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SUMMARY

It has long been the dream of biologists to map gene
expression at the single-cell level. With such data
onemight track heterogeneous cell sub-populations,
and infer regulatory relationships between genes and
pathways. Recently, RNA sequencing has achieved
single-cell resolution. What is limiting is an effective
way to routinely isolate and process large numbers
of individual cells for quantitative in-depth seq-
uencing. We have developed a high-throughput
droplet-microfluidic approach for barcoding the
RNA from thousands of individual cells for subse-
quent analysis by next-generation sequencing. The
method shows a surprisingly low noise profile and
is readily adaptable to other sequencing-based as-
says. We analyzed mouse embryonic stem cells,
revealing in detail the population structure and the
heterogeneous onset of differentiation after leukemia
inhibitory factor (LIF) withdrawal. The reproducibility
of these high-throughput single-cell data allowed
us to deconstruct cell populations and infer gene
expression relationships.

INTRODUCTION

Much of the physiology of metazoans is reflected in the temporal

and spatial variation of gene expression among constituent cells.

Some variation is stable and has helped us to define both adult

cell types and many intermediate cell types in development

(Hemberger et al., 2009). Other variation results from dynamic

physiological events such as the cell cycle, changes in cell

microenvironment, development, aging, and infection (Loewer

and Lahav, 2011). Still other expression changes appear to be

stochastic in nature (Paulsson, 2005; Swain et al., 2002) and

may have important consequences (Losick and Desplan,

2008). To understand gene expression in development and

physiology, biologists would ideally like to map changes in

RNA levels, protein levels, and post-translational modifications
in every cell. Analysis at the single-cell level has until a decade

ago principally been through in situ hybridization for RNA, immu-

nostaining for proteins, or more recently with fluorescent

chimeric proteins. These methods allow only a few genes to be

monitored in each experiment, however. More recently, pioneer-

ing work (e.g., Chiang and Melton, 2003; Phillips and Eberwine,

1996) has made possible global transcriptional profiling at the

single cell level, though the number of cells is often limited.

Although an RNA inventory at the single-cell level does not offer

a complete picture of the state of the cell, it can provide impor-

tant insights into cellular heterogeneity and collective fluctua-

tions in gene expression, as well as crucial information about

the presence of distinct cell subpopulations in normal and

diseased tissues. There is also hope that gene expression corre-

lations within cell populations can be used to derive lineage

structures (Qiu et al., 2011) and pathway structures de novo by

reverse engineering (He et al., 2009).

Modern methods for RNA sequence analysis (RNA-seq) can

quantify the abundance of RNAmolecules in a population of cells

with great sensitivity. After considerable effort, these methods

have been harnessed to analyze RNA content in single cells.

What is needed now are effective ways to isolate and process

large numbers of individual cells for in-depth RNA sequencing

and to do so with quantitative precision. This requires cell isola-

tion under uniform conditions, preferably with minimal cell loss,

especially in the case of clinical samples. The requirements for

the number of cells, the depth of coverage, and the accuracy

of measurements will depend on experimental considerations,

including factors such as the difficulty of obtaining material, the

complexity of the cell population, and the extent to which cells

are diversified in gene expression space. The depth of coverage

necessary is hard to predict a priori, but the existence of rare cell

types in populations of interest, such as occult tumor cells or

tissue stem cell sub-populations (Simons and Clevers, 2011),

combined with independent drivers of heterogeneity such as

cell-cycle and stochastic effects, suggests that analyzing large

numbers of cells will be necessary.

The challenges of single-cell RNA-seq are easy to appreciate.

Measurement accuracy is highly sensitive to the efficiency of its

enzymatic steps, and the need for amplification from single cells

risks introducing considerable errors. There are major obstacles

to parallel processing of thousands of cells and to handling small
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Figure 1. A Platform for DNA Barcoding Thousands of Cells

Cells are encapsulated into droplets with lysis buffer, reverse-transcription mix, and hydrogel microspheres carrying barcoded primers. After encapsulation

primers are released. cDNA in each droplet is tagged with a barcode during reverse transcription. Droplets are then broken and material from all cells is linearly

amplified before sequencing. UMI = unique molecular identifier.
samples of cells efficiently so that nearly every cell is measured.

Microfluidics has emerged as a promising technology for single-

cell studies with the potential to address these challenges (Le-

cault et al., 2012; Wu et al., 2014). Microfluidic chips containing

hundreds of valves can trap, lyse, and assay biomolecules from

single cells with higher precision and often with better effi-

ciencies than microtiter plates (Streets et al., 2014; Wu et al.,

2014). For RNA sequencing of single cells, reduced reaction vol-

umes improve the yields of cDNA and reduce technical variability

(Islam et al., 2014; Wu et al., 2014). Yet the number of single cells

that can be currently processed with microfluidic chips remains

at �70–90 cells per run, so analyzing large numbers of cells is

difficult, and may take so much time that the cells are no longer

viable. Moreover, capture efficiency of cells into microfluidic

chambers is low, a potential issue for rare or clinical samples.

An alternative is the use of microfluidic droplets suspended in

carrier oil (Guo et al., 2012; Teh et al., 2008). Cells can be com-

partmentalized into droplets and assayed for different bio-mole-

cules (Mazutis et al., 2013), their genes amplified (Eastburn et al.,

2013), and droplets sorted at high-throughput rates (Agresti

et al., 2010). Unlike conventional plates or valve-basedmicroflui-

dics, droplets are intrinsically scalable: the number of reaction

‘‘chambers’’ is not limited, and capture efficiencies are high

since all cells in a sample volume can in principle be captured

in droplets.

We exploited droplet microfluidics to develop a technique for

indexing thousands of individual cells for RNA sequencing,

which we term inDrop (indexing droplets) RNA sequencing.

Another droplet-based RNA-seq technology is also described

in this issue (Macosko et al., 2015, this issue). Our method has

a theoretical capacity to barcode tens of thousands of cells in

a single run. Here, we use hundreds to thousands of cells per

run, since sequencing depth and cost becomes limiting for us

at very high cell counts. We evaluated inDrop sequencing by

profiling mouse embryonic stem (ES) cells before and after leu-

kemia inhibitory factor (LIF) withdrawal. A total of over 10,000
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barcoded cells and controls were profiled, with �3,000 ES and

differentiating cells sequenced at greater depth for subsequent

analysis. Our analysis identifies rare sub-populations expressing

markers of distinct lineages that would be difficult to find by

profiling a few hundred cells. We show that key pluripotency fac-

tors fluctuate in a correlated manner across the entire ES cell

population, andwe explore whether fluctuationsmight associate

gene products with the pluripotent state. Upon differentiation,

we observe dramatic changes in the correlation structure of

gene expression, resulting from asynchronous inactivation of

pluripotency factors, and the emergence of novel cell states.

Altogether, our results showcase the potential of droplet

methods to deconstruct large populations of cells and to infer

gene expression relationships within a single experiment.

RESULTS

A Microfluidic Platform for Droplet Barcoding and
Analysis of Single Cells
The inDrop platform encapsulates cells into droplets with lysis

buffer, reverse transcription (RT) reagents, andbarcodedoligonu-

cleotide primers (Figure 1). mRNA released from each lysed cell

remains trapped in the same droplet and is barcoded during syn-

thesis of cDNA. After barcoding, material from all cells is com-

binedbybreaking thedroplets, and thecDNA library is sequenced

using established methods (CEL-seq) (Hashimshony et al., 2012;

Jaitin et al., 2014). The major challenge is to ensure that each

droplet carries primers encoding a different barcode. We synthe-

sized a library of barcoded hydrogel microspheres (BHMs) that

are co-encapsulated with cells (Figure 2 and S1). Each BHM

carries �109 covalently coupled, photo-releasable primers en-

coding one of 147,456 barcodes, and the pool size could be

increased in a straightforward manner. The current pool size

allows randomly labeling 3,000 cells with 99% unique labeling

(Supplemental Experimental Procedures); many more cells can

be processed by splitting a large emulsion into separate tubes.



To barcode the cells, we developed a microfluidic device with

four inlets for the BHMs, cells, RT/lysis reagents, and carrier oil;

and one outlet port for droplet collection (Figure 3 and S2). The

device generates monodisperse droplets that can be varied in

the range of 1–5 nl at a rate of�10–100 drops per second, simul-

taneously mixing aliquots from the inlets (Figures 3A–3C; Movies

S1 and S2). The flow of deformable hydrogels inside the chip can

be synchronized due to their close packing and regular release,

allowing nearly 100% hydrogel droplet occupancy (Abate et al.,

2009). Thus cells arriving into droplets will nearly always be co-

encapsulated with barcoded primers. Due to the large cross-

section of the microfluidics channel (60 3 80 mm2), there is no

cell size bias in capture. In typical conditions, cells occupy only

10% of droplets, so two-cell events are rare (Figure 3D), and

cell aggregates areminimized by passing cells through a strainer

or by FACS. Dropletsmust contain at least one cell and one gel to

produce a barcoded library for sequencing; we observed that

over 90% of these productive droplets contained exactly one

cell and one gel (Figure 3E). After cell and BHM encapsulation,

primers are photo-released by UV exposure, a step critical for

efficient RT (Figures 1 and 3F).

With this system, we captured cells at a rate of 4,000–

12,000/hour, or 2,000–3,000 cells barcoded for every 100 ml

of emulsion (Figure 3G). As the cost of sequencing drops,

higher scales may become routine.

Validation of Random Barcoding and Droplet Integrity
We tested droplet integrity by barcoding a �50:50 mixture of

mouse ES and human K562 erythroleukemia cells (Figure 4A).

In this test each barcode should associate entirely with either

mouse or human transcripts; only two-cell events would lead

to the appearance of barcodes with mixed profiles. Figure 4A

shows that indeed 96%of barcodesmapped to either themouse

or human transcriptome with more than 99% purity. This already

low error rate (�4%) could be further reduced by dilution of the

cell suspensions, or by sorting singlet droplets (Baret et al.,

2009). However, the presence of rare two-cell events does not

obscure rare cell sub-populations, since even if 10% of cells

are in doublets, then 90% of rare cells will be found as singlets.

This is demonstrated later for ES cells, where we found a rare cell

type representing <1% of the population.

We also tested that cell barcodes were randomly sampled

from the intended pool of possible barcodes. A comparison of

barcode identities across a total of 11,085 control droplets

consistently showed excellent agreement with random sampling

(Figure S3A).

Baseline Technical Noise for inDrops
Two major sources of technical noise in single-cell RNA-seq are

variability between cells in mRNA capture efficiency, and the

intrinsic sampling noise resulting from capturing finite numbers

of mRNA transcripts in each cell. The CEL-seq protocol has

been reported to have a capture efficiency of �3% (Grün et al.,

2014) or less (Jaitin et al., 2014), and a variability in capture

efficiency of �25% for pure RNA controls and �50% for cells

(coefficients of variation between samples) when performed in

microtiter plates (Grün et al., 2014). Technical noise can also

arise during library amplification, but this is mostly eliminated
through the use of random unique molecular identifier (UMI) se-

quences, allowing bioinformatic removal of duplicated reads (Fu

et al., 2011; Islam et al., 2014).

An ideal test of technical noise would compare two identical

cells, but unfortunately there are no cells where one can assert

that the abundance of transcripts would be equal. To test tech-

nical noise in our system, we analyzed a control sample of puri-

fied total RNA diluted to single-cell concentration (10 pg per

droplet), mixed with ERCC RNA spike-in controls of known con-

centration (Baker et al., 2005) (Figure 4B). We processed 953

droplets with an average of 30 3 103 (±21%) UMI-filtered map-

ped (UMIFM) reads per droplet (Figure 4B), and low sequencing

redundancy (averaging 2.3 reads/molecule; Figure S3E). Each

droplet gave 5–153 103 unique gene symbols (25,209 detected

in total), correlating strongly with UMIFM counts (Figure 4C). The

method showed an excellent linear readout of the ERCC spike-in

input concentration (Figure 4D) down to concentrations of

0.5 molecules/droplet on average; below that limit, we tended

to over-count transcripts, a bias seen previously (Grün et al.,

2014; Hashimshony et al., 2012).

Another measure of method performance is its sensitivity, i.e.,

the likelihood of detecting an expressed gene. The sensitivity

was almost entirely explained bybinomial sampling statistics (Fig-

ure 4E; Supplemental Experimental Procedures), and thus de-

pends on transcript abundance and the capture efficiency,

measured from the ERCC spike-ins to be 7.1% (Figure 4D). With

this efficiency, sensitivity was 50%when 10 transcripts were pre-

sent, and >95% when >45 transcripts were present (Figure 4E).

The sensitivity and capture efficiency are lower than those esti-

mated for another single-cell transcriptomicsprotocol (�20%) (Pi-

celli et al., 2014) but are higher than those reported for CEL-seq

(3.4%) (Grün et al., 2014; Hashimshony et al., 2012). Moreover,

the lowsequencing redundancysuggests thatdeeper sequencing

may further increase efficiency and thus sensitivity.

In accuracy, the method showed very low levels of technical

noise, assessed by comparing the coefficient of variation (CV =

SD/mean) of each gene across the cell population to its mean

abundance. In a system limited only by sampling noise, all genes

should obey CV = (mean)�1/2. Technical noise can lead to

dispersion around this curve, and to a minimum ‘‘baseline’’ CV.

After normalization, 99.5% of detected genes were consistent

with the power law, with a baseline technical noise of <10%

(n = 25,209; p > 0.01 c2 test, no multiple hypothesis correction)

(Figure 4F). To our knowledge, this noise profile is among the

cleanest obtained for single-cell data to date, although the sam-

pling noise is still high (see comparisons in Figure S3H). Consis-

tent with the low noise profile, themean, andCV values for genes

measured in cells (see below) correlated well with results

measured by single-molecule fluorescent in situ hybridization

(Figure S3 with data from Grün et al., 2014; Pearson correlation

R = 0.92 for mean, and R = 0.90 for CV).

Noise Modeling of Single-Cell Data
Before analyzing cells, we developed a technical noise model of

the effects of low sampling efficiency of transcripts and of the ef-

fects of cell-to-cell variation (noise) in efficiency. Low efficiency

and noise in efficiency affect both the observed cell-to-cell vari-

ability of gene expression, and the observed covariation of gene
Cell 161, 1187–1201, May 21, 2015 ª2015 Elsevier Inc. 1189
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(A) Microfluidic device design, see also Figure S2.

(B and C) Snapshots of encapsulation (left) and collection (right) modules, see also Movies S1 and S2. Arrows indicate cells (red), hydrogels (blue), and flow

direction (black). Scale bars 100 mm.

(D) Droplet occupancy over time.

(E) Cell and hydrogel co-encapsulation statistics showing a high 1:1 cell:hydrogel correspondence.

(F) BioAnalyzer traces showing dependence of library abundance on primer photo-release.

(G) Number of cells/controls as a function of collection volume.
expression. We derived relationships between biological and

observed quantities for the CVs of gene abundances across

cells, gene Fano Factors (variance/mean), and pairwise correla-

tions between genes (Figure 4G and Theory section of Supple-

mental Information). The Fano Factor is commonly used to mea-

sure noisy gene expression and yet is very sensitive to the

efficiency b (Equation 2): even without technical noise, only

genes with a Fano Factor Fa1=b will be noticeably variable in

inDrops or other methods for single-cell analysis. The addition

of technical noise introduces a ‘‘baseline’’ CV (Brennecke

et al., 2013; Grün et al., 2014), and spuriously amplifies true bio-

logical variation (Equation 1). Low sampling efficiencies also
(C and D) Method for combinatorial barcoding of the microspheres. * = reverse c

(E) The fully assembled primer: T7 promoter (red), sequencing primer (blue), barc

(purple).

See also Figure S1.
dampen correlations between gene pairs in a predictable

manner, setting an expectation to find relatively weak but never-

theless statistically significant correlations in our data (Equations

2 and 3). These results provide a basis for formally controlling for

noise in single-cell measurements.

Single-Cell Profiling of Mouse ES Cells
Single-cell transcriptomics can distinguish cell types of distinct

lineages even with very low sequencing depths (Pollen et al.,

2014). What is less clear is the type of information that can be

determined from studying a relatively uniform population subject

to stochastic fluctuations. To explore this, we chose to study
omplement sequence.

odes (green), synthesis adaptor (dark brown), UMI (yellow) and poly-T primer
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(A) Droplet integrity control: mouse and human cells are co-encapsulated to allow unambiguous identification of barcodes shared across multiple cells; 4% of

barcodes share mixed mouse/human reads.

(B) inDrops technical control schematic, and histogram of UMI-filtered mapped (UMIFM) reads per droplet.

(C) Unique gene symbols detected as a function of UMIFM reads per droplet.

(D) Mean UMIFM reads for spike-in molecules are linearly related to their input concentration, with a capture efficiency b = 7.1%.

(E) Method sensitivity S as a function of input RNA abundance; red curve is the sensitivity limit of binomial sampling (S = 1 � e�bx).

(F) CV-mean plot of pure RNA after normalization. Data points correspond to individual gene symbols; solid curve is the binomial sampling noise limit. For

abundant transcripts, droplet-to-droplet variability in method efficiency b sets a baseline CV (dashed curve: CVb = 5%), see also Figure S3.

(G) Relationships between observed and biological values of gene CVs, Fano Factors and correlations, showing how low efficiency dampens Fano Factors

(Equation 2) and weakens correlations (Equation 3).
mouse ES cells maintained in serum. These cells exhibit well-

characterized fluctuations but are still uniform compared to

differentiated cell types and thus pose a challenge for single

cell-sequencing.
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Previous studies have indicated that ES cells are heteroge-

neous in gene expression (Guo et al., 2010; Hayashi et al.,

2008; MacArthur et al., 2012; Martinez Arias and Brickman,

2011; Ohnishi et al., 2014; Singer et al., 2014; Torres-Padilla



and Chambers, 2014; Yan et al., 2013). Other studies, which

sorted ES cells into populations expressing high or low levels

of the pluripotency factorsNanog (Chambers et al., 2007; Kalmar

et al., 2009), Rex1/Zfp42 (Singer et al., 2014; Toyooka et al.,

2008), and Stella/Dppa3 (Hayashi et al., 2008), have suggested

that ES cells fluctuate infrequently between two metastable

epigenetic states corresponding to a pluripotent inner cell

mass (ICM)-like state, and an epiblast-like state poised to differ-

entiate. These pluripotency factors were found to correlate with

the expression of the epigenetic modifier Dnmt3b and its regu-

lator Prdm14, and with global differences in chromatin methyl-

ation (Singer et al., 2014; Yamaji et al., 2013). Evidence suggests

that other sources of heterogeneity also exist in the ES cell pop-

ulation: fluctuations in the Primitive Endoderm (PrEn) marker

Hex, for example, associate with a bias toward PrEn fate upon

differentiation (Canham et al., 2010); fluctuations in Hes1 bias

differentiation into Epiblast sub-lineages (Kobayashi et al.,

2009); and rare expression of other markers (Zscan4, Eif1a and

others) associate with a totipotent state with access to extra-em-

bryonic fates (Macfarlan et al., 2012). Whether thesemultiple fate

biases result from dynamic fluctuations of transcription factors

or represent stable cell states is not known.

To test inDrop sequencing, we harvested different numbers of

cells at different sequencing depths for each of the ES cell runs.

We collected 935 ES cells for deep sequencing and two further

samples of 2,509 and 3,447 cells from a single dish as technical

replicates. We further sampled 145, 302, and 2,160 cells after

2 days after LIF withdrawal; 683 cells after 4 days; and 169

and 799 cells after 7 days. The average number of reads per

cell ranged up to 208 3 103 and the average UMIFM counts up

to 29 3 103 (Table S1). Technical replicates showed very high

reproducibility (Pearson correlation of CVs R>0.98, Figure 5A,

inset); as did biological replicates (R = 0.98), whereas differenti-

ating cells showed distinct expression profiles (Figure S4; R =

0.94; 732 genes differentially expressed at more than 2-fold,

see Table S2). The capture efficiency b, estimated from

comparing UMIFM counts to smFISH results (Figure S3), was

slightly lower (4.5%) than for pure RNA.

Heterogeneous Sub-populations of ES Cell Origin
For the 935 ES cells, we identified 2,044 significantly variable

genes (Table S3, Figures 5A and 5B) (10% FDR, statistical test

in Supplemental Experimental Procedures) expressed at a level

of at least 5 UMIFM counts in at least one cell. The set of variable

genes was enriched for annotations of metabolism and tran-

scriptional regulation, and for targets of transcription factors

associated with pluripotency (Sp1, Elk1, Nrf1, Myc, Max, Tcf3,

Lef1), including transcription factors that directly interact with

Pou5f1 and Sox2 promoter regions (Gao et al., 2013) (Gabpa,

Jun, Yy1, Atf3) (Table S3, 10�120<p < 10�10). Among the variable

genes, we found pluripotency factors previously reported to fluc-

tuate in ES cells (Nanog, Rex1/Zfp42, Dppa5a, Sox2, Esrrb) but,

notably, the most highly variable genes included known markers

of PrEn fate (Col4a1/2, Lama1/b1, Sox17, Sparc), markers of

Epiblast fate (Krt8, Krt18, S100a6), and epigenetic regulators of

the ES cell state (Dnmt3b). The vast majority of genes showed

very low noise profiles, consistent with Poisson statistics (e.g.,

Ttn, Figure 5B). We evaluated the above-Poisson noise, defined
as h = CV2-1/m (m being the mean UMIFM count), for a select

panel of genes (Figure 5C) and found it to be in qualitative agree-

ment with previous reports (Grün et al., 2014; Singer et al., 2014).

Unlike the CV or the Fano Factor, h is expected to scale linearly

with its true biological value even for low sampling efficiencies

(Figure 4G, Equation 1).

To test the idea that ES cells exhibit heterogeneity between a

pluripotent ICM-like state and a more differentiated epiblast-like

state, we contrasted the expression of candidate pluripotency

and differentiation markers in single ES cells. Gene pair correla-

tions (Figure 5D) at first appear consistent with a discrete two-

state view, since both the epiblast marker Krt8 and the PrEn

marker Col4a1 were expressed only in cells low for Pou5f1

(shown) and other pluripotency markers (Figure S6A). Also in

agreement with previous studies (Toyooka et al., 2008), the dif-

ferentiation-prone state was rare. The correlations also con-

firmed other known regulatory interactions in ES cells, for

example Sox2, a known negative target of BMP signaling, was

anti-correlated with the BMP target Id1. What was more surpris-

ing was the finding that multiple pluripotency factors (Nanog,

Trim28, Esrrb, Sox2, Klf4, Zfp42) fluctuated in tandem across

the bulk of the cell population, but not all pluripotency factors

did so (Oct4/Pou5f1) (Figure 5D and Figure S6). These observa-

tions are not explained by a simple two-statemodel (Singer et al.,

2014), since pluripotency factor levels are not determined only

by differentiation state. Oct4/Pou5f1 instead correlated strongly

with cyclin D3 (Figure 5D and Figure S5A), but not other cyclins,

suggesting fluctuations of unknown origin.

What then is the structure of the ES cell population? We

conducted a principal component analysis (PCA) of the ES cell

population for the highly variable genes (Figures 5E and 5F;

sensitivity analysis in Figure S5B; gene selection and normaliza-

tion in Supplemental Experimental Procedures). PCA reveals

multiple non-trivial dimensions of heterogeneity (12 dimensions

with 95% confidence) (Figure 5E), which are not explained by in-

dependent fluctuations in each gene (Mar�cenko and Pastur,

1967; Plerou et al., 2002). Inspection of the first four principal

components, and the principal genes contributing to these com-

ponents (Figures 5F and S5), revealed the presence of at least

three small but distinct cell sub-populations: one rare population

(6/935 cells) expressed very low levels of pluripotency markers

and high levels of PrEn markers (Niakan et al., 2010); a second

cell population (15/935 cells) expressed high levels of Krt8,

Krt18, S100a6, Sfn and other markers of the epiblast lineage.

The third population represented a seemingly uncharacterized

state, marked by expression of heat shock proteins Hsp90,

Hspa5, and other ER components such as the disulphide isom-

erase Pdia6. These sub-populations expressed low levels of

pluripotency factors, suggesting they are biased toward differ-

entiation or have already exited the pluripotent state. The latter

population could also reflect stressed cells.

PCA analysis is a powerful tool for visualizing cell populations

that can be fractionated with just two or three principal axes of

gene expression. However, when more than three non-trivial

principal components exist, PCA alone is not sufficient for

dimensionality reduction of high-dimensional data. Using genes

identified from PCA, we used t-distributed Stochastic Neighbor

Embedding (t-SNE) (Amir et al., 2013; Van der Maaten and
Cell 161, 1187–1201, May 21, 2015 ª2015 Elsevier Inc. 1193



Figure 5. inDrop Sequencing Reveals ES Cell Population Structure

(A) CV-mean plot of the ES cell transcriptome. Pure RNA control (blue); genes significantly more variable than control (black). Solid and dashed curves are as

in Figure 4F (variability in cell size = 20%, see Theory Equation S4 in Supplemental Information). Inset: gene CVs of two technical replicate cell populations (total

n = 5,956 cells), see also Figure S4.

(B) Illustrative transcript counts showing low (Ttn), moderate (Trim28, Ly6a, Dppa5a) and high (Sparc, S100a6) expression variability; curve fits are Poisson (red)

and Negative Binomial (blue) distributions.

(C) Above-Poisson (a.p.) noise, (CV2-1/mean) of pluripotency differentiation markers. Error bars = SEM.

(D) Co-expression plots recapitulating known and novel gene expression relationships (see main text).

(legend continued on next page)
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Hinton, 2008) to further reduce dimensionality (Figure 5G and

Figures S5C–S5L) (see Supplemental Experimental Procedures).

A continuum of states from high pluripotency to low pluripotency

emerged, with several outlier populations at the population

fringes. These included the three populations found by PCA,

but also two additional fringe sub-populations characterized

respectively by high expression of Prdm1/Blimp1 and Lin41/

Trim71 (Figures S5I–S5L). The first of these expressed moderate

levels of the pluripotency factors, while the second expressed

low levels. Thus, while we found evidence of ES cells occupying

an epiblast-like state as previously reported, and indeed found

evidence for collective fluctuations between ICM to epiblast-

like states (Figure 5G and Figure S5), these fluctuations do not

describe the full range of heterogeneity in the ES cell population.

Functional Signatures in Gene Expression Covariation
In complex mixtures of cells, correlations of gene expression

patterns could arise from differences between mature cell line-

ages. In a population of a single cell type such as the ES cell pop-

ulation studied here, however, fluctuations in cell state might

reveal functional dependencies among genes.

To test whether expression covariation might contain regula-

tory information, we explored the covariation partners of known

pluripotency factors using a topological network analysis

scheme, similar to approaches developed for comparing multi-

ple bulk samples (Li and Horvath, 2007) (Figure 6A; algorithm

in Supplemental Experimental Procedures; sensitivity analysis

of the method in Figure S6A). This scheme identifies the

set of genes most closely correlated with a given gene (or genes)

of interest, and which also most closely correlate with each

other. Given the sensitivity of correlations to sampling efficiency

(Figure 4G, Equation 3), we reasoned that a method based on

correlation network topology would be more robust than

using correlation magnitude. Remarkably, the network analysis

strongly enriched for pluripotency factors: of the 20 nearest

neighbors of Nanog, ten are documented pluripotency factors,

three more are associated with pluripotency, and one (Slc2a3)

is syntenic with Nanog (Scerbo et al., 2014). Only one gene

(Rbpj) is dispensable for pluripotency (Oka et al., 1995). The anal-

ysis revealed a network of correlated pluripotency factors (Fig-

ures S6B), with multiple pluripotency factors neighboring the

same previously uncharacterized genes (Supplemental Experi-

mental Procedures and Figure S6C). It is tempting to predict

that at least some of these genes are also involved in maintaining

the pluripotent state. For Sox2, the entire neighborhood con-

sisted of factors directly or indirectly associated with pluripo-

tency (Figure 6C).

The same analysis may provide insight into other biological

pathways, although pathways seemingly independent of ES

cell biology had nomeaningful topological network associations.

This suggests that gene correlation networks in single-cell data

capture the fluctuations most specific to the biology of the cells
(E) The eigenvalue distribution of cell principal components (PC) reveals the num

distribution of randomized data (black) and to the Marcenko-Pastur distribution

(F) The first four ES cell PCs and their coefficients, revealing three outlier popula

(G) ES cell tSNE map revealing an axis of pluripotency-to-differentiation with f

Figure S6). Top: sub-populations visible in one projection. Bottom: cells colored
being studied but could be harnessed to study other pathways

through weak experimental perturbations.

Cell-Cycle Transcriptional Oscillations in ES Cells Are
Weak Compared to Somatic Cells
When the network analysis was applied to cyclin B, we found

very few neighboring genes (Figure 6C), raising the question of

why single-cell data do not reveal broader evidence of cell-cy-

cle-dependent transcription in ES cells. Previous studies have

argued for an absence of ES cell-cycle-dependent transcription

(White andDalton, 2005). Cyclins (except cyclin B) are expressed

uniformly throughout the cell cycle (Faast et al., 2004; Stead

et al., 2002), and the activity of the E2F family of transcription fac-

tors, which normally oscillates in somatic cells, is also constitu-

tive in ES cells (Stead et al., 2002). ES cells have a very short

cell cycle of �8–10 hr, with �80% of cells in S phase (White

and Dalton, 2005), and almost no G1 and G2 phases, so that

cell-cycle-dependent transcription could be difficult to detect.

We testedwhether unperturbed ES cell data showed evidence

of cell-cycle transcriptional variation. As a control, we applied

inDrops to human K562 erythroleukemia lymphoblasts (n = 239

cells, average 27 3 103 UMIFM counts per cell), and focused

on 44 transcripts previously categorized to a particular cell-cycle

phase (Whitfield et al., 2002). A hierarchical clustering of these

genes ordered them across the K562 cell cycle, with anti-corre-

lations between early and late cell-cycle genes (Figure 6E).When

the same analysis was repeated for the ES cell population, we

found correlations between the cell-cycle genes were extremely

weak and only clustered a subset of G2/M genes (Figure 6F).

These results confirm that ES cells lack strong cell-cycle oscilla-

tions in mRNA abundance, but they do show evidence of limited

G2/M phase-specific transcription.

Population Dynamics of Differentiating ES Cells
Upon LIF withdrawal, ES cells differentiate by a poorly character-

ized process, leading to the formation of predominantly epiblast

lineages. In our single-cell analysis, following unguided differenti-

ation by LIF withdrawal (Nishikawa et al., 1998), the differentiating

ES cell population underwent significant changes in population

structure, qualitatively seen by hierarchical clustering cells (Fig-

ure 7A). As validation, and to dissect the changes in the cell pop-

ulation,wefirst inspected selectedpluripotency factors anddiffer-

entiation markers (Figures 7B and 7C and Table S2). As seen in

bulk assays, the average expression of Zfp42 and Esrrb levels

dropped rapidly;Pou5f1andSox2droppedgradually; the epiblast

marker Krt8 increased steadily; andOtx2, one of the earliest tran-

scription factors initiating differentiation from the ICM to the

epiblast state, transiently increased by day 2 and then decreased

(Yanget al., 2014). The average gene expressionwasnot however

representative of individual cells: some cells failed to express

epiblast markers and a fraction of these expressed pluripotency

factors at undifferentiated levels even 7 days after LIF withdrawal,
ber of non-trivial PCs detectable in the data (arrows), compared to eigenvalue

for a random matrix (red).

tions.

ringe sub-populations at different points on the differentiation axis (see also

by abundance of specified gene sets (see Table S4).
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Figure 6. Regulatory Information Preserved in Gene Correlations

(A) A strategy for inferring robust gene associations from cell-to-cell variability with weak and/or highly connected gene correlations, see also Figure S6.

(B–D) Gene neighborhoods of Nanog, Sox2, and Cyclin B. Grey boxes mark validated pluripotency factors; blue boxes mark factors previously associated with a

pluripotent state.

(E and F) Correlations of 44 cell-cycle-regulated transcripts in a somatic cell line (K562) and in mouse ES cells shows a loss of cell-cycle-dependent transcription

in ES cells (gene names in Figure S6). Genes are ordered by hierarchical clustering. Color scale applies to (E and F).
(Figure 7C). This trend was supported by a PCA analysis of cells

from all time points (Figure 7D; see Supplemental Experimental

Procedures for gene selection and normalization), showing that

after 7 days, 5% (n = 799) of cells overlappedwith the ES cell pop-

ulation. Thegreatest temporal heterogeneitywasevident at 4days
1196 Cell 161, 1187–1201, May 21, 2015 ª2015 Elsevier Inc.
post-LIF,with cells spreadbroadly along the firstprincipal compo-

nent between the ES cell and differentiating state. The PCA anal-

ysis also revealed a metabolic signature (GO annotation: Cellular

Metabolic Process, p = 1.4 3 10�8) consistent with the changes

occurring upon differentiation (Yanes et al., 2010).
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Figure 7. Heterogeneity in Differentiating ES Cells

(A) Changes in global population structure after LIF withdrawal seen by hierarchically clustering cell-cell correlations over highly variable genes.

(B and C) Average (B) and distribution (C) of gene expression after LIF withdrawal; violin plots in (C) indicate the fraction of cells expressing a given number of

counts; points show top 5% of cells. Error bars = SEM.

(D and E) First two PCs of 3,034 cells showing asynchrony in differentiation.

(F) Epiblast and PrEn cell fractions as a function of time. Error bars = SEM.

(G) tSNE maps of differentiating ES cells, and of genes (right) reveal putative population markers (see also Figure S7 and Table S4).

(H) Intrinsic dimensionality of gene expression variability in ES cells and following LIF withdrawal, showing a smaller fluctuation sub-space during differentiation.

The pure RNA control lacks correlations and displays a maximal fluctuation sub-space.
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In addition to heterogeneity due to asynchrony, we visualized

population structure by t-SNE and found distinct sub-popula-

tions, not all of which mapped to known cell types (Figure 7G;

sub-population markers tabulated in Table S4). tSNE of genes

over the cells revealed clusters of genes marking distinct sub-

populations (Figure 7G, right and Figure S7). At 2 and 4 days

post-LIF withdrawal, we identified cells expressing Zscan4 and

Tcstv1/3, previously identified as rare totipotent cells expressing

markers of the 2-cell stage (Macfarlan et al., 2012). At 4 and

7 days, a population emerged expressing maternally imprinted

genes (H19, Rhox6/9, Peg10, Cdkn1, and others), suggesting

widespread DNA demethylation, possibly in early primordial

germ cells. In addition, resident PrEn cells were seen at all time

points (Figures 7F and 7G) but failed to expand. In sum, the anal-

ysis exposes temporal heterogeneity in differentiation and

distinct ES cell fates.

Refinement of Gene Expression upon Differentiation
Our results allow testing suggestions that ES cells are character-

ized by promiscuous gene expression that becomes refined

upon differentiation (Golan-Mashiach et al., 2005; Wardle and

Smith, 2004). If so, differentiating cells should become confined

to tighter domains in gene expression ‘‘space’’ than ES cells, as

measured by the number of independent dimensions over which

cells can be found. We evaluated the intrinsic dimensionality of

the distribution of ES cells and differentiating cells in gene

expression space using the method by (Kégl, 2002). Supporting

the refinement hypothesis, we found that intrinsic dimensionality

decreased after differentiation (Figure 7H). Thus, ES gene ex-

pression fluctuations are weakly coupled compared to the

more coherent differences following LIF withdrawal.

DISCUSSION

We report here a platform for single-cell capture, barcoding, and

transcriptome profiling, without physical limitations on the num-

ber of cells that can be processed. Themethod captures thema-

jority of cells in a sample, has rapid collection times and has low

technical noise. Such a method is suitable for small clinical sam-

ples including from tumors and tissue microbiopsies, and opens

up the possibility of routinely identifying cell types, even if rare,

based on gene expression. This type of data is also valuable

for identifying putative regulatory links between genes, by ex-

ploiting natural variation between individual cells. We gave sim-

ple examples of such inference, but this type of data lends itself

to more formal reverse engineering.

We have developed the droplet platform initially for whole-

transcriptome RNA sequencing; however, the technology is

highly flexible and should be readily adaptable to other applica-

tions requiring barcoding of RNA/DNA molecules. Our initial im-

plementation of the method made use of a very simple droplet

microfluidic chip, consisting of just a single flow-focusing junc-

tion. Future versions of the platformmight take further advantage

of droplet technology for multi-step reactions, or select target

cells by sorting droplets on-chip (Guo et al., 2012).

The method in its current form still suffers some limitations.

The major technical drawback we encountered was the mRNA

capture efficiency of �7%, which has only recently become
1198 Cell 161, 1187–1201, May 21, 2015 ª2015 Elsevier Inc.
robustly quantifiable using UMI-based filtering (Fu et al., 2011;

Islam et al., 2014). Although higher than for several previously

publishedmethods, the efficiency is nonetheless too low to allow

reliable detection in every cell of genes with transcript abun-

dances lower than 20–50 transcripts. The method is therefore

most reliable for profiling medium to highly abundant compo-

nents of cells, missing some key transcriptional regulators,

although we were able to detect almost all mouse transcription

factors (1,350 out of 1,405) in a subset of cells, with the key ES

cell transcription factors (Pou5f1,Sox2, Zfp42, and 44 other tran-

scription factors) detected in over 90% of all cells. This is a gen-

eral problem affecting single-cell RNA sequencing, which will

require improved cell lytic approaches or optimized enzymatic

reactions in library preparation. A second drawback of the

method is the random barcoding strategy, which does not allow

individual cell identities (marked by shape, size, lineage or loca-

tion) to be associated with a given barcode.

Despite these limitations, the current method can provide

important data addressing many biological problems. This is

illustrated by the challenging problem of ES cell heterogeneity

and its dynamics during early differentiation. ES cells are not

divided into large sub-populations of distinct cell types, and

therefore analysis of their heterogeneity requires a sensitive

method. Our analysis showed that, in the presence of serum

and LIF, fluctuations in Oct4/Pou5f1 are decoupled from other

pluripotency factors. We also found sub-populations of Epiblast

and PrEn lineages, and other less well characterized ES cell

sub-populations. This heterogeneity may reflect reversible fluc-

tuations, or cells undergoing irreversible differentiation. The un-

biased identification of small cell sub-populations requires the

scale enabled by droplet methods.

EXPERIMENTAL PROCEDURES

Microfluidic Operation

The microfluidic device (80 mm deep) was manufactured by soft lithography

following standard protocols (Supplemental Experimental Procedures). During

operation, cells, RT/lysis mix, and collection tubes were kept on ice. Flow rates

were 100 ml/hr for cell suspension, 100 ml/hr for RT/lysis mix, 10–20 ml/hr

for BHMs, and 90 ml/hr for carrier oil to produce 4 nl drops. BHMswere washed

33 and concentrated by centrifugation 23 at 5krcf, then loaded directly into

tubing for injection into the device. Cells were loaded at 50k–100k/ml in

16%v/v Optiprep (Sigma), and maintained in suspension using a microstir

bar placed in the syringe. The carrier oil was HFE-7500 fluorinated fluid (3M)

with 0.75% (w/w) EA surfactant (RAN Biotechnologies). See Supplemental

Experimental Procedures for BHM synthesis, buffer compositions, equipment,

and detailed microfluidic protocols.

Library Preparation

After cell encapsulation primers were released by 8 min UV exposure (365 nm

at�10mW/cm2, UVPB-100 lamp) while on ice. The emulsionwas incubated at

50�C for 2 hr, then 15 min at 70�C, then on ice. The emulsion was split into al-

iquots of 100–3,500 cells and demulsified by adding 0.2X 20% (v/v) perfluor-

ooctanol, 80% (v/v) HFE-7500 and brief centrifugation. Broken droplets

were stored at �20C and processed as per CEL-SEQ protocol, see Supple-

mental Experimental Procedures.

Tissue Culture

IB10 ES cells are a line derived from the mouse 129/Ola strain (subcloned

from E14), kindly provided by Dr. Eva Thomas. Cells were maintained on

flasks pre-coated with gelatin at density �3 3 105 cells/ml. ES media con-

tained phenol red free DMEM (GIBCO), 15%v/v fetal bovine serum (GIBCO),



2 mM L-glutamine, 13MEM non-essential amino acids (GIBCO), 1%v/v peni-

cillin-streptomycin antibiotics, 110 mM b-mercaptoethanol, 100 mM sodium

pyruvate. ESC base media was supplemented with 1,000 U/ml LIF. See Sup-

plemental Experimental Procedures for dissociation protocol and K562 cell

culture.

Data Analysis

See Supplemental Experimental Procedures for custom bioinformatics, count

normalization, method sensitivity, identification of highly variable genes, PCA

and tSNE, and network neighborhood analysis.
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Kalmar, T., Lim, C., Hayward, P., Muñoz-Descalzo, S., Nichols, J., Garcia-

Ojalvo, J., and Martinez Arias, A. (2009). Regulated fluctuations in nanog

expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7,

e1000149.
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