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1. Introduction

Microparticles with diverse shapes have been widely used in 
fundamental research on self-assembly, jamming transition, 
rheology of particulate systems, transport behavior of particles 
through narrow channels, and property–structure relationship 
in materials.[1] Moreover, shape-controlled hydrogel micro-
particles are promising for many practical applications due to 
their unique biochemical and mechanical properties, serving as 
delivery carriers for drugs and building blocks for engineered 
tissue scaffolds.[1a,2] In many circumstances, particle shape is a 
critical determinant of the function and self-assembly behavior 
of the particles. Despite the significance of particle shape, how-
ever, relevant studies on the shape effect are still limited due 
to the technical difficulty in designing hydrogel particles with 
nonspherical 3D geometries. Although recent advances in flow 
lithography, imprint lithography, and microfluidic technology 
have enabled the creation of hydrogel particles with non-
spherical shapes, the particles are usually lithographically fea-
tured or individually molded by the geometry of microchannel, 
restricting to 2D extruded shapes.[1a,3] The more recent liquid 
bridge method and capillary origami method enable the fab-
rication of microgels with complex 3D shapes; however, the 
throughput of these methods could still be improved.[4] Simple 
and high-throughput fabrication of microgels with truly 3D DOI: 10.1002/smll.201701256

Compressed monodisperse emulsions in confined space exhibit highly ordered 
structures. The influence of the volume fraction and the confinement geometry on the 
organized structures is investigated and the mechanism by which structural transition 
occurs is studied. Based on the understanding of ordering behavior of compressed 
emulsions, a simple and high-throughput method to fabricate monodisperse 
polyhedral microgels using the emulsions as the template is developed. By controlling 
the geometry of the confined spaces, a variety of shapes such as hexagonal prism, Fejes 
Toth honeycomb prism, truncated octahedron, pyritohedron, and truncated hexagonal 
trapezohedron are implemented. Moreover, the edge sharpness of each shape is 
controllable by adjusting the drop volume fraction. This design principle can be readily 
extended to other shapes and materials, and therefore provides a useful means to create 
polyhedral microparticles for both fundamental study and practical applications.
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shapes, especially the representative shapes of polyhedra, would 
benefit fundamental studies in areas such as self-assembly, the 
jamming transition, and the rheology of particulate systems.

Dispersion systems of two immiscible fluids with mobile 
interfaces exhibit a rich variety of self-organized structures in 
which the dispersed phase forms truly 3D building blocks. For 
example, monodisperse bubbles or drops deform to be non-
spherical cells and form regular lattice when they are highly 
concentrated in a continuous-phase liquid. The resultant foams 
or emulsions have also served as a model system to study the 
long-standing problem of seeking the structure with minimum 
surface area to partition a space into equal-volume cells; this 
has intrigued mathematicians, physicists, and engineers for 
centuries.[5] In nature, the honeycomb constructed by bees 
represents a dispersion system with natural pattern formation 
in which uniform air cavities form hexagonal arrays with the 
minimum wall area. Evidence has been recently found from 
a beehive under construction that the formation of such an 
efficient structure should be credited more to surface tension 
rather than the skill of bees; surface tension pulls the circular 
cavities into hexagonal during the consolidation of wax.[6]

Inspired by these studies, we develop a simple and high-
throughput method to create hydrogel microparticles with 
quasi-polyhedral shapes using compressed emulsions as the 
template. Dispersed drops squeeze against each other when 
they are compressed above the densest packing for spheres. 
More importantly, the drops form a regular lattice composed 
of uniform polyhedrons. We can realize a variety of shapes by 
adjusting the confining geometry and the drop volume frac-
tion; the polyhedral drops then serve as a microparticle tem-
plate. To implement this system, we use microfluidic devices 
to prepare monodisperse water drops in a continuous oil 
phase; the drops contain photo-crosslinkable hydrogel pre-
cursors and are confined between two parallel plates. As the 
volatile continuous phase is depleted by vaporization, the 
water drops become highly compressed, gradually turning 
faceted to form quasi-polyhedrons. Photopolymerization of 
hydrogel precursors freezes the shape of the deformed drops 
and yields uniform quasi-polyhedral hydrogel particles. With 
two parallel flat plates accommodating a monolayer of drops, 
we obtain circular and hexagonal discs/prisms; with two par-
allel flat plates accommodating a double layer of drops, we 
obtain Fejes Toth honeycomb prisms;[7] and with two parallel 
flat plates accommodating a multilayer of drops, we obtain 
truncated octahedrons.[5] Using two plates with a simple post 
array, we further realize the Weaire–Phelan packing structure 
that results in pyritohedron and truncated hexagonal trapezo-
hedron particles.[8] This approach features simplicity and high 
yield and can be extended to other polyhedral shapes and 
materials, providing new opportunities for the study of shape 
effect in both fundamental research and practical applications.

2. Results and Discussion

2.1. Experimental Generation of Microgels

Monodisperse water-in-oil (W/O) emulsion drops are produced 
using glass capillary microfluidic devices.[9] The dispersed 

phase is an aqueous solution of 10 wt% poly(ethylene glycol) 
diacrylate (PEGDA, Mw 700) containing 0.1 wt% Irgacure 
2959 as a photoinitiator. The continuous phase is a volatile 
fluorocarbon oil (HFE-7500) with 1 wt% Krytox-PEG sur-
factant.[10] While generating the drops, we match the volu-
metric flow rates of the dispersed phase with the continuous 
phase, resulting in an initial drop volume fraction of 0.5. We 
collect the drops in chambers consisting of two parallel plates. 
The distance between the two plates is controlled by spacers 
with different thicknesses, varying from 0.04 to 4 mm. The lat-
eral dimension of the chambers is 20–50 mm. For chambers 
thinner than 0.4 mm, we place the chamber horizontally and 
seal two opposite sides with spacers and epoxy, leaving the 
other two sides open for evaporation of the continuous phase. 
For chambers thicker than 0.4 mm, we seal three sides of the 
chamber and place the chamber vertically with the top side 
open. As the continuous phase evaporates, the drop volume 
fraction increases from the initial value of 0.5 to almost 1. 
During this process, the drops gradually pack to lattice struc-
tures and may change their packing structure multiple times; 
each individual drop gradually deforms to a polyhedral shape 
with increasing edge sharpness. When the closely packed 
drops form the target or exhibit the target edge sharpness, we 
polymerize them by shining 365 nm UV light with an inten-
sity of 0.4 mW cm−2 for 10 min. In the course of polymeri-
zation, the drops do not change their packing structure. The 
resultant hydrogel particles are subsequently dispersed into 
deionized water.

2.2. Drop Packing in Flat-Plate Chambers  
and Resultant Microgels

We first examine the packing structure within the flat-
plate chambers. The packing structure depends on the drop 
volume fraction φ and the nondimensional chamber thick-
ness ε, defined as the ratio of the chamber thickness to 
the initial drop diameter. For each value of ε we inspect 
the structural evolution as φ increases. With increasing 
φ, the edges of the polyhedra become sharper and the 
packing of the structure can undergo a transition to a new 
structure. With increasing ε, the chamber can accommodate 
more layers of drops.

2.2.1. Single-Layer Drop Packing and Resultant Microgels

When ε is smaller than or comparable to 1, only one 
layer of drops can pack between the two plates. It forms 
a 2D hexagonal close packing structure following partial 
evaporation of the continuous phase (Figure 1a). As the 
continuous phase further evaporates, the drops squeeze 
each other and adopt the shape of a hexagonal prism, as 
shown in Figure 1b,c. By polymerizing the deformed drops 
at different volume fractions, we fabricate hexagonal-
prism particles with different edge sharpness, as shown in 
Figure 1d–f. Moreover, by adjusting the chamber thickness, 
we can control the shape from flat discs to tall prisms, as 
shown in Figure 1g.
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2.2.2. Double-Layer Drop Packing, Structural Transition,  
and Resultant Microgels

As ε increases further, the drops can transition to double-
layer packing at a higher φ even if they pack into a single 
layer at the initial volume fraction. The larger the ε, the more 
layers of drops the chamber can accommodate at φ close to 1. 
To determine if the structure of the compressed emulsion at 
φ close to 1 is driven by surface energy, we first experimen-
tally find the values of ε at which the structure transforms 
from monolayer to double-layer and from double-layer to 

triple-layer.[11] We collect monodisperse drops in a wedged 
chamber with a slope of 0.004 and wait until the continuous 
oil fully evaporates (Figure S1, Supporting Information). 
We find that the drops pack into the monolayer structure 
when ε is smaller than 1.2, double-layer when ε is between 
1.2 and 2.2, and triple-layer when ε is larger than 2.2; the red, 
blue, and purple regions in Figure 1h illustrate this result. 
To determine if the structures observed correspond to the 
lowest surface energy, for each of the three structures we 
calculate the average surface area of one unit deformed 
from a spherical drop with a diameter of 1 over the range 
of ε from 0.3 to 3.0 and at φ = 1. The monolayer structure 
has the lowest surface energy when ε is smaller than 1.05; the 
double-layer structure has the lowest surface energy when ε 
is between 1.05 and 1.8; and the triple-layer structure has the 
lowest surface energy when ε is larger than 1.8 (Figure 1h). 
The slight discrepancy between experiment and calculation 
arises because the calculation does not consider the deforma-
tion-induced energy barrier that the drops have to overcome 
to rearrange themselves at the boundaries between lattices of 
different layer thicknesses.

The double-layer packing of drops exhibits two distinct 
structures during drainage. At relatively low φ, the struc-
ture is a beehive honeycomb, in which each layer of drops 
forms a hexagonal packing, and each drop is located in the 
middle of the triangle formed by three touching drops from 
the other layer, as shown in Figure 2a. As φ further increases, 
the beehive structure slips by a half lattice constant to form 
the structure shown in Figure 2b; this structure was first dis-
cussed by Fejes Toth in 1964.[7] In the Fejes Toth structure 
each layer of drops still forms a hexagonal packing, but each 
drop is located in the middle of four touching drops from the 
second layer. Therefore, each deformed drop has 11 faces: 
one flat hexagon that contacts the chamber plate, six faces 
that are shared with six neighboring drops in the same layer, 
and four additional faces formed by two squares and two 
hexagons that are shared with four neighboring drops in the 
second layer, as indicated by the inset of Figure 2b. Except 
for the six edges of the flat hexagon, all the other edges are 
slightly curved so that every four edges meet at one vertex 
with the angle of 109.47° to satisfy the mechanical equilib-
rium, while maintaining zero mean surface curvature. This 
structure conforms to the Plateau laws that describe the 
structure of emulsions at very high volume fraction.[12] There-
fore, the Fejes Toth hexagonal prism is quasi-faceted.

To understand how φ influences the double-layer packing 
structure, we examine the drop packing at 16 independent 
regions of interest over a wide range of φ; each region 
of interest contains about 1000 drops with a diameter of 
56 µm and packed between an 84 µm thick chamber, as shown 
in Figure S2 (Supporting Information). For each region we 
measure the fraction of drops in the beehive honeycomb and 
the Fejes Toth honeycomb, respectively; there is also a small 
amount of drops at the grain boundaries showing neither the 
beehive nor the Fejes Toth honeycomb structure. We esti-
mate the value of φ based on the drop size, number, area of 
the region of interest, and chamber thickness, and then plot 
the fractions of drops in different structures as a function of 
φ. The results show that when the drop volume fraction is less 
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Figure 1.  Schematics and microscopy images of hexagonal packing of 
drops at three volume fractions: a) 70–80%, b) 80–90%, and c) >90%. 
d–f) Microscopy images of the corresponding microgels with different 
edge sharpness; the microgels are dispersed in water. g) Hexagonal 
prism microgels of different aspect ratios. h) Curves represent the 
average surface area of one unit deformed from a spherical drop with 
a diameter of 1 in monolayer, double-layer, and triple-layer structures; 
for the triple-layer structure, the surface area comes from the average of 
two boundary units and one middle-layer unit. The red, blue, and purple 
regions illustrate the range of ε for monolayer, double-layer, and triple-
layer structures in experiments. All scale bars are 200 µm.
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than ≈0.915, the beehive honeycomb structure dominates, 
otherwise the Fejes Toth structure dominates (Figure 2c).

Surprisingly, this transition volume fraction varies with 
the drop size even if ε remains the same, although the inter-
facial energy depends solely on ε at a given volume fraction. 
For example, when ε = 1.5, the packing structure of 250 µm 
diameter drops undergoes a transition at a volume fraction 
of ≈0.85 whereas the packing structure of 180 µm diameter 
drops undergoes a transition at ≈0.89 (Movie S1, Sup-
porting Information); both of these are much smaller than 
the value of 0.915 at which 56 µm diameter drops undergo 
a packing transition. This indicates that there is another 
factor contributing to the structural transition besides inter-
facial energy.

To determine the other contributing factor, we calculate 
the nondimensional interfacial energy for the beehive and 
Fejes Toth honeycomb structures at ε = 1.5 using the Surface 
Evolver, as shown in Figure 2d.[13] The nondimensional inter-
facial energy arises from two units deformed from spherical 
drops with a diameter of 1 and with an interfacial tension of 1; 
we neglect the film thickness and the difference of interfacial 
tension between films and Plateau borders.[14] This calculation 
predicts a transition volume fraction of ≈0.935: when the drop 
volume fraction is smaller than 0.935, the beehive honeycomb 
structure is energetically favorable, otherwise the Fejes Toth 
honeycomb structure is favorable. However, our experiments 
show that the beehive honeycomb structure transitions to the 
Fejes Toth honeycomb at volume fractions much lower than 
0.935, implying that the beehive structure is less stable than 

the Fejes Toth structure for some range of volume fraction. 
Indeed, the beehive structure possesses eightfold vertices that 
violate the fourfold vertex requirement of the Plateau law, 
and therefore is not mechanically stable. It is noteworthy that 
the energy difference between the beehive honeycomb and 
Fejes Toth honeycomb is small: <0.15% for drop volume frac-
tion between 0.85 and 0.935.

The drop size-dependence of the transition volume frac-
tion can be explained by the disturbance-triggered instability 
of the beehive honeycomb structure. Consider two chambers 
accommodating different sized drops but with the same non-
dimensional chamber thickness. The one containing larger 
drops has a larger opening, and thus yields faster evapora-
tion of the continuous phase. For example, for drops larger 
than 100 µm, it takes less than 30 min to fully evaporate the 
continuous phase; while for drops with a diameter of 56 µm, 
it takes ≈3 h. Fast evaporation induces sufficient disturbance 
to trigger the transition from the unstable beehive structure 
to the more stable Fejes Toth structure. By contrast, with 
slow evaporation, the beehive structure persists over a wider 
range of volume fractions.

With drops larger than 100 µm we exclusively achieve 
the Fejes Toth honeycomb structure after evaporating 
most of the continuous phase; this yields uniform hydrogel 
particles in the shape of Fejes Toth honeycomb prisms, 
as shown in Figure 2e,f. The particles keep their original 
shapes when they are fully dehydrated, as confirmed by the 
scanning electron microscopy (SEM) image in the inset of 
Figure 2e.
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Figure 2.  Microscopy images of double-layer packing at low and high volume fractions, showing a) beehive honeycomb and b) Fejes Toth honeycomb 
structures, respectively. c) Fractions of drops in beehive and Fejes Toth honeycomb structures as a function of drop volume fraction with drop 
diameter of 56 µm at ε = 1.5. d) Nondimensional interfacial energy of beehive and Fejes Toth honeycomb structures at ε = 1.5. e,f) Microscopy 
images of Fejes Toth prism microgels with SEM image as the inset. Inset scale bar is 20 µm; all other scale bars are 200 µm.
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2.2.3. Multilayer Drop Packing and Resultant Microgels

Similar to the double-layer packing, multilayer packings 
exhibit two different structures depending on the drop 
volume fraction. At relatively low volume fractions, drops 
form face-centered-cubic (fcc) or hexagonal close packing 
(hcp) structures as shown in Figure 3a; this is also the densest 

packing structure of hard spheres. As φ gets closer to 1, the 
drops pack into a body-centered-cubic (bcc) structure, as 
shown in Figure 3b; the drops next to the flat plates are Fejes 
Toth hexagonal prisms whereas those in the middle layers 
have a Kelvin structure.[5] Each Kelvin unit looks like a trun-
cated octahedron with six flat square faces and eight hex-
agonal faces of a monkey-saddled shape, conforming to the 
Plateau law, as shown schematically in the inset of Figure 3b. 
Movie S2 (Supporting Information) shows the packing struc-
ture with seven layers of drops, in which the focal plane is 
gradually adjusted from the first layer to the seventh layer. 
The resultant hydrogel particles are shown in Figure 3c,d. 
Using a 4 mm thick chamber with a nondimensional chamber 
thickness of 27 which accommodates more than 30 layers 
of drops, all layers exhibit the bcc structure, despite some 
defects and distortion. This allows us to fabricate ≈1 million 
truncated octahedron hydrogel particles at once.

2.3. Drop Packing in Patterned-Template Chambers and 
Resultant Microgels

To further extend the variety of achievable geometries, we 
apply a patterned template to facilitate forming other packing 
structures. As a proof of concept, we target the Weaire–
Phelan structure, which is known to have the minimum sur-
face area for partitioning a space into equal volumes.[8] This 
implies that a compressed emulsion with a drop volume 
fraction of 1 should form Weaire–Phelan structure in unlim-
ited space; its interfacial energy is 0.3% lower than that of 
the Kelvin structure. The unit cell of the Weaire–Phelan 
structure consists of eight equal-volume blocks as shown in 
Figure 4a; six of the eight blocks are truncated hexagonal 
trapezohedrons with 12 pentagonal and two hexagonal faces 
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Figure 3.  Microscopy images of a) FCC packing and b) BCC packing of 
multilayer drops confined in thick chambers. c,d) Microscopy images 
of the resultant microgels with Kelvin structure; inset of (c) is the SEM 
image of a dried microgel. Scale bars are 200 µm in (a)–(c), 50 µm 
in (d), and 20 µm in the inset of (c).

Figure 4.  a) Schematics of the unit cell of Weaire–Phelan structure; a*) cross section of Weaire–Phelan structure at the boundary marked by the 
dashed line in (a). b) SEM image of the patterned template. c) Microscopy image of drop packing on the surface of template. d–f) Microscopy and 
SEM images of dodecahedron and tetrakaidecahedron microgels. Scale bars are 200 µm in (b)–(d), 50 µm in the optical images of (e) and (f), and 
20 µm in the SEM images of (e) and (f).
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and the other two are pyritohedrons. Looking from left to 
right at the cross section marked with the dashed line in 
Figure 4a and neglecting the halved blocks, we see the plane 
in Figure  4a* in which the light gray, dark gray, and green 
blocks are in the same layer, forming a relatively flat surface, 
while the red blocks form bumps. Thus in flat-plate chambers, 
we cannot realize the Weaire–Phelan structure because it is 
incompatible with flat boundaries.[15]

We instead design the chamber plates with a square 
array of hexagonal posts whose periodicity is the lat-
tice constant of Weaire–Phelan structure, as shown in 
Figure 4b. The periodicity and size of the hexagons are the 
same as the red hexagonal faces in Figure 4a*; the height 
is chosen to hold a half volume of the boundary-layer 
blocks beneath the posts. We align the two plates under 
a microscope and control their distance with spacers to 
match the lattice. After filling the chamber with drops and 
evaporating almost all continuous phase, the drops deform 
and pack into the Weaire–Phelan structure. The arrange-
ment of drops in the boundary layer is shown by Figure 4c, 
in which the posts on the template have been marked in 
red for better visualization. Movie S3 (Supporting Infor-
mation) reveals the packing structure up to the fifth layer, 
in which the focal plane gradually moves farther from the 
boundary layer. As evidenced by both Figure 4c and Movie 
S3 (Supporting Information), although the template does 
not provide exact guidance for each individual drop, the 
drops can still successfully pack into the Weaire–Phelan 
structure due to its low interfacial energy. The resultant 
polyhedral hydrogel particles are shown in Figure 4d. 
These particles consist of two distinct unit blocks in pyri-
tohedronal and tetradecahedronal shapes; the latter is a 
truncated hexagonal trapezohedron. Figure 4e,f shows 
the optical microscope and SEM images of each shape. 
Similar to the Kelvin structure and the Fejes Toth prism, 
they are quasi-faceted polyhedrons in which the faces are 
slightly curved except for the two hexagonal faces in the 
tetradecahedron.

3. Conclusion

In summary, a facile and effective approach to fabricate poly-
hedral hydrogel microparticles is demonstrated by confining 
monodisperse emulsion drops in between two parallel plates 
at a high volume fraction and polymerizing the deformed 
drops by UV irradiation. Using flat plates, we create hex-
agonal discs and prisms, Fejes Toth honeycomb prisms, and 
truncated octahedron particles by adjusting the ratio of the 
distance between the two plates to the drop size. Using a 
guiding micropattern with a square array of hexagonal posts 
that have the same lattice constant as the Weaire–Phelan 
structure, we also create pyritohedron and truncated hexag-
onal trapezohedron particles. We expect that the achievable 
geometries could be further extended by the same strategy; 
for example, the 15-hedra and 16-hedra shapes in periodic 
tetrahedrally close-packed structures might be produced.[16] 
A similar method can be applied to other polymerizable 
materials as well. The achievable size of the polyhedral 

particles is on the order of 10 µm to 1 mm. The resultant 
polyhedral microgels can potentially provide useful building 
blocks for the fundamental study of self-assembly; moreover, 
they may have practical applications in tissue engineering. 
This approach also represents an effective method to investi-
gate a spectrum of physical and mathematical problems, such 
as crystal structures, defects, phase transition, jamming, and 
minimum surface area.

Supporting Information

Supporting Information is available from the Wiley Online Library 
or from the author.
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