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Biological systems are characterized by compartmentalization from the subcellular to the tissue level,
and thus reactions in small volumes are ubiquitous in living systems. Under such conditions, statistical
number fluctuations, which are commonly negligible in bulk reactions, can become dominant and lead to
stochastic behavior. We present here a stochastic model of protein filament formation in small volumes. We
show that two principal regimes emerge for the system behavior, a small fluctuation regime close to bulk
behavior and a large fluctuation regime characterized by single rare events. Our analysis shows that in both
regimes the reaction lag-time scales inversely with the system volume, unlike in bulk. Finally, we use our
stochastic model to connect data from small-volume microdroplet experiments of amyloid formation to
bulk aggregation rates, and show that digital analysis of an ensemble of protein aggregation reactions
taking place under microconfinement provides an accurate measure of the rate of primary nucleation of
protein aggregates, a process that has been challenging to quantify from conventional bulk experiments.
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The formation of protein filaments is a process of central
importance for both normal [1,2] and aberrant biology [3,4],
as well as for the development of novel materials for
nanotechnology [5–8]. The fundamental kinetic equations
describing such processes in bulk are well established in
the literature and have been studied extensively over the
past 50 years [1,2,9–16]. These descriptions rely on the
mean-field assumption [9] and therefore neglect statistical
number fluctuations. Yet, protein aggregation processes in
typical cellular environments (fl–pl) involve significantly
smaller numbers ofmolecules than conventional bulk experi-
ments and, thus, stochastic variability is expected to play an
important role [14,15,17–19]. Moreover, recent experimen-
tal advances in microdroplet techniques [18,20] allow
volumes in the picoliter range (comparable to intracellular
volumes) to be probed for synthetic systems, creating the
need for a general theoretical framework capable of describ-
ing protein filament assembly in small volumes.
Current theoretical descriptions of protein filament for-

mation in small volumes focus on systems characterized by
aggregate propagation from a single primary nucleation
event [21]. A key question, however, is the nature of the full
fluctuation behavior bridging the gap between the limit of
classical nucleation theory and bulk behavior. In this Letter,
we study stochastic effects in filamentous growth processes
with secondary pathways [11–15,22–29] and derive closed-
form expressions for the distribution of lag times. Our
theoretical framework describes currently available micro-
droplet experimental data that are characterized by

aggregate proliferation from multiple nucleation sites.
Moreover, our results suggest a powerful method for
characterizing the primary nucleation step, which is typ-
ically difficult to access from current bulk methods. We
demonstrate the power of this approach by obtaining a
value for the rate of primary nucleation for bovine insulin
aggregation that is significantly better constrained than
results obtained from analysis of bulk data.
Stochastic moment equations.—We consider a system of

volume V containing a mixture of fibrillar aggregates and
monomeric proteins in solution. Since we are interested in
the early stages of the assembly process, we assume a
constant chemical potential for the available soluble pre-
cursor proteins [10–12]. We describe the state of the system
by a vector ðn;mÞ, where n is the number of fibrils andm is
the number of monomers incorporated into aggregates,
parameters that relate directly to experimental observables
[30]. The probability distribution function (PDF) Pðn;m; tÞ
of states ðn;mÞ evolves according to a master equation [21],

∂Pðn;m; tÞ
∂t ¼ α1Pðn − 1; m − nc; tÞ − α1Pðn;m; tÞ

þ μnPðn;m − 1; tÞ − μnPðn;m; tÞ
þ α2ðm − n2ÞPðn − 1; m − n2; tÞ
− α2mPðn;m; tÞ; ð1Þ

where α1, μ, and α2 are the transition rates (units s−1) for
primary nucleation, filament elongation, and secondary
mechanisms, respectively [Fig. 1(a)]. This description
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explicitly considers time variations of the PDF in terms of
probability fluxes: the positive expressions represent gain
terms that account for system transitions into state ðn;mÞ,
whereas the negative terms describe losses from transitions
from ðn;mÞ into other states. The terms on the first line of
Eq. (1) describe the initial primary nucleation step as the
spontaneous formation of growth-competent aggregates
from the interaction of nc monomers. The increase of
aggregate mass through elongation is described by the
terms on the second line of Eq. (1). Secondary processes
are captured by the third and fourth lines of Eq. (1) and
cover several options, including breakage (n2 ¼ 0)
[12,22,24,25], lateral branching (n2 ¼ 1) [11,26,27], and
surface-catalyzed secondary nucleation (n2 ≥ 2)
[15,28,29]. Note that in general monomer dissociation
from filament ends and rejoining of fibrils are necessary
components to ensure microscopic reversibility [31]. The
assumption of vanishing rates of monomer dissociation and
polymer rejoining employed here, however, is justified as
these processes do not significantly affect the early stages
of the reaction [32].
The transition rates entering Eq. (1) can be related to

the total concentration of proteins, mtot, and the bulk rate
parameters kn, kþ, k2 for primary nucleation, elongation,
and secondary pathways, respectively, by requiring the rate
equations for the averages hni and hmi to be in agreement
with existing early-time deterministic models [9–12]
(see the Supplemental Material [34]). This condition yields
α1 ¼ knm

nc
totNAV, μ ¼ 2kþmtot, and α2 ¼ k2m

n2
tot, where NA

is the Avogadro number [21]. Importantly, the transition
rate for primary nucleation, α1, explicitly depends on the
system size, V, while the parameters μ and α2 describing
autocatalytic growth are determined only by the associated
bulk quantities. We expect, therefore, that reducing system
size leads to a transition from a situation when the kinetics
are controlled by autocatalytic growth to a situation when
the fibrillization reaction is limited by primary nucleation.
Thus, primary nucleation events becoming infrequent is at
the origin of the stochastic behavior of filamentous growth
processes in small volumes.
Analytical solution for the PDF.—The master equation

(1) yields differential equations for the principal moments
of the PDF through summation over system compositions.
Solving for moments for times greater than κ−1, with κ ¼
ffiffiffiffiffiffiffiffi
μα2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþk2m

n2þ1
tot

q
being the characteristic time scale

for aggregate proliferation [10–12], but still sufficiently
short for the constant monomer approximation to be valid,
shows that the Pearson correlation coefficient for n and m,
ρn;m ¼ ½hnmi − hnihmi�½ðhn2i − hni2Þðhm2i − hmi2Þ�−1=2,
equals 1 in this limit (see the Supplemental Material [34]).
This result implies the existence of a linear correlation
in this regime between the random variables n and m,
whereby the constant of proportionality is m ¼ ðκ=α2Þn,
t ≫ κ−1. We can directly test this prediction from numerical

realizations of Eq. (1) generated using the Gillespie
algorithm [37] which reveal that n and m are indeed
linearly correlated even before aggregation is detected
(see the Supplemental Material [34]). The linear correlation
between n and m allows recasting the master equation (1)
into an equivalent one with a single variable,

∂Pðn; tÞ
∂t ¼ α1Pðn − 1; tÞ − α1Pðn; tÞ

þ κðn − 1ÞPðn − 1; tÞ − κnPðn; tÞ: ð2Þ
Interestingly, Eq. (2) is analogous to the master equation
of bacterial growth [33], whereby bacteria are constantly
introduced into the system at rate α1 and multiply with rate
κ. This analogy, first hypothesized by Szabo [33], is a
statement of the fact that for times bigger than κ−1 the
average length of aggregates is constant. To define appro-
priate initial conditions for Eq. (2), we match the first
moments of the PDFs of Eqs. (1) and (2) for times t ≫ κ−1,
yielding hniðt ¼ log 2=κÞ ¼ 0. This condition translates
necessarily into Pðn; t ¼ log 2=κÞ ¼ δn;0, therefore also
ensuring that all higher moments of the PDFs of
Eqs. (1) and (2) match for t ≫ κ−1 at leading order. The
exact solution of Eq. (2) subject to the above initial
conditions is (see the Supplemental Material [34])

Pðn; tÞ ¼ 2α1=κΓðnþ α1
κ Þ

Γðnþ 1ÞΓðα1κ Þ
e−ðα1þκnÞtðeκt − 2Þn; ð3Þ

where ΓðxÞ ¼ R
∞
0 tx−1e−tdt is the Gamma function. The

PDF in terms of the variablem is obtained by implementing

FIG. 1. (a)Different transitions in stochastic protein aggregation.
(b) Time evolution of average mass concentration and 68% con-
fidence bands. Inset: PDF for m at t ¼ 106 minutes predicted
by Eq. (3) (solid line) is compared to numerics. The dashed line is
the solution of [33]. (c) The scaling behavior of the average lag time
with system volume predicted by Eq. (5). Inset: PDF of lag times
for V ¼ 1 nl predicted by Eq. (4) (solid line) is compared to
numerics. The dashed line is from [33]. Calculation parameters:
kn ¼ 4 × 10−13 M−1 s−1, nc ¼ 2, n2 ¼ 0, k2 ¼ 2.5 × 10−8 s−1,
kþ ¼ 2.5 × 104 M−1 s−1, mtot ¼ 5 mM, and V ¼ 1 nl.
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the correlation between n and m in Eq. (3). Figure 1(b)
shows that Eq. (3) is in agreement with numerical realiza-
tions of Eq. (1).
Lag times.—A common qualitative feature of filamen-

tous growth processes is the observation of a lag phase
before aggregation can be detected. A commonly used
measure of this polymerization delay is the lag time, τ,
defined as the time at which the aggregate mass concen-
tration mðtÞ=ðNAVÞ reaches an arbitrarily chosen concen-
tration threshold Mth. Although it is often the case that a
halfway point for the reaction is taken, this may fall outside
the realm over which our approximations are valid.
Therefore a 10% extent or the experimental limit for
aggregate detection [30] are simple choices for Mth more
in keeping with our solution. Because τ is a random
variable, the quantity of interest is the PDF of lag times,
i.e., the probability TðtÞ that τ equals t. According to the
theory of first passage times [33], TðtÞ is computed as
TðtÞ ¼ −dQðtÞ=dt, where QðtÞ is the probability that at
time t the process mðtÞ=ðNAVÞ has not yet reached Mth.
Using Eq. (3) we find

TðtÞ¼ κ2α1=κΓðnthþα1=κÞ
ΓðnthÞΓðα1=κÞ

e−½α1þðnth−1Þκ�tðeκt−2Þnth−1; ð4Þ

where nth ¼ α2NAVMth=κ. The average lag time is
obtained from Eq. (4) in analogy to [33] as:

hτi ¼ logð2Þ
κ

þ
Xnth−1

j¼0

1

α1 þ jκ
ð5Þ

and the extent of fluctuations is

σ2 ¼ hτ2i − hτi2 ¼
Xnth−1

j¼0

1

ðα1 þ jκÞ2 : ð6Þ

Limiting behavior of lag time in key regimes.—
Inspection of Eqs. (5) and (6) reveal that the level of
stochasticity in the system is controlled by the dimension-
less parameter γ ¼ κ=α1. Based on this parameter, we can
distinguish three natural regimes of stochastic behavior:
bulk (γ ¼ 0), onset of stochasticity (γ → 0), and single-
event controlled (γ → ∞). We now discuss how Eqs. (5)
and (6) can be simplified in these regimes. In bulk (γ ¼ 0),
the sum in Eq. (5) is replaced by an integral and Eq. (5) is
determined solely by the propagation time associated
with the secondary nucleation chain reaction, τbulk (see
the Supplemental Material [34]). Series approximation of
Eq. (5) around γ ¼ 0 allows us to explore the onset of
stochasticity and reveals that hτi approaches the bulk value
τbulk as hτi ¼ τbulk þ cn=ð2VÞ, where cn ¼ 1=ðknmnc

totNAÞ
is the average time of forming nuclei in volume V (see the
Supplemental Material [34]). This system size expansion
shows, therefore, that in this regime, hτi approximatively
decomposes into a sum of the deterministic lag time and a

term proportional to 1=V. The extent of fluctuations in this
regime is approximatively given by σ2 ¼ cn=ðκVÞ (see the
Supplemental Material [34]). In the opposite limit of very
small volumes or slow nucleation (γ → ∞), the dominant
contribution to Eq. (5) is hτi ¼ cn=V [21]. In this regime, V
is small enough that eventually only a single nucleation
event occurs ahead of the threshold being reached, at which
point hτi is dominated by the waiting time for formation of
a single nucleus, which scales inversely proportional to
system volume as expected from classical nucleation theory
[38]. Furthermore, the extent of fluctuations is now con-
trolled by σ2 ¼ ðcn=VÞ2 (see the Supplemental Material
[34]). Equations (5) and (6) interpolate smoothly between
these limiting regimes. In particular, across the entire range
of system sizes hτi approximatively can be written as the
sum of the deterministic lag time and a nucleation term
proportional to 1=V, whereby the constant of proportion-
ality satisfies cn=2 ≤ dhτi=dð1=VÞ ≤ cn. The transition
between these two limiting regimes occurs approximatively
at the critical volume Vc ¼ κcn at which γ ¼ 1. This critical
volume corresponds to the radius of convergence of the
system size expansion of hτi around γ ¼ 0 and, hence,
marks the upper volume limit for the small fluctuation
result to be accurate.
Stochastic analysis provides strong constraints for

probing primary nucleation events.—Heretofore, rate con-
stants for protein aggregation have been determined by
carrying out kinetic experiments in bulk, in which the mass
concentration of fibrils over time is measured [30,39], and
by fitting such data to rate laws derived from deterministic
master equations [39]. Typically, however, the rate con-
stants characterizing the elementary processes of primary
and secondary nucleation and growth occur as combina-
tions, and thus it remains challenging to obtain accurate
values for the rates of these processes from experimental
data. In particular the process of primary nucleation has
proven challenging to quantify, in part as the major
experimental observables such as the lag-phase display
only a weak logarithmic dependence on this parameter.
Remarkably, however, our results suggest that a measure-
ment of the volume dependence of the lag time allows the
rate of primary nucleation to be determined directly from
the slope of a plot of hτi versus 1=V. This approach has
several advantages over attempting to characterize primary
nucleation from bulk polymerization fraction experiments:
(i) While fitting of bulk experiments fixes only the
combined rate parameter kþkn, the analysis of stochastic
data allows the rate of primary nucleation to be determined
directly, without the necessity of estimating the elongation
rate constant or the length of the aggregates from other
experimental techniques, factors which are intrinsically
sources of significant error. (ii) Microdroplet experiments
can be tightly controlled, and lag-time experiments are
digital in nature with the exact value of the threshold not
entering the gradient and thus not contributing to error.
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(iii) In the presence of secondary mechanisms, the fitting of
bulk data over the full time course is predominantly
constrained by the autocatalytic processes rather than the
primary nucleation step, contributing to uncertainties of
several orders of magnitude for the determined nucleation
rate [40]. Even if fitting is limited to the early times, the
exponential form of the fitting equation allows for sub-
stantial leeway in the values of the fitting parameters, as
numerous combinations of such parameters give rise to
fairly similar-looking curves. For example, changing the
best-fit value for kn by an order of magnitude would not
significantly affect the performance of the bulk analysis fit,
but would give rise to a dramatically poorer fit of hτi versus
1=V in a linear relationship [Figs. 2(a)–2(b)].
Connecting small-volume experiments of bovine insulin

fibrillization kinetics to bulk experiments.—We have
applied this technique to analyze data from microdroplet
experiments on bovine insulin [18] and obtained a value for

the rate of primary nucleation of c−1n ¼ð6�1Þ×106 s−1 l−1

[Fig. 2(a)]. We then carried out bulk experiments of insulin
aggregation (see the Supplemental Material [34]) and fitted
the data to a standard deterministic models, in conjunction
with our calculated value for the rate of primary nucleation
in microdroplets [Fig. 2(b)]. The resultant calculated rate of
elongation μ ¼ 2 × 105 s−1 agrees with those reported in
the literature, to within the levels of error expected from the
method of calculation [41]; this shows that the stochastic
analysis presented in this Letter allows small-volume
behavior to be related to conventional bulk experiments.
Moreover, the value of the nucleation rate constant is
constrained to within better than an order of magnitude, a
result that is very challenging to achieve with analysis of
bulk data [Fig. 2(b)].
Linking average number of nucleation events with

experimental observations.—Finally, we test our model
by predicting the number of individual nuclei formed in the
mean lag time using the extracted nucleation rate constant
[Fig. 2(c)]. Individual nuclei can be counted in micro-
droplet experiments; however, the fluorescence signal due
to fibril growth from previous nuclei is expected to obscure
signals from subsequent nucleation events, and thus only
some events are observed. In order to compare this
prediction with experiments, we therefore devised a prob-
abilistic model capable of quantifying this effect (see the
Supplemental Material [34] for details). Applying this
methodology to the analysis of 80 droplet images
[Figs. 2(d)–2(e)], we see overall good agreement between
the predicted and measured probabilities of observing more
than one nucleation event, given the limitations of our
measurement techniques. Thus, the system behavior results
from multiple nucleation sites even though naive visual
inspection would suggest single nucleation events.
Conclusions.—We have reported a theoretical study on

stochastic effects in nucleated polymerization phenomena in
small volumes. We have derived fully analytical results
describing the distribution of lag times that allows linking
the bulk parameters characterizing large-volume experi-
ments with the statistical properties of polymerization curves
in small volumes across the entire range of fluctuation
behavior. From the analysis of experimental data, we have
shown that small-volume microdroplet experiments of amy-
loid aggregation are typically characterized by multiple
nucleation events. Moreover, our results provide a practical
route towards an accurate determination of primary nucle-
ation rates, which represent a key event in the transition of
soluble proteins into their aggregated forms.
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(T. P. J. K.) for financial support.

FIG. 2. (a) Analysis of small-volume experiments of bovine
insulin fibrillization kinetics from Ref. [18]. Dashed line: best fit
to hτi ∝ cn=V with c−1n ¼ 6 × 106 s−1 l−1; solid line: prediction
from Eq. (5); dotted lines: kn is decreased and increased by an
order of magnitude. hτi shows marked volume dependence despite
the presence of multiple nucleation sites, as demonstrated by the
plot of the number of nuclei formed on average during the mean
lag time against 1=V. (b) Kinetic analysis of insulin aggregation in
bulk. Solid line: best-fit curve to initial exponential growth; dotted
lines: kn is decreased and increased by an order of magnitude
relative to best fit. (c) Average number of nuclei formed in lag time.
(d) Predicted probability to observe more than one nucleation event
is compared with measurements from analysis of 80 microscopic
droplet images. (e) Fluorescence microscopy images of represen-
tative microdroplets of volumes A, B, and C in (c) and (d).
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