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Local shear transformations in deformed and quiescent hard-sphere colloidal glasses
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We perform a series of deformation experiments on a monodisperse, hard-sphere colloidal glass while
simultaneously following the three-dimensional trajectories of roughly 50 000 individual particles with a confocal
microscope. In each experiment, we deform the glass in pure shear at a constant strain rate [(1–5)×10−5 s−1]
to maximum macroscopic strains (5%–10%) and then reverse the deformation at the same rate to return to zero
macroscopic strain. We also measure three-dimensional particle trajectories in an identically prepared quiescent
glass in which the macroscopic strain is always zero. We find that shear transformation zones exist and are
active in both sheared and quiescent colloidal glasses, revealed by a distinctive fourfold signature in spatial
autocorrelations of the local shear strain. With increasing shear, the population of local shear transformations
develops more quickly than in a quiescent glass and many of these transformations are irreversible. When
the macroscopic strain is reversed, we observe partial elastic recovery, followed by plastic deformation of the
opposite sign, required to compensate for the irreversibly transformed regions. The average diameter of the shear
transformation zones in both strained and quiescent glasses is slightly more than two particle diameters.
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I. INTRODUCTION

When an external stress is applied to a material, it deforms:
first elastically (reversibly) and then plastically (irreversibly)
when strained beyond the yield point. While the mechanisms of
deformation in crystalline materials have been well understood
for decades, a similar understanding of the deformation
mechanisms in amorphous materials remains a topic of
intense research. Theory [1–4] and simulation [5–9] predict
the existence of flow defects or shear transformation zones
that govern plastic deformation in glasses as dislocations do
in crystals. However, unlike dislocations, which are readily
observable as defects in an otherwise-regular crystal structure,
the corresponding entities in glasses are difficult to observe
directly in the amorphous structure and a full understanding of
their nature and origin is lacking. This insight is particularly
important for understanding the deformation and failure
mechanisms of bulk metallic glasses, a relatively new class of
strong materials that show considerable promise for structural
applications [10].

An ideal experiment to investigate deformation mecha-
nisms in a glass would simultaneously follow the microscopic
and macroscopic dynamics during quasistatic deformation.
In atomic and molecular glasses, however, the constituent
elements are simply too small and move too quickly for this
ideal experiment to be possible. Colloidal glasses provide
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unique experimental systems for probing the structure and
dynamics of glasses over the complete range of length
scales from the individual colloidal particles up to the
bulk amorphous material [11,12]. Monodisperse, hard-sphere
colloidal particles can easily be made to form glasses by
sedimentation onto flat or patterned substrates, with the
resulting structure dependent on the deposition flux and the
boundary condition imposed by the substrate [13]. The relative
ease of both structure formation and detailed observation in
three dimensions using optical microscopy makes colloidal
glasses ideal for studying structure-property relations in a
generic amorphous solid. Experiments on the deformation
of hard-sphere colloidal crystals proved to be in excellent
agreement with classical dislocation theory [14–18], which
gives us confidence that these systems provide a reliable
scaled-up picture of phenomena on the atomic level.

Experiments on hard-sphere colloidal glasses under shear
deformation [11,19] identified shear defects as localized
regions of high irreversible strain and concluded that they can
be described by Eshelby’s analysis [20,21] of a highly strained
inclusion coupled to an elastic isotropic surrounding medium.
For a shear transformation of a spherical inclusion of radius a

with unconstrained transformation shear strain εT
yz = γ /2 and

the same elastic properties as its surroundings, the shear strain
field in the y-z plane is
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FIG. 1. (Color online) Plots of the (a) x-y, (b) x-z, and (c) y-z cross sections of the 3D spatial autocorrelation function of the εyz analytic
strain field for a single ideal Eshelby inclusion of radius 2.25 μm embedded in an infinite isotropic elastic medium with Poisson ratio ν = 1/3.
This three-dimensional correlation pattern with its characteristic fourfold pattern in the y-z plane is the signature of Eshelby inclusions active
in an elastic matrix.

where c = 1/4(4 − 5ν) is a dimensionless elastic constant,
with ν Poisson’s ratio, r(y,z) the position vector with origin at
the center of the inclusion, and θ = cos−1(z/r). Details of the
derivation and the full three-dimensional (3D) expression are
given in the Appendix [Eq. (A5)].

The cos (4θ ) dependence of the strain field outside the
inclusion produces a characteristic fourfold pattern in the
y-z plane. The presence of this pattern is the signature that
Eshelby inclusions are active in the material. Experimentally,
the strain field is analyzed by its autocorrelation function.
Figure 1 shows the 3D spatial autocorrelation function of the
analytic εyz strain field of Eq. (A5) on the three orthogonal
coordinate planes. The plot on the y-z plane maintains
the characteristic fourfold symmetry. Recent experiments
observed this fourfold signature in spatial autocorrelations
of local strain measured for a density-matched poly(methyl
methacrylate) colloidal glass during steady-state homogenous
deformation [19]. The same signature was also recently seen
in 2D simulations of supercooled liquids under shear [9].

However, much remains unknown about these shear trans-
formation zones that behave as Eshelby inclusions: Do they
exist in the absence of applied strain? How does their
population evolve with time and applied strain? What happens
to these defects when the macroscopic applied strain is
reversed?

Here we show that shear transformation zones are active
in both quasistatically sheared and quiescent (i.e., unde-
formed) colloidal glasses. We confirm that these regions
are Eshelby-type shear inclusions. In the absence of applied
strain, shear transformation zones are thermally activated in
all directions and produce zero macroscopic strain. When a
uniform macroscopic shear strain is applied to the glass beyond
the yield point, a fraction of these shear defects transforms
irreversibly in the direction of the applied shear. When the
applied macroscopic strain is reversed, we observe an initial
elastic recovery followed by plastic deformation governed by
inclusions of the opposite sign until the macroscopic strain has
fully returned to zero.

II. EXPERIMENTS

We perform experiments with hard-sphere colloidal silica
particles with a polydispersity <3.5% and diameter 2R =
1.55 μm [22] in a mixture of dimethyl sulfoxide (62.8% by
volume), deionized water (36.0% by volume), and fluorescein-
NaOH dye solution (1.2% by volume). The particles have
nearly twice the density of the surrounding fluid, with a
density difference of �ρ = 0.94 g/cm3. The Péclet number
for sedimentation at room temperature under earth’s gravity
is Pe = �ρgR4/kBT = 0.83, which means that the rates of
sedimentation and diffusion are similar. The dye solution is
3% by weight fluorescein-NaOH in water, which both enables
fluorescent imaging of the sample and reduces the Debye
screening length of the particles to less than 10 nm. The fluid
phase matches the index of refraction of the particles and has
a viscosity η = 1.6 mPa s.

We prepare colloidal glasses directly in the sample cell by
high-flux sedimentation at 1g onto an amorphous template
[23], starting from an initial volume fraction φ0 of about 3.5%.
These conditions result in a dimensionless deposition flux of
φ0Pe = 0.03, which corresponds to a very slow quench rate,
just high enough to ensure glass formation [13], so that we
form as relaxed and low energy a glass as possible. After
sedimentation is complete, the colloidal glass has a total
thickness of about 250 μm. The volume fraction at the bottom
of the sediment, where the experiment takes place, is φ = 62%
as measured by particle counting. A radial distribution function
g(R) of one of the systems studied is shown in Fig. 2. We
verify that there are no crystalline regions anywhere in the
sample by directly imaging the entire shear gap throughout
the experiment.

We apply deformation to colloidal glasses with a shear
apparatus that allows simultaneous three-dimensional imag-
ing of the individual colloidal particles with a confocal
microscope. A schematic of the shear apparatus is shown
in Fig. 3. The colloid is contained in a cylindrical metal
sample reservoir ∼1 cm in diameter that is integrated into
the shear apparatus. The reservoir is sealed at the bottom by a
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FIG. 2. Radial distribution function g(R) of the colloidal glass
(dots). The radial distribution of the random close packing of
Finney [24] (dashed line), scaled for the same particle diameter, is
shown for comparison.

0.17-mm-thick glass coverslip affixed with glue. This coverslip
is microlithographically patterned with an amorphous template
etched into the glass that prevents crystallization of the sample
during glass formation [23]. The entire shear cell apparatus,
including the sample reservoir, is fixed to the microscope stage
and does not move over the course of the experiment.

We use a computer-controlled piezoelectric actuator to
apply the shear deformation. The actuator has a maximum
travel of 80 μm in the y direction and an accuracy ±5 nm. It is
mechanically coupled to the glass by a perforated hollowed-out
metal cylindrical post with a fine gold 300-mesh transmission
electron microscope (TEM) grid that spans the bottom of the

FIG. 3. On the top is the side view of the assembled shear cell,
drawn to scale. Shear is applied to a sample in the reservoir with a
piezoelectric actuator that is mechanically coupled to the sample via
a height-adjustable post. On the bottom is the cross section schematic
of the sample reservoir, not to scale. Shear can be applied positively
or negatively along the y direction.

post and is embedded in the glass. The TEM grids have a
bar width of 10 μm and a 73-μm empty spacing between
the bars, so the grid does not interfere with the sedimentation
process. The height of the grid is adjustable by a No. 2-56
screw that moves the post vertically. The shear gap �z is
the separation between the bottom of the TEM grid and the
amorphous template. In the experiments reported here, the
gap was �z = 45 μm. The maximum available strain rate
is about 10−2 s−1, limited by the step sizes for the piezo
having to be small compared to the particle size and by the
maximum communication rate from the computer to the piezo
controller. However, because we are interested in homogenous
deformation, all of our experiments are conducted well below
this upper limit.

The entire shearing setup is assembled and the shear gap
geometry fixed prior to the introduction of the initially dilute
colloid. Sedimentation is complete within about 2 h, after
which the glass is allowed to relax further for 6 h. By quenching
the glass directly in the sample cell, we ensure that the glass
has never experienced any strain prior to the experiment. This
procedure embeds the TEM grid deep inside the sample, about
200 μm below the surface of the sediment, ensuring strong
contact between the colloid glass and the grid.

Each deformation experiment consists of a single strain
cycle: We apply a uniform macroscopic shear strain to the glass
at a strain rate γ̇yz, up to a maximum macroscopic strain γmax,
and then reverse the deformation at an equal, but opposite,
strain rate until the macroscopic strain returns to zero. A period
of quiescence follows each deformation experiment before the
start of the next one. We will focus most of our discussion on
a single representative experiment taken from a sequence of
five consecutive independent plastic deformation experiments:
experiment 1, to γmax = 5.0% at γ̇ = 5.0×10−5 s−1; experi-
ment 2, to γmax = 10.0% at γ̇ = 5.0×10−5 s−1; experiment
3, to γmax = 10.0% at γ̇ = 2.0×10−5 s−1; experiment 4, to
γmax = 5.0% at γ̇ = 5.0×10−5 s−1 (a repeat of experiment
1); and experiment 5, to γmax = 5.0% at γ̇ = 2.0×10−5 s−1.
Between each experiment, the glass sample was quiescent
for 1000 s, during which time we continued to image the
particles. All of these strain rates are slow enough to ensure
macroscopically uniform deformation (no shear bands), as
confirmed by the strain measurements and direct observation.
The maximum macroscopic strains exceed the measured yield
point of this colloid glass, γyield ≈ 2% [25,26], as well as that
of metallic glasses, which are the closest atomic analog [27].

Here we focus on the results of the slowest 10% maximum
strain experiment (experiment 3) because this gives us the
best time resolution. We additionally include results from the
other 10% strain experiment (experiment 2) for the purpose
of comparing the effects of strain rate. Finally, we report
observations on a quiescent glass to which we never applied
strain, but which had otherwise identical preparation and
experimental conditions as the deformed glass.

Although the strain we apply is cyclic, it is impor-
tant to note that these are not oscillatory strain experi-
ments. Oscillatory strain experiments [28–30] and simulations
[31–33] typically involve deforming a glass through large
numbers of strain cycles toward a steady-state oscillation, also
usually at strain rates that are orders of magnitude higher
than in our experiments. Our experiments focus on the initial
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FIG. 4. Example of the confocal raw data, showing the high-
resolution central stack (4.5 μm � z � 30 μm) overlaid on the low-
resolution stack that spans the entire shear gap from the stationary
template to the moving TEM grid. Part of one of the bars of the
TEM grid is visible in cross section at the top of the image (40 μm
� y � 48 μm). The top of the amorphous template is just visible
as dark bumps at the bottom of the image. A video of this cross
section in motion during a deformation experiment is available online
in Ref. [34].

deformation of a glass at very low quasistatic strain rates and
we reverse the strain in order to probe the reversibility of the
local deformations.

All samples are imaged from below in three dimensions
using a Leica SP5 point-scanning confocal microscope. All
image stacks are taken far from the edges of the template and
from the sample cell walls to avoid possible boundary effects.
During deformation experiments, we take two image stacks
at each time step: a low-resolution stack that spans the entire
shear gap and a high-resolution image stack in the middle of
the shear gap, about 10 μm away from either top or bottom
of the gap. The low-resolution images allow us to monitor the
entire shear gap and verify that there is no slip at either the
amorphous template or the TEM grid nor any inhomogeneous
shear effects that might change the effective applied strain.
The high-resolution stack provides the data that we use for
locating the particles and subsequent analyses. Figure 4 shows
an example composite y-z cross section through the raw image
data, with the high-resolution central region overlaid on the
low-resolution stack. It takes about 5.5 min to acquire both
stacks and we repeat the scans every 6 min. This is fast enough
at the applied strain rates for each image stack to represent a
snapshot of the particle configuration at that time.

III. RESULTS

From the raw stacks of confocal images, we locate the
centers of all particles in three dimensions using standard
particle location software [35], run iteratively to minimize
missed or doubly located particles [23]. We then convert
the coordinates from units of pixels to micrometers using
an experimentally calibrated conversion factor [36]. Finally,
we link the particle locations over time into 3D trajectories,
including trajectories that begin or end as particles near the
edge move into or out of the field of view. These trajectories
are the basis of all subsequent analyses.

FIG. 5. (Color online) (a) Reconstruction of a small region of
the colloidal glass when the applied strain was at its maximum
γyz = 0.1, marked as point (3) in (c). Particles in the reconstruction are
colored according to their individual strain εyz; those with |εyz| � 0.1
are rendered opaque. (b) Deformation profile z vs �y at the same
time, with a straight-line fit through the data. (c) Macroscopic strain
measured in three ways: the applied strain (red dashed line), fitting
the deformation profiles like (b) (blue squares), and the average of all
the individual particle strains 2〈εyz〉 (black triangles). The measured
strains orthogonal to the applied strain 2〈εxy〉 and 2〈εxz〉 are shown as

gray solid and dot-dashed lines, respectively. The rms strain 2
√

〈ε2
yz〉

is plotted as solid black dots.

The vector displacements of each particle’s nearest neigh-
bors between a reference time tref at the beginning of the
experiment and some later time t sample the displacement field
in the vicinity of each particle since tref . Nearest neighbors
are defined as all particles closer to a given particle than a
distance equal to the first minimum of the radial distribution
function (shown in Fig. 2) and only neighbors that have moved
no farther than the second neighbor shell at t are considered
in strain calculations. From the neighbor displacements, we
calculate [5] the local affine deformation tensor αij at each
particle. By separating this tensor into its symmetric and
antisymmetric parts, we obtain, respectively, the local strain εij

and rotation ωij tensors measured at each individual particle. A
reconstruction of a small region of the glass with each particle
colored according to its local εyz strain accumulated since the
start of the experiment is shown in Fig. 5(a), with particles
experiencing the largest strains drawn opaque.

During a deformation experiment, the externally applied
macroscopic strain is equal to the displacement of the
piezoelectric actuator over time divided by the shear gap.
We measure the macroscopic shear strain γ experienced by
the sample since the reference time at the beginning of the
experiment, in two ways. The first is from the slope of the
deformation profile, which is a plot of the displacements of
the individual particles as a function of height in the sample,
as in Fig. 5(b). When the deformation profile is a straight
line, as it is in our experiments, the macroscopic strain is
uniform throughout the sample and equal to the inverse of the
slope of the line. Second, the macroscopic strain experienced
by the sample is equal to twice the average local shear strain
2〈εij 〉. We find close agreement between the applied strain, the
macroscopic strain obtained from the deformation profiles, and
the average local y-z strain over time, as shown in Fig. 5(c).
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FIG. 6. (Color online) Evolution of strain and strain correlations in the colloidal glass during a shear experiment. The time and macroscopic
strain corresponding to columns (1)–(5) are indicated in Fig. 5(c). Row (a) shows the deformation profiles. Row (b) shows the top-view
reconstructions showing only those particles with individual strain |εyz| > 0.1, colored according to their strain. On strain reversal, some of the
regions of particles that acquire a high positive strain (red) return to a low-strain configuration and disappear from the reconstruction; others
experience an irreversible local deformation and remain in a high-strain state at the end of the experiment. These are compensated for by other
regions that deform in the opposite direction (blue) so that at the end the average strain is zero at time (5). Row (c) shows the y-z plane cross
sections of εyz spatial autocorrelations, showing the evolution of the fourfold pattern that is the signature of Eshelby inclusions active in the
material.

Figure 5(c) also shows that the other average shear strain
components 2〈εxy〉 and 2〈εxz〉 remain close to zero throughout
the experiments. In quiescent experiments, all components of
the average local strain remain near zero over time.

The evolution of the macroscopic and local strain during
deformation are shown in Fig. 6, with the reference state for the
strain set the beginning of the experiment prior to any applied
strain. Each row in Fig. 6 shows the results of measurements
made at the times [(1)–(5)] indicated in Fig. 5(c). Row (a)
shows the measured deformation profiles. Row (b) shows
top-view reconstructions of only those particles with the
highest magnitude strain, colored according to the local εyz

shear strain. Note that the strains at individual particles can
significantly exceed the macroscopic strain and that some even
oppose the direction of the applied strain.

A similar summary of the evolution of the macroscopic and
local strain during a quiescent experiment is shown in Fig. 7.
This figure shows measurements of the quiescent glass at the
same time intervals as in Fig. 6, although these times obviously
have no particular significance in the quiescent experiment. In
this experiment, the deformation profile broadens slowly, but
remains vertical and centered at zero over time. We observe a
coarsening and heterogeneity of the local strain field over time
that is similar to that observed in the deformation experiment,
but which develops more slowly.

We quantify this evolving heterogeneity of the local strain
field by computing the root-mean-square (rms) strain over

time, averaged over all the particles 2
√

〈ε2
yz〉. During the

quiescent experiment, the rms strain increases linearly with
time with a slope of 0.59×10−5 s−1. This reflects a steady
coarsening of the local strain field, corresponding to a steady
broadening of the distribution of local strains about a mean
macroscopic strain of zero [Fig. 7(a)].

With applied shear deformation, the rms strain evolves
differently [Fig. 5(c)]. During the initial macroscopic defor-
mation from zero to γmax, the measured rms strain experienced
by the glass increases linearly at 2.6×10−5 s−1, significantly
faster than the background thermal rate. The rms of εδ(r) =
ε(r) − 〈ε(r)〉, the local strain minus the macroscopic strain,
also increases linearly with time, at a rate of 1.8×10−5 s−1,
three times faster than in the quiescent sample. On strain
reversal, however, the rms strain actually decreases to a
minimum over several percent recovered strain and then begins
to rise again before the macroscopic strain returns to zero.
The amount of rms strain recovery and the macroscopic
deformation over which the recovery occurs are independent
of strain rate at the relatively slow strain rates used in our
experiments, as shown in Fig. 8.

We look for patterns in the evolution of local particle strain
by computing the unnormalized three-dimensional spatial
autocorrelation [9,19] of the zero-mean local strain field per
particle Cε(�r) = 〈εδ(r)εδ(r + �r)〉, where �r are all of the
interparticle distances. The results are shown in the y-z cross
section in Fig. 6(c) as they evolve over the course of the
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FIG. 7. (Color online) Evolution of strain and strain correlations in a quiescent colloidal glass. The time intervals are chosen to match those
of Fig. 6, although these times have no particular significance in the quiescent experiment. Row (a) shows the deformation profiles, showing
broadening but no deformation. Row (b) shows top-view reconstructions showing only those particles with individual strain |εyz| > 0.03,
colored according to their strain. At any time, there are equal numbers of high positive (red) and negative (blue) particles. Row (c) shows the
y-z plane cross sections of εyz spatial strain correlations, showing the evolution of the fourfold Eshelby signature. The position axes for all
figures are identical to the corresponding plots in Fig. 6. Rows (b) and (c) have smaller color scales in this figure.

experiment. The three orthogonal cross sections at maximum
strain are shown in Fig. 9. For consistency, we use a fixed
color scale of ±0.1〈εδ〉max for all of these plots, chosen so that
the pattern with the maximum dynamic range would be shown
clearly.

A distinct fourfold pattern is apparent in the strain cor-
relations. With a more sensitive color scale, the fourfold
pattern is visible even in the first measurement, at which

FIG. 8. Plot of the rms strain vs macroscopic strain for experi-
ments 2 and 3. These had the same maximum strain (γmax = 10.0%)
but strain rates that differed by a factor of 2.5.

time no macroscopic strain has yet been applied. Over time,
the fourfold pattern becomes quite pronounced. In Fig. 6 we
see that the fourfold pattern remains strong even after the
macroscopic strain is completely reversed.

We quantify the development of the Eshelby core and
surrounding pattern in the y-z strain field correlations by
taking azimuthal averages in the y-z plane of the 3D spatial
strain autocorrelation. These results are shown in the upper
plot of Fig. 10 for the same five time points as in the previous
figures. The curves in the upper plot of Fig. 10 show that
the average inclusion core size increases somewhat with time
during the initial positive deformation and does not reduce in
size on strain reversal. By comparing the zero crossing and
the position of the minimum of the azimuthal average to the
analytic calculation, we estimate the average inclusion core
radius to be 1.8 μm, consistent with earlier observations [11].
An example of a specific inclusion with a slightly larger core
radius is shown in Fig. 11.

Remarkably, the same fourfold signature appears in the
spatial correlations of the local shear strain in the quies-
cent sample, even though there is no applied strain. Some
correlations between strains in quiescent glasses have been
observed [37], but the fourfold signature that we observe
specifically demonstrates the presence of Eshelby-type shear
transformations. These correlations are shown in the y-z cross
section in Fig. 7(c) as they evolve over time and all three
orthogonal cross sections at the final time are shown in Fig. 12.
Again, we use a fixed color scale of ±0.1〈εδ〉max for these
plots; note, however, that in the quiescent sample, 〈εδ〉max

is almost ten times smaller than in the sheared sample and
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FIG. 9. (Color online) Plots of the (a) x-y, (b) x-z, and (c) y-z cross sections of the spatial autocorrelations of the εyz strain field at maximum
applied strain (γmax = 10.0%, t = 5040 s), revealing the characteristic 3D structure of an Eshelby inclusion (shown in Fig. 1).

so the color scale is accordingly different from that in the
figures for the sheared sample. We also show the azimuthal
averages of the strain autocorrelation for the quiescent sample
in the lower plot of Fig. 10. We observe that the fourfold
pattern appears more slowly than in the deformed sample,
the magnitude of the correlations is smaller after the same
time intervals, and the inclusion core is slightly smaller.
To confirm that this signature is the result of correlated
motions and cannot arise from random displacements, we
computed the strain fields and spatial correlations for simulated
Gaussian-distributed displacements from the positions of the
reference glass (standard deviations 1%–20% of the particle
diameter) and found no such signature.

IV. DISCUSSION

The deformation profiles demonstrate that the macroscopic
strain experienced by the glass is homogenous during the
deformation experiments. Some regions, however, undergo
significantly higher than average local strain. These are the
flow defects or shear transformation zones that govern plastic
deformation in the glass. We can see examples of these and
their strain fields directly, as in the example of Fig. 11 and in
earlier work [11], but their presence is most apparent in the
spatial correlations of the local strain field. The fourfold pattern
of alternating positive and negative correlation surrounding
the positive core in the plane of that shear strain component is
the characteristic signature that these local high-strain regions
transform as Eshelby inclusions. Over time, the fourfold
Eshelby signature strengthens, corresponding to an increasing
concentration in the material of regions that have transformed
as Eshelby inclusions since the start of the experiment. That the
Eshelby signature remains dominant in the correlations over
time and with applied strain indicates that these inclusions are
the dominant plastic deformation mechanism in the glass.

Interestingly, we observe the same fourfold Eshelby signa-
ture in quiescent glass strain field correlations. This means that
the same type of shear transformations exist and are active in
the quiescent glass, where only thermal energy is available to
drive the transformations. However, the inclusion activation is
slower than in the deformed glass and we observe significantly
less motion over the same time intervals; the correlation

signature, breadth of the displacement profile, and rms strain
all grow more slowly in the quiescent experiment than in its
deformed counterpart. Further, without any applied strain to
provide a directional bias, the purely thermally activated inclu-
sions in the quiescent sample produce no macroscopic strain.

Deformation of a material has elastic and plastic compo-
nents. Upon reversal of the strain, if the deformation were
purely elastic, we would expect all of the local strain to be fully
reversible and the particles to return to their initial positions.
If the deformation were purely plastic, we would expect to
see no reversibility; rather, the strain reversal would simply
cause plastic deformation to begin immediately in the opposite
direction. We observe an intermediate behavior: partial elastic
recovery followed by new plastic deformation in the reverse
direction. This behavior is characteristic of a material that
has been loaded elastically and then driven beyond its yield
strain [26] prior to strain reversal.

From the reconstructions of local strain in row (b) of Fig. 6,
we see directly that the local strain is reversed in two ways.
Some regions that attained a high local strain (colored red)
disappear from the reconstruction as the strain is reversed
[between time (3) and time (4)]. In these locations, the strain
was locally reversible and when the applied strain was reversed
the particles returned very nearly to their original configura-
tions. In other regions, the local strain was irreversible; these
regions retain a high positive local strain (red) even when
the macroscopic strain has returned to zero. To compensate,
other regions transform with high-magnitude strain in the
opposite sense (blue) so that the average strain remains equal
to the applied strain. As the strain is reversed, the fourfold
Eshelby signature remains strong because of the irreversibly
transformed regions. As plastic deformation eventually begins
in the opposite direction, the new, negative inclusions also
contribute positively to the spatial strain correlation [9].

The decrease in rms strain observed on strain reversal
results from recovery of stored elastic displacements. Once
all the stored elastic strain has been reversed, the glass is in a
state of zero stress, but still has a net positive strain from the
irreversible plastic deformation that it experienced after yield.
In order to return to net zero macroscopic strain, the glass
must undergo new plastic deformation in the reverse direction
to undo this residual strain. This causes the subsequent rise in
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FIG. 10. Azimuthal average in the y-z plane of the spatial
autocorrelation of the εyz strain field. The radial distance is measured
from the correlation center for the sheared (top) and quiescent
(bottom) samples. The times refer to Fig. 5(c). The scale of the
vertical axis for the sheared plot is ten times that of the quiescent
plot.

the rms strain late in the experiment as the macroscopic strain is
driven to zero. The rms strain does not return to zero precisely
because the material has undergone irreversible internal rear-
rangements that are not undone by reversing the macroscopic
strain. We do not expect a perfect return to zero rms strain
even below yield because there always exists some thermal
background of local shear transformations, as the quiescent
experiment demonstrates. However, since the maximum strain
in our deformation experiments is beyond yield, the rms strain
is driven well above the thermal background and does not
recover even to the thermal background on strain reversal.

In the core of the inclusions, where the strains are largest,
the deformation is less affine than in the surrounding matrix,
where the strains are smaller. Because the strains in the matrix
are more affine, it is still possible to obtain a clear fourfold

FIG. 11. (Color online) Example of an Eshelby inclusion
(opaque) and its surroundings (semitransparent) reconstructed from
an experiment with a hard-sphere glass deformed at slightly under
γ̇ = 10−5 s−1. Particles are colored according to their local shear
strain εyz, with red indicating high positive strain and blue indicating
negative strain. Dashed lines approximately indicate the fourfold al-
ternating positive and negative strain field surrounding the inclusion.

autocorrelation pattern, even with a considerable nonaffine
deformation in the core.

V. CONCLUSION

We followed the 3D trajectories of roughly 50 000 in-
dividual particles in colloidal glasses under conditions of
quiescence and applied shear deformation. We measured the
macroscopic and local strain in the glasses and observed an
evolving fourfold pattern in spatial autocorrelations of the local
strain field, both with and without deformation. These fourfold
patterns indicate that the dominant deformation mechanisms
in the glass are shear transformation zones that behave as
Eshelby inclusions: local regions of high plastic strain that
couple elastically to the surrounding material. These inclusions
exist and are active even in the absence of applied strain;
the available thermal energy can be sufficient to activate
them, although without any directional bias they contribute
no macroscopic strain.

With applied strain, we find that the Eshelby signature
evolves more quickly. The applied shear stress biases the popu-
lation of inclusions in the direction of the applied strain, so they
contribute to the macroscopic deformation. When the glass is
strained beyond yield, many of the local transformations are
irreversible and result in permanent plastic deformation. These
contribute a net positive strain from within the material. The
result is a permanent fourfold Eshelby signature in the strain
correlations and an rms strain that remains above the thermal
background even when the macroscopic strain has returned to
zero. As we drive the material back to zero macroscopic strain,
these irreversibly transformed regions are compensated for by
the activation of inclusions with a negative internal strain.
The average diameter of the inclusions at 10% shear strain is
2.3 particle diameters.
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FIG. 12. (Color online) Plots of the (a) x-y, (b) x-z, and (c) y-z cross sections of the spatial autocorrelations of the εyz strain field at the
longest time interval [corresponding to Fig. 7, column (5)]. The correlations in the quiescent glass exhibit the same characteristic 3D structure
as those for the calculated strain of an Eshelby inclusion (Fig. 1).

The rms strain also increases faster with applied strain than
it would just from the available thermal energy; on strain
reversal, the rms strain drops to a local minimum over several
percent strain recovery until the glass attains a state of zero
stress. The drop in rms strain corresponds to a decrease in the
energy stored in the strain field; the elastic energy that was
stored in the glass during its initial, elastic loading is being
recovered. Finally, the rms strain starts to rise again as the
glass begins to deform plastically in the opposite direction.
Because this is the only way that net zero macroscopic strain
can be reached, it causes a new increase in the rms strain since
the negative-strain inclusions contribute positively to the rms
strain.

The regions that can transform as Eshelby inclusions exist
and can be thermally activated in a quiescent glass. We have
also directly observed additional examples in our experiments
of particle clusters that directly exhibit the strain signature
of the Eshelby fourfold pattern, such as the one shown in
Fig. 11.
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APPENDIX: ANALYTIC STRAIN FIELDS

Eshelby calculates the three-dimensional displacements
for a spherical inclusion with an unconstrained transforma-
tion shear strain εT

yz = γ /2 and inclusion radius a in an

isotropic elastic medium with dimensionless elastic constant
c = 1/4(4 − 5ν). Here ν is Poisson’s ratio, taken to be 1/3 for
this colloidal glass [11,13].

The shear strain inside the inclusion when it is embedded
in the elastic matrix is

ε0
yz = γ

4 − 5ν

15(1 − ν)
. (A1)

For such an inclusion, the displacements at distances r =√
x2 + y2 + z2 outside the inclusion are

ux = ε0
yza

3

{
6c(r2 − a2)

(
5xyz

r7

)}
, (A2)

uy = ε0
yza

3

{
z

r3
+ 6c(r2 − a2)

(
5y2z

r7
− z

r5

)}
, (A3)

uz = ε0
yza

3

{
y

r3
+ 6c(r2 − a2)

(
5yz2

r7
− y

r5

)}
. (A4)

This result holds if the elastic constants are the same for the
matrix and the inclusion. The full deformation tensor is αij =
∂ui

∂rj
and the strain tensor εij is the symmetric part of αij . The

resulting shear strain outside of the inclusion core, expressed
in cylindrical coordinates, is

εyz(r,θ,x) = a3ε0
yz

4(r2 + x2)9/2
{9a2cr4 − (2 + 3c)r6

+ 9cr2(−8a2 + 5r2)x2 + 6[r2 + 4c(a2 + r2)]x4

+ 4(1 − 6c)x6 + 15cr4[−7a2

+ 5(r2 + x2)] cos (4θ )}, (A5)

where as above r(y,z) is the position vector from the center of
the inclusion and θ = cos−1(z/r).
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