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Dynamic sound scattering (DSS) is a powerful acoustic technique for investigating the motion of

particles or other inclusions inside an evolving medium. In DSS, this dynamic information is

obtained by measuring the field autocorrelation function of the temporal fluctuations of singly

scattered acoustic waves. The technique was initially introduced 15 years ago, but its technical

aspects were not adequately discussed then. This paper addresses the need for a more complete

account of the method by describing in detail two different implementations of this sound scattering

technique, one of which is specifically adapted to a common experimental situation in ultrasonics.

The technique is illustrated by the application of DSS to measure the mean square velocity fluctua-

tions of particles in fluidized suspensions, as well as the dynamic velocity correlation length. By

explaining the experimental and analytical methods involved in realizing the DSS technique in

practice, the use of DSS will be facilitated for future studies of particulate suspension dynamics and

particle properties over a wide range of particle sizes and concentrations, from millimeters down to

nanometers, where the use of optical techniques is often limited by the opacity of the medium.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4962556]
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I. INTRODUCTION

Ultrasonic waves can be used as a powerful probe of the

properties and structure of materials. Ultrasonic velocity and

attenuation measurements have been used for decades to

characterize the mechanical properties of materials, as well

as to learn about their electronic and magnetic excitations.

Ultrasonic waves have also been used extensively for nonde-

structive testing, with common examples ranging from the

detection of cracks in airplane wings to the imaging of

fetuses. Using Doppler ultrasound techniques,1 in which the

scattering particles move together collectively throughout the

scattering volume probed by the ultrasonic beam, the flow

velocity of fluids can be measured. However, there are many

important cases where the motion of the scattering particles

is more complex, requiring new experimental approaches and

methods of analysis to extract meaningful information from

the scattered ultrasonic signals. To address this limitation, we

have developed two powerful ultrasonic correlation spectros-

copies, called dynamic sound scattering (DSS) and diffusing

acoustic wave spectroscopy (DAWS),2–4 which exploit,

respectively, the dynamic information present in the speckles

caused by singly and multiply scattered ultrasound. Speckles

occur whenever there are many scatterers in the volume

probed in any given instant by the ultrasonic waves; they

arise from interference between waves that have traveled dif-

ferent scattering paths through the sample and cause the mea-

sured signals to fluctuate with position throughout the

detection or image plane. In static imaging applications,

speckles have often been regarded as a nuisance since they

degrade the quality of the image, and much effort has been

expended in trying to minimize this detrimental effect, espe-

cially when multiple scattering is involved, through compli-

cated filtering techniques.5–7 However, speckles also contain

considerable information about the dynamics of a moving

medium, as was initially demonstrated using DSS and

DAWS to investigate the particle velocity fluctuations in flu-

idized suspensions.2 In a more recent example, particle

motion with different physical origins, such as Brownian

motion and sedimentation, has been simultaneously observed

using DSS.8

These examples show that DSS is emerging as a power-

ful technique for investigating the complex dynamics of par-

ticulate suspensions. Besides thermal fluctuations typically

observed in nano-particle suspensions, hydrodynamic inter-

actions dominate the dynamics of micron-sized (and larger)

particles. Because of the strong scattering and serious attenu-

ation of light for particles in this size range, such dynamics

become more difficult to observe by conventional opticala)Electronic mail: John.Page@UManitoba.ca
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techniques, such as dynamic light scattering (DLS). More

recently, alternative DLS approaches combining an interfer-

ometer to probe particle motion at the shallow surface of a

suspension have been proposed to overcome this problem,

although the applications are more or less limited to submi-

cron particles at moderate concentrations.9,10 For this reason,

the DSS techniques provide a complementary tool to investi-

gate dynamics of particles, especially for larger particle sizes

at higher concentrations, and they have been utilized to

investigate the average particle velocities and velocity fluc-

tuations in fluidized2 and sedimenting11,12 suspensions.

Another advantage of using pulsed ultrasound is its ability to

measure phase,13 which contains the particles’ spatio-

temporal information. The single-scattering acoustic techni-

ques are utilized to evaluate instantaneous particle velocities

by capitalizing on these advantages,14 as described below.

Among the versatile fields of research interests in partic-

ulate suspensions, hydrodynamic interactions have especially

attracted the attention of researchers in complex fluid dynam-

ics.15–17 For example, while the sedimenting particles’

velocity field may seem to be apparently uniform in the flow

direction, its deviation from the average reveals that there

exists a unique dynamic structure accompanying cooperative

domains (“blobs”), and the size of each domain is surpris-

ingly large (often on the order of millimeters) compared with

the individual particle size (often only a few microns). Since

the phase techniques allow one to extract the instantaneous

velocity of settling particles,14 the sedimentation velocity

field can be visualized without scanning the sample.18 The

major cause of velocity fluctuations is now understood to be

the number fluctuations of particles in a blob containing the

collection of particles having the same velocity due to long-

ranged hydrodynamic interactions.16,19 Furthermore, anoma-

lous velocity fluctuations in charged systems have also been

reported recently.

Quite apart from the potential benefits of these sound

scattering techniques, the technical aspects have not been

adequately addressed yet. Since previous papers on DSS

have focused mostly on the information about particle

dynamics that has been obtained using this technique, a com-

prehensive analysis of the experimental methods and theory

was outside the scope of these articles, and only an overview

of the technical aspects was presented. In addition, there has

been no discussion of performing DSS measurements in the

near field. Therefore, the purpose of this paper is to describe

in detail how the methods of correlation spectroscopy, ini-

tially developed in the context of light scattering experi-

ments, can be extended to determine new types of dynamic

information from the temporal fluctuations of the ultrasonic

speckles. Since the acoustic techniques directly measure the

fluctuations of the scattered wave field, rather than the inten-

sity that is probed in the optical techniques, DSS is an exam-

ple of field fluctuation spectroscopy.

Complex motion of the scatterers causes large temporal

fluctuations in the scattered field amplitude at a single

speckle, leading to the decay of the temporal field autocorre-

lation function. For singly scattered ultrasound, the temporal

field autocorrelation function can be related to the dynamics

by adapting the detailed theoretical formalism first worked

out for light.20 We have developed two different experimen-

tal implementations to realize our DSS technique, one of

them being especially novel and easier to set up experimen-

tally for acoustic waves. The first follows the traditional

approach used in light scattering experiments; there is an

incident plane wave, and a detector is placed in the far field

to measure the sound scattered at a particular scattering

angle. The second implementation of single scattering spec-

troscopy takes advantage of the fact that ultrasonic measure-

ments are often best performed in the near field. This

approach is made possible by performing these experiments

with short pulses, rather than with continuous waves as in

most laser light scattering experiments. As an example, we

show how DSS can be used to measure the root mean square

velocity fluctuations and the velocity correlation time of

millimeter-sized particles that are suspended in a liquid by

fluidizing the suspension.

II. THEORY

In DSS, the experiments measure the temporal fluctua-

tions of the scattered pressure field w(t) due to the superposi-

tion of a large number of single scattered contributions. As

described in Sec. III, the experiments capitalize on the

advantages of pulsed techniques, and measure the temporal

evolution the scattered field as the scatterers move at obser-

vation times t determined by multiples of the pulse repetition

rate. This evolution time t is much greater than the propaga-

tion time of the ultrasonic pulse in the medium, with the field

being sampled at a fixed propagation time after the pulse is

incident on the sample. The motion of the scattering particles

is then determined over the evolution time interval s¼Dt
directly from the field autocorrelation function

g1 sð Þ ¼

ð
w tð Þw� tþ sð Þdtð
jw tð Þj2dt

: (1)

The field can be written as a sum over contributions from all

of the different paths through the sample (or equivalently as

a sum over all of the scatterers in the scattering volume)

wðtÞ ¼
X

p

wpðtÞ ¼ A
X

p

exp ½i/pðtÞ�; (2)

where A is the single scattering amplitude and /p is the

phase of the scattering path p. This leads to

g1 sð Þ ¼

X
p;p0

exp i /p tð Þ � /p0 tþ sð Þ
� �� �* +

tX
p;p0

exp i /p tð Þ � /p0 tð Þ
� �� �* +

t

: (3)

Here h� � �it denotes an average over t. For scatterers that are

randomly distributed in space, only the terms with p ¼ p0

will survive the time average in the numerator and denomi-

nator.21 To show this explicitly, we write
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/pðtÞ ¼ ~q �~rpðtÞ;
/p0 ðtþ sÞ ¼ ~q½~rp0 ðtÞ þ~rp0 ðtþ sÞ �~rp0 ðtÞ�

¼ ~q½~rp0 ðtÞ þ D~rp0 ðsÞ� ; (4)

where ~q ¼ ~k0 � ~k is the scattering wave vector [the differ-

ence between the scattered (~k0 ) and incident (~k) wave vec-

tors], ~rp is the position of the pth particle, and D~rpðsÞ is its

change in position from time t to time tþ s. Then the numer-

ator in Eq. (3) becomes

X
p;p0

exp ½i~qf~rpðtÞ �~rp0 ðtÞg� exp ½�i~q � D~rp0 ðsÞ�
* +

t

: (5)

For random particle positions, and assuming that the aver-

age motion of the particles is independent of position, the

first exponential will fluctuate and cause the average to be

zero, unless the term in curly brackets is identically equal

to zero for all times t. This will only happen for all times if

p ¼ p0. A similar argument holds for the denominator as

well.

Returning to Eq. (3), we can now write it as

g1 tð Þ ¼

X
p

exp �iD/p sð Þ
� �* +

N
¼

X
p

exp �iD/p sð Þ
� �D E

N

¼ h exp �iD/ sð Þ½ �i; (6)

where D/ðsÞ is the change in the phase of a single path over

a time s, due to the motion of the scatterer. Since the phase

fluctuations D/ðsÞ are expected to be randomly distributed

about an average value hD/ðsÞi equal to zero, these devia-

tions should follow a Gaussian distribution with zero mean

due to the central limit theorem. Hence, the average value of

exp ½�iD/ðsÞ� in Eq. (6) becomes

g1 sð Þ � exp � 1

2
hD/2 sð Þi

� �
(7)

to an excellent approximation. This result can also be

obtained by expanding the argument of the exponential in

Eq. (6) in a Taylor series:

g1 sð Þ ¼ 1� ihD/i � 1

2!
hD/2i þ � � �

¼ 1� 1

2
hD/2i þ � � � � exp � 1

2
hD/2 sð Þi

� �
:

As indicated in Fig. 1, the phase change of a path over

the time interval s can be written in terms of the scattering

wave vector and the displacement of the scattering

particle,

D/p ¼ ½~k0 � ~k�½~rðtþ sÞ �~rðtÞ� ¼ ~q � D~rðsÞ: (8)

Combining this with Eq. (7) leads to

g1 sð Þ ¼ exp � 1

2
h ~q � D~r sð Þ
� �2i� �

¼ exp � 1

2
q2hDr2

~q sð Þi
� �

; (9)

where Dr~q is the displacement in the direction of the scatter-

ing wave vector. Equation (9) shows explicitly that DSS is

only sensitive to the mean square displacement in the direc-

tion of ~q, which is determined by the scattering geometry.

III. EXPERIMENT

Both the near and far field experimental configurations

used pulsed ultrasonic techniques to capitalize on their many

advantages for DSS measurements, as described in detail in

the following paragraphs. The scattered field was measured at

the same propagation time in each transmitted pulse using a

boxcar integrator, which allowed the waveform voltage (pro-

portional to the acoustic field) to be measured over a narrow

time window (set to approximately 30 ns in our measurements,

which is very much less than the 4 ls period of the waves)

centered at a particular propagation time near the middle of

each pulse. The boxcar integrator outputs this voltage until the

next trigger is received, whereupon it samples the input again

and resets the output, allowing the field fluctuations due to the

motion of the scatterers to be measured at a rate determined

by the pulse repetition frequency. Alternatively, if a suffi-

ciently rapid digitizing system is available (e.g., an oscillo-

scope card/computer combination), the entire scattered pulse

can be digitized and stored, enabling post-processing of the

data to determine the evolution of the field at a particular

propagation or sampling time. Figure 2(a) shows an example

of the evolution time dependence of the field fluctuations that

were measured as the scatterers move. The field autocorrela-

tion function [Eq. (1)] was then calculated from the field fluc-

tuation data by taking fast Fourier transforms and using the

correlation theorem.22 Figures 2(b) and 2(c) show the autocor-

relation function for the data in Fig. 2(a). Using the theory

developed in Sec. II, the mean square displacement of the

scatterers can be found from the field autocorrelation function

if the scattering wave vector~q is known.

In the far field configuration, the direction of ~q can be

chosen by changing the positions of the generating and

receiving transducers, and thus the different spatial compo-

nents of the mean square displacements of the particles can

be measured independently. This is illustrated in Fig. 3,

where the scattering geometry used to isolate each compo-

nent of hDr2
~qðsÞi is shown. By choosing hwater such that the

angle in the sample medium is 45�, the scattering angle for

the horizontal and vertical setups is 90�, and ~q lies along the

x- and y-axis, respectively. The reflection geometry uses the

FIG. 1. Single scattering from a moving particle.
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same transducer to generate and detect ultrasound, giving a

scattering angle of 180�, and a ~q that lies on the z-axis.

The experiment was performed in a large water tank

because of the large path lengths that are needed. The trans-

ducers used had flat disk-shaped elements, with a central

frequency of 250 kHz and a 1.5 in. diameter. This low fre-

quency was selected to ensure that single scattering was

dominant, even in our thickest samples, since the scattering

mean free path always was much larger than the sample

thickness for the millimeter size solid particles used in these

experiments.23 The pulses used were 20 ls long with a

square envelope, giving a reasonable balance between time

and frequency widths. As a result, the pulses were sufficiently

short to help restrict the range of scattering angles that con-

tribute to the detected signals, as explained in the next para-

graph, while the frequency bandwidth (�5%) was

sufficiently narrow that dispersive propagation effects did not

complicate the analysis. The field was sampled at one partic-

ular time in the middle of the spread of arrival times for the

scattered waves.

There is a range of possible scattering angles that are

detected at the sampling time, depending on both the geome-

try and the time width of the input pulse. The transducers

were placed 50 cm away from the sample (in the direction

perpendicular to the largest faces of the samples). For meas-

urements with ~q along x or y, the transducers were angled

towards the sample at about 35� (depending on the sample’s

phase velocity), which gives an angle inside the sample of

45�, and a scattering angle that is twice this. The beam

spread, as characterized by the angle Dh from the beam axis

at which the amplitude is reduced by 6 dB, is 6Dh � 65�,
and is somewhat larger (about 67�) inside the sample due to

refraction. This results in a range of scattering angles from

75� to 104� (i.e., about 614�). However, in this case, the

geometry is not the limiting factor, because we were sam-

pling at one particular arrival time. This limits the range of

paths that can reach the detector at the sampling time to

those whose travel time is equal to the time of the central

path, plus or minus half of the time width of the input pulse.

It is here that the long path lengths in the water tank help to

reduce the spread in the scattered angle. The spread in the

scattering angle, Dhs, is reduced to about 61.5� for an input

pulse width of 20 ls. It must be noted that for all of these

scattering angles,~q has essentially the same direction, as it is

only the finite size of the transducer and the finite thickness

of the sample that have an effect on the direction of the scat-

tering wave vector. In practice, the direction of ~q is limited

by the accuracy with which the transducers were aligned,

Dh~q ¼ 1�.
Once the field autocorrelation function has been mea-

sured, the appropriate ~q can be substituted into Eq. (9), and

the mean square displacements can be found. The resulting

expression is

hDr2
i sð Þi ¼ � 1

2k2 sin2 hs=2f g
ln g1 sð Þ½ �; (10)

where k is the magnitude of the wave vector in the scattering

medium and i represents the appropriate Cartesian coordinate.

The near field configuration is much more compact,

requiring only one plane wave input transducer and a small

detector placed close to the sample. To avoid cancellation of

the scattered waves, the detector must be small enough to

detect a single speckle, which in the near field has a size

comparable to the wavelength of the ultrasound.

The scattered field is sampled at one particular time, ts,
and therefore, by determining the set of single scattering

paths of length ts, the average scattering angle and scattering

wave vector can be found. The details of this calculation are

discussed in the Appendix, including the effects of the range

of input angles from the transducer, the different scattering

volumes, the angle dependent scattering amplitude, the angle

FIG. 2. (a) Measured field fluctuations. (b) The corresponding field autocor-

relation function. (c) The field autocorrelation function at early times.

FIG. 3. Far field single scattering geometry. The solid lines show the trans-

ducer configuration used to measure the time-dependent mean square dis-

placement along z, hDr2
z ðsÞiz, the dashed lines show the vertical geometry

used to measure hDr2
y ðsÞiy, and the dotted lines show the geometry used to

measure hDr2
x ðsÞix. For millimeter sized particles, the mean square displace-

ments are proportional to s2 at early times, allowing all three components of

the root mean velocity, Vrms, to be measured.

J. Acoust. Soc. Am. 140 (3), September 2016 Cowan et al. 1995



dependent wall transmission, and the small shear wave com-

ponent in the walls. The basic result of this analysis is that

we measure a mixture of the all of the components of the

mean square displacement, with the magnitude of h~qi
depending on the sampling time, such that

g1ðsÞ ¼ exp½� �ChDr2ðsÞi0�; (11)

with

hDr2i0 ¼ hDr2
x iþ hDr2

y iþ 2 tan2 ahDr2
z i � hDr2

x iþ hDr2
y i:

(12)

Here the Cartesian directions are as defined in Fig. 3, a is an

angle that depends on the scattering angle and is of order 20�

in our experiments, and �C is a constant that depends on ts
and on the magnitude of the wave vector in the sample.

Thus, the near field method does not resolve the individual

components of the mean square displacement of the scatter-

ers, and therefore provides less information about the parti-

cle dynamics than the far field method. Its advantages are

that the near field configuration can be used in small water

tanks where there is not enough space to enable well colli-

mated far-field beams to be used, and convenience in terms

of experimental set up.

For both experimental configurations, once the field

fluctuations are measured and the field autocorrelation func-

tion determined, the mean square displacements can be

found using either Eqs. (10) or (11). As an example, we

show results obtained on a fluidized suspension of 0.875-

mm-diameter glass beads in a solution of glycerol in water.

By varying the upward flow of the fluid, the dynamics of sus-

pensions covering a wide range of particle concentrations

was investigated (with particle volume fractions / from 0.04

to 0.5), and by varying the concentration of glycerol in the

suspending fluid, the particle Reynolds number that governs

the flow regime could be set in the range of interest (from

0.007 to 7). Here we consider representative results for the

case of a fluid mixture of 75% glycerol and 25% water, and

particle Reynolds number 0.9. Figure 4 shows typical meas-

urements of the mean square displacement of the glass beads

as a function of time. At early times, hDr2ðsÞi / s2, meaning

that the particles are moving ballistically with constant

(although different) velocities. At later times hDr2ðsÞi rolls

over to a weaker s dependence as the particles begin to inter-

act with their neighbors and their velocities change. This

behavior can be modeled by using the phenomenological fit-

ting function

hDr2ðsÞi ¼ hDV2is2=½1þ ðs=scÞ2�m�; (13)

where hDV2i ¼ V2
rms is the particle velocity variance (which

is equal to the mean square velocity, since hVi ¼ 0 for fluid-

ized suspensions), sc is the average collision time, and m is an

exponent that determines the long time power law dependence

of hDr2ðsÞi. From the collision time we can determine the

dynamic correlation length (d¼ scVrms), which is the average

distance traveled by a particle before its velocity is signifi-

cantly changed. Thus DSS gives important information on the

temporal and spatial extent of correlations in the particles’

motion, as well as measuring the magnitude of the rms parti-

cle velocity.

IV. RESULTS AND DISCUSSION

Figure 5(a) shows an example of measurements of the

three different components of Vrms in fluidized suspensions,

as a function of the volume fraction of the solid particles.

FIG. 4. (Color online) Mean square displacement of the particles in a fluid-

ized suspension, along with a fit of the phenomenological function [Eq.

(13)] that describes its time dependence (solid red curve). The dashed blue

line indicates s2 behaviour, which is characteristic of the time-dependence

for s less than � 0.1 s.

FIG. 5. (a) The three components of the root mean square velocity of the

particles in a fluidized suspension measured using DSS (points), as well as

an extrapolation of low volume fraction data measured using video imaging

(Ref. 17) (solid line). The dashed lines are power law fits to the data. The

rms velocities are normalized by the fluidization velocity Vf, the sample

thickness Lz¼ 36.5 mm and the particle Reynolds number Re¼ 0.9. (b) The

dynamic correlation length dc measured by DSS for the same suspensions.
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The data are normalized by the fluid flow velocity at each

volume fraction, which is a relevant velocity scale in the sus-

pension. In these samples, the component of the particle

velocity along the direction of fluid flow (y) is larger than

the two horizontal components, and the component along the

thin dimension of the cell is less than that along the larger

dimension. At low volume fractions, the data are in agree-

ment with previous low volume fraction (<0.05) measure-

ments of the y component, performed on very low Reynolds

number sedimenting suspensions by direct video imaging.17

The full three dimensional dynamic correlation length (dc) is

plotted in Fig. 5(b) for the same suspensions, showing the

range of dynamic information that can be measured using

DSS.

To test the reliability of the far-field DSS techniques, we

measured the root mean square velocity for several different

scattering angles, with the geometry arranged so that the

direction of ~q remained the same. To arrange this condition,

we placed two transducers on the same side of the sample,

one inclined towards the sample at �hw and the other at

þhw. The ~q resulting from this setup points along the z-axis,

and has a magnitude that depends on the scattering angle:

j~qj ¼ 2k sin
hs

2

� �
; (14)

hs ¼ 180� � 2 sin�1 vp

cw
sin hw

� �
: (15)

The mean square displacements measured at three different

scattering angles are compared in Fig. 6. They agree quite

well over most of the time range, with only a slight difference

in the hs¼ 110� results as the time dependence of hDr2
z ðsÞi

rolls-over from its initial s2 behavior. These measurements

also check that the mean square displacement does not

depend on the magnitude of q, at least over the limited range

of values that we used (all of our data has 90�< hs< 180�).
This means that any possible structure factor effects are not

important on the length scales (q�1) at which the measure-

ments are performed. This is reasonable, because q�1 is less

than a bead diameter, and therefore we are sensitive to the

motion of individual beads.

The far-field DSS technique can give more information

about the scatterers and the analysis is more straightforward.

However, the near-field technique is more convenient and

compact to set up, and thus it is important to compare the

results of the two techniques to test their self-consistency. By

using two methods and comparing the results, we are also

testing the accuracy of both of the measurement techniques.

The results of two such tests are shown in Table I. In the

first column, the near-field measurement of the approximate

three-dimensional root mean square velocity is shown. The

next column gives the full three-dimensional root mean

square velocity, found by combining the far-field measure-

ments of all three components. The last two columns show

the expected near-field measurement values calculated from

the far-field measurements [see the Appendix and Eq.

(A12)], and the percent difference from what was actually

measured (i.e., between columns one and two). The two

techniques agree to within 65%, which is also within the

expected uncertainties in each (about 15% for the near-field

calculation, and 10% for the far-field measurements).

Therefore, the two techniques are consistent with each other,

providing a check on the validity of the near-field technique

and the accuracy of DSS in general.

V. CONCLUSIONS

In this paper, we describe the technique of DSS, an ultra-

sonic correlation spectroscopy technique that we have devel-

oped for investigating the dynamics of scattering particles in

the weak scattering limit where the incident waves are scat-

tered only once. Two different experimental approaches are

explained, one using far-field generation and detection of the

ultrasonic waves, and the other using near-field detection to

take advantage of the relative ease with which subwavelength

hydrophones can resolve a dynamic speckle pattern close to

the sample surface. By using the information present in the

temporal fluctuations of the singly scattered waves from the

sample, we show how the root mean square displacement of

the scatterers can be measured accurately as a function of

evolution time. DSS is ideally suited to the measurement of

the complex motion of scatterers at high volume fractions,

opening a class of systems, whose properties may be inacces-

sible with dynamic optical techniques, to investigation using

ultrasonic techniques.
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FIG. 6. (Color online) Test of the far field DSS technique. The measured

mean square displacement of the scatterers along the z-direction is shown

for three different scattering angles.

TABLE I. Comparison of the values of Vrms measured using the near and

far-field DSS techniques.

Near field
Far field

V0rms Vrms V0rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

rms;x þ V2
rms;y þ 2V2

rms;z tan2 a
q

% diff.

#1 1.74 1.86 1.81 þ3.9

#2 2.18 2.12 2.06 �5.8
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APPENDIX

In this appendix, we describe how DSS can be per-

formed in the near field, giving a detailed explanation of the

calculations required for our sample geometry. These calcu-

lations will also serve as a model for adapting the near-field

method to other sample shapes and sizes, containing differ-

ent types of scattering objects, where the numerical details

will likely be different.

To relate the near field DSS sampling times to the scat-

tering angle, and ~q, we need to consider the ray diagram in

Fig. 7, where many of symbols used in this appendix are

defined. For a finite-size planar transducer, the input beam at

the sample contains a range of angles, with different ampli-

tudes. The rays then enter the wall, where rays incident at

angle how are refracted into a different direction, hop. There

is also coupling into a small amplitude shear wave, but the

range of input angles from the transducer is small enough

that this is negligible. As the rays enter the sample, they are

refracted into an angle ho. At a depth s, the ultrasound is

scattered towards the hydrophone, and on its way the ultra-

sound passes through the exit wall as either a shear or longi-

tudinal wave. The time taken to travel this path, as compared

to the time taken for a pulse to travel ballistically straight

through the sample to the hydrophone, is given by

ts ¼
LTtoS

cw

1

cos how
� 1

� �
þ Lwall

cwall

1

cos hop
� 2

� �

þ Lwall

cwall2 cos hp2

þ s

vg cos ho
þ L� s

vg cos hs � hof g

� L

vg
þ d

cw

1

cos hw
� 1

� �
; (A1)

where the phase velocity in the exit wall (cwall2) can be that

of either the longitudinal or shear modes. Here all angles and

distances are defined in Fig. 7, cw and cwall are the phase

velocities in water and the entrance wall, respectively, and

vg is the group velocity in the fluidized suspension. We can

also write two equations for the scattering radius (the per-

pendicular distance to the scattering point from the ballistic

path through the sample),

rðsÞ ¼ LTtoS tan how þ Lwall tan hop þ s tan ho (A2)

and

rðsÞ ¼ fL� sg tan fhs � hog þ Lwall tan hp2 þ d tan hw:

(A3)

For a particular scattering depth (s), sampling time, and

wall mode, Eqs. (A1)–(A3) can be numerically inverted to

find the scattering angle (hs), the input angle (how), and the

scattering radius. At a given time, this gives a range of pos-

sible scattering and input angles (corresponding to the range

of scattering depths from s¼ 0 to s¼L) for each wall mode.

For the longitudinal case (where the scattered waves pass

through the exit wall as longitudinal waves), the range of

possible angles is quite small, so we use the mean value of

the angles in the correlation function. However, for the

shear case, the range of angles is larger, so we must account

for this effect and average the correlation function over the

scattering depth (s). Since the field detected by the hydro-

phone is a superposition of uncorrelated waves that have

gone through the exit wall as either a shear or longitudinal

mode, the field correlation function, for a particular sam-

pling time ts, can be decomposed into a shear and a longitu-

dinal part,

g1 sð Þ ¼
h wL tð Þ þ wT tð Þ
� �

w�L tþ sð Þ þ w�T tþ sð Þ
� �

i
h wL tð Þ þ wT tð Þ
� �

w�L tð Þ þ w�T tð Þ
� �

i

¼ hwL tð Þw�L tþ sð Þi þ hwT tð Þw�T tþ sð Þi
hwL tð Þw�L tð Þi þ hwT tð ÞwT tð Þi

	 g0L sð Þ þ g0T sð Þ
g0L 0ð Þ þ g0T 0ð Þ

; (A4)

where

g0L sð Þ ¼

ð
AL t0ð ÞheiD/L s;t0ð Þiu2 t0 � tsð Þdt0ð

u2 t0 � tsð Þdt0
; (A5)

and

FIG. 7. Scattering geometry for near field

DSS, used in the timing calculations.
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g0T sð Þ ¼

ð ð
u2 t0 � tsð ÞAT s; t0ð ÞheiD/T s;s;t0ð Þidt0dsð ð

u2 t0 � tsð Þdt0ds
: (A6)

Here, ALðt0Þ and ATðs; t0Þ give the relative intensities of the lon-

gitudinal and shear components, respectively (the details of

which will be discussed below), D/Lðs; t0Þ ¼ ~qLðt0Þ � D~rðsÞ
and D/Tðs; s; t0Þ ¼ ~qTðs; t0Þ � D~rðsÞ are the phase changes due

to the motion of the particles, and uðt0Þ is the input pulse

envelope.

The next step is to approximate the averages heiD/Lðs;t0Þi
and heiD/Tðs;s;t0Þi so that the integrals in Eqs. (A5) and (A6)

can be evaluated. Figure 8 shows the scattering vector ~q,

which is inclined above the x-y plane by an angle a ¼ ho

�hs=2. There is cylindrical symmetry about the z-axis, so

the set of possible ~q forms a cone. This gives

qx ¼ q cos a cos b;

qy ¼ q cos a sin b;

qz ¼ q sin a; (A7)

where b is the angle of rotation about the z-axis. The phase

average can be expanded to give

he�iD/i � 1� 1

2
hD/2i

¼ 1� 1

2
h qxDrx þ qyDry þ qzDrz

� �2i: (A8)

Substituting Eq. (A7) into Eq. (A8), averaging over b, and

using

hcos2bi ¼ hsin2bi ¼ 1

2
;

hcos bi ¼ hsin bi ¼ hcos b sin bi ¼ 0;

q2 ¼ 4k2 sin2 hs

2

� �
; (A9)

gives

he�iD/i�1�2k2 sin2 hs

2

� �
1

2
hDr2

x iþ
1

2
hDr2

y i
� �	


cos2 aþhDr2
z isin2 a



: (A10)

For our sample geometry and the longitudinal case, a is

about �17�, giving cos2 a ¼ 0:92 and sin2 a ¼ 0:08, which

means that the contribution of the z-component to Eq. (A10)

is very small. For the shear case, however, a is about �30�,
giving cos2a ¼ 0:75 and sin2a ¼ 0:25; even in this case,

given that hDr2
z i is already small, and that the shear compo-

nent is smaller than the longitudinal one, this means that the

z-component contributes very little to the phase change in

this case too. Therefore,

he�iD/i � 1� k2 sin2 hs

2

� �
cos2 ahDr2i0; (A11)

where the measured mean square displacement hDr2i0 is

approximately equal to the full three-dimensional mean

square displacement hDr2i (because the z-component of the

mean square displacement tends to be small in our experi-

ments). Thus,

hDr2i0 ¼ hDr2
x i þ hDr2

y i þ 2 tan2 ahDr2
z i

� hDr2
x i þ hDr2

y i
� hDr2i: (A12)

The longitudinal component of the field autocorrelation

function can be simplified to

gL sð Þ �

ð
u2 t0 � tsð ÞALdt0ð

u2 t0 � tsð Þdt0

2
6641� k2hDr2 sð Þi




ð
u2AL sin2 hs t0ð Þ

2

	 

cos2adt0ð

u2ALdt0

3
775;

which can be re-written as

gLðsÞ 	 �AL½1� �CLhDr2ðsÞi�: (A13)

Here, the definitions of the two average quantities �AL and
�CLhDr2ðsÞi can be easily seen by comparing the above two

equations.

The shear component can similarly be simplified to

gT sð Þ�

ð
u2 t0 � tsð Þ

ð
ATds

� �
dt0ð

u2 t0 � tsð Þdt0

2
666641�k2hDr2 sð Þi




ð
u2

ð
dsAT sin2 hs

2

	 

cos2a

" #
dt0

ð
u2

ð
ATds

� �
dt0

3
77775and

gT sð Þ	 �AT 1� �CThDr2 sð Þi
� �

: (A14)

From Eq. (A4), this gives an overall field correlation func-

tion ofFIG. 8. Scattering wave vector diagram for near field DSS.
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g1 sð Þ ¼ 1�
�CL þ

�AT

�AL

�CT

1þ
�AT

�AL

hDr2 sð Þi

	 1� �ChDr2 sð Þi � exp � �ChDr2 sð Þi
� �

: (A15)

The factor �C can be found by numerically evaluating the

integrals in Eqs. (A13) and (A14), given the weighting fac-

tors and angles that appear in these equations.

The angular dependence of the longitudinal weighting

factor is given by

AL ¼
ðL

s¼0

AinAscTl½ �2r cos hw
dr

dts
ds

� L AinAscTl½ �2r cos hw
dr

dts

	 

; (A16)

where Ain is the amplitude of the input wave at the angle

how, Asc is the scattering amplitude from a single particle

(see next paragraph) at the scattering angle hs, Tl is the out-

put wall transmission coefficient for a longitudinal wave at

the angle hp2, the factor of rdr=dts represents the scattering

volume, and coshw describes the angular response of the

detector. Similarly, the shear weighting factor can be written

AT � AinAscTT½ �2r cos hw
dr

dts
: (A17)

To evaluate Eqs. (A16) and (A17), the scattering ampli-

tude Asc was calculated as a function of angle using an effec-

tive medium theory. In this theory, each scattering unit is

modeled as a coated glass sphere, embedded in an effective

medium that represents the effect of the rest of the scatter-

ers.23,24 This model has been shown to give a remarkably

accurate description of wave propagation in particulate sus-

pensions,23 so that it is not necessary to measure Asc experi-

mentally to determine AL and AT. Given the material

parameters, the wall transmission coefficients can be

calculated using standard acoustic mismatch theory. By

expressing all of the angle and amplitude factors as a function

of the sampling time and s, �CL; �CT ; �AL; and �AT can all be

calculated, as shown in Fig. 9. Then, given the longitudinal

and shear results, �C, as defined in Eq. (A15), can be evalu-

ated for the sample thicknesses used in the experiments,

enabling the particle dynamics to be determined from the cor-

relation function, Eq. (11), for near-field DSS.
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