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a b s t r a c t 

We present a regularized version of the color gradient lattice Boltzmann (LB) scheme for the simulation 

of droplet formation in microfluidic devices of experimental relevance. The regularized version is shown 

to provide computationally efficient access to capillary number regimes relevant to droplet generation via 

microfluidic devices, such as flow-focusers and the more recent microfluidic step emulsifier devices. 
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. Introduction 

In the last two decades, microfluidic devices have gained a

rominent role in several fields of research, from basic fluid dy-

amics to material science, biomedicine, as well as industrial appli-

ations [1–3] . In the early 20 0 0s, several pioneering works showed

he potential of such devices for generating droplets at the mi-

roscale with unprecedented degree of uniformity and rational de-

ign, thereby establishing the basis of the lab-on-a-chip concept

4–7] . Nowadays, many publications show that the drops microflu-

dics has surged well beyond the proof-of-concept paradigm, prov-

ng the viability of the new approach through substantial contri-

utions to chemistry, biology, medicine, 3d-printing, to name but

 few [8–12] . Due to their ease of fabrication via soft lithography

ethods [13,14] , microfluidic devices are intensely exploited for

he study and manipulation of fluids at the submillimeter length

cale. In particular, microfluidic devices have been successfully em-

loyed for producing porous scaffolding materials with an accurate

ontrol over scaffold specifications, such as pore size, shape, distri-

ution and interconnectivity [15,16] . 

In such context, droplet generation units are the main compo-

ents to produce emulsion templating porous materials by means
∗ Corresponding author. 
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f microfluidic devices. Several droplet-based microfluidic chips in-

lude at least one droplet generation unit within different geome-

ries, alongside with droplet splitting/merging units (e.g., flow fo-

using, coflow, T-, X-, and Y-junctions). Although, experiments have

riven many of the advances in the field, many quantities of design

nterest lie still beyond experimental reach, thereby precluding a

omplete understanding of the basic physics of droplet generation

y experimental means and thus holding back further progress in

he operation and optimization of microfluidic devices. 

Models and simulations may provide valuable insights into ba-

ic microfluidic mechanisms and, more specifically, computational

tudies can help to elucidate the nature of optimal flow conditions

n terms of geometrical and physico–chemical properties, thus fa-

ilitating a rational design of the final product. 

Over a decade ago, different numerical methods focused on the

reakup mechanisms [17,18] , characterizing droplet formation in

erms of the relevant dimensionless parameters [19,20] . In particu-

ar, it was noted that by varying volume flow rates of the dispersed

nd continuous phases, and therefore changing the Reynolds and

apillary numbers, three distinct regimes of formation of droplets

an be identified: squeezing, dripping and jetting , three regimes

hich have been found to be consistent with experimental obser-

ations [4,21,22] . Among other, the lattice Boltzmann (LB) method

as played a major role in the simulation of droplet formation

cross a wide variety of microfluidic cross-junctions [20,23–26] . 

https://doi.org/10.1016/j.compfluid.2018.02.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.02.029&domain=pdf
mailto:andrea.montessori@uniroma3.it
https://doi.org/10.1016/j.compfluid.2018.02.029
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The LB method is known to experience stability and efficiency

limitations at both low and high viscosities [27] ; low viscosities

threaten numerical stability, while large ones undermine the very

hydrodynamic limit of the LB scheme, due to the onset of strong

non-equilibrium effects. 

Different strategies can be employed to mitigate the above con-

straints: the multirelaxation-time (MRT) method [28] , and a regu-

larized version (REG) of the standard single-relaxation-time (SRT)

LB scheme [29,30] , also known as Regularized lattice Bhatnagar–

Gross–Krook model, as well as the entropic version of the LB

method [31] . 

In this paper, we investigate and demonstrate the benefits of

the regularization procedures, as applied to the color gradient

model [32,33] , for the simulation of microfluidic devices. 

The main idea behind the REG approach is to filter out the

non-hydrodynamic modes, also known as ghost-modes, originating

from non-equilibrium effects stemming from free molecular mo-

tion between two subsequent collisions [30,34–36] , which proves

particularly useful for microfluidic applications characterized by

low capillary numbers. 

The paper is organized as follows. In Section 2 the lattice Boltz-

mann equation with the BGK collisional operator is described, to-

gether with the color gradient model and the regularization algo-

rithm for simulating multicomponent fluids . In Section 3 the reg-

ularization algorithm is commented and its benefits for LB simula-

tion in microfluidics context are highlighted, while in Section 4 we

present the results of flow-focusing simulations in two spatial di-

mensions, as well as preliminary three-dimensional simulations of

the newly proposed step emulsification volcano micro devices. Fi-

nally, a summary is provided in Section 5 . 

2. Methods 

The LB immiscible multicomponent model is based on the fol-

lowing lattice Bhatnagar–Gross–Krook (BGK) equation: 

f k i ( � x + 

�
 c i �t , t + �t ) = f k i ( � x , t ) + �k 

i ( f k i ( � x , t ) ) , (1)

where f k 
i 

is the discrete distribution function, representing the

probability of finding a particle of the k th component at position 

�x

and time t with discrete velocity � c i . The lattice time step is taken

equal to 1, and i the index spans the lattice discrete directions

i = 0 , . . . , b, where b = 8 for a two dimensional nine speed lattice

(D2Q9). The density ρk of the k th fluid component is given by the

zeroth order moment of the distribution functions 

ρk ( � x , t ) = 

∑ 

i 

f k i ( � x , t ) , (2)

while the total momentum ρ�
 u is defined by the first order mo-

ment: 

ρ�
 u = 

∑ 

i 

∑ 

k 

f k i ( � x , t ) � c i . (3)

The collision operator �k 
i 

results from the combination of three

sub-operators, namely [33,37] 

�k 
i = 

(
�k 

i 

)(3) 
[ (

�k 
i 

)(1) + 

(
�k 

i 

)(2) 
] 
. (4)

Here, 
(
�k 

i 

)(1) 
is the standard BGK operator for the k th component,

accounting for relaxation towards a local equilibrium (
�k 

i 

)(1) 
f k i ( � x , t ) = f k i ( � x , t ) − ω k 

(
f k i ( � x , t ) − f k,eq 

i ( � x , t ) 
)
, (5)

where ω k is the relaxation rate, and f 
k,eq 
i ( � x , t ) denotes local equi-

libria, defined by 

f k,eq 
i ( � x , t ) = ρk 

[
φk 

i + w i 

(
�
 c i · �

 u 

c 2 s 

+ 

( � c i · �
 u ) 2 

2 c 4 s 

− ( � u ) 2 

2 c 2 s 

)]
. (6)
ere, w i are weights of the discrete equilibrium distribution func-

ions, c s is the lattice sound speed, and φk 
i 

takes values in D2Q9

attice 

k 
i = 

{ 

αk , i = 0 , 

( 1 − αk ) / 5 , i = 1 , 2 , 3 , 4 , 

( 1 − αk ) / 20 , i = 5 , 6 , 7 , 8 , 

(7)

here we number i = 1 , 2 , 3 , 4 the nearest-neighbor lattice dis-

lacements, and i = 5 , 6 , 7 , 8 the diagonal ones. In the above ex-

ression, αk is a free parameter, modulating the density ratio γ k 

f the k th component with respect to the others [38] , as well as

uning its relative pressure 

p k = 

3 ρk ( 1 − αk ) 

5 

. (8)

n this work, αk = 4 / 9 for both components, so that both compo-

ents have the same density and speed of sound c s = 1 / 
√ 

3 . 

In this model, 
(
�k 

i 

)(2) 
is a perturbation operator, modeling the

urface tension of the k th component. Denoting by � F the color gra-

ient in terms of the color difference (see below), this term reads

�k 
i 

)(2) 
f k i ( � x , t ) = f k i ( � x , t ) + 

A k 

2 

| � F | 
[

w i 

( � F · � c i ) 
2 

| � F | 2 − B i 

]
, (9)

ith the free parameters A k modeling the surface tension, and B k a

arameter depending on the chosen lattice [38,39] . The above op-

rator models the surface tension, but it does not guarantee the

mmiscibility between different components. In order to minimize

he mixing of the fluids, a recoloring operator 
(
�k 

i 

)(3) 
is intro-

uced. Following the approach in Ref. [38] , being ζ and ξ two im-

iscible fluids, the recoloring operators for the two fluids read as

ollows (
�ζ

i 

)(3) 

= 

ρζ

ρ
f i + β

ρζρξ

ρ2 
cos (φi ) 

∑ 

k = ζ ,ξ

f k,eq 
i 

(ρk , 0) 

(
�ξ

i 

)(3) 

= 

ρξ

ρ
f i − β

ρζρξ

ρ2 
cos (φi ) 

∑ 

k = ζ ,ξ

f k,eq 
i 

(ρk , 0) 

(10)

here β is a free parameter and cos ( φi ) is the cosine of the angle

etween the color gradient � F and the lattice direction 

�
 c i . It is worth

entioning that, in this work, we implemented the color gradient

s: 

(ρζ − ρξ ) / (ρζ + ρξ ) (11)

ote that f 
k,eq 
i 

(ρk , 0) stands for the set of equilibrium distribu-

ions of k th fluid evaluated setting the macroscopic velocity to

ero. In the above equation, f i = 

∑ 

k f 
k 
i 

. The LB color gradient

odel has been enriched with the so called regularization proce-

ure [29,34,36] , namely a discrete Hermite projection of the post-

ollisional set of distribution functions onto a proper set of Her-

ite basis. The main idea is to introduce a set of pre-collision

istribution functions which are defined only in terms of the

acroscopic hydrodynamic moments. All the higher-order non-

quilibrium information, often referred to as ghosts [28] , is dis-

arded.In equations, the regularized LB reads as follows: 

f k i (x i + c i �t, t + �t) = R f k,neq 
i 

(x, t) ≡ f k,eq 
i 

− �tω k ( f k,reg 
i 

− f k,eq 
i 

)

(12)

here f 
k,reg 
i 

is the hydrodynamic component of the full distribu-

ion f k 
i 

(see [29] ) for the k th color, and R is the regularization op-

rator. The above equation shows that the post-collision distribu-

ion, of a 4 th -order isotropic lattice, is defined only in terms of the

onserved and the transport hydrodynamic modes, namely density

, current ρ�
 u and momentum–flux tensor � = 

∑ 

i f i � c i � c i . 
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Fig. 1. (a) and (b); density field of a resting droplet immersed in a second component : (a) LBGK (b) Regularized LBGK. The relaxation times of the blue and yellow 

component were set, respectively, to 1 and 5 ( νB ∼ 0.167, νY ∼ 1.5). (c) and (d) velocity field (spurious currents) around the resting droplets for the non regularized (c) and 

regularized (d) case. It is evident that, for high viscosity values of the dispersed phase, a reduction of isotropy emerges that reflects into a non spherical shape of the resting 

droplet. An inspection of the flow field highlights that the droplet anisotropy is basically driven by a non-physical flow field around the droplet which is, in turn, caused 

by the presence of the ghost modes which are excited in the under-relaxed regime (1/ ω > 1). As one can see, the regularization cures the loss of isotropy in under-relaxed 

LBGK, by suppressing the non-physical modes, as evidenced by the circular shape of the droplet at rest and by the spurious flow field around the droplet, which is now 

isotropic and roughly an order of magnitude smaller than in the plain LBGK case. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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For the sake of clarity, in the appendix we report a pseudocode

llustrating the regularization procedure employed in our simula-

ions, while in the following section we proceed to discuss the mo-

ivation for using the regularization procedure in the color gradient

ode. 

. Regularized LB multicomponent approach for low capillary 

nd Reynolds microfluidics 

The Reynolds and the capillary numbers are defined as follows:

Ca = 

ρνU 

σ

Re = 

LU 

ν

(13) 
here ν is the kinematic viscosity of the fluid, σ is the surface ten-

ion and L and U are, the characteristic length and velocity respec-

ively. Microfluidic flows in T-junctions and flow focusing devices

re most often characterized by Re ∼ 1 and Ca � 1. For a typical

roplet of diameter D = 10 −4 m, moving at a speed U = 0 . 01 m/s

he Reynolds and capillary numbers are Re = 1 and Ca = 10 −4 ,

here we have taken the density of water and a surface tension of

10 −3 N/m. The diffuse nature of the fluid-fluid interface in the

ulticomponent model employed in this work, poses some con-

traint on the ratio between the characteristic length scale of the

roblem, namely the droplet diameter D , and the width of the dif-

use interface, δ, known as Cahn number Cn = δ/D [40] . Since the

nterface width lies on nanometric scales, the Cahn number is usu-

lly very small, of the order of 10 −4 or less. Such scale separa-

ion is computationally unfeasible, and LB simulations must typ-
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Fig. 2. capillary number-based flow map with flow regimes reproduced by the regularized color gradient model (from the upper left to the lower left panel): Dripping, jetting 

(second and third) and tubing. The regularized model is capable of accurately predicting the different flow regimes in a microfluidic flow focusing device. The viscosities of 

the two fluids are νY = 0 . 167 (continuous phase) and νB ∼ 0.5 (dispersed phase), thus matching the viscosity ratio of the liquids employed in the experiments reported in 

[41] . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Normalized droplet diameter d / h vs the flow rate ratio φ = Q B /Q Y . Numerical 

results (Red triangles) are superimposed to the experimental curve of Cubaud and 

Mason [41] . The diameters collapse on a single master curve, which scales with the 

flow rate like Q B /(2 Q Y ) 
0.5 , as reported in [41] . 
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ically operate at much higher Cahn numbers, between 0.01 and

0.1, implying that the associated inaccuracies must be properly in-

spected. Given that the diffuse interface is about 5 lattice units,

by taking D lb = 100 (subscript lb denotes lattice units), we obtain

n = 0 . 05 . Realizing Re = 1 with Cn ∼ 0.05 runs against numerical

limitations of the LB method; for instance, by choosing U lb = 0 . 001

and νlb = 0 . 1 , one faces two inconveniences: first, very long simu-

lation time due to the small velocities, ( U lb = 0 . 001 means thou-

sands lattice time steps to cover one lattice spacing), second, a

low signal/noise ratio due to spurious currents. The alternative is

to raise both the velocity and the viscosity, say U lb = 0 . 01 and

νlb = 1 ; however, this implies large values of the relaxation time

τ , triggering correspondingly large non-equilibrium effects and re-

sulting ghost currents. This is where the benefits of the regulariza-

tion technique prove key: by filtering out the ghost currents, the

Regularized LB can operate at higher values of the droplet speed

without incurring into spurious currents and anomalous ghost ef-

fects [35] . 

4. Results 

In the following, we present two preliminary applications of

the proposed scheme, namely the simulation of droplet formation

in standard flow-focusing microfluidic devices and to the recently

proposed “volcano” devices [42] . 
.1. Flow-focusing devices 

We performed simulations of resting droplets of component

ne (colored as yellow in Fig. 1 ) immersed in a second compo-

ent (blue in Fig. 1 ) with same densities and different viscosi-

ies. The size of the domain is 128 × 128 and the droplet diam-

ter is 30 lattice units The relaxation times of the blue and yel-

ow components were set to 1 and 5 ( νB ∼ 0.167, νY ∼ 1.5), respec-

ively. It is worth to highlight that, for high viscosity values of the

ispersed phase, sizeable non-isotropic effects arise, resulting in a

on-spherical shape of the rest droplet. A more detailed inspec-

ion of the flow field shows that the droplet anisotropy is basi-

ally driven by a non-physical flow field around the droplet, caused

y the presence of the ghost modes. The ghost modes are excited

henever under-relaxed ( τ > 1) LBGK models are employed [35] .

he regularization cures the loss of isotropy in under-relaxed LBGK,

y suppressing the non-physical modes as evidenced by the cir-

ular shape of the droplet at rest and by the spurious flow field

round the droplet (see Fig. 1 left panels) which is isotropic. Fur-

her, the maximum value of spurious currents is an order of mag-

itude smaller than in the plain LBGK case. We then run simula-

ions of a flow focusing device and compared our results with ex-

erimental data available in literature. The simulated device con-

ists of four microchannels with square cross sections of identical

idth h = 100 μm that intersect at right angles, forming a cross

hannel. The height of the channel is discretized with 30 lattice

nits so that �x = 3 μm. As per the boundary conditions, we im-

osed uniform velocity profiles at the three inlets of the device

y using the bounce-back rule with the momentum correction, as

ntroduced by Bouzidi et al. [43] , while a zero gradient approxima-

ion has been employed at the outlet by copying the set of distri-

ution functions from in the bulk to the buffer nodes [44] . At the

olid walls, the mid-grid bounceback rule has been implemented,

o as to mimic a no-slip condition at the wall [44] . Wetting con-

itions have been implemented by setting two density values, one

or each components, at the wall nodes. The contact angle can thus

e analytically determined via the following formula [45] : 

= acos ( 
ρwζ − ρwξ

ρ
) (14)

or the flow focusing simulations we set θ ∼ 130 ° by imposing
ρwζ −ρwξ

ρ = 0 . 65 , being ρw ζ and ρw ξ the density values of the two

omponents at the wall nodes. 

The viscosities of the two fluids are νY = 0 . 167 (continuous

hase) and νB ∼ 0.5 (dispersed phase), thus matching the viscos-

ty ratio of the liquids employed in the experiments of Ref. [41] .
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Fig. 4. Prospective application of regularized color gradient model augmented with arrested coalescence algorithm. The model allows for stable simulation of mono-disperse 

droplets. This opens the way to the simulation of mono-dispersed oil–water emulsions. Future applications of this model will allow to identify optimal operational regimes, 

capable of delivering droplet configurations of high regularity, both in size and connectivity. Upper panel containing the experimental data is reported from Ref. [15] . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ven in this case, the relaxation time of the dispersed phase (blue

n Fig. 2 ) is greater than one, providing an out of equilibrium

egime as in the previous case. In Fig. 2 we report the capillary

umber-based flow map with flow regimes observed by Cubaud

nd Mason [41] . The two capillary numbers are defined as follow,

a 1 = μ1 U 1 ,in /σ and Ca 2 = 2 μ2 U 2 ,in /σ, Where , μ1 and μ2 are the

ynamic viscosities of the two components, U 1, in is the inlet ve-

ocity of the dispersed component while U 2, in is the inlet veloc-

ty of the continuous component. Finally, σ is the surface tension

etween the two components Here, we assume that the dynam-

cs of droplet formation is essentially dominated by the balance of

angential shear stresses and capillary tension (i.e. capillary num-

er) in line with several works in literature [1,7,19,46] . As a con-

equence, the capillary numbers of the two components is used to

iscern several flow regimes. In Fig. 2 , we note a viscous thread-

ng regime (labeled (a) in Fig. 2 ) characterised by the predomi-

ant role of the viscous stress over the capillary forces (high val-

es of the capillary numbers Ca 1 and Ca 2 ). On the contrary, at low

a 1 < 10 −1 and Ca 2 < 10 −1 , we observe capillary-dominated flows,

roviding a dripping of elongated droplets (labeled (c)). In the mid-

le ranges, we note a jetting regime (labeled (b)) characterised by

 relatively high viscous force of the first component over a lower

apillary number of the second component ( 10 −2 > Ca 2 > 10 −3 ).

urther, we note an intermediate region in the diagram phase de-

cribing a tubing regime (labeled (d)), which is characterised by

he high capillary force of the second component(Ca 2 < 10 −2 ) over

 halfway behavior of the first component (Ca 1 ≈ 10 −1 ). The regu-

arized color gradient is clearly able to reproduce the different flow

egimes in such microfluidic flow-focusing device, correctly pre-

icting dripping, jetting and tubing flow configurations at different

apillary numbers. Next, we computed the normalized droplet di-

meter d / h , being h the height of the microfluidic channel, versus

he flow rate ratio ( Q B / Q Y , being Q B and Q Y the flow rate of the

ispersed and continuous component, respectively) and compare

ith experimental data. The numerical results, in agreement with

ef. [41] , collapse on a single master curve, which scales with the

ow rate like Q B /(2 Q Y ) 
0.5 (see Fig. 3 ). As a prospective application,

he regularized approach was used to simulate an oil/water emul-

ion in a flow-focusing device. The use of the regularization has

roven to be instrumental to run the flow focusing , due to the

igh viscosity values of the components employed in the simula-
 t  
ions. Indeed, without regularization, unphysical behaviors in the

ensity and velocity fields occur due to the large values of the re-

axation frequency, which may eventually drive the simulation un-

table. Thus, in view of very refined simulation, the regularization

ill offer a very easy and efficient way to handle spurious effects

oming from the under-relaxation of the distribution functions in

he collision processes. In order to obtain a mono-dispersed emul-

ion, the regularized color gradient approach has been augmented

ith an algorithm aimed at suppressing coalescence between the

roplets of the dispersed phase (oil) (see next subsection for de-

ails). The results show that the model allows for stable simulation

f mono-disperse droplets, well reproducing the experimental data

see upper panel of Fig. 4 ). This opens the way to the simulation

f mono-dispersed oil–water emulsions. Future applications of this

odel will allow to identify optimal operational regimes capable

f delivering droplet configurations of high regularity, both in size

nd connectivity, which are of major interest for biomedical and

issue engineering applications. 

.2. Microfluidic step emulsifier (volcanos) 

As a further application, we report some preliminary simula-

ions of a new class of step emulsification devices, called volcano

42] , which are based on the idea of preventing the obstruction

f the nozzles from the droplets via buoyancy effects. These de-

ices are expected to enhance the yield of highly mono-dispersed

ater/oil or oil/water emulsion, which is highly desirable for most

ndustrial purposes. 

The volcano device made from polydimethylsiloxane is used for

roducing water in oil emulsions. The water flows through the

evice inlet, and splits into hundreds of step-emulsifier nozzles

ith rectangular cross section. The device is submerged in a quies-

ent oil reservoir, each nozzles producing a stream of micron-sized

roplets As a preliminary step, we simulated a single-nozzle de-

ice, in absence of gravity ( Bo = 0 , being Bo = �ρgL 2 /σ the Bond

umber, namely the ratio between gravitational forces and surface

ension). As per the boundary conditions, at the inlet and outlet,

e employed the bounce-back rule with the momentum correction

nd the zero gradient boundary condition, respectively. Periodic

oundary conditions have been applied along the crossflow direc-

ions. Upon matching the governing dimensionless groups (capil-
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Fig. 5. Droplet breakup sequence. The width of the channel w = 700 μm and the height h = 70 μm ( h/w = 1 / 10 ), corresponding to capillary number is Ca = 1 . 4 × 10 −2 . In 

this simulation �x = 7 μm, the viscosity of the two components ν = 0 . 0167 and the surface tension of the model is σ = 0 . 0244 . After the break up, the droplet diameter is 

D = 350 μm, so that D/h = 5 , in good agreement with the experimental findings on the volcano device ( w/h = 8 , D/h = 5 . 8 , Ca = 10 −2 )) [42] . 
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lary and Weber number) and the characteristic geometrical ratio

h / w (see the caption of Fig. 5 for the values of the physical parame-

ters), we are able to simulate the droplet break up. After the break

up, the droplet diameter is D ∼ 350 μm, corresponding to D / h ∼ 5,

in good agreement with the experimental findings on the volcano

device [42] ( w/h = 8 , D/h = 5 . 8 , Ca = 10 −2 ). A thorough investiga-

tion of the microfluidics of volcano devices is currently underway,

and will make the subject of future communications. 

5. Summary 

Summarizing, we have presented a novel variant of the Lattice

Boltzmann method for multiphase flows, based on the regulariza-

tion of the color-gradient scheme, augmented with a color-swap

algorithm to mimic the effect of intermolecular repulsion, so as

to tame droplet coalescence. The new scheme has been applied

to the simulation of droplet production in flow-focusing micro-

devices, finding satisfactory agreement with the existing literature,

both in terms of predicting the transition from dripping–jetting–

tubing regimes, and also in terms of space-time patterns of the

droplet configurations in experimental devices. Moreover, we have

also presented preliminary three-dimensional simulations of an al-

ternative step emulsifier device, known as volcano device, which is

based on the idea of promoting nozzle cleaning via buoyancy ef-

fects. If successfully demonstrated, step-emulsifier devices may of-

fer substantial advantages in terms of droplet production rate, de-

gree of mono-dispersity and morphological regularity, versus flow

focusing devices. 
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Appendix A. Pseudo code of the regularization procedure 

Here, a pseudo code of the regularization procedure is reported

for the sake of clarity: 

for l ≤ b ∧ ∀ (i, j) ∈ D do 

f 
k,neq 

l 
(i, j) = f 

k,pc 

l 
(i, j) − f 

k,eq 

l 
(i, j) 

end for 

for l ≤ b ∧ ∀ (i, j) ∈ D do 

�neq,k 

α,β
= �neq,k 

α,β
+ (c lαc lβ − c 2 s δαβ ) f k,neq 

l 
(i, j) 

end for 

for l ≤ b ∧ ∀ (i, j) ∈ D do 

f 
k,reg 

l 
(i, j) = f 

k,eq 

l 
(i, j) + 

w l 

2 c 4 s 
(c lαc lβ − c 2 s δαβ )�neq,k 

α,β

end for 

where f 
pc 

l,k 
(i, j) is the set of post-collision distribution functions

of the k th component, f 
neq 

l,k 
(i, j) is the non-equilibrium part of

f 
pc 

l,k 
(i, j) , p k 

α,β
are the components of the non-equilibrium part of

the momentum flux tensor, D stands for the fluid domain and
f 
reg 

l,k 
(i, j) is the regularized set of post-collision distribution func-

ions. Thus, once the macroscopic moments of both components

re computed, it is possible to compute the non equilibrium part

f the set of distributions along with the components of the non-

quilibrium part of the stress tensor �neq, k and then reprojecting

he pre-collision set of distribution functions onto a proper Her-

ite subspace. 

ppendix B. Coalescence suppressing algorithm 

The coalescence suppressing algorithm is very similar to the

ne reported in [17] . The main idea is as follows: after the break

p, the newly formed droplet changes its color thus becoming im-

iscible with both the ambient fluid (yellow component in Fig. 4 )

nd the neighboring droplets already present in the main channel.

he drop rupture can be detected by monitoring the density profile

f the jet of the dispersed phase along the horizontal central axis

f the domain. Indeed the droplet separation is signaled by the

ppearance of a zero in the density profile. Once this occurs, the

ewly formed droplet is reassigned with a new color, while retain-

ng the same physical properties of the dispersed phase (viscosity

nd surface tension). It is also important to note that, in order to

uppress the mixing between neighboring droplets the surface ten-

ion coefficients between the dispersed components must be high

nough to guarantee a contact angle of 180 ° between the droplets.

y doing so the coalescence between droplets is completely sup-

ressed. Finally, it is also worth noting that, only five distribution

unctions are required at each site to prevent coalescence between

eighboring droplets, so memory and computing time are virtually

ndependent of the number of droplets to be simulated [17] . 
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