders

inDrop v3 single-cell barcodes github.com/indrops/indrops/

blob/master/ref/barcode_lists/

Custom Orders

Software and algorithms

inDrop.py Klein et al.3 Code available on this GitHub repository:

github.com/indrops/indrops

Seurat (V4.1.1) Stuart et al.26; Hao et al.47 https://cran.r-project.org/web/

packages/Seurat/index.html

Leica Application Suite X Leica Microsystems N/A

Harmony (4.9) PerkinElmer N/A

Fiji-win64 Schneider et al.58 https://imagej.nih.gov/ij/

FlowJo (10.6.1) BD Biosciences N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

DAseq v1.0.0 Zhao et al.46 v1.0.0 https://github.com/

KlugerLab/DAseq

Python (2.7) Python Software Foundation N/A

R (v3.6.3) The R Project for Statistical

Computing

N/A

Additional R packages: dplyr, tidyr, Matrix, ggplot2,

colorRamps, reshape2, ggextra, GSVA, parallel,

ComplexHeatmap, circlize, GetoptLong, grid, gridExtra,

stats, lattice, latticeExtra, fgsea, cogena, RColorBrewer,

SDMTools, ggrepel, scales, DT

CRAN & Bioconductor

repositories

N/A

In-house code for image analysis

(MATLAB, python, & R)

this study All code is available on this study’s;

GitHub repository: https://github.com/

davidbmorse/SEEP_image_processing;

https://doi.org/10.5281/zenodo.7765319

In-house code for sequencing data analysis (R) this study All code is available on this study’s;

GitHub repository: https://github.com/

davidbmorse/SEEP; https://doi.org/

10.5281/zenodo.7765315

Other

Photomasks (25400 DPI) CAD/Art Services Various designs

500 mm thick test-grade silicon wafers

of various diameters

University Wafer Various

Microtubing (i.d. 0.38 mm 3 o.d. 1.09 mm) Scientific Commodities Cat#BB31695-PE/2

Disposable Biopsy Punches (various diameters) Integra Miltex Various
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Craig J.

Thomas (craigt@mail.nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data needed to evaluate the conclusions in the paper are present in the main text and/or the supplementary materials. The data-

sets generated in this study have been deposited in the Gene Expression Omnibus, a public functional genomics data repository,

under the accession number GSE157299. Codes used within this study are available on GitHub at https://github.com/

davidbmorse/SEEP_image_processing and https://github.com/davidbmorse/SEEP.

METHOD DETAILS

Cell culture and tissue handling
Several methods exist to create spheroidal cultures.33,59,60 In this study, PEO1 cells were cultured in a stem-cell basedmedia in ultra-

low attachment (ULA) plates to compel spheroid formation. PEO1 (ECACC 10032308) cells were grown and sustained in adherent cell

culture flasks in RPMImedia with 10%FBS before being transferred to ultralow attachment (ULA) 96-well plates for HGSOC spheroid

formation.36,61 10,000 cells were seeded per well and allowed to grow for 14 days in spheroid media prior to harvesting.

Organoid cultures have emerged over the past decade as highly valuable cancer cell models. While there are diverging definitions,

most agree that an organoid model is an explant of cells resected from an in vivo model that self-organize into 3D cell clusters that

retain key elements of the tumor microenvironment.62,63 Several organoid models of HGSOC have been reported utilizing a variety of

methods including derivations from fallopian epithelial stem cells, surface epithelial cells, or cells collected from patient ascites.64–67

Organoids were harvested from sphere-forming cells present in HGOSC patient ascites collections and grown in a custom Matrigel

solution for 14 passages prior to harvesting. Organoid size and cell number was dependent on natural ascites sphere formation. DNA

sequencing of the organoids revealed chromosomal aberrations and instabilities characteristic of p53 mutated HGSOC.
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HGSOC cells for PDX models were collected from patients undergoing interval debulking surgery or ascites drains at Adden-

brooke’s hospital in Cambridge, UK. PDX tumors were generated using cells that were rapidly thawed from cryopreservation, and

3 million cells were injected subcutaneously into NOD.CgPrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Mice were monitored weekly, and

the tumor volume determined using caliper measurements. Once reaching a maximum volume of 1500 mm3, mice were culled

and the tumor harvested. Serial transplants were performed to generate maximum of 3-4 generations. Animal procedures were con-

ducted in accordance with the local AWERB, NACWO and UK Home Office regulations (Animals (Scientific Procedures) Act 1986).

SEEP calibration staining
Symmetric staining on spheroids

HGSOC spheroids were imaged using both confocal and light sheet microscopy to quantify the kinetics of dye-uptake. High-content

confocal microscopy was performed on 96-well spheroid plates as follows: We removed exogenous esterases frommature spheroid

plates by performing a gentle media-exchange using fresh, serum free, and phenol-red free media, leaving a final volume of 50 mL of

fresh media per well after the exchange. We transferred spheroid plates to a high-content Opera Phoenix confocal microscope and

gently added 50 mL of a 2x concentration calcein-AM staining solution (in culture-matched media) to the wells using a multichannel

pipette. The final calcein-AM concentration was 0.5 mM. Spheroids were imaged every 5 min for 5 hours to monitor dye penetration.

Z-slices, 12 mm apart were taken from the objective-facing surface of the spheroid through the spheroid’s midpoint. In addition, we

performed light-sheet microscopy on individual spheroids suspended in a 0.5 mMcalcein-AM solution during imaging. 12 mmspaced

z-slices were taken throughout the volume of the spheroids for 2 hours to monitor dye penetration. In both cases a 488 nm laser was

used to excite calcein, and fluorescence emission collection was centered at 522 nm. For the calibration step, imaging was per-

formed at 37 ◦C and 5% CO2; tissues were discarded after imaging.

Symmetric staining on organoids

HGSOC organoids were imaged using high content confocal microscopy to quantify the kinetics of dye uptake as follows: 4 wells of

organoids, grown in 24 well plates, were gently washed 3 times in RPMI with 10%FBS and allowed to gravity settle for 3min between

washes to ensure Matrigel, debris, single-cells, and small cell clusters were removed. After the last wash, organoids were transferred

to flat bottom 96-well plates in 100 ul of fresh, serum free, and phenol-red-free media for imaging. We transferred organoid plates to a

high-content Opera Phoenix confocal microscope and gently added 100 ul of 2x concentration calcein-AM staining solution (in cul-

ture-matched media) to the wells using a multichannel pipette. The final calcein-AM concentration was 0.5 mM. Organoids were

imaged as a series of z-stacks every 10 min for up to 2 hours to monitor dye penetration.

Punch-SEEP on solid tumor biopsy

Punch-SEEP staining was performed using a prepared biopsy punch. Dye penetration was monitored at various time points by

confocal microscopy by ejecting tissue biopsies, washing, and imaging in media-filled glass-bottom dishes. Dye-loaded biopsy

punches were prepared using disposable, 1.5 mm wide punches, prefilled with a calcein-AM saturated hydrogel plug that melted

in cell-culture conditions. A 10% gelatin solution in sterile PBS was prepared and stored at 4 ◦C. Prior to biopsy loading, the gelatin

was melted in a warm water bath and 4 mL were pipetted into a small plastic weigh-boat to a height of 2 mm. The weigh-boat con-

taining the gelatin was then lyophilized for 24 hours. The lyophilized gelatin was cut into 1 cm squares and submerged in a 250 mL

solution of 2mMcalcein AM. After a fewminutes, full absorption of the dye solution into the gelatin pieceswas observed. The gelatin +

dye solutionwas kept on ice and in the dark until use. Just before biopsy punching, the gelatin squares (now very soft and fragile) were

removed from the dye solution and placed within a weigh-boat or on an impermeable cutting surface. Biopsies were taken of the

gelatin squares and visually inspected to ensure a gelatin plug was flush with the surface of the biopsy punch. The gelatin plug

was then gently pushed 0.5 mm into the biopsy punch to ensure the circular blade had clear/direct access to the tumor surface. Bi-

opsies were immediately used to punch the dissected tumors. Punch-biopsies taken from subcutaneous HGSOC tumors grown in

PDX mouse models were imaged using confocal microscopy to quantify the kinetics of dye-uptake. Tissue acquisition, staining, and

imaging were performed as follows: Mice were sacrificed, and tumors were dissected and stored in ice-cold RPMI. Tumors were cut

in half and biopsies were taken from the tumor surface normal to the cross-sectional cut. Biopsies were taken using dye-loaded

1.5 mm diameter self-ejecting biopsy punches that were prepared in advance. After punching, the biopsies were not ejected from

the biopsy puncher and the entire puncher was placed at roughly a 20� angle in a 15 cm cell-culture dish prefilled with a few mm

of RPMI at 4 ◦C. The sharp tip of the punch was submerged in the media while the handle rested on the lip of the culture dish.

The lid was placed gently over the punches and the entire dish was incubated in a cell culture incubator at 37 ◦C and 5% CO2.

We performed this procedure for multiple biopsies, and imaged dye propagation though the sample at various time points using

confocal microscopy. We ejected biopsies into 40 mL of RPMI to wash away excess dye. We placed washed biopsies on glass-bot-

tom imaging dishes filled with 2 ml of RPMI media and imaged the samples on a Leica SP5 confocal microscope. Multiple fields of

view were acquired to image the entire biopsy (Figures 4A, S3D, and S3E). Z-slices were taken every 10 mm through the sample.

Imaging dye penetration
Confocal and light-sheet microscopy were performed to quantify the penetration of dye into tis- sues. To account for the attenuation

of signal with depth in the dense samples, attenuation was calculated and used to normalize measurements. We stained PEO1 cells

with cell tracker dyes green, violet, and deep red prior to spheroid formation. We formed 10,000-cell spheroids in ULA 96-well plates

as done in previous experiments. After spheroid maturation, signal attenuation was measured by taking z-slices 10 mm apart begin-

ning from the objective-facing spheroid surface. For cell tracker green, of equivalent excitation/emission parameters to calcein,
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exponential decay was observed up to 100 mm into the spheroids, and a trend line, y = 14,425e0.201 fit to the data with R2 = 0.999. This

attenuation factor was used to normalize the imagesmonitoring dye penetration into both spheroids and organoids. After attenuation

normalization, dye penetration images for spheroids and organoids were computationally divided into n shells of equal volume. To

identify spheroid and organoid boundaries among hundreds of confocal images and segment them into concentric shells of equal

volume, the open-source convoluted neural network, Mask R-CNN, was implemented across image stacks.68 Once the tissue struc-

tures were localized, a custom image analysis pipeline was used to segment cell layers based on cells’ Euclidian distances from tis-

sue margins. An erosion strategy was used and implemented in MATLAB; the code can be found in the GitHub pages mentioned

below. n was calculated based on the % fluorescence difference between adjacent layers for each time point. The time needed

to reach the highest n, with the greatest change in intensity between surface and core fluorescence was noted. Spheroid optimal

penetration time was 60min while organoid optimal penetration time was 55min. For the biopsy samples, attenuation was not calcu-

lated as change in dye concentration was calculated perpendicular to the direction of attenuation. For biopsies, z-planes were flat-

tened into a single max-projection and change in fluorescence intensity between the surface of the biopsy and the core were

observed in time. n, the number of layers the biopsy would be divided into, was calculated based on the % fluorescence difference

between adjacent layers for each time point. At 75 min, change in intensity between biopsy surface and core had plateaued.

For all tissues, a maximum change in fluorescence intensity plateaued at specific times. Achieving a steady state of fluorophore

acquisition proved ideal for consistently segmenting tissues based on dye uptake as harvesting times were flexible. Beyond a critical

time, each tissue could be removed from its staining solution at a wide range of times without effecting segmentation performance.

Due to the desire to limit cell handling, tissues were harvested at the earliest time possible for proper segmentation.

SEEP controls for examining the effect of staining and sorting on transcription
To control for the potential accumulation of technical bias via calcein staining and/or FACS sorting, HGSOCPEO1 cells were exposed

to the staining and sorting conditions used in SEEP. PEO1 cells were grown as monolayers, gently dissociated, and either immedi-

ately sequenced (control group) or conditioned via sorting (sort only group), staining (stain only group), or staining and sorting (sort &

stain group). All experiments were performed twice to garner two technical replicates for each condition. All replicates and conditions

were processed via inDrop independently. All library preparation was performed independent. After library preparation, replicates

and conditions were indexed according to their identity, pooled, and sequencing on a 75 bp Illumina Nextseq 400M High output

kit with 5% PhiX as a spike-in control. In total, 4,574 cells passed filtering to explore possible technical bias. Cells of each condition

were processed and analyzed computationally as described in the below sections titled Indrop Deployment for scRNA-sequencing,

Data Preprocessing and Filtering, and Data Analysis and Visualization.

SEEP measurement, dissociation, and FACS
Samples were stained as previously described for optimal segmentation times (spheroid = 60 min, organoid = 55 min, and biopsy =

75 min). For each of the following systems, the experiments described below were repeated two times on different days and with

different cells giving us two biologically distinct (i.e., cultured at different times under identical conditions) replicates. Each biologi-

cally replicate was further split into two technical replicates just prior to performing FACS. Overall, each system had 4 replicates (2

biological replicates with 2 technical replicates each).

Spheroids

192 spheroids, from 2 ULA 96-well plates, were pooled in a 15 ml conical flask and washed 2x in fresh spheroid media. Spheroids

were allowed to settle to the bottom of the 15 ml conical for 2 min with no centrifugation before removing supernatant and cellular

debris. After the last wash, 2ml of serum-free spheroid media was added to the spheroids. 2 mL of freshly made 500 mMcalcein AM in

PBS + 0.05% BSA was gently added to the spheroid solution for a final calcein-AM concentration of 0.5 mM. The conical was gently

flicked 5x to resuspend the spheroids, the lid was vented, and the conical was stored in a cell culture incubator (37 ◦C and 5%CO2)

for 60 min. Every 10 min the conical was gently flicked 5x to re-suspend the settled spheroids. After 60 min, the spheroids were

washed 3x in 15 ml of PBS + 0.05% BSA and allowed to gravity settle between washes.

Samples were dissociated in 2 ml of Accutase at 37 ◦C for 30 min with intermittent pipetting every 10 min to encourage dissoci-

ation. Intermittent pipetting consisted of gently pipetting 20x using a 1000 mL pipette tip pre-blocked with 0.05% BSA. After 30 min

and the final dissociative pipetting, the spheroids were no longer visible, and the solution appeared cloudy and homogeneous. 13 ml

of RPMI with 10% FBS was added to the solution, inverted 5x, and centrifuged for 5 min at 400g. The cells were resuspended in 1 ml

of ice-cold PBS + 0.05% BSA and passed through a 40 mm cell filter. The filter was gently rinsed with 10 ml of ice-cold PBS + 0.05%

BSA. 11 ml cell suspension was centrifuged at 400 g for 5 min, resuspended in 1 ml of ice-cold PBS + 0.05% BSA, and moved to a

polypropylene FACS tube. Cells were kept on ice and in darkness until FACS.

Organoids

4 wells of organoids grown in 24 well plates were gently washed 3x in RPMI with 10% FBS and allowed to gravity settle for 3 min

between washes to ensure Matrigel, debris, single-cells, and small organoids are removed. After Matrigel removal, organoids

were processed as spheroids, above, except for the following changes: the staining incubation time was 55 min and 2 mL of Tipple

E Express (Thermo) was used instead of Accutase as the dissociation agent.

PDX Biopsies

Individual Biopsies (n = 5) from subcutaneous PDX tumors were punched using the aforementioned method and dye-loaded biopsy

punches. They were incubated at 37 ◦C and 5%CO2 for 75 min, and then ejected into 40 mL of room temperature RPMI + 10% FBS.
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Biopsies were centrifuged for 3 min at 500 g to collect. The supernatant was removed, and a scalpel was used to break up firm bi-

opsies at the bottom of the 50mL conical. The biopsy was then dissociated and washed using a gentle-MACS dissociator according

to the 37 ◦Cm_TDK_2 (mouse kit) protocol provided by the dissociation kit.m_imptumor_01 protocol was performed if visible biopsy

fragments remained after dissociation. Dissociated cells were centrifuge in a MAX tube at 350 g for 5 min and resuspended in

DMEM + 10% FBS filtered through a 70 mm filter placed on a 50 mL conical. The strainer was washed in 50 mL DMEM + 10%

FBS. Finally, the cell suspension was centrifuge at 350 g for 5 min, resuspended in 1 mL of ice-cold PBS + 0.05% BSA, and moved

to a polypropylene FACS tube. Cells were kept on ice and in darkness until FACS.

FACS

Cells were sorted into 4 (spheroids) or 3 (organoids and biopsies) bins based on 515 nm emission from a 488 nm laser source. Debris,

dead cells, and cell clumps were conservatively removed based on forward/side scatter profiles. The sample was allowed to run for a

fewminutes while laser power was adjusted to observe a Gaussian distribution of unstained cells followed by a leading tail of stained

cells. Bin widths were set to receive equal proportions of cells. After adjusting laser power and bin width, samples were collected in

1.5 mL protein LoBind Eppendorf tubes prefilled with 250 mL of ice-cold PBS + 0.05% BSA. Samples were kept on ice and imme-

diately barcoded via the inDrop protocol.3

Indrop deployment for scRNA-sequencing
For all tissues inDrop was performed as follows: Cells were suspended in a 1x PBS, 0.01% (v/v) BSA, and 15% (v/v) OptiPrep solution

at a concentration of 120,000 cells/ml and processed via the inDrop protocol with v3 barcoding design.69,57 Polyacrylamide bar-

coded hydrogel beads were fabricated in house and quality controlled using FISH and qPCR on the extended primers; the barcode

diversity for all experiments was 147,456. Capture efficiency and cross-contamination levels were quantified for each batch of hydro-

gels by species mixing experiments done on human HEK293 and mouse 3T3 fibroblasts and by fast imaging of the microfluidic

encapsulation events. Tomaintain a barcode collision rate of less than 1%, collection fractions were acquired at or below 2,949 cells.

Microfluidic handling and library preparation were carried out according to published protocols.61Microfluidic flow rates, cell capture

rates, and optically observed doublet rates can be found in Table S1A. Libraries were amplified and barcoded via limited-cycle PCR

and inspected for quality on a BioAnalyzer HS kit. Library size distribution and concentration wasmeasured on a BioAnalyzer HS and

Qubit HS respectively to inform sample pooling at equimolar ratios. The final library was purified on a 1.5x volumetric ratio of

AmpureXP beads and quantified using the Kapa NGS library quantification kit and a BioAnalyzer HS. The oligonucleotide sequences

used to barcode the final library can be found in Tables S1B and S1C. Libraries were sequenced using a 75 bp Illumina Nextseq 400M

High output kit with 5% PhiX was used as a spike-in control. Oligonucleotide barcode sequences were recorded in Tables S1B and

S1C, and sequencing parameters were recorded in Table S1D.

Data preprocessing and filtering
Fastq files were generated using Illumina’s bcl2fastq script (Table S1E). The data were filtered, quantified, and sorted using the in-

Drop analysis pipeline. The pipeline execution parameters can be found in Table S1E and parameters for a.yaml file can be found in

Table S1F.

Raw countsmatrices from the inDrop pipeline69,57 were converted into sparsematrices using a customR script and loaded into the

Seurat26 tool using the Read10x function. The custom script for sparse matrix conversion can be found in Table S1E. Cells were

further filtered from empty droplets and quality controlled by analyzing the distribution of the number of UMIs per cell, the number

of genes per cell, and the fraction of mitochondrial genes per cell. Common scRNA-seq filtering criteria were assessed and imple-

mented on the individual cell collections and sequencing runs. As sample type, sample quality, cell-capture rate, and sequencing

depth varied across experiments, filtering thresholds sought to differentiate between high-quality and low-quality cells based on

the relative abundance of reads allocated to each cell barcode. To do this, we fit a mixture model to the data following a procedure

outlined by the Martin Hemberg Group (https://github.com/hemberg-lab/scRNA.seq.course) and identified where the higher and

lower distributions intersected. For the spheroid samples, cells were selected that contained between 200 and 2,500 unique genes

and between 0 and 18% mitochondrial reads. 7,908 cells remained after filtering. These were made up of 1,178 center cells, 2,471

inside cells, 2,736 outside cells, and 2,667 surface cells. For the organoid samples, cells were selected that contained between 580

and 5,000 unique genes, between 5 and 30% mitochondrial reads, and between 500 and 15,000 unique molecules. 7,771 organoid

cells remained after filtering. These were made up of 2,285 center cells, 2,819 middle cells, and 2,667 surface cells. For the PDX-bi-

opsy samples, cells were selected that contained between 200 and 3000 unique genes, between 0 and 40% mitochondrial reads,

and between 350 and 15,000 unique molecules. 1,967 PDX biopsy cells remained after filtering. These were made up of 280 center

cells, 677 middle cells, and 1,010 surface cells.

After filtering, cells were scored for cell cycle by the CellCycleScoring function. The data were then log normalized using a global-

scaling normalization via the NormalizeData function and a scale factor of 10,000. For the biopsy sample containing both human and

mouse cells, mouse cells (n = 151) and mouse-human doublets (n = 29) were identified and removed by aligning RNA-seq reads to

both human and mouse transcriptomes. These data were removed from the overall analysis.

Immunohistochemical evaluation of formalin-fixed paraffin-embedded spheroids (FFPE)
All slides were baked prior to staining. MIB-1 immunohistochemical staining was performed on an automated immunostainer

BenchMark Ultra (Roche). A 1:200 dilution of MIB-1 (Clone MIB-1, Dako, Cat No. M7240, RRID:AB_2142367) was applied and
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detected with an ultraView Universal DAB Detection Kit (Roche, Cat No. 760-500). The slides were dehydrated in graded alcohols,

treated with xylene (2 x 5 min), and cover slipped.

In situ hybridization-based detection of SLPI and CXCL10
Themanual RNAscope� 2.5 High Definition (HD)- BROWNAssay kit (Advanced Cell Diagnostics, Cat No. 322300) was used accord-

ing to manufacturer’s instructions to perform ISH for Hs-SLPI Probe (Cat No. 531861) and Hs-CXCL10 (Cat No. 311851) in formalin-

fixed paraffin-embedded (FFPE) spheroids. Slides were deparaffinized in xylene (2 x 5 min), dehydrated in 100% EtOH (2 x 1 min), air

dried at RT, and incubated in RNAscope� Hydrogen Peroxide (Cat No. 322330, ACDBio) at RT for 10 min to quench endogenous

peroxidases. Slides were washed in DI water twice before being submerged in 700 mL of fresh boiling RNAscope� 1X Target

Retrieval Reagents solution (Cat No. 322000, ACDBio) for 15 min and then washed twice in DI water, once in 100% EtOH, and air

dried at RT. A hydrophobic barrier was drawn around the tissue and RNAscope� Protease Plus (Cat No. 322330, ACDBio) was

applied for 20 min in a HybEZ� Oven at 40�C (ACDBio). Slides were then washed twice in DI water and incubated with the appro-

priate probe for 2 hours in the HybEZ� Oven. RNAscope� signal amplification reagents (Cat No. 322310, ACDBio) AMP 1 (30 min),

AMP 2 (15 min), AMP 3 (30 min), AMP 4 (15 min), AMP 5 (75 min), and AMP 6 (15 min) were applied and incubated in the HybEZ�
Oven. Before adding each AMP reagent, the slides were washed twice with RNAscope� 1X Wash Buffer (Cat No. 310091, ACDBio).

RNAscope� DAB detection reagents (Cat No. 322310, ACDBio) were applied and incubated for 10 min in the HybEZ� Oven. Sec-

tions were counterstained with Harris-Mayer’s Hematoxylin, washed in tap water, placed in 0.02% ammonia water for 10 seconds,

and washed again with tap water. Sections were then dehydrated in graded alcohols, treated with xylene (2 x 5 min), and cover

slipped.

Spheroid image analysis
A semi-automated algorithm systematically analyzed gene expression in sub-regions of individual spheroids. An image analysis

script was created and executed in the Matlab scientific computing environment (Matlab version 2021a, Mathworks, Inc.). The script

functions performed RGB (red, green, blue) three-channel thresholding to isolate the image region pixels that contain the colorimetric

dye marker of gene expression. The same thresholding settings were applied to all images. The sum area of the binary masks from

these regions approximates the number of ‘expression positive’ cells, which exhibit detectable levels of gene expression. Intensity

differences were measured using script functions converting the RGB color space to grayscale values and then inverted the gray-

scale image so that dark regions correspond to higher intensity values. The integrated intensity of the inverted grayscale image in

the ‘expression positive’ cell binary mask was used to approximate total gene expression in these regions. The script applied a sepa-

rate threshold function to isolate the ‘whole spheroid’ region as a binary mask. Binary morphological functions were applied to fill any

internal gaps in the ‘whole spheroid’ region. The script distance transform function converted the pixels in the ‘whole spheroid’ binary

mask region producing output pixel values that represent the distance (in pixel count) to the edge of the ‘whole spheroid’ region.

Within each spheroid, the distance labeled pixels were sorted into radial band regions. The cut-off values for distance sorting pro-

duced four band regions per spheroid, and each of these bands had approximately the same width (in pixels). The ‘expression pos-

itive’ cell region was then measured in each of the radial band regions. The area of the ‘expression positive’ cell regions was also

normalized to the total area in the corresponding radial band.

Data analysis and visualization
Pairwise anchor-based single-cell data integration implemented in Seurat v4.1.147 was used to generate the HGSOCmodel from the

Center and Surface segmentation layers of cultured PEO1 spheroids, patient-derived organoids, and PDX-derived biopsy cells. The

top 2000 features most variable across the data sources were identified by the SelectIntegrationFeatures function and subsequently

used for data alignment with the FindIntegrationAnchors and IntegrateData methods. The default integration parameters were

applied with log normalization and CCA dimension reduction. ScaleData (mitochondrial and cell cycle genes regressed out),

RunPCA, and RunUMAPwere performed on the integrated dataset. Subsequently, the DAseq v1.0.0 algorithm46 was used to detect

distinct cell subpopulations in the regions of DA between the Center and Surface layers of the integrated HGSOC model (absolute

DA-seq score > 0.8 and cluster size of at least 50 cells). To characterize DA subpopulations, Seurat’s FindConservedMarkers (Wil-

coxon Rank Sum test) was performed to select genes upregulated in cluster vs all mode in each data source of the HGSOC model

(maximump-value less than 0.05). Functional ORAwas then run with the Hallmark Collection of MSigDB v6.2 using fgsea’s v1.18 fora

(Fisher’s exact test) and CollapsePathwaysORA (an algorithm retaining over-represented non-redundant gene sets).48 Ucell

v1.99.770 and the AddModuleScore_Ucell function was used to calculate single-cell scores for the Hallmark signatures. The enriched

(adjusted p-value less than 0.05) and non-redundant gene sets, together with the significant conserved markers overlapping these

gene sets, defined the transcriptional signatures distinguishing the DA subpopulations. The reference HGSOCmodel was generated

with Seurat’sRunPCA (8 PCs) andRunUMAP dimension reductions using the integratedmodel and the identified DA subpopulations

and applied in the downstream analysis for mapping the single-cell patient HGSOC data.

Patient HGSOC Mapping
HGSOC single-cell RNA sequencing datasets published by Izar et al.44 were downloaded from the Gene Expression Omnibus (GEO)

database (GSE146026) and analyzed with Seurat v4.1.18,47 after transforming the normalized count scale into Seurat’s default scale

using a 10k scale factor and the natural log. Seurat’s reference-based transfer of single-cell cluster information8,26,47 was applied to
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predict Center and Surface DA subpopulation labels in the ascites cells collected from the HGSOC patients. FindTransferAnchors,

TransferData, and MapQuery functions were run with the k.anchors parameter set to 20, CCA dimension reduction, and the UMAP

projection model. A subset of ascites cells with maximal transfer scores greater than 0.5 and a difference from the next largest score

of at least 0.25 were used for validation of the transcriptional signatures’ characteristic of the reference DA subpopulations.

GSEA analysis
Pre-ranked GSEA was performed using the R Bioconductor fgsea package and the hallmark collection of the Molecular Signature

Database (MSigDB version 6.2).38,42,71,72 Genes were ranked based on the average expression in a cell cluster relative to the global

average. Permutation p-values for the enrichment scores were calculated based on 10000 gene set-wise runs and significantly en-

riched gene sets were identified with false discovery rate adjusted p-values less than 0.05. Common GSEA leading edge (LE) gene

sets were extracted for comparison of functional enrichment across ovarian spheroids, organoids, and biopsies.

GSVA analysis
GSVA implemented in the R cerebroApp package was applied to determine gene set activation (MSigDB version 6.2 collections) in

each cell.38,39,73 The GSVA scores were calculated with Gaussian kernel and the maximum difference parameters on Seurat log

normalized data and highly variable genes. The analysis utilized the computational resources of the NIH HPC Biowulf cluster

(http://hpc.nih.gov).
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