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Propagation and adsorption of nanoparticles in porous medium as traveling waves
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Generally, one attempts to globally predict or interpret, from numerical simulations, the history of the effluents
exiting porous media (i.e., the breakthrough curve), without a clear view of the detailed evolutions of deposition
inside the medium. We developed a simple physical frame of description of the colloidal particle transport and
adsorption, which allows to predict the main characteristics of transport and deposition in porous media from
a set of directly measurable (macroscopic) physical parameters. More precisely, we show that the deposition
distribution is basically a traveling wave propagating in the medium with a shape (frontal or extended) and
velocity depending on the flow rate and the availability of particles with regards to the adsorption capacity. This
in particular makes it possible to predict or interpret the breakthrough curve shape from a physical approach. We
also show that additional effects may be included, such as a multiporosity leading to confinement effects (delayed
deposition in less accessible regions). The validity of the model is checked from original direct visualizations
by confocal microscopy of particle adsorption in time and space for nanoparticle suspensions flowing through a
bead packing. This makes it possible to measure the evolution of the deposition profiles in time distinguishing
the deposition in confined regions. The model appears to successfully predict the different trends: traveling wave,
global deposition profile shape, profiles of deposition in confined regions.
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I. INTRODUCTION

Colloidal particles from industrial or natural sources prop-
agate and may deposit and alter the environment they flow
through. Common problems include the accumulation of par-
ticles impacting industrial [1–4], medical and biological [5–8]
processes (injection, filtration, storage, cleaning, sorting, etc.),
or the leaking of contaminants from industrial or hydrologic
processes transported in ground water and accumulating in
soils [9–12]. Predicting particle transport and deposition in
these porous media is the key to solve these problems.

All these applications involve suspensions of submicronic
particles (chemicals, heavy metals, microorganisms, engi-
neered remediation agents) flowing through saturated porous
matrices with a diversity of geometries and porosities, with
some possibility of adsorption thanks to van der Waals or
electrostatic attraction. Obviously, the physical problem is
complex since particle transport and retention on the walls of
the porous media are a function of the specific interactions
and of the way the particles access the surfaces. Many studies
described in details the possible interactions relying on the
classical DLVO theory and/or taking into account specific
hydrodynamic processes around the solid walls of porous
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systems [13–21]. Geometrical aspects were also sometimes
considered as important (theoretical impact of pore size poly-
dispersity [22,23], shadow effect [24], local confinement mod-
els [25]) but the evaluation of their impact on macroscopic
transport modeling is somewhat indirect.

Deposition models generally propose empirical correc-
tions of the common advection/diffusion system of equa-
tions [9,26–29] to take into account the different types of
interactions between the particles and the solid walls of the
porous structure, generally through a modification of the
adsorption kinetic constant. However, the validity of these
approaches is often only indirectly tested through the analysis
of the breakthrough curve [20,21,30–33], corresponding to the
exited concentration as a function of time. The impact of a
multiporosity, which is a crucial point for transport in soils,
has been considered within the same frame [20,29,30]. We
are thus faced with the paradoxical situation that the validity
of a detailed description of the adsorption processes inside the
medium, for a macroscopic model of transport and deposition,
is tested through the observation of the transported particles
outside the porous medium.

On the other side, there has been several direct observations
of some processes, in particular clogging effects, in simplified
systems (2D and/or at pore scale) [23,34–39], and qualita-
tive static imaging or indirect imaging in realistic systems
[40–42]. Besides, detailed visualizations at the pore scale
inside 3D porous media provided a full set of information
on the local mechanisms of bacterial motion and trapping
[43,44]. At last, it was possible from MRI (magnetic res-
onance imaging) to get a view of the adsorbed and sus-
pended particles during the flow through a bead packing, in a
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limited range of flow rates and for fast adsorption: a regular
progression of the front of adsorption was observed [45].
These different works helped clarifying our understanding
of the local phenomena but were in general not directly
used for transport and deposition modeling at a macroscopic
scale. Nevertheless, recent quantitative internal visualizations,
with NMR (nuclear magnetic resonance) [46] and confocal
microscopy [47], appeared useful to develop probabilistic
models of deposits and/or clogging at a macroscopic scale and
check their agreement with internal measurements.

Here, our objective is to establish a straightforward relation
between the events at a local scale and the macroscopic
behavior of the system. We focus on deposition processes
leaving the porous medium unchanged, i.e., clogging or even
thick deposit as compared to the pore scale, which have been
considered in Refs. [46–48], are negligible. We show that a
minimal number of ingredients may be used to describe the
principles of the propagation and deposition of colloids in
porous medium, and that such an approach leads a straightfor-
ward quantification of the process in simple physical terms.
This relies on a description of the local processes which
overcomes the complexity of the porous structure and the
hydrodynamics, by using a probability of adsorption for each
particle. This probability can be considered as constant on
average precisely thanks to the complexity of the flow which
rapidly induces a homogeneous dispersion of the particles.

We show that, within the frame of a simple model of
colloidal particle transport and adsorption through porous
medium, the deposition distribution is a traveling wave prop-
agating in the medium with a shape and velocity depending
on the flow rate and the availability of particles with regards
to the adsorption capacity. The breakthrough curve is then
predicted as a straightforward consequence of this shape.
This model is validated from direct visualizations through
confocal microscopy of particle adsorption in time and space
for nanoparticle suspension flowing through a bead packing.
This model can serve as a reference to which various more
complex effects may be added. As an example, we show that
it can be extended to media with multiporosities, leading to
“confinement effects.”

II. MODELING

A. Homogeneous porous medium

We consider the transport and deposition of colloidal par-
ticles initially suspended in a liquid with negligible sedimen-
tation, the suspension (liquid + particles) being injected at
constant flow rate in porous medium. This process is usually
described by an advection-dispersion equation containing a
blocking function which can express in more or less details
the physical effects leading to deposits [48–51]. Here we built
the description from more global and straightforward physical
assumptions. We assume that the particles are essentially
transported by the fluid but each particle entering a pore has
some given probability to be adsorbed to the walls of the pore.
We consider the case for which only one layer of particles can
be adsorbed to the walls. Another fundamental assumption (in
agreement with our experimental observations under various
conditions: see below) is that a particle which has been

adsorbed will never start again to move. It seems in fact
rather reasonable to consider that a deposited particle will not
easily be moved again if the flow conditions, which allowed
the particle to fix onto the solid surface, do not change, as
expected under steady injection. Remark that, on the contrary,
some particle removal can result from a significant evolution
of the pore structure due to deposits, which has led to a
significant increase of the local velocity [47].

We then define the deposited amount s(x, t ) as the num-
ber of adsorbed particles per unit volume at time t in the
pores situated at the distance x from the entrance. This
variable must be understood as a mean value over a thin
cross-sectional layer at the distance x. We also define n(x, t )
as the number of particles in suspension per unit fluid
volume.

Finally we assume that over a short distance, typically a
few pores, the suspension is sufficiently mixed so that the
particle distribution can be considered as homogeneous and
the suspension characteristics are fully described through the
value of n. Thus we consider that the complex fluid flow
tends to rapidly disperse again the particles still flowing at
all possible distances from the pore surfaces. It follows that,
for a given velocity of the fluid, we can describe the process
in terms of a constant probability of adsorption for the parti-
cles moving through some elementary volume of the porous
medium (possibly of several pore lengths). Actually, we have
also to take into account that this probability of adsorption
is decreased if the solid surface is already partly covered by
particles. Note that here we neglect the impact of adsorption
on the porous structure, which amounts to consider that the
particle size is much smaller than the pore size.

During some elementary flow step, i.e., over an elementary
time period dt , during which the suspension flows through the
elementary volume of porous medium (see above), the gain in
deposition ds is proportional to

(1) The number of particles entering the pores, i.e., nV dt ,
in which V is the mean flow velocity through the pores; V is
the effective mean velocity of the fluid and particles, which
must not be confused with the mean velocity through the
porous medium, equal to εV , where ε is the porosity of the
medium.

(2) The probability of adsorption of a particle entering
a pore, i.e., k, which depends on the characteristics of the
system (particle size and interaction with wall, structure of
the porous medium, flow characteristics).

(3) The fraction of surface sites available at that time: 1 −
s/s0, in which s0 is the number of surface adsorption sites per
unit volume (i.e., the maximum number of particles adsorbed
at saturation). Thus we assume that only one layer of adsorbed
particles can form on the bead.

We thus get ds = kn(1 − s/s0)V dt . Note that this expres-
sion is close to the classical “Langmuirian” blocking function
[51] except that here we give a precise definition of the
adsorption probability which will lead to take into account the
flux of particles entering the pore.

Besides, the relationship between the evolution of n and s
is described through the standard advection equation, which
expresses that the variation of concentration of suspended
particles in the moving fluid (with the velocity V ) results
from the loss of particles due to adsorption. Here we assume
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negligible dispersion, as this effect essentially tends to
smoothen or expand the profiles. Moreover, it was recently
shown [41] that dispersion of colloidal suspension flowing
through porous medium is much weaker than generally as-
sumed. The full set of equations then writes

∂n

∂t
+ V

∂n

∂x
= −∂s

∂t
, (1a)

∂s

∂t
= kn(1 − s/s0)V. (1b)

This set of equations is similar to that proposed by Leij
et al. [52] under the same assumptions. The only differ-
ence concerns the definition of k, but this does not affect
the solution. Usually, such a system, including a dispersion
term, is solved numerically. Leij et al. [52] provided the
full analytical solution of (1) for an injected pulse of sus-
pension (see Appendix A). They were then able to predict
the breakthrough curve and the setback distance (where a
particular concentration is reached) as a function of time, and
compared these results to experimental data. However, from
this solution, general trends can hardly be inferred as the
predictions mainly concern specific parameter variations. In
the following, we will use a different approach leading to more
straightforward descriptions of the various characteristics of
the deposits, as a function of a reduced number of parameters.
This approximate dimensionless approach can then be used
for a physical analysis of the processes. We will nevertheless
refer to the general solution (see Appendix A) to confirm the
range of validity of our solutions. Finally, our approach will
also allow to find an approximate solution for the case of a
biporous medium.

We consider the case of a continuous injection of the sus-
pension, i.e., “a train” of suspension. Under these conditions,
our fundamental assumption is that after some distance from
the entrance we get a stationary distribution of deposited
particles progressing through the medium. As a consequence,
we look at a simple solution to these equations in the form
of traveling waves of constant velocity (V1) for s and n. In
such a case, some time after the entrance of the suspension
in the medium, the profiles of adsorbed particles [i.e., s(x, t )]
collapse onto a single master curve thanks to a shift propor-
tional to the time. We thus introduce X = x − V1t , and now
look at s(x, t ) and n(x, t ) as respectively s(X ) and n(X ). For
this theoretical description, it is useful to define these variables
over the whole domain of X , i.e., ] − ∞; ∞[, with the bound-
ary conditions s(−∞) = s0 (“adsorption capacity,” i.e., for
saturated medium) and n(−∞) = n0 (initial concentration of
particles in suspension at entrance), and s(+∞) = n(+∞) =
0 (medium not yet reached by any particle).

The mass conservation imposes that the number of parti-
cles entering the domain per unit time and unit open section
area (i.e., sample cross-section times porosity) be equal to the
rate of variation of the total number of particles inside the
domain. We thus have

n0V = ∂

∂t

[∫ +∞

−∞
(s + n)dX

]

=
∫ +∞

−∞
−V1

(
∂s

∂X
+ ∂n

∂X

)
dX = V1[s0 + n0]. (2)

Using this relation between V and V1 and the rescaled concen-
trations S = s/s0 and N = n/n0, the set of equations (1) then
becomes

dN

dX
= dS

dX
, (3a)

dS

dX
= −a(1 − S)kN (3b)

with a = (1 + n0/s0). This parameter expresses the avail-
ability of particles with regards to the adsorption capacity.
The solution of Eq. (3a) taking into account the boundary
condition at −∞ is

N (X ) = S(X ). (4)

This result, which is intimately related to our description of
the process as traveling waves, in particular expresses the fact
that the adsorption increases with the number of suspended
particles, and cannot exist otherwise, i.e., when there is no
particle in suspension.

Since S continuously varies between 1 and 0 along the X
axis it reaches 0.5 in some point, that we use as the position
of reference (X = 0). Then the solution of Eq. (2b) is

S(X ) = 1

1 + exp(X/λ)
(5)

with λ = 1/ak. This deposition distribution corresponds to a
sigmoidal shape with a characteristic length λ. Note that this
description is obviously an approximation of reality since,
to be strictly exact under the above boundary conditions,
the expression (5) would require the train of suspension to
have covered an infinite distance along the porous medium.
The conditions of validity of this approximation are analyzed
in the next section. However, we can already remark one
particular aspect of this approximation: the real distribution
is in fact limited by the distance (say, x1) reached by the
suspension at the time considered, so that S(x > x1) = 0. If
we note x0 = V1t0, the center of the wave reached at time t0,
then x1 = V t0, and S abruptly drops to zero beyond a distance
x1 − x0 = x0s0/n0 from the wave center. We can neglect this
effect if this value if much larger than λ, which implies that
V t0 � 1/k, i.e., if the probability of adsorption is such that
most of the particles have been adsorbed over the distance V t0.

Finally, the deposited distribution during the train motion
takes the form of a wave front propagating at the velocity V1

along the medium axis, and with a more vertical shape for
smaller λ (see Fig. 1), i.e., for larger probability of adsorption
and larger availability of suspended particles at entrance.

B. Validity of the traveling wave assumption

For the traveling wave assumption to be valid, a sufficient
volume of suspension must have penetrated the medium.
A criterion of validity is that the deposited amount at the
porous medium entrance, as predicted by the model (1), be
closed to that predicted by the traveling wave model. At
the entrance (i.e., x = 0), the exact model [i.e., Eq. (1b)]
with the boundary condition n(0, t ) = n0 tells us that the
deposited amount evolves as S(x = 0) = 1 − exp(−kV (a −
1)t ). On the other side the approximate solution [Eq. (5)]
gives S(x = 0) = [1 + exp(−kV (a − 1)t )]−1. We deduce that
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FIG. 1. Predictions of the model [Eq. (5)] for a homogeneous
porous medium (S) for different values of the parameter λ, and
predictions of the model [Eq. (9)] for a double porosity medium with
a dominant medium (1) for different values of u. Note that the values
for λ used here correspond to those identified by fitting the model to
the experiments at different velocities (see inset of Fig. 6). Here we
used same units for X and λ, say, e.g., centimeters.

the two expressions differ by less than 10% when kn0V t > s0.
This means that, for the adsorption to approach saturation
around the entrance, the length of train already injected (V t)
must be larger than a characteristic length depending on the
adsorption capacity and suspension concentration (s0/kn0). A
similar conclusion is reached by approaching the traveling
wave solution from the general solution of Eq. (1) (see Ap-
pendix A).

C. Distribution of adsorbed particles after a pulse passing

The above description, through a traveling wave propa-
gation, fundamentally relies on the assumption that the sus-
pension is continuously injected upstream in the medium
from some initial time, in the form of a train without end.
However, in practice, we generally inject a pulse, i.e., a train
of suspension of finite length, or a series of pulses. This may
in particular allow to measure the distribution of adsorbed
particles after a pulse.

Since in our description there is no diffusion effect and no
possibility for a deposited particle to start again moving, a
succession of pulses will be equivalent, in terms of deposition
characteristics, to a train of total length equal to the sum of
pulse lengths. However, the deposited distribution after the
passage of the last pulse differs from that associated with
the traveling wave, as the end of particle injection at the
back of the pulse induces a transient deposit which alters the
stationary distribution (during flow).

Actually, we can deduce the distribution after the passage
of the pulse, from the stationary distribution (thus assuming
that the traveling wave is established). It may indeed be
remarked that the deposited concentration reached at the point
of the back of the pulse will not change any more during
the further advance of the pulse. Let us consider a pulse of
time duration �t (i.e., injection of suspension during a time

�t). After the complete passing of the pulse, the deposited
fraction at the point x is that reached in the train (full wave)
at the time t for which the back of the pulse is situated in
that point. This implies that the deposit is S∗ = S(X ∗), as
given by (5), with X ∗ = x − V1t and x = V (t − t0), so that
X ∗ = x/a − V1�t and

S∗ = 1

1 + exp[k(x − n0V �t/s0)]
. (6)

Thus we find that deposited distributions following a pulse of
suspension are similar to the distributions associated with a
moving train [i.e., Eq. (5)], with a characteristic length 1/k
instead of λ = 1/ak. Since the factor a is larger than 1, the
deposited distribution S∗ is a sigmoid of larger characteristic
length than S.

This solution is effectively the general solution of the set
of equations (1) under the condition that the duration of the
pulse be sufficient large, i.e., kn0V �t > s0 (see Appendix A).

Since the medium remains intact after the passage of a
pulse, it starts evolving again as inside a train as soon as
the next pulse arrives. Thus, if we consider a series of pulses
(successively numbered as p = 1, 2, …) of identical duration
�t we will get similar successive deposited distributions given
by Eq. (6) with now a shift factor along the x-axis equal
to the length p(n0V �t/s0). Finally, the deposits resulting
from this series of pulses will appear as traveling waves at
a velocity V2= n0V /s0. Note that this value is larger than the
traveling waves of the deposited distribution during flow (i.e.,
V1) because in the latter case there is still a fraction of particles
in suspension.

D. Breakthrough curve

We can also predict the breakthrough curve under the
condition of a sufficiently long pulse for the traveling wave
to be established. We consider a pulse of length l injected
from the initial time t = 0 in the medium at the velocity V
and a medium exit located at the distance L. In that case the
breakthrough curve is given by the suspension concentration
at the exit of the medium:

n(t ) = n0S(L, t ) = n0

1 + exp ak(L − V1t )

for t ∈ [L/V ; (L + l )/V ], and n(t ) = 0 otherwise.
This may be expressed with dimensionless variables as

N (T ) = 1

1 + exp K[a(1 − T ) − T ]
(7)

in which K = kL is a factor of probability of adsorption in the
system, and T = V t/L is a dimensionless time, i.e., the time
rescaled by the time needed for the pulse to reach the medium
end. An illustration of different shapes of breakthrough curves
obtained for different values of a is provided in Fig. 2. The
interest of this model clearly appears here. Within the frame
of this approach, it is possible to describe or predict the
trends with the help of a limited number of parameters with
a physical meaning, namely the availability of particles for
adsorption and the probability of adsorption. This might also
constitute a first approach of any deposition problem, from
which further aspects could be considered as alterations of the
predictions from this simple model.
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FIG. 2. Different breakthrough curves predicted by the model,
for l/L = 0.5, K = 4, and different values of a (indicated in the
graph). Note that we represent here N as a function of Tf − T , in
which Tf = 1.5 is the time at which the pulse has fully exited the
medium.

E. Multiporous medium

Let us now consider a more complex porous medium (than
the above homogeneous one) made of q different regions at
the pore scale, with different probabilities ki, with 1 � i � q,
for the particles to be adsorbed. As a consequence, we now
follow the deposited fractions si in each region. We can extend
the above approach for a homogeneous medium by assuming
that the complex flow allows to fully mix the suspension over
a short distance, so that at any time, in each region, the sus-
pended particle concentration is n in the different region types.
The characteristic velocity of the flow through each region
(i.e., Vi) may differ from V and we write it as βiV . Note that
for a laminar (Stokes) flow the coefficients βi are independent
of V . The set of equations describing the process is now:

∂n

∂t
+ V

∂n

∂x
= −∂s

∂t
, (8a)

∂si

∂t
= βikin(1 − si/s0,i )V, (8b)

where s = ∑p
1 si and s0,i is the maximum number of deposited

particles in the region i.
This approach appears particularly useful in the case of a

medium with a double porosity, i.e., with locally (at the pore
scale) two types of regions with respective probabilities of
adsorption k1 and k2. We consider the solution in the form
of traveling waves of same constant velocity (V1) for s, n, and
every si. Due to mass conservation the relation (2) between V1

and V is still valid. This leads to the following dimensionless
set of equations:

N = S, (9a)

dS1

dX
= −a(1 − S1)β1ξ1k1N, (9b)

dS2

dX
= −a(1 − S2)β2ξ2k2N, (9c)

where the same definitions for S and N hold, with now s0 =
s0,1 + s0,2, and with Si = si/s0,i and ξi = s0/s0,i for i = 1, 2. It
is important to keep the different factors in the right-hand side
of Eqs. (9b) and (9c) as they express different major physical
effects: ξi represents the inverse of the fraction of adsorbed
particles in region of type i, βi the relative velocity in this
region, and ki the specific probability of adsorption in this
region.

Coupling equations (9b) and (9c) in particular provides the
following relationship between S1 and S2:

S2 = 1 − (1 − S1)u, (10)

where u = β2ξ2k2/β1ξ1k1. The solution for S1 as a function of
X may be obtained by inserting the expression (10) for S2 as
a function of S1 in Eq. (9b) then solving for S1.

It is also possible to get an approximate solution in the case
of a small number of particles in regions of type 2 compared to
the number of particles in regions of type 1 (i.e., s0,2 � s0,1)
and a lower probability of adsorption in regions 2 leading to a
delay for the adsorption in these regions, i.e., S2 < S1. In that
case, we have s2/s1 = (S2/S1)(s0,2/s0,1) � 1, so that S1 ≈ S,
and the solution of the system (9a) and (9b) is similar to (5).
We finally get

S1 ≈ (1 + exp aβ1ξ1k1X )−1, (11a)

S2 ≈ 1 − (1 + exp −aβ1ξ1k1X )−u. (11b)

The distribution of particle deposits in regions of type 2 is
a transformation of the sigmoid (11a) into a curve of shape
close to that of a sigmoid and positioned either behind that
described by (11a), i.e., S2(X ) < S1(X ), for u < 1, or ahead
of that described by (11a), i.e., S2(X ) < S1(X ), for u > 1. In
the case u � 1, S2 approaches 1 only for −X values much
larger than the characteristic length of the sigmoid S1, i.e.,
1/β1ξ1k1, which means that the adsorption in regions of type
2 is considerably delayed with regards to the adsorption in
regions of type 1. The shape of the profile for region of type
2 is shown in Fig. 1 for some values of λ and u. It is worth
noting that the profiles for both regions are very sensitive
to the values of these two parameters, which means that a
comparison between theory and experiment might allow a
good evaluation of the physical processes.

The deposited distributions after a pulse may be deduced,
in the same way as for a homogeneous medium [see Eq. (6)],
from the expressions (11a) and (11b). The deposited distribu-
tions for a series of pulses then appear as traveling waves of
velocity V2= n0V /s0 and of shapes given by (11a) and (11b)
after dropping the factor a.

III. MATERIALS AND METHODS

A. Porous media and working fluid

The porous medium is made of monodisperse, spherical,
borosilicate beads, with a diameter dg = 63 μm (see Fig. 12 in
Appendix B), and a strongly negative (SiO− groups) surface
charge. The beads are packed in disorder in a 1 × 1 × 20 mm3

square capillary at a volume concentration of 62%. Hence, we
have typically 15 bead diameters per sample width. Although
the solid phase at a local scale (bead) has a simple structure,
the porous structure at a larger scale, i.e., including several
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FIG. 3. View of adsorbed nanoparticles (white dots) onto the
surface of two beads in contact (radius: 60 µm). The inset shows
a full view of a bead covered with nanoparticles. Images obtained
with a Zeiss SEM Inlens on two beads extracted after a few injection
cycles, cleaning and drying (which may have induced some particles
displacement on the surface).

particles, is complex. One may nevertheless estimate an order
of magnitude of the mean pore size (dp) from the diameter
of the largest sphere that can be inserted in the hole at the
center of four neighboring spheres whose centers form a
tetrahedron: dp ≈ dg/6 ≈ 10 μm. We checked that the bead
packing structure did not change over the duration of our tests,
so that we can rely on direct imaging of the local evolution of
the porous media to measure particle deposition.

This porous medium is saturated with a fluid made of
90% of DMSO (Dimethyl sulfoxide) in distilled water, lead-
ing to a fluid of viscosity μ ≈ 3.3 mPa s and density ρ =
1090 kg m−3. This fluid matches the refractive index of the
beads and allows for internal imaging of the 3D pack with
the help of confocal microscopy, a technique which proved to
be relevant for the study of fluorescent particles in 3D porous
media [47,53].

B. Charged nanoparticles

The colloidal particles dispersed in the fluid are nanopar-
ticles (Molday ION EverGreen CL-50Q02-6A-51 from
BioPAL Inc.) made of a magnetite core and a thick Dextran
shell. These particles have a density ρS = 1250 kg m−3 and
a high positive surface charge (C6 amine surface functional-
ization) so that we expect strong electrostatic attractive forces
between them and the surface of the beads (see Fig. 3 for a
view of the adsorbed particles). On the contrary, since their
charges are of the same sign, two particles strongly repel each
other when they approach one another. As a consequence,
we only expect the formation of a monolayer of particles
adsorbed onto the bead surface, but with particles somewhat
dispersed on the surface due to electrostatic repulsion between
them. The fluorescence of these particles is achieved thanks
to additional surface groups (excitation/emission wavelengths
505/515 nm). To estimate the mean particle size, the nanopar-
ticles are imaged under SEM (scanning electron microscopy)
after dispersion then drying on a clean surface (see Ap-

FIG. 4. Principle of the experiments: (top) successive pulses of
suspensions and pure fluid, and imaging in a longitudinal cross-
section of the porous medium; (bottom) elementary imaging stitched
tiles and local views inside the medium at the different stages of the
experiments.

pendix B). The particle diameter appears to range from 35
to 120 nm with a mean size d = 60 nm (higher than given by
the supplier, i.e., 35 nm). Such a particle size is more than two
orders of magnitude smaller than the typical pore size, which
ensures negligible clogging due to geometrical confinement
(see Ref. [46]).

We prepared the suspension at a particle volume fraction
n0 = 7.4 × 10−4, which is sufficiently large for a significant
deposition to occur over the typical duration of our tests,
i.e., a few hours, and sufficiently small for hydrodynamic
interactions between them to be negligible [54].

C. Confocal imaging

A single argon-ion laser source is used to excite the flu-
orophores of the nanoparticles, in a single plane 400 µm
above the capillary bottom. We image a large portion of the
sample (1 mm × 10 mm) by stitching together successive
1 × 1 mm2 square acquisitions (see Fig. 4). The time required
to perform a complete scan over the medium being a few
minutes, significant evolution of the porous structure due to
particle adsorption may occur during this time. In order to fix
the structure during imaging we injected pulses of suspension,
i.e., injection over a limited time, followed by pure fluid to
rinse the sample and subsequent imaging (see Fig. 4). We
checked independently that the rinsing period does not modify
the deposition: the fluorescence signal during the injection of
pure fluid following a pulse does not evolve, meaning that
the flushing step with pure fluid does not detach particles
already deposited. Note that this approach allows to directly
and strictly image the deposited particles, instead of having to
distinguish between suspended and deposited particles in the
images. This also proves the fundamental point that when they
are adsorbed somewhere the particles do not move anymore or
do not detach at any time during the flow.

The particles being smaller than our imaging resolution,
we do not follow the number of adsorbed particles but the
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fluorescence (summing the intensity over all pixels) in cross-
sectional layers which can be considered as proportional to the
particle concentration. We thus obtain a distribution (profile)
of deposited particle concentration along the porous medium
axis.

D. Flow characteristics

The volume of the pulses is adjusted to have a significant
change of the signal between two successive pulses, and is
constant for all our tests, i.e., 20 µL. The volume used for
rinsing is chosen so as to apparently remove all suspended
particles, i.e., 80 µL. The flow rate (Q) was varied in the range
1.3−208 μl min−1, giving a mean flow velocity through the
pores V = Q/S (with S the sample cross-section area) in the
range 0.055−8.8 mm s−1. With the successive injection cycles
the total duration of an experiment ranged from about one to
nine hours.

The Reynolds number of the flow, i.e., ρV dp/μ, is in the
range 0.00017–0.027, which means that the flow is laminar.
The particles have a density larger than that of the fluid but
their characteristic velocity of sedimentation through the fluid
at rest [i.e., 2(ρS − ρ)g(d2/4)/9μ] is equal to 10−10m s−1.
This means that it would take about 105s for a particle to fall
over a distance equal to the pore size under gravity. Such a
value is much larger than the average duration of its motion
through the porous medium (L/V , in which L is the sample
length), i.e., between 2 and 360 s. Thus, even over the largest
possible distance inside the medium sedimentation is negligi-
ble. Moreover, the ratio of the particle inertia to the typical
work of viscous forces over a distance equal to the particle
size, is equal to about 1/10 of the Reynolds number. This
means that this ratio is far much smaller than 1 and thus par-
ticle inertia plays a negligible role on the particle motion. At
last, the diffusion coefficient of the particles, estimated from
the Stokes-Einstein expression, i.e., D = kBT /3πμd , where
kB = 1.38 × 10−23J K−1 is the Boltzmann constant and T ≈
293 K is the room temperature, is equal to 2.2 × 10−12m2 s−1.
The characteristic time for a particle to move through a pore
thanks to fluid motion is dp/V , while the characteristic time
for a particle to move over a distance of the order of the pore
size thanks to thermal agitation is d2

p/D. The ratio of these
two times is the Peclet number, i.e., V dp/D, which is here
in the range 250–40 000. This means that particle diffusion
due to thermal agitation is fully negligible in comparison to
advection processes.

Turbulence, inertia, sedimentation, and diffusion due to
thermal agitation being negligible, the particles are essentially
carried by the liquid and follow the paths imposed by the fluid
flow. There is nevertheless one additional effect which can
make them deviate from these paths, namely the electrostatic
interactions between the particles and the bead surfaces.

E. Adsorption

Let us consider the interaction between a particle and
a charged bead surface. The electrostatic field induced by
a single bead can be determined from the Gauss theorem,
it is equal to E = −q/4πε0(R + x)2, in which ε0 = 8.9 ×
10−12F m−1, R = d/2, −q the total charge on the bead, and

x the distance from the bead surface. The resulting (attractive)
force on the charged particle is then eE (with e the particle
charge). It follows that a particle situated at some distance
from the bead will be progressively dragged towards this
surface. A particle is in fact surrounded by beads which
finally induce a more complex electrostatic field resulting
from the sum of the elementary fields. It follows that the force
acting on the particle whose position is r, is equal to Fe =
−(eq/4πε0)

∑
i |r − ri|−3(r − ri ), where the sum is taken on

all beads in the sample, whose center positions are given by
ri. On the other side, a particle moving relatively to the fluid at
rest experiences a drag force equal to Fd = −6πμRṙ. Finally,
a particle initially at rest in the fluid and situated at r0, will
have a motion described by the fundamental law of mechan-
ics: mr̈ = Fd + Fe. The solution of this equation taking into
account the initial condition provides the time �t (r0) for the
particle to reach the solid surface of one of the closest beads,
i.e., those forming the wall of the pore containing the particle.
This is more generally the characteristic time for a particle to
be adsorbed onto a solid surface.

On the other side, the characteristic time spent in a pore by
a particle moving with the fluid is �tv = dp/V . We can then
determine the domain (a surface) of the different positions r0

at the entrance of the pore for which �tv < �t (r0). When
the particle appears in this domain it will ultimately reach a
solid surface within the duration of the flow through the pore.
The ratio of this surface to the total surface of entrance in the
pore, finally represents the probability to reach a solid surface
during the particle motion through the pore.

Obviously, we expect that this probability decreases when
the flow velocity is increased. For example, let us consider
the simplistic case of a particle moving parallel to a bead
surface (i.e., its trajectory remains tangential to the bead
surface) as a result of liquid flow, and initially situated at a
distance x0. Neglecting inertia and the other beads we find
that the approach to the bead is described from the equation:
0 = −6πRμẋ − eq/4πε0(R + x)2, in which x is the current
distance from the bead surface. Integrating this equation
and assuming at first order that all distances remain small
compared to R we get the time for the particle to reach the
bead surface: �t (x0) = Kx0, with K = 24π2R3με0/eq. Since
the time spent by the particle in the pore is approximately
dp/V , all particles initially situated at a distance smaller than
xc = (dp/K )V −1 should reach and stop on the pore surface
before they can exit the pore, while the others will exit the
pore. However, when xc is larger than the pore size, i.e., for
sufficiently low velocity, the probability to reach the pore wall
is equal to 1. In this asymptotic case, we should observe a
straight front of deposition. Otherwise, i.e., in the general
case, the probability of adsorption of a particle entering the
pore is proportional to xc/dp = (1/K )V −1.

During the flow of a suspension through the porous
medium the particles thus progressively adsorb to the bead
surface. However, as soon as a particle encounters another
particle, they strong repel each other. As a consequence, we
expect only the formation of a monolayer of adsorbed parti-
cles. This implies that the concentration of particles increases
until no new particle reaching the bead can find a sufficient
room to be submitted to the attraction of the bead surface
and at the same time sufficiently far from other particles. This
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FIG. 5. Raw confocal images after successive cycles (suspension pulse + rinse) of injection starting from clean sample. Flow from left to
right. Flow rate: Q = 13 μL/min (V = 0.55 mm/s).

situation (i.e., maximum concentration) corresponds to what
we will call the saturation, even if we ignore the exact value
of the concentration of particles in such a case.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Global flow characteristics

Let us look at a typical series of confocal images taken
after successive cycles (see Fig. 4). Each image is composed
of dark areas (no fluorescence, i.e., no adsorbed particles) and
bright areas (containing adsorbed particles). At the inlet (far
left, dotted white line), a sharp transition from dark to bright
highlights the transition between the inlet tubing (no beads,
particles cannot adsorb) and the porous system (particles
meet solid surfaces and start adsorbing). The image is the
brightest around the porous medium entrance and decreases
towards the right (flow direction) up to a completely black
region, where a priori no particles deposited (see Fig. 5).
Globally, after each new cycle (pulse + rinse), the image
become brighter at larger distance, indicating that the particles
progressively deposit farther in the sample. This is confirmed
by the corresponding distributions of fluorescence intensity,
which extend towards larger distance for successive cycles
(see Fig. 6). Interestingly, the intensity near the entrance
does not evolve with further injections: it seems to saturate
(see Figs. 5 and 6). This observation is consistent with the
assumption of a mono-layer formed by adsorption on the bead
surface. Here we can consider that the signal at saturation
corresponds to the maximum coverage that may be reached
under such circumstances (i.e., suspension flow).

We then represent the fluorescence distribution rescaling
the signal by the mean value of the plateau level progres-
sively formed from the entrance (see Fig. 6). One can now
observe more precisely the progressive spreading towards
larger distance along with the extension of a plateau from
the medium entrance. It is interesting to note that, in the
plateau region, the profiles converge towards the same curve

exhibiting (fixed) fluctuations due to slight density hetero-
geneities of the bead packing: this proves that the number
of deposited particles in the saturated region vary negligibly
from one test to another, and finally shows the reliability
of our measurements. Moreover, the shape of the front of
the profile remains approximately similar for the different
cycles (see Fig. 6), in agreement with our assumption of
traveling waves propagating through the sample. At last, the
profiles can be rather well represented by the expression (6)
corresponding to the model for a homogeneous sample (see
Fig. 6).

FIG. 6. Distribution of adsorbed particles (thick continuous
lines) as a function of the distance along the porous medium
after different numbers of injection cycles (from left to right)
(V = 0.55 mm/s) : 1, 2, 3, 4, 5, 8, and 11. The signal intensity has
been rescaled by the plateau value reached at short distance. The
dashed lines correspond to the model fitted to data, i.e., Eq. (6), with
1/k = 0.87 cm, and a shift along the sample axis associated with the
total injected volume of particles after each number of injections.
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FIG. 7. Saturation as a function of distance in porous medium
(after shifting, see text) for different flow velocities. For the sake
of clarity, we removed the part of the curves corresponding to the
plateau reached at small distances. The dashed lines correspond to
the model (5) fitted to data with values for 1/k shown in the inset as
a function of the flow velocity.

Data for different flow rates were collected, again after
different cycles of injection. Similar results were obtained
for the different flow rates: the profiles of fluorescence dis-
tribution extend at larger depth with successive cycles; these
different profiles can be shifted and superimposed along a
master curve for each flow rate (see Fig. 7). The fundamental
impact of velocity thus clearly appears in this representation:
the master profile extends over larger distance when the flow
rate increases. Moreover, our model well represents these
profiles for the different velocities in this range covering more
than two orders of magnitude, which provides a good support
to the theory. At last, the parameter 1/k fitted to data appears
to vary approximately with V 1/2, which means that 1/k would
be proportional to V −1/2. This result differs from that obtained
in the case of a flow around a single bead (i.e., V −1) (see
above) but is qualitatively consistent with the expectations in
the general case, i.e., decrease with velocity increase.

B. Flow in confined regions

So far, the confocal images have been treated as a whole
to extract average deposition profiles over time and distance
along the porous medium. Actually, the same data may be
used to study some local specificities of adsorption. A closer
look [see Fig. 8(b)] to the adsorption distribution from an
image taken in a region of significant deposition for a typical
experiment [see Fig. 8(a)] shows, as expected, deposited
particles outlining the surface of the silica beads in the form of
circles (i.e., along the intersection between the imaging plane
and the beads). The interior of these circles appears naturally
darker, since the signal here comes from close particles not
situated in the main optical focus plane.

We can nevertheless remark on the same picture some
small regions much darker than the rest of the frame [see
Fig. 8(b)]. From a higher resolution shot of a similar zone
the dark regions appear clearly around points of contact

FIG. 8. Deposition state for V = 0.55 mm s−1, cycle 3: (a) global
view and (b) selected window [white region in (a)] of the global view.
White arrows pinpoint the dark regions.

between neighboring beads (see Fig. 9). These regions exhibit
different shapes depending on the relative orientation of the
plane tangent to the two beads in contact and the plane of
observation (confocal image). Large (circular) areas appear
when these two planes are parallel, while elliptic regions are
observed when they are not parallel, these ellipses tending to
a line when the two planes are perpendicular. Remarkably,
this shows that such dark regions may be obtained along any
orientation of the contact between neighboring particles, i.e.,
they are mostly independent of the flow direction. Never-
theless note that we can observe a slight effect of the flow:
these regions often exhibit a thin tail in the flow direction (see
Fig. 8); but we will not discuss further this effect here.

From images taken at successive times in the same window
one can see that the apparent size of these regions changes

FIG. 9. High-resolution confocal imaging of the deposited distri-
bution of Fig. 6, obtained by collecting the fluorescence signal from a
sample thickness three times larger. Three types of darker areas may
be distinguished: (a) disks, corresponding to contact plane parallel
to the imaging plane, (c) lines, corresponding to contact plane
perpendicular to the imaging plane, and (b) ellipses for intermediate
orientations. (d) shows a thin tail.
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FIG. 10. Confinement effect at V = 0.55 mm/s : (a) images in a
small window at different times from the beginning of injection (from
top to bottom: 5, 11, and 23 min.); (b) average signal (rescaled by the
saturation value) recorded as a function of the distance from the point
of contact at different times (every 25 seconds) (from bottom to top).
All data around the point of contact have been taken into account,
which explains the symmetrical representation. The thick red dotted
lines correspond to the times at which the images of (a) have been
obtained.

as deposition progresses [see Fig. 10(a)], as if the adsorbed
particles invaded progressively these regions. A further look at
the local distribution of the signal around the point of contact
between the beads provides a deeper insight in the process
[see Fig. 10(b)]. At a sufficient distance (say, beyond ≈8 μm,
i.e., in region A) from the point of contact the deposition is
fast. At shorter distance (i.e., in the region B) the deposition
is much slower. These data thus show that the region of
the bead surface beyond some distance (i.e., ≈8 μm) from
the point of contact is much more rapidly saturated than
the inner region, which suggests that the coverage of the
dark areas has a different dynamics than the rest of the bead
surface. Finally, looking at the deposition profile we see that it
progressively spreads towards the point of contact, in the form
of a saturated front (maximum adsorption) [see Fig. 10(b)].
This in particular means that the description of the adsorption
process in these regions, in the form of a progressive reduction
of the size of the empty domain, is a good approximation.

It is clear that the dark regions correspond to the regions
of the surface of the beads for which the surrounding liquid
is the most confined, i.e., situated at the smallest distance
from the solid surfaces. This obviously suggests that the effect
observed, i.e., the slower dynamics of adsorption in these
regions, is due to this confinement. Actually, several effects
resulting from this confinement may tend to slow down the
adsorption dynamics. The first effect of confinement is a ratio
of liquid volume to solid surface lower than in the rest of the
sample. As a consequence, for a similar particle concentration
in the liquid volume, the covering of a unit bead surface in the
confined region will be slower than elsewhere. Another effect
of confinement is that particles necessarily need to move close
to already adsorbed particles to reach deeper regions (closer
to the contact point). Thus they can be somewhat repelled by
these particles, which would slow down their access to deeper
regions. Another effect directly reduces the concentration of
adsorbed particles in these regions: the particles are stopped
at some distance from the contact point because the distance

FIG. 11. Global deposition profiles after different number of
pulses (continuous lines) at V = 0.55 mm/s. Deposition profiles
(symbols) in the confined regions. Model predictions (dashed or
dotted lines) for both profile types (1/k = 0.75 and u = 0.4).

between bead surfaces is too small. At last, in such a confined
region the flow rate is on average smaller than elsewhere
because of the proximity of the solid walls (bead surfaces).
This has two opposite consequences: the rate of entrance of
suspended particles is lower, which reduces the number of
particles adsorbed per unit time; the time spent by the particles
along unit surface is larger, which increases the probability of
adsorption per particle.

To sum up, we have regions in which the probability of
adsorption is lower than in the rest of the material. We can then
test our theoretical predictions for a double porosity material
(see Sec. II) on these data. In that aim we look again at the
distribution of deposited particles after each injection cycle,
now distinguishing the deposit in the confined regions. We
determine the deposition profiles in the confined regions by di-
rectly measuring the apparent diameter of each dark area and
translating it as an effective non-covered area over the bead
(i.e., in 3D). The current saturation is then estimated from the
relative difference between the current area and the initial area
of each of these regions. Such an approach is justified by the
observation that the coverage essentially develops in the form
of a front progressing towards the point of contact (see above).
This provides a discrete distribution of saturation (see Fig. 13
in Appendic C) which is then somewhat smoothened through
running average to get the profiles shown in Fig. 11.

The deposited distribution obtained in this way decreases
and tends to zero at a distance which increases with the
injection cycle number (see Fig. 11). Then these profiles
appear to fall along the same master when shifted of the same
values as for the global distributions corresponding to injected
volumes (see Fig. 11). This means that the progression of the
deposited distribution in the confined regions also takes the
form of a traveling wave progressing through the sample and
with the same velocity. Moreover, as expected from the above
observation, the deposition in the confined regions occurs with
some delay with regards to the global deposition: the master
curve for confined regions is situated behind the master curve
for global deposition (see Fig. 11).
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Let us now consider the number of particles expected to
be adsorbed in these regions. The maximum area of each
of these regions typically corresponds to a spherical cap of
apparent radius rc ≈ 8 μm, and the number of contacts of one
bead with other beads is around 6 in a disordered packing. As
a consequence, the fraction of bead surface associated with
such regions expresses as 3(rc/R)2/

√
1 − (rc/R)2 ≈ 0.2. This

might represent the fraction of coverage associated with these
regions, i.e., s0,2/s0, but we can expect that the effective value
is lower, due to a more difficult access to some adsorption sites
at the approach of the contact point, as a result of electrostatic
interactions and geometrical confinement. Assuming for ex-
ample that the deposit of particles is hindered in a spherical
cap of radius 4 μm [see Fig. 10(b)], we get a new fraction
of coverage of these regions equal to 0.15. In addition, we
clearly observe experimentally a delay between the deposit
in these regions and on the rest of the surface, thus S2 < S1.
Under these conditions, considering that s ≈ s1 constitutes a
reasonable approximation.

In this context it is justified to use Eq. (5) to represent the
global deposition profile as we did so far, and then transform
it through (10) by fitting the parameter u. We can see that this
allows to well represent the stationary deposition distribution
(see Fig. 11). In this way we get u = 0.35. The physical origin
of this value may now be analyzed. Let us recall that the
theoretical expression for u is β2ξ2k2/β1ξ2k1. We have ξ2/ξ1 =
s0,1/s0,2, i.e., the ratio of maximum coverage of the two region
types, which according to the above analysis should be of the
order of 5. k2/k1 is the ratio of adsorption probabilities on the
two surface types. As we excluded the region the closest to
the contact point in our estimation of s0,2 we kept a domain
in which the impact of confinement on the probability of
adsorption under given flow velocity should be rather low with
regards to that in the rest of the material, the only effect being
a smaller ratio of volume to surface. Thus, it is considered here
that the difference between k2 and k1 essentially comes from
the difference of velocities in the different regions, so that
we expect k2/k1 ≈ (V1/V2)1/2. At last we have β2/β1 = V2/V1,
so that u ≈ 5(V2/V1)1/2. The point is now to estimate the
characteristic velocity in each region V1 and V2. At as first
approximation, from the Poiseuille law, we can consider that
under similar pressure drop along one bead the mean velocity
will vary with the square size of the pore. A simple result is
then obtained for a “standard” pore, whose size was estimated
to be 1/6 of the bead diameter. But a similar estimation is
not straightforward for the confined regions, which makes
us realize the limitations of the model: in these regions the
distance between walls continuously decreases towards zero
at the approach of the point contact. This suggests that for
a more precise approach we should consider such regions
as a continuum of media of decreasing pore size. Such a
sophisticated approach nevertheless does not seem relevant
with regards to the precision of our data. Coming back to the
estimation of a single pore size for the confined regions we can
consider that it corresponds to the gap between two beads at
a distance of 5 microns of their point of contact. This gives
a characteristic pore size of dp2 = 0.8 μm, and finally u ≈
5(V2/V1)1/2 = 5dp2/dp = 0.4, a value almost exactly equal to
that found from the data (0.35), which confirms the validity of
our approach.

Finally, we can now evaluate the validity of the model to
predict the data concerning confined regions for other flow
velocities. For V � 5.5 m s−1, the delay to fill the confined
regions was too large consistently with the above model (see
Fig. 1) so that we could not observe it clearly within our
test duration. For V = 0.05 m s−1 we would observe again
that the profiles for the confined regions advance as traveling
waves with the same velocity as the global profiles. Moreover,
at our scale of observation the profiles are rather close to
the global profile and their shape is well represented by
the model keeping approximately the same value (0.4) for
u, which confirms the consistency of the above model (see
expected profiles in Fig. 1), but the scattering on data does
not allow to give a precise estimation of this parameter in that
case.

V. CONCLUSION

We proposed a simple probabilistic model for the trans-
port and desposition of colloidal particles in porous medium.
This model predicts that after some distance of injection the
deposition distribution is a traveling wave propagating in
the medium with a shape (frontal or extended) and velocity
depending on the flow rate and the availability of particles
with regards to the adsorption capacity. This model can serve
as a reference model in which various additional effects may
be included, such as a multiporosity leading to confinement
effects. Besides we carried out original direct visualizations
through confocal microscopy of particle adsorption in time
and space for nanoparticle suspensions flowing through a bead
packing. This made it possible to measure the evolution of
the deposition profiles in time distinguishing the deposition in
confined regions. The model appears to successfully predict
the different trends: traveling wave, deposition profile shape,
profiles of deposition in confined regions.

The model relies on simplifying assumptions, such as no
particle removal after adsorption, negligible diffusion, inertia
and sedimentation, sufficient length of the initial pulse, etc,
which have been verified in the experimental setup. How-
ever, the interest of the model is that it describes the main
physical effects through a reduced set of parameters which
encompasses several physicochemical effects. There is in-
deed one fundamental parameter, i.e., the characteristic length
of the deposition profile, which appears to encompass the
suspension concentration, the adsorption probability and the
number of adsorption sites. A second parameter appears when
confinement effects are taken into account, which describes
the relative capacities of adsorption of the different media. In
this context it is possible to directly test the impact of varying
one physicochemical aspect, by looking at the variation it
induces on each of the two above parameters.

The general objective of this approach is to have a global
approach of colloid transport, leaving apart as a first step
the details of the physicochemistry, and instead taking into
account their effects globally, in the spirit of the approach
of Ref. [55], but in a different way, by identifying the main
physical mechanisms. In particular, we suggest that the shape
of breakthrough curves could be studied with the help of such
a model.
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APPENDIX A: GENERAL SOLUTION
OF THE SET OF EQUATIONS (1)

Here we reproduce the solution of (1) as given by Leij et al.
[52] for a pulse of duration �t :

n(x, t ) = n0

G(x, t )
{H[x − V (t − �t )] − H (x − V t )}

× exp

[
kn0

s0
(V t − x)

]
,

s(x, t ) = s0 − s0

G(x, t )
exp (kx)

with H the Heavyside function, and

G(x, t ) = exp (kx) − H (vt − x)

+{H[x − V (t − �t )] − H (x − V t )}

× exp

[
kn0

s0
(V t − x)

]

+ H[V (t − �t ) − x] exp

(
kn0V t

s0

)
.

For a very long pulse (�t → ∞), we have H (x − V (t −
�t )) = 1, so that the solution for s, i.e., the distribution of
particles deposited at a given time, writes

s(x < V t ) = s0 − s0

1 + exp
[ kn0

s0
(V t − x) − kx

] − exp −kx
,

s(x > V t ) = 0.

Under the condition that kn0V t � s0 the last term in the
denominator is negligible and we find an expression which
can be rearranged as Eq. (5) by defining V1 in the same way
as in Eq. (2). From a similar approach we can find the same
result for n.

We can also find the deposited distribution after the passage
of a pulse of duration �t . In that aim, we look at the deposited
value at the time t for which the back of the pulse was situated
at the distance x, which is such that x = V (t − �t ). After
insertion in the above expression for the general solution, we
find

S∗ = 1

1 + A exp[k(x − n0V �t/s0)]
,

with

A = 1

1 − exp(−kn0V �t/s0)
,

which may be approximated by Eq. (6) under the condition
that kn0V �t � s0, i.e., a sufficiently long pulse.

APPENDIX B: PARTICLE SIZE DISTRIBUTION

The particle size distribution [see Fig. 12(b)] was deduced
by analyzing SEM views of the particles dried on a flat silica
surface [see Fig. 12(a)].

APPENDIX C: RAW DATA FOR SATURATION IN
CONFINED REGION

The data of Fig. 11 for confinement effects have been
obtained by smoothening the raw data, which were obtained
for each point of contact observed by confocal microscopy
(see Fig. 13).

FIG. 12. View of the particles (a) and size distribution (b).

FIG. 13. Raw data (each point corresponds to a confined area)
for saturation as a function of distance from medium entrance in
confined region for V = 0.55 m s−1 after different pulse cycles.
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