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PERIODIC STRUCTURES IN DRIVEN COLLOIDAL CRYSTALS
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Résumé - La grande dimension de la maille des réseaux de cristaux
colloidaux esf la cause de la petitesse. de leurs constantes
élastiques (19 9 fois inférieures 3 celles des solides usuels).
On peut donc aisément &tudier des écoulements présentant des
rapports contrainte /constante élastique supérieurs d ce que
1'on connaissait jusqu'ici. On étudie un &coulement plastique
hautement non linéaire en régimes oscillants et stationnaires,
ce gui conduit 3 des structures spatialement périodiques. Ces
structures correspondent &4 des régions alternées de
cristallites qui sont l'image par réflection de leurs voisines.
La structure observée en régime oscillant dans un tube sort de
l'ordinaire en ce gque le coeur est liquide alors gue contre
les parois la structure est solide (ordonnée). Cette
configuration, reconnue comme instable jusqu'ici peut &tre le
résultat d'un comportement inhabituel de 1la relation
déformation-contrainte 3§ la frontiére solide-~fluide. Des
expériences en géométrie de Couette produisent des bandes
verticales qui correspondent & un mouvement cohérent de
dislocations 8 la frontiére de 2 structures images dans un
miroir 1l'une de l'autre. Ces bandes se déplacent en sens
inverse de celui de la rotation du cylindre intérieur et &
vitesse proche de celle de la propagation des ondes &lastiques
transverses.

Abstract - The large lattice Spacings in colloidal crystals
produce elastic constants ~ 141% less than conventional solids.
It is therefore easy to study flow properties at stress/elastic
constant ratios higher than previously available. The highly
nonlinear plastic flow regime studied in oscillating and steady
state flow yields periodic patterns. These patterns correspond
to alternating regions of ordered crystallites which are mirror
image structures. The pattern observed in oscillatory flow in
a tube is also unusual in that the core is liquid while at
larger radius one finds a solid on the tube wall. This tra-
ditionally unstable configuration may be the. result of an
anomalous stress-rate relation at the fluid-solid boundary.

Experiments in couette geometry produce vertical stripes which
correspond to coherent motion of dislocations at the boundaries
separating two mirror image structures. The stripes move in
the direction opposite from the rotation of the inner cylin-
der, at velocities close to the transverse sound velocity.

I. Introdyction

Colloidal crystals are characterized by lattice spacings which are
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thousands of angstroms. The elastic constant, which roughly
measures the energy density are therefore smaller than found in
conventional solids by a factor of order lﬂl” 1-4_ The yield
stress and region of plastic flow are correspondingly small and one
can easily attain stress/moduli ratio's which are not accessible in
other systems.

In experiments which were originally aimed at measuring the shear
stress-shear rate relationship we have found a series of
instabilities which produce periodic ordered structures in the
sheared colloidal crystal. These structures occur in the plastic
flow regime somewhat below the shear melting transitions” and appear
to involve the alignment of dislocations into grain or twin
boundaries.

When the colloidal crystal is placed in a couette apparatus with the
inner cylinder rotating, we can also observe the formation of Taylor
vortices and the transition to the wavy Taylor states. However,
although the colloidal crystal can flow with a relatively low
viscosity we never observe the Taylor instability with the colloid
in the crystalline state. For “strong" crystals we observe a
suppression of the Taylor instability. With increasing shear, the
crystalline phase shear melts with a spontaneous transition to
Taylor or wavy Taylor flow.

As originally pointed out by Crandall and Williams, the characteris-
tic elastic moduli of colloidal crystals can be understood using the
approximate relationship

G ~ Ve (1)

where V is an interparticle potential energy and ¢ is the particle
concentration. In Table I we note the characteristic interparticle
potentials, densities and elastic constants of conventional
materials and colloidal crystals. The potential energies are the
same order of magnitude. Since the potential energy differences
between liquid and solid state are what determine the melting temp-
eratures, it is not surprising that the melting temperature of
colloidal crystals and conventional solids are comparable and equal
to several times room temperature. The elastic constants however
differ by the factor of the particle concentration of ~ 18-Y. This
explains the extreme fragility of the colloidal crystals.

With stresses that are easily attainable in the laboratory, it is
possible to have ratios of shear stress to elastic constant which
are extraordinary compared to conventional materials. A typical3
laboratory experiment involves stesses of the order of ¢ ~ 10
dynes/cm®, giving o0/G ~ 1@% for colloidal crystals. Noting that
Grock/CGce ~ 19 a similar ¢/G for rock would involve stresses of ~
1914 dynes cm?. This would be the stress under a mountain ~ 18%Km
high or 10”2 x the height of Mt. Everest. Thus we are investigating
matter in an entirely new shear regime.

The studies which come closest to these enormous stress/ modulus
ratios involve geological flows, and it is interesting to examine
those results to see what should be expected in the low shear-
stress regime for our crystals. Figure 2 of Ref. 6 shows a typical
deformation map {temperature and stess diagram appropriate for dif-
ferent flow mechanisms) for Olivine, a component of the earth’'s
mantle. At low stress the solid is essentially elastic with the
only flow coming from the creep of point defects. The transition to



Interparticle
Distance

Interparticle
Interaction

Charge

Interparticle
Potential

Melting Temperature

Concentration

Elastic Constants

plastic flow,

yield stress which varies from 197
At temperatures above

low temperature.

Table I

Metals, Rocks

v A

Coulomb

o2

r

~ 1071 erg

~ 10%
102 - 10%

~ 1024 (om)3

N 1013 dynes/cm2

coming from dislocation creep,
of G at melting to 19~2

C3-259

Colloidal Crystals

v

Screened Coulomb

2.2 -Kr
Zee e~ 100
er Kr v 1
Ze Zn 103
~ 1071 erg
~ 10%K
10% - 10%

~n 10%2/(cm)®

~ 10 dyne/cm2

is characterized by a
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temperature there is a region where the strain rate or shear rate ¥

varies

Y « go

o= 3-7

as a power law with applied stress ¢

(2)

At higher shear stress there is an exponential variation known as

the Dorn law”:

y e« exp (0%/T)

(3)

The general description (in scalar form) of the strain rate by
motion of dislocations is (for edge dislocations):

Y = pbv

where

p is the dislocation density,
is the disdocation velocity.
dislocations can change with the ‘stress,

(4)

b is the Burgers vector and v
Since both the velocity and density of
models are needed to ex-

plain the properties of different systems and these models can
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produce the different power laws and exponential dependences7. The
most “natural" relationship seems to take the power law with o= 3.

It is worth notlng that the yxfld stress of most single crystal
materials is ~ - 197* of G Olivine has a particularly high
yield stress of ~ 1672 at low temperatures due both to its small
particle size and the fact that it is a mixture of many oxides,
leading to a substantial increase the _defect pinning. We should
expect yield stresses of order 10~ *-1¢"° for the colloidal crystals.

From the fact that we can obtain such high /G ratios for colloidal
crystals, it should be expected that highly nonlinear flow is ob-
servable. In our studies of colloidal crystals we have indeed seen
highly nonlinear behavior, which can roughly be grouped into the
following regimes.

Anisotropic Fluid
Isotropic Fluid
Shear Melting

Increasing Highly Anisotropic fluid
Stress Plastic
Elastic

At very low shear (and finite frequency of ~ 1672 Hz) the colloidal
crystal responds elastically. Increasing the shear stress we find a
plastic flow regime where the shear stress/shear rate relationship
is described by a power law indicating dislocation creep. The
particular exponent observed depends upon the crystal studied
(density, charge, ionic strength) and ranges from 3 to 7 (as in
rocks)®. For higher shear stress the dislocations are so dense and
moving so rapidly that the samples behave as a highly anisotropic
fluid with rigid planes gliding over one another. Just above this
regi § the sample "shear melts" into an approximately isotropic
fluid but at higher shear the colors observed in different shear
dlrectlons indicate a sm &l anisotropy in the liguid structure
factor induced by the shear

As a consequence of this highly nonlinear behavior and also because
of a transition between different regimes, we have often observed
spatially periocdic patterns, either stationary or moving, and in a
variety of geometries.

The %%rst instability we observed was for oscillatory flow in a
tubel A capillary is filled with the colloidal crystal and then
an oscillating pressure gradient is applied. At first the crystal
slips at the tube radius and we have plug flow. Then dark circles
(perpendicular to the axis) are observed to move from the top to the
bottom of the tube, in phase with the meniscus but with much
greater velocity and excursion. These are dislocation loops, which
by their motion tend to align the crystallites. We then observe a
pattern forming on the inner glass wall of the tube. This pattern
corresponds to alternating mirror-image regions of fcc crystallites
with an orientation which best resists the shear

In trying to understand this pattern we run into the problem that
pressure applied to a solid in a tube should cause yield of the
solid at the largest radius first, and then plug flow (like tooth-
paste squeezed from a tube). Elementary arguments show that the
pressure on a solid crystal of radius r gives a force ¢ r“P while
the restoring force from the boundary is nmorl (where o is the
shear stress). Thus for larger radius cylinders the ratio increases
and a solid will yield first at its outer boundary.
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Fig. 1 - Wavelength of periodic pattern, normalized by the viscous

penetration depth vs. Reynolds number for a series of colloidal

crystals of varying elastic constant (1¢-60 dynes/cm“), tube

diameter (1-4 mm), drive frequency (2-30 Hz) and drive amplitude.

Inset is a picture of the pattern formed by oscillatory flow in a
capillary.

However if we consider a fluid flowing in the tube and then ask
where the crystal phase can nucleate we find first that the mass
flow must be conserved. If we cystallize a region into the liquid
from the glass walls we find that the velocity and shear force
decrease with the radius of the hole which is left. Thus the crys-
talline region can grow in from the glass wall until the stress is
the yield stress. This configuration, solid outside and liquid
inside, is then stable as far as radial displacements are concerned.
However further analysis shows that in this configuration an ia—
crease in flow decreases the pressure - an unstable situation-“.
Thus the system is unstable against modulations of the radius of the
liquid hole along the axis of the tube. We expect that this is what
causes the periodic structure. But the complication of periodic
motion of the fluid with the Poisseuille geometry makes further
mathematical investigation difficult.

The solution to the periodic Poiseuille flow problem has not been
accomplished even for Newtonian fluids. Some indication that we may
be seeing purely hydrodynamic effects comes from the fact that all
of our data for different size tubes, and crystalline elastic cons-
tants collapses to the same curve (Figure 1) when the periodicity is
normalized by the viscous penetration depth ( Vv ;w, with u the
drive frequencies and v the dynamic viscosity) and plotted vs. the
Reynold's number. Together with Dr. G Maret (Grenoble) we there-
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fore studied oscillatory motion of a pure ligquid using shear bire-
fringence. No stationary, spatially periodic modes were seen. Thus
the periodicity in the Poiseuille geometry remains an unresolved
guestion.

We now turn our attention to the couette geometry where the flow
field and shear rate is more uniform than in Poiseuille flow. A
picture of the apparatus is shown in Figure 2. The outer wall is
fixed, the inner cylinder of radius 4.52 cm can be rotated and the
gap is 3.175 mm (@.125 inch). At low shear rates the colloidal
crystal samples (typically .¢91y diameter spheres with 1-3% volume
fraction) flow and shear align producing brilliant Bragg scattering.
At higher shear rates new and rather unusual long range patterns
appear in the flow. They consist of periodic vertical stripes of
alternating green and red color, with a wavlength on the order of
one cm. These stripes circulate around the tube in a sense con-
trary to the velocity field. The formation of this pattern and its
properties will be elaborated shortly.

As the shear rate is further increased the observations depend on
the strength of interaction of the particles in the colloid. For
"soft" crystals one observes shear melting into a liquid state with
consequent loss of opalescence. At higher shear Taylor rol1sli
appear at approximately the same Reynolds number as for water in
this geometry. The Taylor rolls are easily observed with the
sheared colloid as bright, narrow opalescent bands which appear
horizontally around the cylinder wall. The opalescence results from
the recrystallization of the colloid in the nodes of the Taylor
rolls where the total shear is decreased (Figure 2). When shear is
increased further we see the onset of wavy Taylor rolls. These are
characterized by the disappearance of the sharp opalescent lines and
the appearance of a colored dynamic shear pattern. This results
from the shear distortion of the structure factor of the colloid
liquid and the alignment of these distortions in the shear flow.

For stronger crystals the Taylor unstability is suppressed and does
not occur until the sample shear melts - often at Reynolds numbers,
calculated using the viscosity of the sheared colloidal crystal,
which are several times the critical Reynolds number for an iso-
tropic liquid. In these samples the shear melting and the transit-
ion to the Taylor instability happens simultaneously. If the crys-
tal is sufficiently strong the shear melting occurs directly into
the wavy Taylor state. We have never observed the Taylor
instability before the colloidal crystal is shear melted. We sus-
pect that this is the result of the extreme anisotropy of the
viscosity in the sheared colloidal crystal. It has a low viscosity
along the direction of flow but is essentially a rigid solid in the
direction along the shear gradient. Since the Taylor instability
involves flow both radially and tangentially it is suppressed by
this anisotropy. We would expect similar effects with Smectic
Liquid Crystals.

We now return to the vertical stripes which are observed in the
plastic flow regime. This pattern of flow has, to our knowledge,
never been seen before in the couette geometry, and, indeed, has
totally different symmetry from the instabilities normally seen.
From the Bragg scattering properties of the crystals, we learn that
the stripes represent alternating regions of shear alligned fcc
crystals with mirror image symmetry, as was observed for the
Pouiseulle flow. The pattern is somewhat unstable -~ it developes
but does not always remain indefinitely. Instead it will appear,
disappear, then reappear. The frequency and persistance of this
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Figure 2 =-- a) Couette system at rest, with deionized polystyrene
latex d, ©0.091 ; m, 4 = 3%; b) Periodic stripes at a shear rate of
~ 190 Hz; c) Taylor rolls at a shear rate of ~ 130 Hz; d) Wavy Taylor
rolls at a shear rate of ~ 150 Hz.

seems to be a complicated function of the crystal strength and inner
rotor speed. However, when the pattern is fully developed, the
inner rotor can be stopped suddenly and the pattern will be "frozen
in". We believe that the occurence of the pattern may be under-
stood in terms of the static and dynamic dislocation density and
motion. For simplicity we will discuss the phenomena as if the
structure were simple cubic rather than the much more complicated
fcc or bcc structure actually formed. Due to the confinement of the
colloidal crystal in a cylindrical geometry there is a minimum
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density of dislocations that must be present even statically. At
the inner cylinder the path length corresponding to an angle A0 is
Ry AO(see Figure 3); at the outer cylinder the length is R,A0 . The
difference in length (R,-R;)A® is accounted for by the addltlon of
planes in the form of eage dislocations throughout the area defined
by A0 and the two cylinders: Since each dislocation adds a dis-
tance b to the outer length, the number of dislocations needed is

n 20 (Ry-Ry)/b (5)

The area is ~ (Rj~R,)R; A0 and the minimum dislocation density is
then

, n -1

°s © RIOIR,R) T BR (6)
where R = (R + R )/2. On the other hand, independent of geometry,
there is a dynamlc dislocation density needed to maintain the shear
rate and given by equation 4 or

o=k (7)

As vy increases from zero the dislocation density increases (in
plane couette flow) as does the dislocation velocity. This disloca-
tion increase coupled with the velocity increase gives rise to the
highly nonlinear behavior of sheared solids. Usually fge disloca-
tion velocity can not be higher than the sound velocity s+ Thus
at some point the velocity is fixed and only the dislocation density
increases.

When the dislocation density which is needed to support the shear is
equal to the static dislocation density required from our geometry
all of the dislocations can be of the same type and can move in the
same direction and at the same velocity - presumably something
comparable to the speed of sound. It is then possible for the
dislocations to form a spatial pattern which rotates around the tube
but 1is otherwise independent of time. When the dislocation

A B

Figure 3 -- a) Random dislocations in the Couette cell showing
minimum dislocation density. b) Model for periodic stripes with
coherent dislocation motion.
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densities are equal the shear rate is
. _ v, Vs
Y*R"H® (8)

If the dislocations align into grain boundaries as shown in Figure
3 then we can calculate the spatial period which would be observed.
The alignment of the dislocations from energetic considerations is
favorable, but is highly unlikely due to the small forces involved
as compared to the large stresses involved in the shear. However,
F. Rothen at this conference has suggested that the dissipative
shear forces themselves favor alignment for rapidly moving edge
dislocations.

From Figure 3 we see that the spacing between boundaries depends
on the spacing between dislocations in the boundaries which we have
called mb. The fixed dislocation density gives us the relation

R,-R

2 1

__mb / )‘(RZ-RI)

21

bR (9)

=> XA = R/m

One final question relating to the experiment is the direction in
which the dislocation moves relative to the velocity field. 1In
Figure 4 we illustrate the movement of edge dislocations in shear
fiow for "positive" and “"negative" dislocation. In the figure the
upper surface corresponds to the inner rotating cylinder while the
outer stationary cylinder is the lower surface. Because of the
curvature of the cylinder (see Figure 3) we have only negative
dislocations (when the static and dynamic dislocation densities are
equal) and therefore the dislocations and the domain wall they form
will move in a direction opposite to the velocity field.

©
1

=,

Figure 4 —-- a) Direction of dislocation motion for a “"positive"
dislocation. b) Direction of dislocation motion for a negative
dislocation, opposite to velocity of flow. This corresponds to our
geometry.
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Thus the model which we propose suggests

- pattern forms when ?'nV/R'vVS/R

- pattern moves with v ~vg

- A =R/m

- pattern moves opposite to rotation of inner cylinder.

Experimentally the pattern does indeed move opposite to the direc-
tion of rotation. The spacing between the "stripes" is measured to
be 1 cm + ¢.85 and. appears independent of the shear modulus of the
colloidal crystal. This would imply that the aligned dislocations
in a wall are ~ 10 lattice constants apart. To test the other
predictions we have measured the velocity of the pattern as a
function of shear rate for several samples with different elastic
constants. The results are shown in Figure 5. The measurements
were performed by scattering a monochromatic laser beam from the
sheared sample and placing a photodiode at one of the Bragg scat-
tered spots. As the pattern rotates the Bragg spots oscillate,
reappearing at the photodiode every other "stripe". The spectrum is
then Fourier analyzed to obtain the frequency w and the velocity
calculated from Jw .

As we can see from Figure 5 the velocity of the pattern is approxi-
mately the velocity of sound, although there appears to be an entire
range of values for which the pattern is stable. As the sound
velocity of the sample is increased the pattern velocity increases.
The shear rate is about a factor of four larger than the predicted
value (R ~ 5 cm and we expected vy = v/R) and the relationship
between v and Y is not linear with zero intercept. This is the
biggest discrepancy with our model but may be due to the increase of
o throughout the region where we observe the pattern, rather than
the model of a single y for its formation exactly where p g4 = pg-
There may also be some geometrical factors from the different dislo-
cation structure in the fcc structure.

We should also mention that the two cases described above are only a
few of many pattern formations we have observed in different
geometries and flow conditions. In steady flow in a capillary tube,
we often observe a series of colored rings which move at velocities
near the sound velocity (and much greater than the flow velocity)
down the tube in the same direction as the flow. 1In the couette
geometry for "weak" crystals we also observe a metastable pattern of
"stripes" with spacing ~ 3 mm (approximately equal to the the gap
size) which rotates considerably slower than the sound velocity and
in the direction of the flow. This pattern is seen when the sample
is quickly slowed down from the shear melted state to the same ¥
as would produce the oppositely rotating pattern described at length
above. This short stripe pattern decays in ~ one minute to the more
stable contrary rotating pattern.

In conclusion the high shear stress/shear modulus ratios easily
obtained in colloidal crystals lead to highly nonlinear flow proper-
ties similar to those seen in geological flows and to entirely new
regimes far beyond those available previously for laboratory experi-
ments. As a consequence of these large nonlinearities there are a
variety of instabilities which lead to the formation of periodic
spatial structures under shear. One particular pattern can be
associated with the shear alignment of edge dislocations into a
boundary which moves at the transverse sound velocity in the crys-
tal. The appearance of this pattern illustrates the role of dislo-
cations in the flow of the colloidal crystals at shear rates
approaching the shear melting transition.
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Figure 5 -—- Velocity of observed pattern as a function of shear rate
for colloidal crystals with different sound velocitites. 1In the
graph, the squares are vy, = 7 cm/sec, the pluses are vg = 6.1 cm/sec

and the diamonds are vy = 3.9 cm/sec.

Experiments on Taylor instabilities indicate that Taylor rolls are
never formed before the crystals shear melt. This results from the
anisotropy of the visocity of the sheared colloid. With sufficient-
ly strong colloidal crystals the inner crystal can be rotated to
produce a Reynolds number (including the increased viscosity of the
polyballs) several times that which would be necessary to produce
Taylor rolls. 1In this case the shear melting leads immediately to
the formation of wavy Taylor rolls. We expect that other aniso~
tropic fluids such as liquid crystals may show similar effects.
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