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Abstract – We propose a model for the dynamics of a probe embedded in a living cell, where
both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining
harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops
as a result of the nonequilibrium rearrangements within the cell. We describe the probe’s statis-
tics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent
agreement between the predictions of our model and experimental results for tracers inside living
cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters char-
acterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude
of the active fluctuations.

editor’s  choice Copyright c© EPLA, 2015

Actin filaments are involved in a number of functions
including cell motility, adhesion, gene expression, and sig-
nalling. When fueled by ATP supply, myosin motors
advance along these filaments by performing a directed
stochastic motion. By tracking the trajectory of a micron-
size probe embedded within the cytoskeletal network, and
by subjecting it to microrheology experiments, one can
hope to access and understand some of the properties of
the nonequilibrium activity inside the cytoskeletal net-
work. Experiments were first carried out in actin gels
without molecular motors, known as passive gels [1–5].
Some progress in the experimental field has provided
new results for tracers attached to the cortex of living
cells [6], and also for in vitro actin gels [7,8]. In such
gels, called active gels, the tracer dynamics exhibits large
excursions corresponding to directed motion events, in ad-
dition to the thermal fluctuations already observed in pas-
sive gels. Due to the active processes, the actin network
fluctuations comprise a strongly nonequilibrium compo-
nent. Experimentally, the out-of-equilibrium nature of
such activity has been evidenced by the violation of the
fluctuation dissipation theorem (FDT) [9–11]. To account
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for nonequilibrium activity, a generalization of the FDT
has been developed introducing a frequency-dependent ef-
fective temperature [12–14]. This generalization is based
on a description of tracers dynamics at a mesoscopic scale,
which can be described using a generalized Langevin equa-
tion [15–17]. At a macroscopic scale, the dynamics of acto-
myosin networks have been described via hydrodynamic
treatments [18] or polymer theory [19,20].

In what follows, we present results of microrheology ex-
periments in the cytoplasm of living cells, which are char-
acterized by a highly nonequilibrium activity. Along with
experiments, we propose a model which mixes simple but
nontrivial rheology with random fluctuations due to active
processes inside the cell. We carry out a comparison with
experimental data, which allows us to directly determine
some microscopic mechanisms that drive active fluctua-
tions inside the cell. We demonstrate that our quantitive
estimation of the nonequilibrium active features is consis-
tent with different kinds of experimental measurements,
thus supporting the overall consistency of our model.

We inject sub-micron colloidal tracers in the cytoplasm
of living A7 cells, and track a two-dimensional projec-
tion of their fluctuating (3-D) motion with confocal mi-
croscopy [21]. We observe some directed motion events
in the tracers’ trajectories in addition to the thermal
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Fig. 1: (Color online) Top: typical trajectories of 200 nm PEG
coated beads in A7 cells under three conditions: control, 10 μM
blebbistatin treatment, ATP depletion. The trajectory length
is about 2 min. Bottom: elastic storage modulus G′ (+) and
loss modulus G′′ (◦) from active microrheology experiments
in untreated (red), blebbistatin treated (orange), and ATP
depleted (blue) A7 cells.

fluctuations of small amplitudes (fig. 1), as already re-
ported in synthetic active gels [7]. To investigate the
role of biological activity in the intracellular mechanics,
we subject cells to two treatments. We inhibit myosin II
motors by adding 10μM of blebbistatin to the culture
medium, and we deplete cells of ATP through addition
of 2mM sodium azide and 10mM of 2-deoxyglucose. We
extract the one-dimensional mean square displacement
(MSD) from the spontaneous motion of tracers for dif-
ferent radius sizes a = {50, 100, 250}nm. We present
the MSD multiplied by a for the control, blebbistatin
and ATP depleted conditions in fig. 2(a), showing that
the MSD scales like 1/a. The small time MSD is con-
stant in the three conditions, while the large time be-
havior is diffusive, apart for ATP depleted cells, where
it remains almost constant. Since the time evolution of
the MSD is qualitatively similar for tracers of different
sizes, we deduce that the tracers are bigger than the mesh
size of the cytoskeletal network, thus allowing us to con-
sider that they evolve in a continuous medium in the first
approximation.

We measure the mechanical properties of the cytoplasm
via active microrheology method by using optical tweez-
ers [22]. We impose a sinusoidal oscillation on a particle
with diameter 0.5μm within the cytoplasm. From the
resultant displacement of the bead, we extract the com-
plex modulus G∗ = 1/(6πaχ), where χ is the Fourier
response function. It reveals that it weakly depends on
frequency, and that the elastic contribution is significantly
larger than the dissipative one (fig. 1), in agreement with
previous results [22,23]. Moreover, we do not observe a
significant change in the cytoplasmic mechanical prop-
erty according to active processes. The cytoplasm is still

Fig. 2: (Color online) (a) Time evolution of the one-
dimensional mean square displacement scaled with the tracer
radius a = 50 (+), 100 (◦) and 250 nm (small dots) for control
(red), blebbistatin treated (orange), and ATP depleted (blue)
cells, and the corresponding best-fitting curves (eq. (2)): solid,
dashed, and dot-dashed line, respectively. Inset: FDT-ratio as
a function of frequency. It equals 1 in ATP depleted cells as
for an equilibrium system, and it deviates from it in the two
other conditions at small frequency showing that nonequilib-
rium processes drive the dynamics in this regime. (b) Time
evolution of the MSD scaled with G′ measured with tracers of
radius a = 100 nm in control cells. The G′ value increases with
the percentage of PEG introduced in the cell: 0% (yellow •),
3% (light green ◦), and 6% (dark green +). The best-fit curves
are shown as solid, dashed, and dot-dashed lines, respectively.
The short-time scale plateau scales like 1/G′. (c) Time evolu-
tion of the MSD times G′2. The large-time diffusive part scales
as 1/G′2.

mainly elastic in blebbistatin treated and ATP depleted
cells, with a storage modulus being twice as small as in
untreated cells where it equals approximately 2Pa.

To quantify the departure from equilibrium, we extract
the FDT-ratio which compares the active microrheology
measurement with the random intracellular motion visu-
alized by tracer particles [9–11]. It is defined in terms of
the position power spectrum C̃ and the imaginary part

48005-p2



Activity-driven fluctuations in living cells

of the Fourier response function χ′′ as FDT-ratio(ω) =
−ωC̃(ω)/[2χ′′(ω)kBT ], where T is the bath temperature.
It equals 1 for an equilibrium system, and deviates from it
otherwise. The control and blebbistatin treated cells are
out-of-equilibrium, whereas the effect of the nonequilib-
rium processes are negligible in ATP depleted cells (inset
in fig. 2(a)). This supports that the nonequilibrium pro-
cesses hibernate in the latter as long as no ATP supply
is provided, suggesting that there is an equilibrium refer-
ence state where the tracer particle is trapped in an elastic
cytoskeletal network. Given that we cannot rely on equi-
librium physics to describe the tracer’s dynamics in the
two other conditions, we offer a new model to characterize
its nonequilibrium properties.

We vary experimentally the elastic modulus G′ by
adding various amount of 300 dalton polyethylene gly-
col (PEG) into the cell culture medium1. This results
in an osmotic compression on the cell, so that G′ in-
creases with the amount of PEG applied [24]. We report
in figs. 2(b), (c) the MSD data multiplied by G′ and G′2

for different values of G′. It appears the value of the small
time plateau scales as 1/G′ while the long-time diffusion
constant scales as 1/G′2.

The cytoskeleton acts as a thermostat for the tracer par-
ticle. Provided that inertial effects are negligible in the
intracellular environment, we model the dynamics of the
tracer’s position r by means of an overdamped Langevin
equation. We use a harmonic approximation to account
for the interaction of the tracer with the surrounding
network. The main new ingredient of our model lies in
expressing the effect of nonequilibrium activity. We pos-
tulate that the underlying action of the active processes
induces local rearrangements of the network, resulting in
an active force applied on the tracers. As an example of
such nonequilibrium processes, the activity of myosin II
motors can slide cytoskeletal filaments past each other
leading to a local deformation of the network [7]. To ac-
count for the directed motion events observed in our ex-
perimental trajectories, we consider that the active force
proceeds by a sequence of rapid ballistic jumps followed
by quiescent periods. It remains constant during inter-
vals of average quiescence time τ0, when the tracer is
only subjected to thermal fluctuations, and it varies dur-
ing a persistence time of order τ by a quantity fA = f n̂,
where n̂ is a random direction in the three-dimensional
space. We assume that the persistence and quiescence
times are exponentially distributed variables as observed
in synthetic active gels [7,8,25], and that they do not de-
pend on the network and tracer properties. Putting these
ingredients together, we arrive at the equation for x, the
one-dimensional projection of r,

γ
dx

dt
= −kx + ξ + fA, (1)

1After the stress, cells are allowed to equilibrate for 10 min at
37 ◦C and 5% CO2, before we perform the imaging or optical-tweezer
measurement. The cell size and mechanics equilibrate in 2min after
adding PEG based on our imaging and previous studies [24].

Fig. 3: (Color online) Typical realization of (a) the active force
fA, and (b) the corresponding active bursts vA. fA is constant
over a quiescence time of typical value τ0, and varies linearly
with a slope uniformly distributed in [−f, f ] during a persis-
tence time of order τ . vA is proportional to the time derivative
of fA. (c) Schematic representation of the energetic landscape
rearrangement due to nonequilibrium activity and its model-
ing using the active burst applied on the local minimum. We
depict the network potential with a black solid line, the har-
monic approximation with a dashed red line, and the tracer
particle with a filled blue circle. Nonequilibrium activity leads
to a displacement vτ of the potential, resulting in an energy
gain E � k(vτ)2 for the tracer.

where ξ is a zero mean Gaussian white noise with correla-
tions 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t−t′), and fA is a random force
with typical realization described in fig. 3(a). The spring
constant of the surrounding network is k, and γ is the
friction coefficient of the environment. Our model is asso-
ciated with a Fourier response function χ = 1/(k + iωγ),
from which we deduce that the complex modulus is of the
form G∗ = 1/(6πaχ) = k/(6πa) + iωη, where η is the
viscosity of the fluid surrounding the tracer [17,26]. We
neglect the weak frequency dependence of the real part G′

as determined from active microrheology measurements,
so that the spring constant is directly given by k = 6πaG′,
as already reported in other complex fluids with similar
elastic behavior [26]. Stokes’ law ensures that γ is inde-
pendent of G′, and γ ∝ a.

To illustrate our model with an immediate physical pic-
ture, we introduce the variable r0 = fA/k which we regard
as the position of the local minimum of the potential in
which the tracer is trapped. The local rearrangements
of the network due to nonequilibrium activity result in a
shift of the local minimum the tracer sits in. Thus, this
position has a dynamics of its own given by a random
active burst vA in which a burst vn̂ is felt during the per-
sistence time, while it equals zero during the quiescence
time (fig. 3(b)). The active force projection is simply re-
lated to the active burst projection as dfA/dt = kvA. We
assume that the typical variation f of the active force is
independent of the network properties, whereas the active
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burst amplitude v = f/(kτ) depends on the properties of
the cytoskeletal network via k.

From the Fourier transform of eq. (1), we compute the
position autocorrelation function C(t) = 〈x(t)x(0)〉, and
then deduce the one-dimensional MSD as

〈
Δx2

〉
(t) =

2(C(0) − C(t)). We denote the thermal contribution to
the MSD by

〈
Δx2

T

〉
, and the MSD when the particle

is only subjected to motor activity by
〈
Δx2

A

〉
, so that:〈

Δx2
〉

=
〈
Δx2

T

〉
+

〈
Δx2

A

〉
. The thermal MSD is the same

as for the Ornstein-Uhlenbeck process, and we compute
the active contribution in terms of the parameters charac-
terizing the active force:

〈
Δx2

T

〉
(t) =

2kBT

k

(
1 − e−t/τr

)
, (2a)

〈
Δx2

A

〉
(t) =

2kBT A/k

1 − (τ/τr)2

[(
τ

τr

)3(
1 − e−t/τ − t

τ

)

+ e−t/τr +
t

τr
− 1

]
, (2b)

where τr = γ/k is a microscopic relaxation time scale.
In the passive case, i.e. when TA = 0, it saturates to
the value 2kBT/k within a time τr as predicted by the
equipartition theorem, meaning that the tracer is con-
fined in the cytoskeleton. The active force represents
the random fluctuations of the cytoskeletal network in-
duced by the nonequilibrium activity. With such a force,
the MSD exhibits a plateau at the equilibrium value cor-
responding to a transient elastic confinement at times
τr � t � τ , and then has a diffusion-like growth on
longer times with coefficient 2kBTA/γ. Provided that
k ∝ G′, it follows that the equilibrium plateau scales like
1/G′, as we observe experimentally (fig. 2(b)). The en-
ergy scale kBTA = γ(vτ)2/[3(τ + τ0)] defines an active
temperature, which is related to the amplitude of the ac-
tive fluctuations as defined by the active burst correlations
〈vA(t)vA(0)〉 = kBTAe−|t|/τ/(τγ). The independence of f
and τ with respect to G′ yields v ∝ 1/G′, from which
we deduce that the long-time diffusion coefficient scales as
1/G′2, in agreement with our measurements (fig. 2(c)).

On the basis of our phenomenological picture where the
nonequilibrium dynamics is driven by an active remod-
elling of the cytoskeletal network, we propose a physical
argument for the scaling of the MSD with the tracers’ size
a presented in fig. 2(a). As presented above, we first as-
sume that k and γ scale like a. Within our model, the
active burst represents the activity-driven network defor-
mation and reorganization, which result in a change of the
tracer’s local energetic landscape. During a burst event,
the local minimum is shifted by a random amount. Re-
garding this event as instantaneous, the tracer finds itself
at a distance of order vτ from the new local minimum
position after each burst. It follows that the typical en-
ergy provided by nonequilibrium activity to the particle is
E � k(vτ)2, as depicted in fig. 3(c). We assume that it
does not depend on the particle properties, just as τ and
τ0, thus being independent of the tracer’s typical size a.

Since k ∝ a, we deduce v ∝ 1/
√

a, implying that TA is
independent of a. Finally, the relaxation time τr is also
independent of a, leading to a scaling of the MSD like 1/a
which agrees with our observation.

We use our analytic expression to fit the MSD data mul-
tiplied by a for the three conditions described above. We
assume the viscosity of the fluid surrounding the tracer is
the cytoplasm viscosity η ∼ 10−3 Pa · s [27], and we de-
duce the damping coefficient from Stokes’ law: γ = 6πaη.
We estimate the k value from the small time plateau.
The only remaining parameters are the ones characteriz-
ing nonequilibrium activity: TA/T = {2.8, 0.9} × 10−3,
τ = {0.16 ± 0.03, 0.39 ± 0.09} s, in control and bleb-
bistatin treated cells, respectively. The estimation error
made on TA/T is of the order of 1% in control, and 0.1%
in blebbistatin treated cells.

The amplitude of the active fluctuations is smaller in
blebbistatin treated cells, meaning that the inhibition of
myosin II motors reduces the proportion of nonequilib-
rium fluctuations with respect to the thermal ones as
expected. Other nonequilibrium processes drive the out-
of-equilibrium dynamics in this condition. The typical
time scale τ of the persistent motion events is enhanced in
blebbistatin treated cells. Assuming that each active burst
persists until the stress that accumulates in the network
causes the network to locally fail, weaker motors due to the
addition of blebbistatin will contract for a longer duration
until such a critical stress builds up. Provided that 1/τ is
the typical frequency below which the nonequilibrium pro-
cesses affect the dynamics, this supports that the active
fluctuations take over the thermal ones at larger frequen-
cies in the control cells compared with the blebbistatin
treated ones. Notice that TA represents the ability of the
tracer to diffuse on long times, and T quantifies here only
the motion of the bead at short times when it is trapped
within the elastic cytoskeletal network. The fact that we
find TA small compared to T does not mean that the ac-
tive processes are negligible, as they control entirely the
long-time and long-distance diffusion of the tracer. In the
absence of activity, the tracer does not diffuse at all and
remains trapped in the elastic network.

To characterize the properties of the active force, we
focus on the power spectrum of the stress fluctuations,
i.e. the Fourier transform of the time correlation function
〈fA(0)fA(t)〉 [9,11,15]. We extract the power spectrum
of the overall force fA + ξ as the power spectrum of the
position times (6πa|G∗|)2 [15]. Provided that the ATP
depleted condition is in an equilibrium state, the active
force fA is negligible in these cells and the overall force
reduces to the ξ, thus providing a direct measurement
of the thermal force spectrum. We remove this equilib-
rium contribution to the overall spectrum to deduce the
active force spectrum in the two other conditions. We
observe a 1/ω2 behavior at low frequency as already ac-
counted for on general grounds [9,14,15,28], and the large-
frequency curvature hints a crossover to another power
law (figs. 4(a), (b)). Our analytic prediction for the active
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Fig. 4: (Color online) Top: active force spectrum SA as a func-
tion of frequency measured with tracers of radius a = 250 nm
in (a) control, and (b) blebbistatin treated cells. The experi-
mental data are in black small dots, and the dashed lines cor-
respond to eq. (3) with the parameter values deduced from
the best fit of the MSD data. Bottom: probability distri-
bution function of the tracer displacement (DPDF) at two
different times: 1 (◦), and 5 s (small dots). The DPDF is
measured with tracers of radius a = 250 nm in (c) control,
and (b) blebbistatin treated cells. We present the correspond-
ing results from numerical simulations of eq. (1) in solid and
dashed lines, respectively. The blue dot-dashed line is the
corresponding equilibrium Gaussian. The parameter values
are the same for the two lag times: (b) {TA/T, τ, τ0, k, γ} =
{2.8 × 10−3, 0.16 s, 2.5 s, 8.5 pN/μm, 4.7 × 10−3 pN · s/μm},
(c) {TA/T, τ, τ0, k, γ} = {9×10−4, 0.39 s, 2.8 s, 8.2 pN/μm, 4.7×
10−3 pN · s/μm}.

force spectrum reads

SA(ω) =
1

(ωτr)
2

2γkBTA

1 + (ωτ)2
. (3)

It combines properties of the network and parameters
characterizing the active force, since the effect of nonequi-
librium activity on the tracer is mediated by the network
within our model. We recover the divergence as 1/ω2 at
low frequency, and we predict a power law behavior 1/ω4

at high frequency, the crossover between the two regimes
appearing at 1/τ . We compare our prediction with the
experimental data by using the best-fit parameters esti-
mated from the MSD data. Without any free parameter,
we reproduce the measured spectra (figs. 4(a), (b)). This
result is a strong support for our model, in which TA not
only quantifies the long-time diffusion coefficient of the
tracers, it is also related to the typical amplitude of the
fluctuations generated by the nonequilibrium active force.
The study of the high-frequency spectrum calls for new

experiments as it would confirm the validity of our phe-
nomenological picture.

To study in more detail the properties of the active
force, we analyze the probability distribution function of
the tracer displacement (DPDF). It exhibits a Gaussian
behavior at short and long times. In the intermediate
regime, we observe a central Gaussian part which matches
our equilibrium prediction in the absence of activity, and
exponential tails accounting for directed motion events
consistent with previous observations in synthetic active
gels [7]. Within our model, the non-Gaussian behavior
of the DPDF is a direct and unique consequence of the
non-Gaussianity of the active force. We ran numerical
simulations of the dynamics in eq. (1) to reproduce the
time evolution of the DPDF. We set the different parame-
ter values to the one estimated previously, letting us with
only one free parameter: the average quiescence time τ0.
It quantifies the average time between two successive di-
rected motion events, thus controlling the relative impor-
tance of the exponential tails with respect to the Gaussian
central part. We adjust this parameter by matching the
exponential tails observed at different times.

With a fixed τ0 value, we manage to reproduce the evo-
lution in time of the whole experimental DPDF. This
shows that the specific form we choose for the active
process is sufficient to reproduce not only the MSD and
force spectrum data, but also to account quantitatively for
the dynamic non-Gaussian properties of the distribution
(figs. 4(c), (d)). We estimate τ0 = {2.5, 2.8} s in control
and blebbistatin treated cells, respectively. The extracted
values are very similar for the two conditions, showing
that the addition of blebbistatin does not affect the typical
time over which the tracers are only subjected to thermal
fluctuations. It suggests that this time scale is related to
the recovery of the network following a large reorganiza-
tion, thus being barely independent of the activity of the
nonequilibrium processes. Notice that the corresponding
duty ratio pon = τ/(τ + τ0) is smaller in control than
in the blebbistatin treated cells: pon = {6, 15}%, respec-
tively. It is a quantitative evidence that the exponential
tails are more pronounced in the control condition, namely
the proportion of directed motion events is increased. We
deduce the value of the typical active burst amplitude:
v = {0.86, 0.22}μm/s in control and blebbistatin treated
cells for a = 250 nm, which are compatible with velocity
scales observed in [29].

Microrheology methods have become a standard tech-
nique to explore cellular activity in living organisms [30].
In this work, we introduce a new model for characterizing
the motion of a tracer in a living cell. This model explicitly
accounts for the elastic behavior of the cytoskeletal net-
work and successfully combines it with a description of the
cellular active force —a well-defined non-Gaussian colored
process. By analyzing the MSD data, we quantify two es-
sential features of this force: its strength, and the typical
time scale over which it is felt. Our model goes beyond pre-
vious modeling which treated the nonequilibrium activity
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as a random noise with unprescribed characteristics [15].
In a previous work, activity was modeled as a trichoto-
mous noise acting directly on the particle [12], whereas
such activity is mediated by the surrounding network
within our new proposal. The present model combines the
short-time confined behavior with a long-time free diffu-
sion which is driven by the active force, and recovers all the
main experimental results. The model applies as long as
we are in the regime of simple viscoelastic behavior. Dress-
ing our model with a more realistic rheology, e.g., with a
power law behavior for the complex modulus, usually ob-
served in cell rheology [31], is conceptually straightforward
as a future elaboration of the model. Further generaliza-
tion of our model could be used to describe active fluc-
tuations in other nonequilibrium (living or mechanically
driven) systems that exhibit similar behavior [7,32,33].
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