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Weitz and Ladd Reply: The authors of the previous
Comment [1] make the interesting observation that the
hard-sphere pair distribution evaluated at contact, g(@),
adequately represents the volume fraction (@)dependence
of both the inverse self-diffusion coefficient, Ds(@)/Do =

'(p), and the suspension viscosity, rI(@)/r)o = y(p);
here Do = kpT /6rr rIoa is the self-diffusion coefficient of
an isolated particle of radius a, and go is the viscosity of
the suspending quid. Physically, this observation suggests
that long-range hydrodynamic interactions are not impor-
tant; instead direct interactions between neighboring parti-
cles dominate. However, there is abundant evidence that
hydrodynamic interactions do determine the transport co-
efficients in colloidal suspensions; experimental measure-
ments of both the diffusion coefficient and the viscosity
are quantitatively reproduced by theoretical and numeri-
cal calculations based solely on hydrodynamic interactions
[2] with no direct interparticle forces. Thus, while the ap-
parent agreement of ~(P) with the data is appealing, the
implications of this observation for the underlying physics
must be examined carefully.

The close correspondence between Ds(P)/Do and

rto/7J(@), noted in Ref. [1],can be understood in terms of
a mean-field theory. Because of the long-range hydrody-
namic interactions, a diffusing sphere interacts with other
spheres as if they were a continuum Quid, stiffened by the
suspension viscosity, rJ(p), rather than the fiuid viscosity,

However, this mean-field approximation is not exact.
Accurate numerical calculations of Dq(P) and rj(@) indi-
cate that there is a distinct difference between them; the
product Ds(P) rjo/Dorj(@) varies monotonically between
1 at low volume fractions and 1.36 at @ = 0.45 [2]. Fur-
thermore, a careful examination of the experimental data
indicates that there is a difference between Ds(@)/Do and

rJo/rJ(@) that is greater than the considerable experimen-
tal scatter; this difference is better described by the nu-
merical calculations then by a single function, ~ (P).

An important feature of the argument in the previous
Comment [1] is the presence of two distinct time scales
in a colloidal suspension. They are the viscous time,
r, = pa / rtp (p is the fiuid density), which sets the time
scale for the evolution of hydrodynamic interactions, and
the diffusion time, rD = a /Do, which sets the time scale
for changes in particle configuration. The key experi-
mental result is that, for t, ~ t ~ 100t (( 7.~, the time-
dependent self-diffusion coefficient at all volume frac-
tions, H(t, @) = (AR (t))/6Dot, can be scaled to a sin-

gle master curve C(@)Ho(t/r(@)) [3]. The function Ho
describes the time-dependent self-diffusion coefficient of
an isolated Brownian sphere. The experimental data [3]
scale most accurately when the amplitude is scaled to the
self-diffusion coefficient [C(P) = Dq(@)/Do], and the
time scale is scaled to the inverse viscosity [r(@)/r, =
rto/rt(p)]. The scaling obtained with a single function,
either Dq(p)/Do, rjp/iJ (p), or some functions in between

[such as g '(P)] is clearly less good. Other experimental
data, obtained for much shorter items (up to 4r, ) [4], were
insufficient to distinguish this scaling from other possibili-
ties. Self-diffusion data from computer simulations of hy-
drodynamically interacting spheres [5] can also be scaled
in the same way as the experiments. Unlike the exper-
iments, the scaling of the computer data is improved if
both the time and amplitude are scaled by a single coef-
ficient [6]; however, this coefficient is Ds(@)/Do, rather
than rto/rJ(p). These small discrepancies between sim-
ulation and experiment are more pronounced at longer
wavelengths, where the hydrodynamic interactions be-
tween neighboring particles are more significant [7]. We
think that these differences in apparent relaxation time
may actually reAect an extra relaxation mechanism in the
laboratory experiments that operates mainly at long wave-
lengths and at short times. One possibility is additional
momentum transfer caused by propagating sound waves
[7], which was not included in the simulations. Another
possibility is that the short-time diffusion is affected by di-
rect interparticle forces [6]; this would be consistent with
the suggestion of Cohen and de Schepper [1]. Neverthe-
less, we emphasize that the transport properties of col-
loidal suspensions are not determined primarily by direct
interparticle interactions; however, they can be quantita-
tively explained by hydrodynamic interactions alone.
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