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~ésumé - La grande dimension de la maille des réseaux de cristaux 
colloidaux esfala cause de la petitesse de leurs constantes 
élastiques (10 fois inférieures à celles des solides usuels). 
On peut donc aisément étudier des écoulements présentant des 
rapports contrainte/constante élastique supérieurs à ce que 
l'on connaissait jusqu'ici. On étudie un écoulement plastique 
hautement non linéaire en régimes oscillants et stationnaires, 
ce qui conduit à des structures spatialement périodiques. Ces 
structures correspondent a des régions alternées de 
cristallites qui sont l'image par réflection de leurs voisines. 
La structure observée en régime oscillant dans un tube sort de 
l'ordinaire en ce que le coeur est liquide alors que contre 
les parois la structure est solide (ordonnée). Cette 
configuration, reconnue comme instable jusqu'ici peut être le 
résultat d'un comportement inhabituel de la relation 
déformation-contrainte à la frontière solide-fluide. Des 
expériences en géométrie de Couette produisent des bandes 
verticales qui correspondent à un mouvement cohérent de 
dislocations à la frontière de 2 structures images dans un 
miroir l'une de l'autre. Ces bandes se deplacent en sens 
inverse de celui de la rotation du cylindre intérieur et à 
vitesse proche de celle de la propagation des ondes élastiques 
transverses. 

Abstract - The large latti~e~fpacings in colloidal crystals 
produce elastic constants - 1ki less than conventional solids. 
It is therefore easy to study flow properties at stress/elastic 
constant ratios higher than previously available. The highly 
nonlinear plastic flow regime studied in oscillating and steady 
state flow yields periodic patterns. These patterns correspond 
to alternating regions of ordered crystallites which are mirror 
image structures. The pattern observed in oscillatory flow in 
a tube is also unusual in that the core is liquid while at 
larger radius one finds a solid on the tube wall. This tra- 
ditionally unstable configuration may be the. result of an 
anomalous stress-rate relation at the fluid-solid boundary. 
Experiments in couette geometry produce vertical stripes which 
correspond to coherent motion of dislocations at the boundaries 
separating two mirror image structures. The stripes move in 
the direction opposite £rom the rotation of the inner cylin- 
der, at velocities close to the transverse sound velocity. 

1. Introduction - 
Colloidal crystals are characterized by lattice spacings which are 
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thousands of angstroms. The elastic constant, which roughly 
measures the energy density are therefore smaller than found in 
conventional solids by a factor of order lu1' . The yield 
stress and region of plastic flow are correspondingly small and one 
can easily attain stress/moduli ratio's which are not accessible in 
other systems. 

In experiments which were originally aimed at measuring the shear 
stress-shear rate relationship we have found a series of 
instabilities which produce periodic ordered structures in the 
sheared colloidal crystal. These structures occur in the plastic 
flow regime somewhat below the shear melting transitions5 and appear 
to involve the alignment of dislocations into grain or twin 
boundaries. 

When the colloidal crystal is placed in a couette apparatus with the 
inner cylinder rotating, we can also observe the formation of Taylor 
vortices and the transition to the wavy Taylor States. However, 
although the colloidal crystal can flow with a relatively low 
viscosity we never observe the Taylor instability with the colloid 
in the crystalline state. For "strong" crystals we observe a 
suppression of the Taylor instability. With increasing shear, the 
crystalline phase shear melts with a spontaneous transition to 
Taylor or wavy Taylor flow. 

As originally pointed out by Crandall and Williams, the characteris- 
tic elastic moduli of colloidal crystals can be understood using the 
approximate relationship 

where V is an interparticle potential energy and c is the particle 
concentration. In Table 1 we note the characteristic interparticle 
potentials, densities and elastic constants of conventional 
materials and colloidal crystals. The potential energies are the 
same order of magnitude. Since the potential energy differences 
between liquid and solid state are what determine the melting temp- 
eratures, it is not surprising that the melting temperature of 
colloidal crystals and conventional solids are comparable and equal 
to several times room temperature. The elastic constants however 
differ by the factor of the particle concentration of - 1 ~ ~ ~ .  This 
explainç the extreme fragility of the colloidal crystals. 

With stresses that are easily attainable in the laboratory, it is 
possible to have ratios of shear stress to elastic constant which 
are extraordinary compared to conventional materials. A typical 
laboratory experiment invo ves stesses of the order of a - 10' 
dynes/cm2, giving o/G - 10' for colloidal crystals. Noting that 
G ~ ~ ~ ~ / G ~ ~  - 1012 a similar a/G for rock would involve stresses of - 

dynes cm2. This would be the stress under a mountain - 10'~m 
high or 0 x the height of Mt. Everest. Thus we are investigating 
matter in an entirely new shear regime. 

The studies which come closest to these enormous stress/ modulus 
ratios involve geological flows, and it is interesting to examine 
those results to see what çhould be expected in the low shear- 
stress regime for Our crystals. Figure 2 of Ref. 6 shows a typical 
deformation map (temperature and stess diagram appropriate for dif- 
ferent flow mechanisms) for Olivine, a component of the earth's 
mantle. At low stress the solid is essentially elastic with the 
only flow coming £rom the creep of point defects. The transition to 



Interpart icle 
Di stance 

Interpart icle 
Interaction 

Table 1 

Metals, Rocks Colloidal Crystals 

2i AO " J F i  

Screened Coulomb 
z2e2e- Kr 

E 'L 100 
~r Kr % 1 

Charge e ~e z % 103 

Interpart icle % 10-l1 erg 2i IO-'' erg 
Potential 

2i ~ O ~ K  2, I O ~ K  

Me1 ting Temperature 102 - I O ~ K  10' - I O ~ K  

Concentration 2i ~ o ~ ~ / ( c M ) ~  2i 1 0 I ~ / ( c r n ) ~  

Elastic Constants a 1013 dyneslcm 2ilOdynelcm 2 

p l a s t i c  flow, coming from dis locat ion creep, i s  characterized by a  
y ie ld  s t r e s s  which var ies  from 1 ~ - ~  of G a t  melting t o  1V2 of G a t  
low temperature .  A t  t empera tu res  above - .5 t i m e s  t h e  m e l t i n g  
temperature the re  is  a  region where the s t r a i n  r a t e  or  shear r a t e  i 
var ies  a s  a  power law with applied s t r e s s  a 

A t  higher shear s t r e s s  there  is an exponential va r i a t ion  known a s  
the  Dorn law6: 

2 I exp (a / T l  ( 3  1 

The g e n e r a l  d e s c r i p t i o n  ( i n  s c a l a r  form) of t h e  s t r a i n  r a t e  by 
motion of d is locat ions  i s  ( f o r  edge dis locat ions) :  

Y = pbv ( 4  1 

where p is the  dis locat ion density,  b  is the  Burgers vector and v  
i s  the dis.location velocity. Since both the velocity and density of 
d is locat ions  can change with the ' s t ress ,  models a re  needed t o  ex- 
p l a i n  t h e  p r o p e r t i e s  of d i f f e r e n t  sys tems and t h e s e  models can 
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produce the  d i f f e r e n t  power laws and exponential dependences7. The 
most "natural" r e l a t ionsh ip  seems t o  take  the power law with a =  3. 

I t  i s  wor th  n o t i n 2  t h a t  t h e  y ' e l d  s t r e s s  of  most s i n g l e  c r y s t a l  3 mater ia ls  i s  - 10- - of G . Olivine has a  p a r t i c u l a r l y  high 
y i e l d  s t r e s s  of - 10-2 a t  low tempera tu res  due.both  t o  i t s  s m a l l  
p a r t i c l e  s i z e  and t h e  f a c t  t h a t  it i s  a  mix tu re  of many oxides ,  
l ead ing  t o  a  s u b s t a n t i a l  i n c r e a s e  t h e  d e f e c t  pinning.  We should  
expect y ie ld  s t r e s s e s  of order 1 0 - ~ - 1 0 - ~  fo r  the  co l lo ida l  c rys ta l s .  

From the  f a c t  t h a t  we can obta in  such high U/G r a t i o s  fo r  co l lo ida l  
c rys ta l s ,  it should be expected t h a t  highly nonlinear flow is  ob- 
servable. In Our s tud ies  of co l lo ida l  c r y s t a l s  we have indeed seen 
h i g h l y  n o n l i n e a r  behavior ,  which can roughly be grouped i n t o  t h e  
following regimes. 

Increasing 
S t r e s s  

Anisotropic Fluid 
I so t rop ic  Fluid 

Shear Melting 
Highly Anisotropic f l u i d  
P l a s t i c  
E l a s t i c  

A t  very low shear (and f i n i t e  frequency of - 10-' Hz) the  co l lo ida l  
c r y s t a l  responds e l a s t i c a l l y .  Increasing the  shear s t r e s s  we f ind a  
p l a s t i c  flow regime where the  shear s t ress /shear  r a t e  r e la t ionsh ip  
i s  desc r ibed  by a  power law i n d i c a t i n g  d i s l o c a t i o n  creep.  The 
p a r t i c u l a r  exponent observed depends upon t h e  c r y s t a l  s t u d i e d  
( d e n s i t y ,  charge,  i o n i c  s t r e n g t h )  and ranges  £rom 3 t o  7  ( a s  i n  
r ~ c k s ) ~ .  For higher shear s t r e s s  the  d is locat ions  a r e  s o  dense and 
moving so  rapidly  t h a t  the  samples behave a s  a  highly anisot ropic  
f l u i d  with r i g i d  planes g l id ing  over one another. J u s t  above t h i s  
regiof t h e  sample " sXear .mel t s "  i n t o  an approximate ly  isotropie 
f l u i d  , but  a t  higher shear the  colors  observed i n  d i f f e r e n t  shear 
d i r e c t i o n s  i n d i c a t e  a  sma 1 a n i s o t r o p y  i n  t h e  l i q u i d  s t r u c t u r e  
fac to r  induced by the  s h e a r q  

A s  a  consequence of t h i s  highly nonlinear behavior and a l s o  because 
of a  t r a n s i t i o n  between d i f f e r e n t  regimes, we have o f t en  observed 
s p a t i a l l y  per iodic  pat terns ,  e i t h e r  s t a t ionary  or  moving, and i n  a  
va r i e ty  of geometries. 

The f ' r s t  i n s t a b i l i t y  we observed was f o r  o s c i l l a t o r y  f low i n  a  
tube1* A cap i l l a ry  i s  f i l l e d  with the  co l lo ida l  c r y s t a l  and then 
an o s c i l l a t i n g  pressure gradient  is applied. A t  f i r s t  the  c r y s t a l  
s l i p s  a t  the  tube radius and we have plug flow. Then dark c i r c l e s  
(perpendicular t o  the  a x i s )  a r e  observed t o  move £rom the  top t o  the  
bottom of t h e  tube,  i n  phase w i t h  t h e  meniscus b u t  w i t h  much 
g rea te r  veloci ty  and excursion. These a r e  d is locat ion loops, which 
by t h e i r  motion tend t o  a l i g n  the  c r y s t a l l i t e s .  We then observe a  
pa t t e rn  forming on the inner g lass  wal l  of the  tube. This pa t t e rn  
corresponds t o  a l t e rna t ing  mirror-image regions of £cc c r y s t a l l i t e s  
with an o r i en ta t ion  which bes t  r e s i s t s  the  shearl*. 

I n  t ry ing t o  understand t h i s  pa t t e rn  we run i n t o  the  problem t h a t  
p r e s s u r e  a p p l i e d  t o  a  s o l i d  i n  a  t u b e  should  cause  y i e l d  of  t h e  
s o l i d  a t  the  l a r g e s t  radius f i r s t ,  and then plug flow ( l i k e  tooth- 
p a s t e  squeezed from a  tube) .  Elementary arguments show h a t  t h e  5 pressure on a  s o l i d  c r y s t a l  of radius r gives a  force n r  P while 
t h e  r e s t o r i n g  f o r c e  £rom t h e  boundary is  n a r l  (where a  i s  t h e  
shear s t r e s s ) .  Thus fo r  l a rge r  radius cylinders the  r a t i o  increases 
and a  s o l i d  w i l l  y i e l d  f i r s t  a t  i ts outer  boundary. 



O 1 O0 200 300 400 
Reynolds Number 

Fig. 1 - Wavelength of periodic pattern, normalized by the viscous 
penetration depth vs. Reynolds number for a series of colloidal 
crystals of varying elastic constant (10-60 dynes/cm2), tube 
diameter (1-4 mm), drive frequency (2-30 Hz) and drive amplitude. 
Inset is a picture of the pattern formed by oscillatory flow in a 
capillary. 

However if we consider a fluid flowing in the tube and then ask 
where the crystal phase can nucleate we find first that the mass 
flow must be conserved. If we cystallize a region into the liquid 
from the glass walls w e  find that the velocity and shear force 
decrease with the radius of the hole which is left. Thus the crys- 
talline region can grow in from the glass wall until the stress is 
the yield stress. This configuration, solid outside and liquid 
inside, is then stable as far as radial displacements are concerned. 
However further analysis shows that in this configuration an 
crease in flow decreases the pressure - an unstable situation 
Thus the system is unstable against modulations of the radius of the 
liquid hole along the axis of the tube. We expect that this is what 
causes the periodic structure. But the complication of periodic 
motion of the fluid with the Poisseuille geometry makes further 
mathematical investigation difficult. 

The solution to the periodic Poiseuille flow problem has not been 
accomplished even for Newtonian fluids. Some indication that we may 
be seeing purely hydrodynamic effects comes from the fact that al1 
of Our data for different size tubes, and crystalline elastic cons- 
tants collapses to the same curve (Figure 1) when the periodicity is 
normalized by the viscous penetration depth ( G, with w the 
drive frequencies and v the dynamic viscosity) and plotted vs. the 
Reynold's number. Together with Dr. G Maret (Grenoble) we there- 
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fore  studied o s c i l l a t o r y  motion of a  pure l iqu id  using shear b i re-  
fringence. No s ta t ionary ,  s p a t i a l l y  per iodic  modes were seen. Thus 
the pe r iod ic i ty  i n  the  Po i seu i l l e  geometry remains an unresolved 
question. 

We now turn Our a t t e n t i o n  t o  the  couette geometry where the  flow 
f i e l d  and s h e a r  r a t e  is  more uniform than i n  P o i s e u i l l e  flow. A 
p ic tu re  of the  apparatus is  shown i n  Figure 2. The outer wall  i s  
fixed, the  inner cylinder of radius 4.52 cm can be ro ta ted  and the 
gap i s  3.175 m m  (0.125 inch) .  A t  low s h e a r  r a t e s  t h e  c o l l o i d a l  
c r y s t a l  samples ( typ ica l ly  .891 diameter spheres with 1-3% volume 
f rac t ion)  flow and shear a l ign  producing b r i l l i a n t  Bragg scat ter ing.  
A t  h i g h e r  s h e a r  r a t e s  new and r a t h e r  unusual  long range p a t t e r n s  
appear i n  the  flow. They consis t  of periodic v e r t i c a l  s t r i p e s  of 
a l t e r n a t i n g  green and red color,  with a  wavlength on the  order of 
one cm. These s t r i p e s  c i r c u l a t e  around the  tube i n  a  sense con- 
t r a r y  t o  the ve loc i ty  f i e ld .  The formation of t h i s  pa t t e rn  and i t s  
proper t ies  w i l l  be elaborated short ly.  

As the  shear r a t e  i s  fu r the r  increased the  observations depend on 
the  s t rength  of in te rac t ion  of the  p a r t i c l e s  i n  the  colloid.  For 
" s o f t '  c r y s t a l s  one observes shear melting i n t o  a  l iqu id  s t a t e  with 
consequent l o s s  of opalescence.  A t  h i g h e r  s h e a r  Taylor  r o l l s l l  
appear a t  approximately the  same Reynolds number as  f o r  water i n  
t h i s  geometry. The Taylor  r o l l s  a r e  e a s i l y  observed w i t h  t h e  
sheared c o l l o i d  a s  b r i g h t ,  narrow o p a l e s c e n t  bands which appear 
hor izonta l ly  around the cylinder wall. The opalescence r e s u l t s  £rom 
t h e  r e c r y s t a l l i z a t i o n  of t h e  c o l l o i d  i n  t h e  nodes of t h e  Taylor  
r o l l s  where the  t o t a l  shear i s  decreased (Figure 2) .  When shear is  
increased fu r the r  we see the  onset of wavy Taylor r o l l s .  These a r e  
characterized by t h e  disappearance of the  sharp opalescent l i n e s  and 
t h e  appearance of a  colored dynamic s h e a r  p a t t e r n .  Th i s  r e s u l t s  
£rom t h e  s h e a r  d i s t o r t i o n  of t h e  s t r u c t u r e  f a c t o r  of t h e  c o l l o i d  
l iqu id  and the alignment of these d i s t o r t i o n s  i n  the  shear flow. 

For stronger c r y s t a l s  the  Taylor uns tab i l i ty  is  suppressed and does 
not occur u n t i l  the  sample shear melts  - of ten a t  Reynolds numbers, 
c a l c u l a t e d  us ing t h e  v i s c o s i t y  of t h e  sheared c o l l o i d a l  c r y s t a l ,  
which a r e  severa l  t imes the  c r i t i c a l  Reynolds number f o r  an iso- 
t rop ic  l iquid.  I n  these samples the  shear melting and the  t r a n s i t -  
ion t o  the  Taylor i n s t a b i l i t y  happens simultaneously. I f  the  crys- 
t a 1  is s u f f i c i e n t l y  strong the  shear melting occurs d i r e c t l y  i n t o  
t h e  wavy T a y l o r  
i n s t a b i l i t y  before 
p e c t  t h a t  t h i s  i s  

s t a t e .  have  n e v e r  o b s e r v e d  t h e  -or 
the  co l lo ida l  c r y s t a l  is  shear melted. We sus- - 
t h e  r e s u l t  of t h e  extreme a n i s o t r o p y  of t h e  

v i scos i ty  i n  the  sheared co l lo ida l  crys ta l .  I t  has a low v i scos i ty  
along the  d i rec t ion  of flow but is  e s s e n t i a l l y  a  r i g i d  s o l i d  i n  the  
d i rec t ion  along the  shear gradient. Since the  Taylor i n s t a b i l i t y  
invo lves  f low both  r a d i a l l y  and t a n g e n t i a l l y  it  i s  suppressed by 
t h i s  an i so t ropy .  We would expect  s i m i l a r  e f f e c t s  w i t h  Smect ic  
Liquid Crystals. 

We now r e t u r n  t o  t h e  v e r t i c a l  s t r i p e s  which a r e  observed i n  t h e  
p l a s t i c  flow regime. This pa t t e rn  of flow has, t o  Our knowledge, 
never been seen  b e f o r e  i n  t h e  c o u e t t e  geometry, and, indeed,  has  
t o t a l l y  d i f f e r e n t  symmetry from the  i n s t a b i l i t i e s  normally seen. 
From the  Bragg sca t t e r ing  proper t ies  of the  c rys ta l s ,  we learn  t h a t  
t h e  s t r i p e s  r e p r e s e n t  a l t e r n a t i n g  reg ions  of s h e a r  a l l i g n e d  £cc  
c r y s t a l s  w i t h  m i r r o r  image symmetry, a s  was observed f o r  t h e  
Pouiseulle flow. The pa t t e rn  is somewhat unstable - it developes 
but does not always remain indef in i te ly .  Instead it w i l l  appear, 
d i sappear ,  then  reappear .  The f requency and p e r s i s t a n c e  of  t h i s  



F i g u r e  2 -- a )  C o u e t t e  system a t  rest, w i t h  d e i o n i z e d  p o l y s t y r e n e  
l a t e x  d, 0.091 m, $ = 3%: b)  P e r i o d i c  s t r i p e s  a t  a s h e a r  r a t e  o f  - 1 U  Hz: c )  T a y l o r  rolls a t  a s h e a r  r a t e  of - 130 Hz: d )  Wavy Taylor  
rolls a t  a s h e a r  r a t e  o f  - 150 Hz. 

s e e m s  t o  b e  a compl ica ted  f u n c t i o n  o f  t h e  c r y s t a l  s t r e n g t h  and i n n e r  
r o t o r  s p e e d .  However,  when t h e  p a t t e r n  i s  f u l l y  d e v e l o p e d ,  t h e  
i n n e r  r o t o r  can b e  s topped  suddenly and t h e  p a t t e r n  w i l l  be " f rozen  
in". W e  b e l i e v e  t h a t  t h e  occurence  o f  t h e  p a t t e r n  may be under- 
s t o o d  i n  t e r m s  o f  t h e  s t a t i c  a n d  d y n a m i c  d i s l o c a t i o n  d e n s i t y  and  
mot ion .  F o r  s i m p l i c i t y  we w i l l  d i s c u s s  t h e  phenomena a s  i f  t h e  
s t r u c t u r e  were s i m p l e  c u b i c  r a t h e r  t h a n  t h e  much more compl ica ted  
f c c  or bcc  s t r u c t u r e  a c t u a l l y  formed. Due t o  t h e  confinement  o f  t h e  
c o l l o i d a l  c r y s t a l  i n  a c y l i n d r i c a l  g e o m e t r y  t h e r e  i s  a minimum 
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density of dislocations that must be present even statically. At 
the inner cylinder the path length corresponding to an angle A0 is 
R A0(see Figure 3); at the outer cylinder the length is R2A0 . The I difference in length (R -Rl)AB is accounted for by the addition of 
planes in the form of eige dislocations throughout the area defined 
by A0 and the two cylinders. Since each dislocation adds a dis- 
tance b to the outer length, the number of dislocations needed is 

The area is - (RI-R2)R1 A0 and the minimum dislocation density is 
then 

where R = (R1 + ~ ~ ) / 2 .  on-the other hand, independent of geometry, 
there is a dynamic dislocation density needed to maintain the shear 
rate and given by equation 4 or 

As fincreases from zero the dislocation density increases (in 
plane couette flow) as does the dislocation velocity. This disloca- 
tion increase coupled with the velocity increase gives rise to the 
highly nonlinear behavior of sheared solids. Usually e disloca- fi! tion velocity can not be higher than the sound velocity Vs. Thus 
at some point the velocity is fixed and only the dislocation density 
increases. 

When the dislocation density which is needed to support the shear is 
equal to the static dislocation density required from Our geometry 
al1 of the dislocations can be of the same type and can move in the 
same direction and at the same velocity - presumably something 
comparable to the speed of sound. It is then possible for the 
dislocations to form a spatial pattern which rotates around the tube 
but is otherwise independent of time. When the dislocation 

Figure 3 -- a) Random dislocations in the Couette ce11 showing 
minimum dislocation density. b) Mode1 for periodic stripes with 
coherent dislocation motion. 



densities are equal the shear rate is 

If the dislocations align into grain boundaries as shown in Figure 
3 then we can calculate the spatial period which would be observed. 
The alignment of the dislocations £rom energetic considerations is 
favorable, but is highly unlikely due to the small forces involved 
as compared to the large stresses involved in the shear. However, 
F. Rothen at this conference has suggested that the dissipative 
shear forces themselves favor alignment for rapidly moving edge 
dislocations. 

From Figure 3 we see that the spacing between boundaries depends 
on the spacing between dislocations in the boundaries which we have 
called mb. The fixed dislocation density gives us the relation 

One final question relating to the experiment is the direction in 
which the dislocation moves relative to the velocity field. In 
Figure 4 we illustrate the movement of edge dislocations in shear 
flow for "positive" and "negative" dislocation. In the figure the 
upper surface corresponds to the inner rotating cylinder while the 
outer stationary cylinder is the lower surface. Because of the 
curvature of the cylinder (see Figure 3) we have only negative 
dislocations (when the static and dynamic dislocation densities are 
equal) and therefore the dislocations and the domain wall they form 
will move in a direction opposite to the velocity field. 

Figure 4 ;- a) Direction of dislocation motion for a "positive" 
dislocation. b) Direction of dislocation motion for a negative 
dislocation, opposite to velocity of flow. This corresponds to Our 
geometry. 
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Thus the  model which we propose suggests 

- pa t t e rn  forms when 7 'L V / R  ri, V S / R  
- pa t t e rn  moves with v  -vs 
- X = R/m 
- pa t t e rn  moves opposite t o  ro ta t ion  of inner cylinder. 

Experimentally the  pa t t e rn  does indeed move opposite t o  the  direc- 
t i o n  of ro ta t ion.  The spacing between the  " s t r ipes"  i s  measured t o  
be 1 cm 5 8.05 and appears independent of the  shear modulus of the  
co l lo ida l  c rys ta l .  This would imply t h a t  the  aligned dis locat ions  
i n  a  w a l l  a r e  - 10  l a t t i c e  c o n s t a n t s  a p a r t .  To t e s t  t h e  o t h e r  
p r e d i c t i o n s  we have measured t h e  v e l o c i t y  of  t h e  p a t t e r n  a s  a  
function of shear r a t e  fo r  severa l  samples with d i f f e r e n t  e l a s t i c  
constants. The r e s u l t s  a r e  shown i n  Figure 5 .  The measurements 
were performed by sca t t e r ing  a  monochromatic l a s e r  beam from the  
sheared sample and placing a  photodiode a t  one of the  Bragg scat-  
t e r e d  spo t s .  As t h e  p a t t e r n  r o t a t e s  t h e  Bragg s p o t s  o s c i l l a t e ,  
reappearing a t  the  photodiode every other  "str ipe".  The spectrum is  
then  F o u r i e r  analyzed t o  o b t a i n  t h e  frequencyw and t h e  v e l o c i t y  
ca lcula ted  ,£rom Xw . 
As we can see from Figure 5 the velocity of the  pa t t e rn  i s  approxi- 
mately the  ve loc i ty  of sound, although there  appears t o  be an e n t i r e  
range of va lues  f o r  which t h e  p a t t e r n  i s  s t a b l e .  A s  t h e  sound 
veloci ty  of the  sample is increased the pat tern  veloci ty  increases. 
The shear r a t e  is  about a  f ac to r  of four l a rge r  than the  predicted 
va lue  ( R  - 5 cm and we expected 7 = V / R )  and t h e  r e l a t i o n s h i p  
between v  and 7 i s  not l i n e a r  wi th  ze ro  i n t e r c e p t .  Th i s  i s  t h e  
biggest  discrepancy with our model but  may be due t o  the  increase of 
p throughout the  region where we observe the  pat tern ,  ra ther  than 
the  model of a  s ing le  7 f o r  i t s  formation exact ly  where p = pd. 
There may a l s o  be some geometrical f ac to r s  £rom the  d i f f e r e n t  d is lo-  
ca t ion s t ruc tu re  i n  the fcc  s t ructure .  

We should a l s o  mention t h a t  the two cases described above a r e  only a  
few of many p a t t e r n  fo rmat ions  we have observed i n  d i f f e r e n t  
geometries and flow conditions. In  steady flow i n  a  cap i l l a ry  tube, 
we of ten  observe a  s e r i e s  of colored rings which move a t  v e l o c i t i e s  
near the  sound veloci ty  (and much greater  than the  flow veloci ty)  
down t h e  tube i n  t h e  s a n e  d i r e c t i o n  a s  t h e  f low. I n  t h e  c o u e t t e  
geometry for  "weak" c r y s t a l s  we a l s o  observe a  metastable pa t t e rn  of 
" s t r ipes"  with spacing - 3 mm (approximately equal t o  the  the gap 
s i z e )  which r o t a t e s  considerably slower than the  sound veloci ty  and 
i n  the  d i rec t ion  of the flow. This pa t t e rn  i s  seen when the  sample 
is  quickly slowed down from the shear melted s t a t e  t o  the  same i 
a s  would produce the  oppositely ro ta t ing  pa t t e rn  described a t  length 
above. This shor t  s t r i p e  pa t t e rn  decays i n  - one minute t o  the  more 
s t a b l e  contrary ro ta t ing  pattern.  

I n  conc lus ion  t h e  h igh s h e a r  s t r e s s / s h e a r  modulus r a t i o s  e a s i l y  
obtained i n  co l lo ida l  c r y s t a l s  lead t o  highly nonlinear flow proper- 
t i e s  s i m i l a r  t o  those seen i n  geological flows and t o  e n t i r e l y  new 
regimes f a r  beyond those ava i l ab le  previously f o r  laboratory experi- 
ments. A s  a  consequence of these large  non l inea r i t i e s  the re  a r e  a  
va r i e ty  of i n s t a b i l i t i e s  which lead t o  the  formation of periodic 
s p a t i a l  s t r u c t u r e s  under shear .  One p a r t i c u l a r  p a t t e r n  can be 
a s s o c i a t e d  w i t h  t h e  s h e a r  a l ignment  of edge d i s l o c a t i o n s  i n t o  a  
boundary which moves a t  the  transverse sound veloci ty  i n  the crys- 
t a l .  The appearance of t h i s  pat tern  i l l u s t r a t e s  the  r o l e  of d is lo-  
c a t i o n s  i n  t h e  f low of t h e  c o l l o i d a l  c r y s t a l s  a t  s h e a r  r a t e s  
Spproaching the  shear melting t rans i t ion.  



shear rate ( H z )  

Figure 5 -- Velocity of observed pat tern  as  a  function of shear r a t e  
f o r  c o l l o i d a l  c r y s t a l s  w i t h  d i f f e r e n t  sound v e l o c i t i t e s .  I n  t h e  
graph, the  squares a re  vs = 7  cm/sec, the  pluses a r e  vs = 6.1 cm/sec 
and the diamonds a r e  vs = 3.9 cm/sec. 

Experiments on Taylor i n s t a b i l i t i e s  ind ica te  t h a t  Taylor r o l l s  a r e  
never formed before the  c r y s t a l s  shear melt. This r e s u l t s  £rom the  
anisotropy of the v i soc i ty  of the  sheared col lo id .  With su f f i c i en t -  
l y  s t r o n g  c o l l o i d a l  c r y s t a l s  t h e  i n n e r  c r y s t a l  can be r o t a t e d  t o  
produce a  Reynolds number ( including the  increased v i scos i ty  of the  
polybal ls )  severa l  t imes t h a t  which would be necessary t o  produce 
Taylor r o l l s .  .In t h i s  case the  shear melting leads immediately t o  
t h e  fo rmat ion  of wavy Taylor  r o l l s .  We expect  t h a t  o t h e r  an i so -  
t rop ic  f l u i d s  such a s  l iqu id  c r y s t a l s  may show s i m i l a r  ef fec ts .  
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