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Physical limits to biomechanical sensing in
disordered fibre networks
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& Ned S. Wingreen1,7

Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory

cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo

mechanical environment can be extremely heterogeneous. Here we investigate how this

heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness

sensor inside a disordered fibre network. For all types of networks we study, including

experimentally-imaged collagen and fibrin architectures, we find that measurements applied

at different points yield a strikingly broad range of local stiffnesses, spanning roughly two

decades. We verify via simulations and scaling arguments that this broad range of local

stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain

optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and

position to integrate multiple stiffness measurements over extended regions of space.
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M
echanical cues can govern cellular behaviour in
decisive ways1,2. The elastic properties of a cell’s
substrate have been shown to guide cell migration3,4

and determine cell fate5,6. Eukaryotic cells, including fibroblasts,
mesenchymal stem cells and cancer cells, attach to substrates
via transmembrane protein complexes called focal adhesions,
allowing the cell to sense stiffness2,7–10. Knockdown studies
have established that this mechanosensing contributes both to
motility and to the regulation of cell shape in three-dimensional
in vitro systems that closely resemble in vivo cellular
environments10–16, where cells are surrounded by a loosely
connected, disordered network of protein fibres, such as
collagen or fibrin17. These biopolymers form a major structural
component of the extracellular matrix (ECM), which serves as
the physical scaffolding within which cells live and move. While
it is clear that cells actively probe these extracellular networks,
it remains unclear how ECM micromechanical properties
impact mechanosensing.

Both in vitro experiments18–22 and theory23–27 have demon-
strated that biopolymer networks exhibit rich macroscopic
mechanical behaviour, depending sensitively on network
connectivity. However, because the size of a typical cell is
comparable to the pore size of the ECM28, any mechanical
information must be inferred by locally probing an extremely
heterogeneous material. Although a few studies have begun to
characterize this microscopic response29,30, a theoretical
understanding of how local mechanics are determined by the
surrounding heterogeneous structure is still lacking.

How does the intrinsic heterogeneity of the ECM limit a cell’s
ability to learn about its global environment from purely local
mechanical measurements? For the case of chemical sensing,
consideration of the fundamental physical limits dates back to
Berg and Purcell’s consideration of noise due to the random
arrival of diffusing particles31–33. Here we take a similar approach
to explore the fundamental limits of mechanosensing, where, in
contrast to chemical signals, the cues are static in time but
distributed nonuniformly in space.

To quantify the physical limits of mechanosensing imposed by
a cell’s disordered environment, we investigate a simple model
consisting of two components: the ECM as an elastic network that

deforms in response to external forces, and the cell as an idealized
measurement device that probes the stiffness of its surroundings.
We found that experimentally-imaged collagen and fibrin
networks and randomly-generated networks all yield a very
broad range of modelled local stiffness responses, spanning
roughly two decades. We observed that the broad distribution of
local stiffnesses collapses onto a universal form for different fibre
concentrations. We trace the origin of this universally broad
range of stiffnesses to two intrinsic features of disordered
networks: first, the local stiffness depends primarily on a
small number of local fibres with consequently large variations,
and second, these proximal fibres contribute to stiffness in a
highly cooperative manner. Although we find that the local
mechanics of the experimental networks are dominated by fibre
bending, we show that pre-existing strain in the network
can induce a transition to a stretching-dominated regime. Finally,
we argue that to obtain accurate estimates of global ECM
stiffness, cells must integrate multiple stiffness measurements
over extended regions of space.

Results
Forming and modelling experimental network architectures.
Cells in connective tissue can glean information about
their surroundings by pulling on the individual biopolymers
of the ECM. However, on the short length scale of a typical
cell, the measured mechanical response is sensitive to the intrinsic
structural disorder of the ECM. To investigate the role of
local mechanical disorder in a physiologically relevant system,
we considered collagen networks, which form the primary
structural component of the ECM17. We prepared a sample
network by reconstituting fluorescently labelled collagen type-I
monomers at a concentration of c¼ 0.2 mg ml� 1 and imaged its
three-dimensional structure34 (Fig. 1a, see Methods section for
details). The network is loosely connected (with an average
coordination number z ’ 2:9) and highly heterogeneous at the
cellular scale (with an average mesh size x ’ 6:5 mm). This
reconstituted collagen architecture (Fig. 1a) was used as an input
to construct a mechanical network model where the fibres are
treated as elastic beams that can bend and stretch (Fig. 2a,
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Figure 1 | Experimental fibre networks. (a–d) Reconstituted biopolymer networks considered throughout our analysis. Images show maximum intensity

projection of three-dimensional confocal microscopy data obtained from polymerized (a) collagen type-I monomers at 0.2 mg ml� 1 and (b) fibrinogen

monomers at 0.2 mg ml� 1, (c) 0.8 mg ml� 1, and (d) 1.6 mg ml� 1 (see Methods section for details of experimental procedure). Scale bars correspond to

25mm.
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see Methods section for details). For simplicity, we modelled
the stretching and bending of the beams, respectively, as springs
and torsional springs connecting point-like vertices with
stretching modulus m and bending modulus k. Throughout
the main text, we take the same values of m and k for all fibres
of the network, and we include a bending interaction over
each connected triplet of vertices. However, we also tested
alternative mechanical models and found that our results are
not significantly affected by these choices (see Supplementary
Figs 3 and 4). Since biopolymers are expected to be much
more pliable to bending than to stretching, we chose the
stretching modulus such that k�mx2. The bending modulus k
of the torsional springs was fitted to the experimental
network using data from macroscopic rheology (see Methods
section for details).

ECM networks yield broad distributions of local stiffnesses.
To study the mechanical response of the network to local forces
that might be applied by cells, we defined a ‘local stiffness’ kloc as
the linear response of the displacements of two vertices to a

dipole contractile force along the direction between the vertices35.
We then calculated this local stiffness by numerically solving
the equations of force balance for the network. Strikingly, we
found that local stiffness measurements yield a very broad
range of values, spanning up to roughly two decades (Fig. 2c).
Because of the large range of stiffnesses, in what follows we
characterize this variability in terms of the geometric standard
deviation (s.d.):

sloc ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlog kloc �hlog klociÞ2i
p

ð1Þ

which we find for this collagen network to be sloc¼ 0.54.
To explore how the broad local stiffness distribution

depends on protein type, we next considered a reconstituted
fibrin network (Fig. 1b, Supplementary Fig. 1a), as
fibrin constitutes the main structural component of blood clots17.
We imaged a fibrin network prepared from a solution of
fibrinogen at c¼ 0.2 mg ml� 1 and observed an average coor-
dination number z ’ 2:7 and an average mesh size x ’ 6:7mm
(see Methods section). We found that the fibrin network also has
a broad distribution of local stiffnesses, with sloc ¼ 0:63 very
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Figure 2 | Force-dipole stiffness distribution. (a,b) Examples of local stiffness sensing by force dipoles. Modelled deformation under stress from a local

force dipole of length dB15mm (green arrows) of (a) experimental collagen network and (b) RGG network. Magnitude of fibre deformations indicated by

colour (small deformations, blue; large deformations, red). (c,d) Distribution of local stiffnesses kloc defined as the linear response of local deformation to a

force dipole of length dB15 mm for (c) collagen network and (d) RGG network. Geometric s.d. of local stiffness sloc indicated by bars (actual distribution,

black; estimated distribution assuming strong locality, red; estimated distribution assuming weak locality, orange; see Supplementary Figs for details).

Insets show stiffness loss D, defined as the relative change in local stiffness kloc upon perturbing a network by removing a single fibre, versus distance R of

centre of removed fibre from the probe centre. For collagen, probe length do10mm and removed fibre length ‘ijo10 mm, and for RGG, probe length

do5 mm and removed fibre length ‘ijo5 mm. Error bars, defined as the s.d. of each data point divided by the square root of the number of samples

averaged, are smaller than the size of data points. Dashed lines show asymptotic scaling from continuum theory, which predicts D � 1=R2D for R� d

(see Supplementary Figs for details).
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similar to that of the collagen network (Supplementary Fig. 1b).
This similarity suggests that the local stiffness distribution may be
determined primarily by network characteristics, such as
connectivity and average mesh size, which were very similar for
both types of networks.

To investigate how such network characteristics impact
the local stiffness distribution of fibrin networks, we varied
the fibrinogen concentration. We observed that, with increasing
concentration, the mesh size and average fibre length
both decrease (Fig. 1b,c and Supplementary Table 1). In addition,
quantitatively comparing our models to macrorheological data
yields a fitted bending modulus that increases with concentration
(Supplementary Table 1). These denser networks of stiffer fibres
also yielded broad local stiffness distributions, spanning at least
two decades in stiffness. Interestingly, however, we found that sloc

became slightly smaller with each increase in concentration, for a
fixed probe length (Fig. 3a).

To understand this reduction in sloc, we first note that the
changes in the network features, including the mesh size and the
fibre length distribution, were consistent with a simple size
rescaling of the network (Supplementary Fig. 1c). Taken together,
our results suggest that the width of the local stiffness distribution
depends on the length scale over which the network is probed. To
confirm this hypothesis, we varied the length of the cellular
stiffness probe. In this case, we find that sloc also decreases with
increasing probe length for all concentrations of fibrin networks
studied (inset of Fig. 3a).

The observed narrowing of the local stiffness distribution
with monomer concentration or with probe length suggests
that the stiffness distribution is controlled by the ratio of the
probe length to an intrinsic length scale of the network. Indeed,
upon rescaling the probe length d by the mesh size x, we find that
the geometric s.d. sloc for networks of different monomer
concentration collapse onto a single universal curve (inset of
Fig. 3b). One possible explanation for this decrease in sloc as
a function of the ratio d=x is that longer force dipoles
effectively probe a larger region of the network, which may
result in self-averaging. For long probes, however, sloc begins to
approach a constant value (inset of Fig. 3b). This asymptotic
saturation occurs because for very long probes, the measured
deformation is simply the sum of the deformations of
two independent monopole probes that are still sensitive to
network disorder.

Random graph captures experimental networks’ stiffness range.
To investigate the physical origins of the universally broad
local stiffness distributions described above, we turned to
idealized model networks. One way to generate model disordered
networks consists of arranging vertices to lie on a regular lattice,
such as a simple-cubic lattice or face-centred-cubic lattice (FCC)
in three dimensions25 (Supplementary Fig. 5a). Connecting these
vertices randomly with a fixed probability results in a disordered
lattice network. Such lattice networks have provided a useful
starting point for characterizing the mechanical response of
fibre networks in two dimensions30. Interestingly, although
three-dimensional simple-cubic lattice and FCC networks
also yield a broad range of local stiffnesses (Supplementary
Figs 11f and 5b), the geometric s.d. of these distributions
(sloc¼ 0.29 and 0.37 at d=x ¼ 2:2, respectively) are considerably
smaller than those of the experimental networks at the same value
of d=x (Fig. 2c; Supplementary Fig. 1b). Furthermore, the entire
local stiffness distribution has almost no dependence on probe
length (Supplementary Fig. 7d). A possible reason for these
discrepancies is that the disordered lattice networks fail to capture
important structural features of real networks at the scale of
the cell, such as the fibre length distribution and the random
positions of the vertices.

To generate a model network that better matches the
structural features of the experimental networks, we begin
by distributing vertices randomly throughout a volume. The
density of these vertices (which determines the mesh size x) is set
roughly equal to those of the experimental networks. Pairs of
vertices are then connected according to a probability function
that depends on the intervertex distance. We chose the
probability function to be the simplest form that results in
network features consistent with those of the experimental
architectures (see Supplementary Methods). The resulting
modelled networks are referred to as ‘random geometric graphs’
(RGGs; Fig. 2b). We computed the local stiffness distribution
for the RGG network and found that the geometric s.d. is
sloc¼ 0.56 at d=x ¼ 2:2 (Fig. 2d), which is approximately equal to
those of the experimental networks (Fig. 2c; Supplementary
Fig. 1b). Furthermore, we find that both the experimental
and RGG networks display an anomalously sensitive dependence
of the geometric mean of local stiffness on probe
length (Supplementary Fig. 6). Thus, in contrast to the lattice
networks, the RGG network appears to quantitatively capture
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Figure 3 | Varying concentration reveals universality of the local stiffness distribution. (a) Distribution of local stiffnesses kloc, at force dipole length

dB15 mm, for fibrin networks with concentrations c¼0.2 mg ml� 1 (red), c¼0.8 mg ml� 1, (blue) and c¼ 1.6 mg ml� 1 (green). Inset shows geometric s.d.

sloc versus force dipole length d. (b) Distribution of local stiffnesses kloc/k scaled by the bending modulus, obtained by fitting model parameters for each

experimental network using data from macroscopic rheology, at scaled force dipole length d=x ¼ 2:2, where x is the mesh size, for fibrin networks with

same concentrations as in a. Inset shows geometric s.d. sloc versus scaled force dipole length d=x.
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important local mechanical properties of the experimental
networks.

Experimental networks are in a bending-dominated regime.
What network features produce the broad width of the universal
local stiffness distributions? Intuitively, more fibre-dense regions
should be stiffer. For a fixed density of vertices, the fibre density
is roughly proportional to the network connectivity, defined
as the average coordination number z. We briefly review how
the overall connectivity of a network affects its macroscopic
mechanical properties23,25.

For high values of z, the bulk elastic moduli of fibre networks
are dominated by the stretching of fibres. As z is lowered,
the macroscopic response eventually undergoes a crossover to a
bending-dominated response, as the network can be deformed
without stretching fibres but not without bending them. As z is
further lowered, another elastic transition occurs when the network
ultimately loses macroscopic rigidity. Over the whole range,
the macroscopic response depends strongly and nonlinearly
on the network connectivity, with the strongest dependence near
the two elastic transitions.

To determine how the rapid scaling of the macroscopic
response with connectivity manifests locally, we varied the
average coordination number z of modelled networks for a fixed
ratio of the bending modulus k to the stretching modulus m
(with koomx2, Fig. 4a, Supplementary Fig. 5c). At high
connectivities, the entire local stiffness response is dominated
by stretching interactions and scales with m. As the connectivity is
lowered, the entire local stiffness distribution shifts to lower
values. Specifically, the median stiffness decreases rapidly and
nonlinearly with the average coordination z. Near the stretching–
bending crossover, the local stiffness distribution becomes
bimodal with the emergence of a subset of probes for which the
measured stiffness scales with the bending modulus k. Below the
stretching–bending crossover, the number of stretch-dominated
probes becomes negligible, and the local stiffness response enters
a bending-dominated regime. Within this regime, the median
stiffness resumes rapid decay. Finally, as the connectivity is
brought below the rigidity transition, an increasing fraction of
measurements yields zero stiffness as portions of the network
become floppy. We thus find that the elastic transitions of the

macroscopic response manifest locally as crossovers between
stretch-dominated, bending-dominated, and zero-stiffness mea-
surements. At these crossovers, the median stiffness decreases
most rapidly, and the local stiffness distribution becomes
bimodal, yielding a maximum in the geometric s.d.

The low connectivity of the collagen and fibrin networks
suggests that they are situated in the bending-dominated regime.
To verify this, we systematically varied the ratio of the bending
modulus to the stretching modulus for these networks
(Supplementary Fig. 2c,d). We found that the local stiffness
measured by each individual probe scales with the bending
modulus, confirming that we can account for the overall
stiffening of the fibrin networks with concentration by rescaling
local stiffness by the bending modulus. Indeed, upon plotting the
distribution of rescaled local stiffnesses hkloci=k for a fixed ratio of
the probe length d to the mesh size x, we find that the local
stiffness distributions from all three fibrin networks collapse onto
a single curve (Fig. 3b, Supplementary Fig. 1d). For all types of
experimental networks we studied, no local stiffness measure-
ments yielded zero stiffness or a finite stiffness that scales with the
stretching modulus. The absence of such probes suggests that the
experimental networks are far from both elastic crossovers,
implicating a different source for the broad local stiffness
distributions.

Local stiffness depends only on proximal network structure.
A very broad distribution of local stiffnesses appears to be a
generic feature of disordered fibre networks. What is the origin of
this large variance in local stiffness measurements? To investigate
how a local stiffness measurement depends on the surrounding
network structure, we calculated the stiffness loss D upon
removing a single fibre (Supplementary Fig. 10). Intuitively,
removal of fibres that are more proximal to the stiffness
probe should have a greater effect on kloc, which suggests that,
on average, the stiffness loss should decay as a function of the
distance R from the probe centre to the centre of the removed
fibre. Indeed, for all types of networks we studied, we found that
the average stiffness loss is consistent with 1/R6 decay (insets of
Fig. 2c,d, Supplementary Figs 1b and 5b).

This apparent universality of the scaling of the stiffness loss
suggests that the 1/R6 power-law decay should be calculable
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Figure 4 | Collective effect of network structure on local stiffness. (a) Distribution of local stiffnesses kloc for RGG network versus average coordination

number of vertices, z, at force dipole length d¼ 15mm and ratio of the bending modulus to the stretching modulus k=m ¼ 10� 5 mm2. (b,c) Joint distribution

of local stiffness and number of local fibres NF, defined as a weighted fraction of local bonds, with bond weight¼ 1 below a short-range cutoff ~x and

decaying as 1/R2D beyond, where (b) ~x ¼ 1:5x for RGG network (x ’ 6:7 mm) and (c) ~x ¼ 2x for collagen network (x ’ 6:5 mm). Dashed lines show the

macroscopic shear moduli of the networks as a function of average number of local fibres hNFi.
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within continuum elasticity theory. We therefore calculated
the effect of removing a single fibre in the vicinity of a
local stiffness probe for the case of a uniform lattice network
(see Supplementary Fig. 10). The defect created by removing a
fibre at a distance R from the probe perturbs the dipole strain
field induced by the probe. We can treat this perturbation as an
additional dipole strain field originating from the defect, with
a magnitude proportional to the initial strain in the removed
fibre. Since both this initial strain and the consequent additional
strain ‘reflected’ back to the probe decay as the strain field of
a force dipole, that is, as 1/RD (where D is the dimension),
the combined effect is an increase in the strain at the location
of the probe B1/R2D.

The rapid 1/R6 decay of the stiffness loss due to fibre removal
in three dimensions suggests that the local stiffness is largely
determined by the network structure in the immediate vicinity of
the probe. Within this small local region, all quantities are subject
to large fluctuations; for example, since a small region typically
contains a small number of fibres, the variance of fibre density
will be large. The universal, rapid 1/R2D decay implies that the
mechanically relevant local structure will always be very local,
with consequently large fluctuations.

Broad stiffness range arises from local density fluctuations. To
quantify the dependence of local stiffness on the surrounding
network structure, we considered the number of local fibres NF,
defined as the sum of fibres each weighted by a 1/R6-decaying
function of its distance R from the probe centre (see above
and Supplementary Figs). We find that kloc and NF are well
correlated for all types of networks studied, as shown in Fig. 4b,c.
Importantly, kloc has a strong, nonlinear dependence on NF.
Specifically, the centre of the marginal distribution of local
stiffnesses at fixed NF increases more rapidly than linearly with
NF. This indicates that local fibres influence local stiffness in
a highly cooperative manner, that is, combining multiple
fibres typically results in much larger than additive changes to
local stiffness.

To estimate the geometric s.d. of local stiffness, we
must account for these cooperative effects among fibres. We
first note that the scaling of the median local stiffness with NF

is consistent with that of the macroscopic shear modulus for
all types of networks we studied (insets of Supplementary
Figs 11d–f and 12d–f). This suggests that much of the broad
width of the stiffness distribution can be accounted for by the
large variations in the local fibre density taken together with the

strong, nonlinear dependence of the macroscopic shear modulus
on overall fibre density. To test this notion, we estimated the
distribution of local stiffnesses by taking NF transformed by the
functional dependence of the macroscopic shear modulus, G(NF),
where the modulus G is that of a macroscopic network with an
average number of local fibres given by hNFi. Upon accounting
for the strong collective effects of fibre density in this manner,
we found that the geometric s.d. of G(NF) provides a very
good estimate for the actual, observed geometric s.d. of local
stiffness (Fig. 2c,d; Supplementary Figs 1b, 5b, 11d–f and 12d–f).
Consequently, the estimator correctly predicts the relative
differences in the geometric s.d. for the different types of
networks, including the observation that the stiffness distribu-
tions for the experimental and RGG networks are much broader
than for the disordered lattice networks.

Our prediction of the width of stiffness distributions is not
sensitive to the particular form of the weighting function,
provided the decay is rapid enough. For instance, a hard cutoff
at twice the mesh size captures a majority of the broad width for
the FCC network (Supplementary Fig. 11e). However, a less
rapidly decaying estimator includes a larger number of fibres in
the local structure, and consequently the variance in fibre density
is smaller. Thus, by comparison, an estimator with weights that
decay as 1/R3 yields a smaller, much poorer estimate of the width
of the stiffness distribution (Fig. 2c,d; Supplementary Figs 1b, 5b,
11d–f and 12d–f).

Pre-existing network strain can induce an elastic transition.
Throughout our analysis, we have focussed on the local stiffness
response of networks in an initially unstressed reference state.
However, cells in vivo often encounter networks that are already
in a deformed or stressed state. For example, the fibrillar proteins
of the ECM are surrounded by proteoglycans (PGs), which form a
hydrated, gel-like substance17. This PG gel has been observed to
maintain an osmotic pressure that can swell embedded fibre
networks and stabilize them in a stressed state37. An alternative
source of stress is cells themselves, which actively contract and
transmit forces throughout the network7,38. The presence of such
pre-existing stress, or ‘prestress’, is known to impact the
mechanical response of fibre networks39,40, even at modest
macroscopic strains g � 0:1.

To determine how prestress could impact local stiffness, we
considered the local stiffness for the experimental collagen
network and the modelled RGG network under fixed initial
prestrain. For simplicity, we did not include PGs or contractile
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Figure 5 | Effect of network prestress on local stiffness. (a) Distribution of local stiffnesses kloc, at force dipole length d¼ 10mm, for collagen network for

a broad range of network strains (macroscopically uniform dilation g¼0 blue, g¼0.01 green, g¼0.05 yellow, g¼0.2 red). (b) Distribution of local

stiffnesses kloc for RGG network versus network strain (average coordination number z¼ 2.9, force dipole length d¼ 10mm, k=m ¼ 10� 5 mm2).
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cells but rather induced prestrain by imposing a macrosopically
uniform dilation (see Supplementary Figs and Supplementary
Methods). As before, we define the local stiffness as the
linear response of two vertices to a contractile dipole force.
These local stiffnesses are again computed by numerically
solving the equations of force balance, obtained from the
derivative of the Hamiltonian evaluated at the prestrained
state (see Supplementary Figs).

For small prestrains, the distribution does not appear to change
significantly, aside from a slight upward shift (Fig. 5a,b).
However, for larger prestrains around Z0.1, the distribution
becomes bimodal with a second, considerably stiffer peak.
The emergence of this second peak occurs at prestrains consistent
with the onset of nonlinear stiffening observed in previous
studies of the macroscopic bulk modulus of fibre networks39,40.
Here the width of the stiffer peak is broad, spanning roughly two
decades. However, compared to the local stiffness distribution for
zero prestrain, the geometric s.d. of this peak is lower by about a
factor of two, similar to the value we observed for unstrained
networks above the bending–stretching crossover (Fig. 4a).
We confirmed that the entire local stiffness distribution is
dominated by stretching interactions by systematically varying
the ratio of the bending modulus to the stretching modulus for
the collagen network at a fixed strain of g¼ 0.2. We found
that, for this value of strain, the entire distribution scales
with the stretching modulus (Supplementary Fig. 4b). This
demonstrates that prestress can induce an elastic transition in the
local stiffness distribution, analogous to the crossover we
observed upon varying connectivity. Thus we expect the results
and analysis we performed for the unstrained networks to
describe prestrained networks, although with the bending–
stretching crossover shifted to lower values of connectivity with
increasing prestrain.

Extent of probed region sets accuracy of stiffness inference.
The intrinsic heterogeneity of fibre networks presents a challenge
for cells attempting to glean information from stiffness cues.
That is, tissues with different global stiffness properties may have

significant overlap of their local stiffness distributions. In this
case, a single local stiffness measurement would provide only a
poor estimate of the global stiffness and identity of the tissue.

One possible strategy for cells to increase their inference
accuracy is by averaging multiple stiffness measurements. With
enough samples of local stiffness, this method would allow cells to
reliably distinguish between global environments with different
mechanical properties. We can visualize the local stiffness that a
cell might infer at each point of the network by plotting
the geometric mean stiffness of measurements obtained within a
cell-sized sphere centred on that point (upper inset of Fig. 6b).
The patterns in the stiffness landscape reflect the correlations of
nearby stiffness measurements and extend over regions larger
than typical cell sizes. More precisely, we find that the correlation
function Cij between the log-local stiffnesses measured by
two probes decays exponentially as a function of the distance
Rij between their centres, with decay lengths around 3mm
(lower inset of Fig. 6b and inset of Supplementary Fig. 13a). These
spatial correlations of local stiffness arise because nearby
stiffness measurements depend on shared local structure. Since
correlations reduce the effective number of independent samples,
we expect less accurate global inference if stiffness measurements
are made closer together in space.

To quantitatively study the reduction in accuracy of cellular
mechanosensing due to spatial correlations, we modelled cell
inference as an idealized sampling and averaging. To be concrete,
we considered the sampled stiffness to be the geometric mean of a
random sample of three probes whose centres are contained
within prolate spheroids of varying volume and aspect ratio
(inset of Fig. 6a). For all the types of networks we studied, the
shape of the sampling region directly impacts the uncertainty of
stiffness inference (defined as the geometric s.d. s3 of the inferred
stiffness, Fig. 6 and Supplementary Fig. 13b). Specifically, the
uncertainty is always reduced by increasing the volume of the
sampling region as well as by increasing its aspect ratio. As the
extent of the sampling region is increased, typical samples of
stiffness become increasingly uncorrelated, and in the asymptotic
limit, the uncertainty of the sampled stiffnesses approaches the
geometric s.d. for independent samples.
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Discussion
Mechanical cues can guide cell motility and differentiation3–6.
Indeed, cells are observed to reliably distinguish among
two-dimensional homogeneous substrates with bulk stiffnesses
similar to brain (B1 kPa), muscle (B10 kPa) and bone
(B100 kPa)5. However, the three-dimensional in vivo mecha-
nical environment at the cellular scale can be extremely hetero-
geneous17,28. Here we asked how this intrinsic heterogeneity
impacts mechanosensing. Interestingly, we found that, within
macroscopically homogeneous but locally disordered collagen
and fibrin networks, local probes yield a very broad range of
stiffnesses, spanning roughly two decades. This range is similar to
the relative difference in the bulk stiffness of brain and bone.
Moreover, the average measured stiffness is anomalously sensitive
to probe length. We quantitatively captured these striking features
of the experimental networks with modelled networks, which
enabled us to elucidate their physical origins using a combination
of simulations and scaling arguments.

We first established that the very broad range of local
stiffnesses is a universal feature across network types and
spans a wide range of connectivities, including multiple elastic
regimes. We then traced the origin of this pervasive broad
distribution to variations in local structure. Specifically, stiffness
probes are primarily sensitive to a very small region of local fibres,
and these privileged fibres contribute to the measured response
in a highly cooperative manner. Finally, we found that the
distribution of stiffnesses can be further broadened by tuning
specific network features, including proximity to elastic
transitions and geometrical disorder. While our results indicate
that the experimental networks are poised squarely in a regime
where the response is dominated by fibre bending, these networks
include strong geometrical disorder, including randomly oriented
fibre junctions and a polydisperse fibre length distribution.
These structural features explain why the range of stiffnesses
is larger for the experimental and RGG networks than for
lattice-based networks.

The fibre concentrations we considered are typical for in vitro
experiments performed on cell migration10,36. These values
of concentration are chosen to be lower than the values in vivo
because sparser networks allow for accurate imaging.
Our observation of the universality of the local stiffness
distribution provides a theoretical justification for these lower
fibre concentration in vitro networks as models for in vivo
networks.

Our ‘ideal-mechanosensor’ model does not address the internal
mechanics of cells. Any internal noise in sensing or downstream
signalling can only increase overall measurement uncertainty.
There is evidence that cells can fix and thus regulate the relative
uncertainty in measured stiffness by linearly modulating their
applied stress to maintain a constant deformation8. Notwith-
standing, we have shown that, even if cells sense nearly optimally,
any single stiffness measurement is poorly informative of global
tissue properties. This suggests that cells can benefit more from
integrating the results of multiple stiffness measurements than from
optimizing individual measurements, which may explain why some
cells display more than a hundred focal adhesions37. Yet even this
strategy has diminishing returns, because nearby stiffness
measurements probe the same underlying local structure and are
therefore correlated. To extract useful information, cells must
spread their measurements over extended regions of space, either
by moving or by extending their shape. The benefits of an
elongated shape are twofold, since measurements on larger scales
are both more accurate and less correlated. The biological relevance
of this strategy is supported by the observation of highly polarized
cells over five times longer than wide, including fibroblasts,
mesenchymal stem cells, and cancer cells5,13,41,42.

To better elucidate the physical origin of mechanical hetero-
geneity in fibre networks, we focussed on simple models that
capture the essential features of the response of biological ECM.
These models set a lower bound on the heterogeneity of the local
mechanical response arising from intrinsic structural disorder.
Biological ECM may contain additional sources of heterogeneity.
Our simplified models approximate the thicknesses of fibres
and crosslinking of fibres at junctions as uniform throughout
the network and treat fibre deformations as purely elastic.
To validate these simplifications, we tested alternative mechanical
models that incorporate the most likely sources of additional
heterogeneity: a distribution of bending moduli, different types
of interactions at junctions, and plastic deformations (Suppleme-
ntary Figs 3 and 4). For all these variations, we observed no
significant difference in modelled stiffnesses on a case-by-case
basis, which suggests that the large heterogeneity we observed
from intrinsic structural disorder dominates over the most likely
additional sources of heterogeneity and thereby provides a
relevant estimate for the total heterogeneity.

Various other components are expected to contribute to the
mechanical response that cells feel in vivo, including PGs and
other cells. X-ray scattering suggests that PGs coat the fibres43,
effectively increasing their stiffness, while cells adhering to fibres
serve as an additional elastic component in parallel with the
network. Since biological networks are well below the stretching
transition, we do not expect these passive stiffening effects to
significantly alter the modelled response. However, in addition to
their intrinsic stiffness, both PGs and cells can stabilize networks
in a prestrained state. Our model indicates that this prestrain may
induce an elastic transition and slightly narrow the local stiffness
distribution. This occurs for macroscopic network strains larger
than roughly 10%, which would be achievable for networks
containing a dense population of cells. Thus cells may exploit
prestrain to increase the accuracy of mechanical inference.

We have not considered the dynamics of the ECM, which
may be influenced by the intrinsic viscosity of PGs on a
short time scale of seconds44 or matrix remodelling on scales of
hours to days45. In contrast, cells have been observed to perform
static measurements of stiffness that can take minutes to hours
to develop stress1. In these cases, such short timescale and
long timescale dynamics can be safely ignored. However, certain
types of cellular protrusions have also been observed to oscillate
with a constant period on the order of tens of seconds46, which
suggests that the dynamics of local stiffness are a promising
direction for future study. Furthermore, while we have only
considered isotropic networks, tissues can have aligned fibres due
to remodelling and prestrain12,47. Our results for isotropic
prestrain suggest that aligned networks should yield a narrower
stiffness distribution when probed along a fixed direction. This
may explain why the alignment of the ECM has been observed to
coordinate with cell polarization to promote migration48.

Finally, probing stiffness beyond linear response could provide
cells with additional information. How hard would a cell need
to pull to access the nonlinear regime? Nonlinear effects
will certainly become significant when fibres begin to buckle38.
For a single fibre equal in length to the mesh size, the Euler
buckling thresholds are between 0.01 and 10 nN using the
bending moduli we inferred for the collagen and fibrin networks.
Forces of several nanonewtons are achievable by stronger cells,
as well as by colonies that migrate collectively49. This suggests
that the nonlinear regime is also an interesting direction for
future study.

In summary, the disorder inherent in biological fibre networks
places severe physical limits on the accuracy of cellular
mechanosensing, suggesting that organisms must have evolved
cellular-scale strategies to cope with this uncertainty in vivo.
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Going forward, high-throughput gene deletion and mutation
studies in conjunction with realistic patterned substrates50 can
help reveal the full array of internal components and pathways
required for accurate mechanosensation.

Methods
Polymerization of collagen and fibrin networks. We study network architectures
obtained from experiment by analysing images of reconstituted fibre networks.
Collagen networks were prepared and imaged as described previously51. Briefly, a
sample of c¼ 0.2 mg ml� 1 protein in 1� DMEM with 25 mM HEPES was
prepared from a solution of collagen type-I monomers with a small fraction of
fluorescently labelled monomers at 4 �C. A fraction of monomers are labelled to
avoid issues with fibre formation. However, these monomers are well mixed before
the network is formed, which results in all fibres containing a sufficient portion of
labelled monomers to allow for imaging. Therefore, our technique allows us to
accurately image all fibres down to 200–500 nm resolution. Network formation was
induced by neutralizing the sample’s pH with 1 M NaOH and incubating it at room
temperature for 4 h. The resulting network was imaged using a confocal
microscope (Leica SP5, Wetzlar, Germany). We acquired a set of fluorescent
images covering a three-dimensional volume that was representative of the network
structure. To determine the fibre positions and connectivity, the image stacks were
thresholded and subsequently skeletonized, which resulted in a one-voxel thick line
representation of all fibres. We define a branch point as the junction between three
or more fibres. The number of fibres that join at a branch point defines the branch
point’s connectivity z. In our mechanical model, the vertices are positioned at the
branch points and end points of fibres. By counting the number of vertices within
the network volume, we found a vertex density of 8.52� 10� 4 vertices mm� 3.

Fibrin networks were prepared and imaged as described previously51. Briefly,
solutions of human fibrinogen (Enzyme Research Labs, South Bend, IN) containing
a small fraction of fluorescently labelled fibrinogen with protein concentrations of
c¼ 0.2, c¼ 0.8, and c¼ 1.6 mg ml� 1 were prepared in buffer (150 mM NaCl,
20 mM CaCl, 20 mM HEPES, pH 7.4). Network formation was induced by the
addition of activated human alpha-thrombin (Enzyme Research Labs, South Bend,
IN) to the fibrinogen solutions (final thrombin concentration: 0.1 mg ml� 1). After
the samples were allowed to polymerize for 12 h, the resulting fibrin networks were
subsequently imaged and the data were processed analogously to the collagen
sample. The vertex densities were found to be 8.1� 10� 4, 30� 10� 4 and
90� 10� 4 vertices mm� 3.

For the collagen and the fibrin networks, all proteins purchased exhibit purities
490% as demonstrated by the respective manufacturers via SDS–polyacrylamide gel
electrophoresis. For the collagen network at c¼ 0.2 and fibrin networks at c¼ 0.2,
c¼ 0.8, and c¼ 1.6 mg ml� 1, we found average coordination numbers of z ’ 2:9,
z ’ 2:7, z ’ 2:8 and z ’ 2:9, respectively. Although these average coordination
numbers are low, the networks are all macroscopically rigid, as defined by a finite
linear response to shear forces. Rheological measurements were performed on
networks prepared under experimental conditions analogous to those of the imaged
samples. For the collagen network, the measurements were done using an AR-G2
rheometer (TA instruments, New Castle, DE) equipped with a custom-made plastic
plate of 25 mm and sealed with mineral oil51. The macroscopic mechanical response
was measured by applying a small oscillatory strain and measuring the resulting
stress, which resulted in a shear modulus of G ’ 0:3 Pa. The fibrin networks were
measured with a 40 mm per 4� cone-plate geometry. Samples were sealed with
mineral oil and allowed to polymerize for at least 12 h. The networks were then
perturbed in the same manner as for the collagen network and the shear moduli were
found to be G ’ 1, 10 and 45 Pa, respectively.

Macroscopic rigidity requires macroscopic connectedness, that is, the presence
of a spanning cluster of vertices. In our analysis, we identified all vertices that
belong to the largest cluster using a union-find algorithm and removed all other
vertices from the network. For both the collagen and the fibrin networks, we
considered a spherical sample of radius Rsample ¼ 65 mm. Within this sample
volume, the N vertices are distributed approximately homogeneously on scales
large compared to the mesh size x, defined as the radius of a sphere whose volume
is equal to the average volume per vertex:

x ¼ Rsample

N1=3
: ð2Þ

For the experimental collagen network at c¼ 0.2 and fibrin networks at c¼ 0.2,
c¼ 0.8, and c¼ 1.6 mg ml� 1, we found x ’ 6:5, 6.7, 4.3, and 3.0 mm, respectively.
On scales comparable to x, the networks are intrinsically disordered due to
heterogeneity in both the spatial positions of the vertices and the lengths of fibres.
We approximate the lengths of the fibres as the distance between their end points.
The lengths of the fibres are highly polydisperse, spanning over an order of
magnitude in length with a substantial fraction of fibres that are very long
compared to the average fibre length (Supplementary Figs 1c and 9a,b). The fibre
length distribution peaks at small lengths (that is, below the average fibre length)
and decays roughly monotonically beyond the peak.

Mechanosensing model. Fibre network model. We study the mechanical
properties of crosslinked biopolymer networks, such as those of the ECM, using a

fibre network model, which consists of a collection of linear elastic elements that
are connected at point-like vertices. The elastic elements model the stretching and
bending interactions of the constituent fibres, which we treat as elastic beams23,25.
Furthermore, since biological collagen and fibrin networks often consist of
branched architectures for which fibres are constrained to meet at fairly regular
angles26, we also consider the interaction required to deform the junctions at which
multiple fibres are joined. The mechanical energy in the fibre network model is
given by:

Hlin ¼
m
2

X
hiji

1
‘ij

uij � r̂ij
� �2 þ k

2

X
hijki

1
‘ijk

ujk�r̂ij

‘jk
� uij�r̂jk

‘ij

� �2

; ð3Þ

where ui is the deformation of vertex i about its position in the undeformed
reference state,

uij ¼ uj �ui ð4Þ

is the relative deformation of nodes i and j, m is the stretching modulus, k is the
bending modulus and ‘ij is the length of the fibre ij connecting vertices i and j in
the unperturbed reference state (that is, the unstretched fibre length),

‘ijk ¼ ‘ijþ ‘jk
� �

=2 ð5Þ

is the average unstretched length of fibres ij and jk and r̂ij is a unit vector that
points along the direction of the fibre ij connecting vertices i and j in the
unperturbed reference state. The first sum corresponds to stretching interactions
and is taken over all fibres ij. The second sum constrains angular deflections of all
connected pairs of fibres ij and jk and thus provides a minimal model for both the
energy due to bending interactions as well as the interactions provided by
semiflexble junctions.

Idealized measurement device. The cell is modelled as an idealized
stiffness-measuring device that exerts force on vertices of the network. The effect of
the applied force fi perturbs the mechanical energy as follows:

dH ¼ �
X

i
f i � ui; ð6Þ

where the index is summed over all vertices. We assume that the ECM behaves as a
viscoelastic solid and that the forces applied by cells change slowly. Assuming
forces applied by cells change slower than the timescale set by viscous damping, the
network will be deformed in a quasistatic manner, that is, the network reaches
mechanical equilibrium for a given force. In this case, the deformation is
completely determined by minimizing the full mechanical energy:

d
dui

Hþ dHð Þ ¼ 0: ð7Þ

Expressing this equation in terms of the deformations and the forces leads to
the equations of force-balance in static equilibrium:X

j

Dijuj ¼ f i; ð8Þ

where Dij is the force-constant matrix of the unperturbed Hamiltonian:

Dij �
@H

@ui@uj
: ð9Þ

We model a two-point measurement performed by a cell as a force dipole,
which is defined as a contractile force exerted on vertices 1 and 2 separated by a
vector d ¼ d r̂12 in the undeformed reference state. The vector of equal and
opposite forces may be represented using Kronecker delta notation as follows:

f i ¼ f0 di1 � di2ð Þr̂12; ð10Þ
where f0 is the magnitude of the force applied to each vertex.
The local stiffness kloc is defined as the linear response of the displacement of

vertices 1 and 2 to the contractile force:

kloc �
� f0

u12 � r̂12
: ð11Þ

Numerical procedure. To calculate the local stiffness kloc defined above, we
compute the deformations of the vertices ui numerically by solving the equations of
force-balance in static equilibrium. These equations do not have a well-defined
solution for all possible configurations of the applied force because the
force-constant matrix is singular, that is, it contains eigenvectors with vanishing
eigenvalues or ‘zero modes’. If the force of a local stiffness probe couples to a zero
mode, the resulting deformations will diverge and the local stiffness is undefined in
linear response. Intuitively, this corresponds to probes that act on unconstrained,
dangling portions of the network.

To solve the equations of force-balance while dealing with the technical
challenge provided by zero modes, we compute the generalized inverse of the
force-constant matrix. The generalized inverse allows us to first check whether a
solution exists for a given force perturbation and then to solve for the deformations
by multiplying the force perturbation by the generalized inverse. Such an approach
is efficient because it allows us to measure local stiffness over an entire network
using only a single matrix multiplication operation per probe, which is
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computationally inexpensive compared with solving the system of linear equations
anew for each local stiffness probe.

We obtain the generalized inverse by first computing the singular value
decomposition of the force-constant matrix:

D ) SUVT ; ð12Þ
where u and v are orthogonal matrices and S is a diagonal matrix consisting of

singular values s1; s2; . . . ; srf g equal in number to the rank r of the dynamical
matrix. From this, the generalized inverse may be computed:

Dþ¼ VSþ UT ; ð13Þ
where Sþ is a diagonal matrix consisting of the reciprocals of the singular

values f1
s1
; 1

s2
; . . . ; 1

sr
g. The generalized inverse provides a simple way to check

whether a solution exists. That is, if a given force vector satisfies the following
equation:

DDþ f ¼ f ; ð14Þ
then the force-balance equation has a solution. This guarantees that a given force
configuration has no projection onto any zero mode. For well-defined force probes,
which satisfy equation 14, the resulting deformation of each vertex is finite and
given by:

ui ¼
X

j
Dþij f j; ð15Þ

from which the local stiffness may be computed.

Data availability. The experimental network architectures generated during
and/or analysed during the current study, as well as the code used for the analysis
in the current study, are available from the corresponding authors on reasonable
request.
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