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Abstract

Particle tracking is a widely used and promising technique for elucidating com-
plex dynamics of the living cell. The cytoplasm is an active material, in which
the kinetics of intracellular structures are highly heterogeneous. Tracer particles
typically undergo a combination of random motion and various types of directed
motion caused by the activity of molecular motors and other non-equilibrium
processes. Random switching between more and less directional persistence of
motion generally occurs.

We present a method for identifying states of motion with different direc-
tional persistence in individual particle trajectories. Our analysis is based on a
multi-scale turning angle model to characterize motion locally, together with a
Hidden Markov Model with two states representing different directional persis-
tence. We define one of the states by the motion of particles in a reference data
set where some active processes have been inhibited.

We illustrate the usefulness of the method by studying transport of vesicles
along microtubules and transport of nanospheres activated by myosin. We study
the results using mean square displacements, durations, and particle speeds
within each state. We conclude that the method provides accurate identifica-
tion of states of motion with different directional persistence, with very good
agreement in terms of mean-squared displacement between the reference data
set and one of the states in the two-state model.
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1. Introduction

The cytoplasm of eukaryotic cells is an out-of-equilibrium, network-like dy-
namic environment in which random forces collaborate with active processes on
spatial organization, cell motility, import and export of materials, and internal
transport [1]. ATP-consuming molecular motors are responsible for intracellular
transport of large cargoes, such as large proteins, organelles, and vesicles [2, 3].
Random motion is a sufficiently effective means of transport of small molecules.
However, larger structures rely on a more sophisticated infrastructure involv-
ing actin filaments, microtubules, and molecular motors, providing a range of
options for different distances and particle sizes [4, 5, 6]. Indeed, it has been
shown theoretically that rapid, random switching between random and a super-
position of random and directed motion caused by e.g. binding and unbinding
of motors is a ’search strategy’ superior to pure random motion [7, 8]. Together
with other types of motion such as anomalous diffusion, these dynamics of in-
tracellular particles constitute the very core of the function of the cell including
migration, division, deformation, and transport [9, 10, 11, 12, 13, 14, 2, 3].
In order to understand the function of the cell, it is vital to understand these
transport processes.

Particle tracking is an increasingly popular technique for probing intracellu-
lar dynamics. Its appeal is the possibility to observe individual particles rather
than just ensemble averages, thus providing richer information [15]. There is
currently a great interest in developing new analysis methods to understand
this type of data better. Many different approaches can be found in the exist-
ing literature i.e. fitting a Langevin-type evolution curve to experimental mean
square displacement (MSD) data [4], time-resolved analysis based on local MSD
and trajectory asymmetry to identify states of random, constrained, directed,
and stalled motion [16], and separation of bursts of directed motion along micro-
tubules from random motion based on thresholding of local MSD and a measure
of local directional persistence [17]. See also [18] and references therein.

In this paper, we present a statistical method for identifying states of mo-
tion with different directional persistence in individual trajectories, for example
inside the living cell. We employ a model for turning angles in several different
time scales to characterize the degree of local directionality in every point along
the trajectory. We assume that the particle trajectories exhibit random switch-
ing between two states, characterized by different directional persistence. We
base our analysis on a Hidden Markov Model (HMM) [20, 21, 22], a statistical
framework for modeling random switching dynamics where the switching as such
is not observed but only its impact on the character of the particle trajectories.
We define one of the states by the motion of particles in a reference data set
where some active processes have been inhibited. We illustrate the usefulness of
the method by studying transport of vesicles along microtubules and transport
of nanospheres activated by myosin.
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2. Materials and methods

2.1. A multi-scale model for directionality

The motion of individual particles in a cell is generally a superposition of
thermal motion in a complex, viscoelastic medium and non-thermal motion,
the precise nature of which is rarely if ever known. It would be a notoriously
difficult task to formulate a comprehensive model of the dynamics of a tracer
particle, even if no switching behavior is present. However, it is not our aim
to provide a generative model but rather a simple model for quantification of
directionality which captures the essence of the behavior.

We base our analysis on turning angles, used previously in e.g. [19] for
particle tracking analysis. We define the turning angle to be simply the smallest
angle between one trajectory increment and the next. Thus, straight forward
means turning angle 0, straight to the side (making no distinction between left
and right) means turning angle π/2, and straight backward means turning angle
π. Although we here consider only 2D trajectories, a similar definition of turning
angle is feasible in 3D as well.

To make the model more general and flexible, we consider several different
time scales, all multiples of the shortest time scale ∆t determined by the ex-
perimental time lapse between consecutive video frames. Thus, we measure n
angles (in n time scales) at every point along a particle trajectory, represented
by a vector in the hypercube [0, π]n. Each state in the Hidden Markov Model
(HMM) is then determined by a probability distribution over [0, π]n for the
observations, i.e. all turning angles at all time scales are simultaneously used
within the same model. However, since this distribution generally has a complex
structure, we introduce a binary approximation, where 0 means forward (turn-
ing angle between 0 and π/2) and 1 means backward (turning angle between
π/2 and π). By this simplification, the number of parameters in the HMM will
be manageable. The local directionality is hence described by a value in {0, 1}n,
and each state (each ’type’ of motion) corresponds to a probability distribution
over this set of values for the observations.

The choice of time scales is a trade-off between temporal ’locality’, identifi-
ability of directional persistence, and the number of parameters in the model.
In our investigation we have used the time scales ∆t, 2∆t, 3∆t, 4∆t, and 5∆t,
hence n = 5, see Fig. 1 for an illustration. However, there is room for some
tweaking by choosing other multiples of ∆t. It is worth noting that dependen-
cies are introduced between the turning angle distributions at adjacent points.
Therefore, the independence assumption in the HMM is only an approximation.
It should also be noted that the value of ∆t, selected in the course of the exper-
iment, must be sensible with regard to the characteristic time scales of particle
motion in the particular studied setting.

2.2. Hidden Markov Models

After having been introduced in the late 1960s and the early 1970s, Hid-
den Markov Models (HMMs) [20, 21, 22] have grown popular in a wide range of
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Figure 1: Illustration of the extraction of turning angles at different time scales around an
arbitrary point (marked with an extra large spot) in a trajectory. From (a) an example
trajectory, we illustrate how the turning angles are computed at time scales (b) ∆t, (c) 2∆t,
(d) 3∆t, (e) 4∆t, and (f) 5∆t. The turning angles range from 0 (straight forward), through
π/2 (straight to the side, with no distinction between left and right) to π (straight backward).
In this example, all turning angles are smaller than π/2 except at the 5∆t scale, so the
corresponding, discretized binary turning angle vector would be (0, 0, 0, 0, 1).

fields. The key idea is to model a sequence of observations depending on a corre-
sponding unobserved (hidden) Markov chain, with a number of (hidden) states
between which random switching occurs. HMMs have been used previously to
model particle tracking data [23].

We assume that we have a (discrete-time) Markov chain with random switch-
ing between two states, corresponding to two different particle motions with
different directional persistence. For a trajectory of length T (particle position
recorded in T consecutive frames), this generates a state sequence S = s1s2...sT ,
for example ’1122221112111...’. The state sequence S is (stationary) Markov i.e.
the current state is only dependent on the previous state, so that

P (st = it|st−1 = it−1, st−2 = it−2, ...) =

P (st = it|st−1 = it−1) (1)

for all t i.e. the probability that the chain is in a particular state it at time t
only depends on the state it−1 at time t−1. The random switching is quantified
by the transition probabilities aij where

aij = P (st = j|st−1 = i) (2)

for all t and i = 1, 2 and j = 1, 2. We call the matrix A = {aij} the transition
matrix. The proportion of time spent in each state, π1 and π2, can be de-
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rived assuming reversibility and the detailed balance condition π1a12 = π2a21,
yielding

π1 =
a21

a12 + a21
andπ2 =

a12

a12 + a21
. (3)

In our case, the motion of the particle is observed, not the state sequence.
In the HMM, we consider this motion a random outcome from the probability
distribution of directions of the current state (known as the emission distribution
of the state). Recall that the directions follow a probability distribution over
{0, 1}n, where n is the number of time scales. Assume that for the state sequence
S, we have a corresponding observation sequence Q = q1q2, ..., qT . Let

θj(k) = P (qt = k|st = j) (4)

for all t and k ∈ {0, 1}n be the probability that we observe value k given that
the current state is j. Denote the two direction distributions for the two states
by θ(1) and θ(2). We can now compute the joint probability of a particular
state sequence and observation sequence given the transition matrix A and the
emission distributions θ(1) and θ(2),

P (Q,S|A, θ(1), θ(2)) = P (Q|S; θ(1), θ(2))P (S|A) =

θs1
(q1)...θsT

(qT )πs1
as1s2

...asT−1sT
. (5)

Interpreting P (Q,S|A, θ(1), θ(2)) as a function of its parameters for a fixed se-
quence of states and observations, this is the complete-data likelihood. However,
since we do not observe the state sequence, we wish to compute the probabil-
ity of the observations only, given the parameters, i.e. P (Q|A, θ(1), θ(2)). This
is obtained by summation of the joint probability P (Q,S|A, θ(1), θ(2)) over all
possible state sequences,

P (Q|A, θ(1), θ(2)) =
∑

S∈{1,2}T

P (Q|S; θ(1), θ(2))P (S|A). (6)

Interpreting P (Q|A, θ(1), θ(2)) as a function of its parameters for a fixed se-
quence of observations, this is the incomplete-data likelihood L(A, θ(1), θ(2)|Q),
from which maximum likelihood estimates of the transition matrix and the emis-
sion distributions can be obtained. However, the number of terms in this sum
grows exponentially in T , and directly maximizing the likelihood is infeasible
in practice. Fortunately, iterative maximization of the likelihood can be done
using the forward-backward (Baum-Welch) algorithm [21]. Once parameter es-
timates are obtained, one can find the most likely state for each time t in the
sequence and hence effectively segmenting the trajectory into states of different
directional persistence. Generalizing the HMM estimation scheme to several
sequences (several trajectories) is straightforward.

The traditional HMM inference scheme focuses on the case where all obser-
vations are ’unlabeled’, i.e. when the corresponding hidden state is unknown.
However, a key idea in our approach is to provide an algorithm with information
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on the characteristics of one of the two types of motion using data from a refer-
ence data set where some active processes have been inhibited. We can regard
those data as the outcome of a ’degenerate’ HMM where the state sequence
is ’111...1’. Thereby, we can estimate the probability distribution of directions
(the emission distribution) of state 1 from those data just by computing the

frequencies of observations for each value in {0, 1}n. These estimates θ̂(1) can
then be incorporated into the HMM machinery by replacing the likelihood with
a reduced likelihood Lreduced(A, θ(2)|Q) = P (Q|A, θ̂(1), θ(2)), now a function of
only A and θ(2).

2.3. Particle tracking experiments

Two types of activation is studied experimentally, transport along micro-
tubules and myosin-induced transport. In both cases, experimental observation
is performed in A7 cells [24] cultured in DMEM with 2% fetal calf serum, 8%
newborn calf serum (Invitrogen, Merelbeke, Belgium), 10 mM HEPES buffer,
and 100 unit/ml PenStrep at 37◦C and 5% CO2. MatTek dishes with No. 1
glass coverslip as the bottom are coated with 0.1 mg/ml collagen I for 2 h at
37◦C. The cells are then plated on dishes at 20 cells/mm2 over night.

For studying transport along microtubules, vesicles are tracked. Vesicles are
sub-micron spherical objects in the cell that bud off from cellular membranes to
form sub-micron-scale carriers that facilitate intracellular transport of materials.
In our experiment, vesicles are directly imaged with bright-field microscopy
using excitation from a 633 nm laser and a 63x/1.2NA water immersion lens on
a Leica TSC SP5 microscope. These vesicles are occasionally transported by
molecular motors along microtubule tracks. To inhibit this directional transport
in order to produce a reference data set, 10 µM nocodazole (Sigma-Aldrich,
Corvallis, MO), a chemical interfering with the polymerization of microtubules,
is added to cell media for 4 h incubation. The trajectories are recorded with
time lag ∆t = 0.107 s and pixel size ∆x = 0.096 µm.

For studying myosin-activated motion, polystyrene nanospheres are tracked.
Yellow-green fluorescent carboxylate-modified polystyrene nanospheres of nom-
inal size 200 nm (Molecular Probes, Invitrogen, Merelbeke, Belgium) are ren-
dered inert [25] by immersion in a 1 mg/ml PEG (4 kDa) conjugated poly-
L-lysine solution (Surface Solutions, Dübendorf, Switzerland) for 1 h at room
temperature, then washed twice with PBS, stored at 4◦C, and used within 48
hours. The particles are diluted to a final concentration of 107 part/ml in PBS
and injected into the cells by using a glass needle and a FemtoJet microinjector
(Eppendorf, Hamburg, Germany) mounted on a microscope. Each cell is only
injected with up to 50 particles to reduce the interference to cell function. Cells
are allowed to recover in culture medium for 6 h and are then imaged in culture
media at 37◦C and 5% CO2 on a confocal microscope using excitation from
the 488 nm line of an argon laser and a 63x/1.2NA water immersion lens on
a Leica TSC SP5 microscope. To inhibit the contracting activity generated by
myosin II motors in order to produce a reference data set, blebbistatin (Toronto
Research Chemicals, Toronto, Canada), a specific inhibitor that keeps myosin
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II in a weakly bound state to actin [26] is dissolved in DMSO and added to cell
media to a 10 µM final concentration for 30 min incubation. The trajectories
are recorded with time lag ∆t = 0.07 s and pixel size ∆x = 0.08 µm.

At least 50 cells were assessed over many independent experiments for both
the transport along microtubules and the myosin-activated motion and for both
wild type cells and cells treated with inhibitors. The images are processed
with particle tracking software written by J. Crocker, D. Grier and E. Weeks
(http://www.physics.emory.edu/∼weeks/idl/).

3. Results

We evaluate the method by studying transport along microtubules and
myosin-activated motion. First, the emission distribution of one of the states
is estimated from the reference data sets where activity has been inhibited by
addition of nocodazole and blebbistatin, respectively. Second, the Baum-Welch
algorithm for inference in the HMM is run with one of the emission distributions
fixed. A large number of runs is performed in parallel to ensure convergence
to the maximum likelihood parameter estimates, and the most likely state se-
quences are estimated. The result is a separation of the trajectories into ’active’
parts and ’not active’ parts. It is important to point out that ’not active’ in
this case refers to a specific type of activation being inhibited, whereas other
types of activation may still be present. In order to understand the nature of
the particle motion and the separation into different states, we consider several
parameters such as mean-squared displacement (MSD), duration of states and
particle speed. MSD plots are powerful tools to study the nature of motion. In
Fig. 2, we compare the MSD of the two identified states with the MSD of the
reference (inhibited) data sets. The reference data sets correspond to the ’not
active’ state, and the slopes of the corresponding MSDs indicate approximately
Brownian behavior. As can be seen, the ’not active’ state of the wild type
data shows very good agreement with the MSD of the reference data sets over
all time scales shown, suggesting a good identification of the specific modeled
activity. The fact that the agreement holds for time scales much longer than
the time scales included in the multi-scale directionality model indicates that
those time scales provide sufficient information to capture the essential behav-
ior of the specific activated motion. In Fig. 3, histograms of the durations of
different states are shown. For both data sets, substantially more time is spent
in the ’not active’ state, see also Tab. 1, the activations generally being short
bursts. In Fig. 4, histograms of speeds evaluated at a characteristic time scale
equal to the multiple of ∆t closest to the average duration of the ’active’ state
are shown. The difference in average speed is substantial between the states,
about a factor of 3 as can also be seen in Tab. 1. We also study example
trajectories from both data sets. In Fig. 5, an example trajectory for transport
along microtubules is shown. Turning angles, discretized turning angles, the se-
quence of probabilities of states and the identified most likely states are shown
together with the segmented trajectory itself. In Fig. 6, the same is shown for
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Figure 2: Mean squared displacements (MSDs) for (a) transport along microtubules and (b)
myosin-activated motion. Trajectories of particles in wild type cells are separated into an
’active’ state (yellow, diamonds) and a ’not active’ state (green, squares). The ’not active’
state shows very good agreement with the MSD of the reference (inhibited) data sets (black,
circles) over all time scales shown, suggesting a good identification of the specific modeled
activity. Slopes equal to 1 are indicated by dashed lines.
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Figure 3: Histogram of durations of different states for (a) transport along microtubules and
(b) myosin-activated motion. Trajectories of particles in wild type cells are separated into an
’active’ state (yellow) and a ’not active’ state (green).

Table 1: Results
Microtubules Myosin

Not active Active Not active Active
Time spent in state (%) 81.79 18.21 76.40 23.60
Mean duration (s) 3.2997 0.7830 1.6136 0.5082
Mean speed (µm/s) 0.1114 0.3733 0.1086 0.3254

the myosin-activated motion. The method here delivers a plausible identifica-
tion of active bursts, and we see clearly that there is switching between slower
and longer ’not active’ transport and faster and shorter ’active’ transport, in
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Figure 4: Histogram of speeds in different states for (a) transport along microtubules and
(b) myosin-activated motion. Trajectories of particles in wild type cells are separated into
an ’active’ state (yellow) and a ’not active’ state (green). The speeds are measured at a
characteristic time scale equal to the multiple of ∆t closest to the average duration of the
’active’ state.

agreement with what Figs. 3 and 4 indicates.

4. Discussion and conclusion

We have presented a method for identifying directional persistence in in-
tracellular particle motion using Hidden Markov Models (HMMs). Trajectories
of tracer particles are segmented by identifying states of different directional
persistence, using a model for turning angles in several time scales to character-
ize and quantify motion and the degree of directionality locally in every point
along the trajectory. We assume that the particle trajectories exhibit random
switching between two states, where the turning angle distribution of one of the
states is estimated from reference data sets where activity has been inhibited.
This prior ’calibration’ to a specific type of activation/inhibited activation is
one of the key points of the method. The reason is that arbitrary cutoffs to
define different types of motion, such as threshold values, can be avoided. The
method should be of interest in all cases where activation leads to increased
directional persistence.

We illustrate the usefulness of the method by transport of vesicles along
microtubules and myosin-activated motion of nanospheres. The resulting mean
square displacements, durations, and particle speeds within each state indicate
a good separation into ’active’ and ’not active’ states which is consistent with
the characteristics of ’not active’ as determined from reference data sets with
inhibited activation.

Regarding future work, the binary turning angle distribution used to quan-
tify directionality is quite crude and could be improved. The reason for introduc-
ing the binary approximation, taking into account only forward and backward
turns, was mainly to keep the number of parameters in the model low. Ide-
ally, using conceptually the same model, one would want to model a continuous
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Figure 5: An illustrative trajectory segment for transport along microtubules studied over a
40 s range. In (a), the turning angles at five different time scales (from bottom to top 0.07 s,
0.14 s, 0.21 s, 0.28 s, 0.35 s), where the color map goes from green (straight backward) through
black (straight to the side) to yellow (straight forward), are shown. In (b), the corresponding
discretized turning angles with forward (black) and backward (white) are shown. In (c), the
probability sequence that is thresholded at 0.5 to yield a segmentation of the trajectory into
’active’ and ’not active’ states is shown. In (d), the identified ’active’ (yellow) and ’not active’
(green) states are shown. In (e), the segmented trajectory itself is shown.
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Figure 6: An illustrative trajectory segment for myosin-activated motion studied over a 40 s
range. In (a), the turning angles at five different time scales (from bottom to top 0.07 s, 0.14
s, 0.21 s, 0.28 s, 0.35 s), where the color map goes from green (straight backward) through
black (straight to the side) to yellow (straight forward), are shown. In (b), the corresponding
discretized turning angles with forward (black) and backward (white) are shown. In (c), the
probability sequence that is thresholded at 0.5 to yield a segmentation of the trajectory into
’active’ and ’not active’ states is shown. In (d), the identified ’active’ (yellow) and ’not active’
(green) states are shown. In (e), the segmented trajectory itself is shown.
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distribution of turning angles, effectively estimating a conditional probability
distribution over the hypercube [0, π]n for each state. However, attempts to do
this indicated that the number of parameters in the model grows too large for
feasible inference. The 5 time scales selected is a trade-off both in terms of the
number of selected scales, and which scales are selected. On the one hand, an
analysis which is as ’localized’ as possible is appealing. On the other hand, a
single point along a trajectory contains no information, so by necessity, some
’rolling-window’ approach is inevitable. How to ’optimally’ select time scales
remains an open question, although the validity of a selection can be empirically
studied as shown herein. This approach introduces some dependencies between
consecutive observations in the HMM that could be accounted for in further
development of the method. Generalizations of the HMM e.g. the hierarchi-
cal Hidden Markov Model or the Hidden semi-Markov Model could be used to
generalize the model but would substantially increase the complexity.

In conclusion, using particle tracking to study how thermal and non-thermal
forces collaborate in the cell remains an important research topic for gaining
understanding on spatial organization, cell motility, import and export of mate-
rials, and internal transport. This new proposed framework for particle tracking
data analysis of activation, with calibration using a data set without activation,
shows promise for further investigations on the nature of intracellular motility.
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sis of active and passive transport in living cells, Phys Rev Lett 101 (2008)
248103.

[18] N. Gal, D. Lechtman-Goldstein, D. Weihs, Particle tracking in living cells:
a review of the mean square displacement method and beyond, Rheol Acta
52 (2013) 1–19.

13



  

[19] C. Pallavicini, M. Despósito, V. Levi, L. Bruno, Analysis of persistence
during intracellular actin-based transport mediated by molecular motors,
Journal of Physics: Conference Series 246 (2012) 012038.

[20] L. E. Baum, T. Petrie, Statistical inference for probabilistic functions of
finite state Markov chains, Ann Math Stat 37 (1966) 1554–1563.

[21] L. E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov
chains, Ann Math Stat 41 (1970) 164–171.

[22] L. E. Baum, An equality and associated maximization technique in statis-
tical estimation of probabilistic functions of Markov processes, Inequalities
3 (1972) 1–8.

[23] R. Das, C. Cairo, D. Coombs, A Hidden Markov Model for single par-
ticle tracks quantifies dynamic interactions between LFA-1 and the actin
cytoskeleton, PLoS Comp Biol 5 (2009) e1000556.

[24] C. Cunningham, J. Gorlin, D. Kwiatkowski, J. Hartwig, P. Janmey, H. By-
ers, T. Stossel, Actin-binding protein requirement for cortical stability and
efficient locomotion, Science 255 (1992) 325–327.

[25] M. Valentine, Z. Perlman, M. Gardel, J. Shin, P. Matsudaira, T. Mitchi-
son, D. Weitz, Colloid surface chemistry critically affects multiple particle
tracking measurements of biomaterials, Biophys J 86 (2004) 4004–4014.

[26] A. Straight, A. Cheung, J. Limouze, I. Chen, N. Westwood, J. Sellers,
T. Mitchison, Dissecting temporal and spatial control of cytokinesis with a
myosin II inhibitor, Science 299 (2003) 1743–1747.

14



  

-active switching 

behavior. 

-scale turning angle model describes directional persistence. 

ctivation is used as calibration. 

results. 


