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SUMMARY

Molecular motors in cells typically produce highly
directed motion; however, the aggregate, incoherent
effect of all active processes also creates randomly
fluctuating forces, which drive diffusive-like, non-
thermal motion. Here, we introduce force-spec-
trum-microscopy (FSM) to directly quantify random
forces within the cytoplasm of cells and thereby
probe stochastic motor activity. This technique com-
bines measurements of the random motion of probe
particles with independent micromechanical mea-
surements of the cytoplasm to quantify the spectrum
of force fluctuations. Using FSM, we show that
force fluctuations substantially enhance intracellular
movement of small and large components. The fluc-
tuations are three times larger in malignant cells than
in their benign counterparts. We further demonstrate
that vimentin acts globally to anchor organelles
against randomly fluctuating forces in the cytoplasm,
with no effect on their magnitude. Thus, FSM has
broad applications for understanding the cytoplasm
and its intracellular processes in relation to cell phys-
iology in healthy and diseased states.

INTRODUCTION

The cytoplasm of living cells is not a static environment but is

instead subjected to a wide variety of forces (Howard, 2001).

For example, molecular motors such as kinesin and dynein

generate forces that directionally transport cargo along micro-

tubule tracks, while myosin II motors actively contract actin fil-

aments (Vale, 2003). These active processes all have clearly

established functions in the cell, and their individual forces

have been precisely quantified (Svoboda and Block, 1994;
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Vale, 2003). Collectively, these forces have important conse-

quences in the cytoplasm: several motors operating coher-

ently can generate large forces for directional transport

(Hendricks et al., 2012; Rai et al., 2013). On an even larger

scale, the cooperative activity of a large number of motors

and other active processes collectively drive critical functions

at the level of the whole cell, such as division, migration, and

contraction (Doyle and Yamada, 2010; Dufrêne et al., 2011;

Grashoff et al., 2010; Gundersen and Worman, 2013; Heisen-

berg and Bellaı̈che, 2013). However, the aggregate effect of

all the motors and active processes also contribute an inco-

herent background of fluctuating forces, and the ensemble

aggregate of the forces from the incoherent effects of all

cellular activities is directly associated with the functional effi-

ciency and the overall metabolic state of the cell (Doyle and

Yamada, 2010). In the cytoplasm, these fluctuating forces

can give rise, for instance, to random motion of vesicles, mito-

chondria, and signaling proteins (Ananthanarayanan et al.,

2013; Brangwynne et al., 2008a; del Alamo et al., 2008; Ham-

mar et al., 2012; Han et al., 1999; Jaqaman et al., 2011;

Kyoung and Sheets, 2008) and may drive an even broader

range of intracellular dynamics.

Because the motion that arises from fluctuating forces in the

cytoplasm is random, little previous effort has been made to

quantify these forces. Indeed, many researchers have inter-

preted random cytoplasmic motion as arising primarily from

thermally-induced diffusion, not recognizing the role of overall,

aggregate forces. The ensemble forces from overall cellular ac-

tivity are likely to have a large effect on overall motion within the

cytoplasm and would change as the biochemical processes

giving rise to these forces are altered during different cell condi-

tions. These forces could thus be a critical readout of the dy-

namic state of the cell. Because of this, we sought out a direct

way to measure aggregate forces within the cytoplasm, aiming

to devise methodology for quantifying these forces and testing

how they impact different cell states and control motion of cyto-

plasmic components.
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Figure 1. Movements of Microinjected

Tracer Particles in Living Cells

(A) Bright-field image of anA7 cellwithmicroinjected

200-nm-diameter fluorescence particles (green) and

2min trajectories (black) superimposedontop.PEG-

coated particles are microinjected into cells grown

on collagen-I-coated, glass-bottom dishes. Particle

trajectories in the cytoplasm look very similar to

thermal Brownian motion. Scale bar, 5 mm.

(B) Two-dimensional ensemble-averaged mean-

square displacement (MSD) < Dr2(t) > of PEG-

coated tracer particles of various sizes are plotted

against lag time on a log-log scale, in living A7

cells. Red, green, and blue symbols and lines

represent particles that are 100, 200, and 500 nm

in diameter, respectively. Dashed lines indicate a

logarithmic slope of 1. Measurements are done

with more than 200 tracer particles in about 25

individual cells for each particle size.

(C) Ensemble-averaged MSD scaled with particle

diameter, in untreated (solid symbols), blebbistatin

treated (open symbols), and ATP-depleted (solid

lines) A7 cells.

See also Figure S1 and Movie S1.
Toward this end, we introduce force spectrum microscopy

(FSM), an approach that probes the frequency dependence of

the aggregate, incoherent cytoplasmic forces within a cell. To

accomplish this, we combine independent measurements of

the intracellular fluctuating movement of injected particles with

measurements of the mechanics of the cytoplasm performed

with active microrheology using laser tweezers. With these

measurements, we determine the temporal spectrum of the

ensemble of the random, fluctuating forces, demonstrating that

this ubiquitous fluctuating motion in cells is not thermally

induced, but is instead a consequence of random forces. We

then exploit FSM to probe the intracellular micromechanical

behavior of malignant and benign cells, and show that cancer

cells exhibit a significantly enhanced level of forces, albeit with

the same frequency dependence, as predicted by our model.

Moreover, we show that these active forces strongly dominate

thermal Brownian forces in the cellular interior, impacting motion

of objects from nanometers to microns in scale, and providing a

fundamental mechanism for transport of objects of all scales.

Thus, FSM is a valuable new tool for characterizing the dynamic

state of a cell.

RESULTS

Random Intracellular Movement Appears Diffusive
Tomeasure the fluctuatingmotion in the cytoplasm of eukaryotic

cells, wemicroinjected submicron colloidal particles into A7mel-

anoma cells (Cunningham et al., 1992) and measured their time-

dependent motion with confocal microscopy. The particles were

rendered inert by attaching a short polyethylene-glycol (PEG)

brush layer to their surface to eliminate interactions with biopoly-

mers or proteins (Valentine et al., 2004). Moreover, because they

were microinjected, the particles were not surrounded by a lipid

membrane. Unlike smaller tracers that travel freely through the

cytoskeletal network, the injected submicron particles were

larger than the typical cytoskeletal mesh size, which is about
50 nm (Luby-Phelps, 2000; Luby-Phelps et al., 1987). Thus, their

motion reflects the fluctuations of the cytoplasm itself. To avoid

cell-boundary effects, we imaged particles that are greater than

�1 mm deep within the cell; we also imaged particles away from

both the thin lamellar region and the nucleus to avoid any inter-

actions with the mechanically distinct cell cortex and nucleus

(Extended Results). Particle centers were determined in each im-

age with an accuracy of 22 nm. We tracked their trajectories and

calculated the time- and ensemble-averaged mean-square

displacement (MSD), < Dr2(t) >, where Dr(t) = r(t+t)-r(t).

At shorter timescales (t % 0.1 s), the MSD of the probe parti-

cles was nearly constant in time; however, the fluctuations

were always at least five times larger than the noise floor. At

longer timescales (t R 0.1 s), the MSD increased approximately

linearly with time, as shown in Figure 1 and Figure S1, available

online. Particles of different size, d, exhibited a similar time

dependence, as shown in Figure 1B. Moreover, the amplitude

of the fluctuations scaled as 1/d, as shown in Figure 1C; this is

consistent with motion in the continuum viscoelastic environ-

ment of the cytoplasm (Hoffman et al., 2006). Such motion is

often interpreted as thermal Brownian motion (Baker et al.,

2010; del Alamo et al., 2008; Gupton et al., 2005; Hale et al.,

2009; Wu et al., 2012; Yamada et al., 2000). However, a MSD

that increases linearly with time is only consistent with Brownian

motion in a purely viscous liquid and at thermal equilibrium,

neither of which applies to the cytoplasm (Brangwynne et al.,

2008a; Bursac et al., 2005; Hoffman et al., 2006; MacKintosh,

2012; Wilhelm, 2008). As the cytoplasm is neither a pure viscous

liquid or at thermal equilibrium, we concluded that the observed

cytoplasmic fluctuations must derive from some other sources

other than thermal-based diffusion.

Cytoplasmic Diffusive-like Movement Results from
Active Processes
To clarify the active character of the cytoplasmic fluctuating

motion, we examined the effect of inhibiting myosin II activity
Cell 158, 822–832, August 14, 2014 ª2014 Elsevier Inc. 823
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Figure 2. Optical-Tweezer Active Micro-

rheology Measurement Shows that the

Cytoplasm Is a Weak Elastic Gel

(A) Schematic showing the experimental setup

used to measure the intracellular mechanics.

(B) Typical displacements of the trapped bead and

the optical trap oscillating at 1 Hz.

(C) Effective spring constant K0 of the intracellular

environment measured directly with active micro-

rheology using optical tweezers shows that the

intracellular elastic stiffness (solid symbols) domi-

natesover thedissipative resistance (opensymbols).

Blue circles, gray squares, and light gray triangles

represent untreated, 10 mM blebbistatin-treated,

and ATP-depleted A7, respectively. Both the

blebbistatin treatment and ATP depletion reduce

the cytoplasmic stiffness by about 2-fold. Error

bars represent standard deviation (n = 15). The

corresponding shear moduli of the cytoplasm are

shown in Figure S2. See also Figures S2 and S3A.
in cells. Myosin II is a nonprocessive motor protein that binds to

actin filaments and undergoes a power stroke upon ATP hydro-

lysis (Howard, 2001). We treated cells with 10 mM blebbistatin,

which inhibits myosin II motor activity. After inhibition, we

observed a marked decrease in the MSD of injected particles

in the diffusive-like regime (tR 0.1 s), while the shorter timescale

movement remained essentially unchanged. When we inhibited

general motor and polymerization activity by depleting cells of

ATP using 2 mM sodium azide and 10 mM 2-deoxyglucose,

theMSD became nearly time independent over our experimental

timescales (Figure 1C; Figure S1A; Movie S1). Thus, the motion

of the particles is driven by active, ATP-dependent processes.

Such active behavior is not limited to the cytoplasm or to eukary-

otic cells; ATP-dependent random fluctuating motion has

also been observed in prokaryotic cells and yeast (Parry et al.,

2014; Weber et al., 2012).

To account for this active behavior, we adapted recent theo-

retical work suggesting that diffusive motion in the cytoskeleton

can arise from random motor activity (Lau et al., 2003; MacKin-

tosh and Levine, 2008): In a filamentous actin network, acto-

myosin contractile forces exerted by myosin II motors can drive

fluctuating deformations. These myosin motors do not act indi-

vidually but form aggregates, or minifilaments, which bind

to the actin network and act as ‘‘disordered muscle fibers,’’

applying random contractile forces in the network (Koenderink

et al., 2009). These forces can result in random fluctuations of

the network, similar to that observed in reconstituted networks

(Brangwynne et al., 2008b; Mizuno et al., 2009; Mizuno et al.,

2007). However, the theoretical framework of actively driven

fluctuations requires a network to be nearly elastic, rather than

viscous, to account for the diffusive-like motion observed for t

R 0.1 s. Thus, a direct measure of the intracellular mechanics

is essential to ascertain whether the observed particle motion

is due to thermal or active effects (MacKintosh, 2012).

The Cytoplasm Is a Weak Elastic Solid
To directly measure the micromechanical properties of the cyto-

plasm, we performed active microrheology measurements using

optical tweezers to impose a sinusoidal oscillation as a function
824 Cell 158, 822–832, August 14, 2014 ª2014 Elsevier Inc.
of frequency, y, on a 500-nm-diameter probe particle within a

cell. The trap stiffness was 0.05 pN/nm as determined using

the equipartition theorem to describe Brownian motion of a

bead trapped in water (Veigel et al., 1998). By measuring the

resultant displacement of the bead, x(y), subjected to an applied

sinusoidal trap oscillation with a force F at frequency y, we ex-

tracted the effective spring constant, K(y) = F(y)/x(y), for the intra-

cellular environment (Guo et al., 2013; Mizuno et al., 2007). The

complex shear modulus G = G’+iG’’ is related to the spring con-

stant through a generalization of the Stokes relation K = 3pGd.

Thus, we can determine the full frequency-dependent modulus

of the cytoplasm.

Our active measurements yielded a resultant displacement

that was almost in phase with the applied force; therefore, the

micromechanical response of A7 cells was predominantly elastic

rather than viscous (Figure 2). Consistent with this, themeasured

elastic modulusG’was significantly larger than the loss modulus

G’’ over the frequency range from 0.3 to 70 Hz (Figure S2). The

elastic modulus follows a power-law form, jG(y)j�yb, with b

z0.15, in agreement with other measurements (Fabry et al.,

2001; Guo et al., 2013). We also noted that the measured cyto-

plasmic modulus is approximately 1 Pa (Figure S2), much lower

than that measured on the actin cortex (Fabry et al., 2001); pre-

sumably this reflects the denser crosslinked actin structure in the

cell cortex, whereas the beads probe the cytoplasm which is

much more dilute and hence lower in elasticity. Thus, our twee-

zers measurements confirmed that the cytoplasm is an elastic

solid across the measured timescales.

Model of Diffusive-like Motion in a Nearly
Elastic Medium
The motion of tracer particles directly reflects the fluctuations

driven by random motor activity throughout the cell. This pro-

vides a basis for an assay that characterizes the average effect

of all motor forces; this cannot be done with any other existing

technique. To develop this assay, a quantitative description of

the random fluctuating motion is required. To do this, we adop-

ted the fundamental force-displacement relationship of any me-

dium, Hooke’s law, f = Kx, where f and x are the driving force and



Figure 3. Conceptual Basis of FSM

(A) Schematic illustration of cytoplasmic fluctuating forces enhancing in-

tracellular motion. The aggregate effect of all the motors and active processes

working at random directions and random times contribute an incoherent

background of fluctuating forces. These active forces drive fluctuating de-

formations of the cytoplasmic network and substantially enhance intracellular

movement over a broad range of length scales, from submicron organelles to

nanometer-sized proteins.

(B) Basic procedure of FSM. (i) A sound wave in the time domain can be

represented in the frequency domain by taking its Fourier transform, thereby

revealing its frequency composition. (ii) By analogy to the sound wave, we

Fourier transform the MSD and express it in the frequency domain. (iii) The

cytoplasmic material property, specifically the spring constant, is measured

directly using optical tweezers, also in the frequency domain. (iv) Analogous to

a stretched spring, if the spring deformation and spring constant are known,

the stretching force can be calculated; in cells, the randomly fluctuating force

at each frequency is calculated as < f2(y) > = jK(y)j2 < x2(y) >.
the resulting displacement. The material properties are fre-

quency dependent, and the forces are stochastic; thus we

consider the quadratic form of the averaged quantities in the fre-

quency domain, < x2(y) > = < f2(y) > /jK(y)j2. The MSD, < Dx2(t) >,

is obtained through the Fourier transform of < x2(y) >.

To illustrate the application of the formalism, we consider the

simple case of thermally induced Brownian motion in a viscous

fluid. In this case, the stochastic thermal forces exerted on the

particle are equivalent to white noise and independent of fre-

quency. Furthermore, for a viscous fluid jKj2 f y2, since K’’ f

hy, with h denoting the fluid viscosity. Therefore, < x2(y) > f y-2;

after Fourier transform, the MSD becomes < Dx2(t) > f t, as ex-

pected for thermally driven Brownian diffusion in a viscous fluid.

However, the laser-tweezer measurements reveal that the

cytoplasm is not a simple fluid, but is instead a weak elastic

gel; thus, the tracer particle movement directly reflects the

average motor activity. Within this picture, the effect of uncorre-

lated molecular motors, such as those of myosin filament con-

tractions, is to generate random intracellular forces; these drive

fluctuating deformations of the elastic network. This in turn

drives the fluctuating motion of objects embedded within the

network, as illustrated schematically in Figure 3A. Molecular mo-

tors generate force during their processivity time, tp, which char-

acterizes the typical period of binding and coherent motion of a

motor; at times longer than this, the motor unbinds, and the ten-

sion is instantaneously released, as sketched by the time evolu-

tion of the force, f(t), in the inset of Figure S1B. A force with this

step-like behavior in time leads to a power spectrum of force

fluctuations, < f2(y) >, that varies with frequency as y-2 (Lau

et al., 2003; MacKintosh and Levine, 2008). For a purely elastic

medium, K is independent of frequency, leading to < x2(y) > f

y-2, which again becomes < Dx2(t) > f t. Interestingly, this tem-

poral dependence of x is the same as that of thermal motion in

a viscous fluid; however, in this case, the motion reflects the

random active motor forces in an elastic medium, rather than

stochastic thermal agitation in a viscous fluid.

The laser-tweezer measurements of the elastic modulus (Fig-

ures 2, S2 and S3A) show that the local micromechanical envi-

ronment experienced by probe particles is in fact not purely

elastic, but is instead viscoelastic, with a frequency-dependent

spring constant jK(y)j = K0y
b, where bz0.15. Furthermore, in

the measured frequency range, we find no apparent change

in the time behavior of the spring constant; therefore, we assume

the same time dependence persists. In this case, the frequency-

and force-dependent displacement spectrum becomes < x2(y) >

f y-2(1+b). Thus, for times less than the processivity time tp, the

MSD becomes < Dx2(t) > f t1+2b/K0
2. This is in stark contrast

to the thermal motion expected in such a viscoelastic environ-

ment as < Dx2(t) > f tbkT/K0. Indeed, the observed plateau in

the MSD at short timescales (Figure 1B) is consistent with <

Dx2(t) >f t b with bz0.15, indicating that the short time regime

can be understood as thermal motion in a nearly elastic medium.

Force Spectrum Microscopy Probes Ensemble
Aggregate Intracellular Forces
The fluctuatingmotion of the tracer particles is a direct readout of

the average random fluctuations due to the aggregate motor ac-

tivity in the cell. If both the particle motion and the cytoplasmic
Cell 158, 822–832, August 14, 2014 ª2014 Elsevier Inc. 825
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Figure 4. Ensemble Aggregate Intracellular

Force Spectrum Probed by FSM

(A) Cytoplasmic force spectrum calculated from

spontaneous fluctuations of tracer particles and

the active microrheology measurement, through

< f2(y) > = jK(y)j2 < x2(y) >, inside control untreated

(red), myosin II inhibited (blue) and ATP-depleted

(black) A7 cells. For comparison, theoretical pre-

dictionsareshownforanelasticmediumwithashear

modulus as shown in Figure S2, with three levels of

activities; the red solid line corresponds to about

1/mm3 density of myosin II filaments applying a force

�10 pN, the blue solid line corresponds to a 90%

reduction of myosin motor activity by 10 mM bleb-

bistatin (Kovács et al., 2004), and the black solid line

corresponds to no active motors. The yellow dash

dotted line represents the theoretical prediction

of only active contributions and excludes thermal effects. Dashed lines indicate logarithmic slopes of�0.85 and �2. Vertical bars represent standard error (n = 15).

(B) Comparison of force spectra probed by FSM in untreated A7 cells, using the spontaneous fluctuations of injected tracer particles (red dotted line, same as

that in Figure 4A), endogenous vesicles and protein complexes (black circle), and mitochondria (blue triangle). The spring constant is measured by active

microrheology with probe particles, as shown in Figure 2. The force spectrum measured with vesicles and protein complexes is in excellent accord with that

measured for probe particles. The force spectrum for mitochondria exhibits the same frequency dependence as that for probe particles, but is larger in

amplitude; this is consistent with mitochondria are also occasionally directly transported by specific motors within the cell.
viscoelasticity aremeasured, the spectrum of the average fluctu-

ating force due to these motors, which drives this motion, can be

directly determined, through < f2(y) > = jK(y)j2 < x2(y) >. This pro-

vides a new tool for characterizing the frequency-dependent

spectrum of the average force, which is due to the aggregate,

yet random effects of all active processes in the cell. While these

forces are inherently time-dependent, it is more convenient to

describe their frequency-dependent spectrum. We call this

new assay Force Spectrum Microscopy (FSM), as summarized

schematically in Figure 3B.

To demonstrate the applicability of FSM, we quantified the

average aggregate cytoplasmic forces due to active processes

in A7 cells. The resultant force spectrum exhibited two distinct

frequency regimes, as shown by the red data in Figure 4A: In

the low-frequency range, corresponding to timescales t R

0.1 s, < f2(y) > is proportional to y�2; by contrast, in the high-fre-

quency range, corresponding to t% 0.1 s, < f2(y) > has a weaker

frequency dependency. These observations are consistent with

a low-frequency regime dominated by active forces and a high-

frequency regime dominated by thermal forces (Brangwynne

et al., 2008a; Lau et al., 2003;MacKintosh and Levine, 2008;Miz-

uno et al., 2007). Moreover, based on our model, we estimate

that a density of myosin filaments of �1/mm3, each generating

a force of order 10 pN, can account for the observed force spec-

trum (see details in Extended Results). This is the first experi-

mental assessment of this important global measurement of

the overall enzymatic activity in the cell.

To further establish the applicability of FSM in quantifying

active forces in the cell, we suppressed the level of actin-based

cytoskeletal forces by inhibiting myosin II motors through the

addition of 10 mM blebbistatin to the cell culture medium. As a

result, the low-frequency, active component of the force spec-

trum was suppressed, although the same overall y-2 dependence

remained, as shown by the blue data in Figure 4A. Furthermore,

when we depleted cells of ATP through addition of 2 mM sodium

azide and 10mM2-deoxyglucose, we observed a force spectrum
826 Cell 158, 822–832, August 14, 2014 ª2014 Elsevier Inc.
that is consistent with purely thermal fluctuations over the full fre-

quency range for the viscoelasticy medium measured directly for

these cells, as shown by the black data in Figure 4A. This sug-

gested that, while actomyosin contractions are a significant

source of intracellular forces, other enzymatic activities also

contribute to the forces and hence the motion experienced by

intracellular objects. Moreover, above 10 Hz, the force spectra

measured in all cases had the same time dependence and nearly

the same amplitudes, consistent with a common thermal origin

of the motion in this regime (Figure 4A). These results demon-

strate the ability of FSM to quantify the degree of motor activity

in a cell and to distinguish these active forces from thermal forces.

To further explore the utility and sensitivity of FSM, we

increased the cytoplasmic stiffness by applying osmotic stress

to compress cells (Zhou et al., 2009). We observe a marked

reduction in the amplitude of particle fluctuations, although the

frequency dependence remains unchanged, reflecting the con-

sequences of the increased cytoplasmic stiffness (Figure S3).

Surprisingly, however, when the force spectrum was calculated,

we found that the amplitude of intracellular forces did not

change, at least within the range of osmotic pressures applied

(see details in Extended Results).

FSM Reveals Differences in the Intracellular Forces
within Benign and Malignant Cells
Since FSMprobes the consequences of the aggregate forces due

to active processes in the cell, it can be used to directly quantify

changes in intracellular activity and the dynamic state of the

cytoplasm in response to changes in conditions such as drug

treatment, external stimuli, or even the disease state of a cell.

To illustrate this, we compared the force spectrum of malignant

and benign cells. Malignant cells exhibit reduced cell stiffness

(Cross et al., 2007; Plodinec et al., 2013) and increased traction

forces (Kraning-Rush et al., 2012), which may provide potential

biophysical markers for metastatic progression. Using FSM, we

compared the force spectrum in benign (MCF-10A) to that in
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Figure 5. Intracellular Mechanics, Dy-

namics and Forces in Benign and Malignant

Tumor Cells

(A) Two-dimensional MSD < Dr2(t) > of 500 nm

tracer particles are plotted against lag time on

a log-log scale, in the benign breast cells MCF-

10A (red circle) and malignant breast tumor

cells MCF-7 (black triangle), respectively. The

fluctuating movement of tracer particles is stron-

ger in the malignant cells, as compared to the

benign cells.

(B) Cytoplasmic mechanics measured by active

microrheology using optical tweezers. The effec-

tive spring constant of the cytoplasm is larger in

the MCF-10A (red circle), as compared to the

MCF-7 (black triangle); this suggests that the

cytoplasm of benign cells is stiffer than malignant

cells.

(C) The spectrum of intracellular forces calcu-

lated based on the fluctuating movement of tracer particles and the cytoplasmic mechanics measurement. The intracellular forces are stronger in the

malignant tumor cells MCF-7 (black triangle), than the benign cells MCF-10A (red circle).

Error bars represent standard deviation (n = 6). See also Figures S4 and S5.
malignant (MCF-7) breast cancer cells, which are known to

exhibit enhanced motility (Chan et al., 2008; Nagaraja et al.,

2006). Tracer-particle motion is significantly enhanced in malig-

nant MCF-7 cells relative to benign cells, as shown in Figure 5A,

whereas the cytoplasmic stiffness was only �30% smaller in the

malignant MCF-7 cells (Figure 5B). When we calculated the force

spectrum, we indeed found a significant difference between ma-

lignant and benign cells, with malignant cells having a force spec-

trum with approximately three times larger magnitude than the

benign cells; however, the frequency dependence of the spectra

remained unchanged (Figure 5C). A similar behavior was

observed for another pair of malignant and benign cells, M6C

and M28 (Holzer et al., 2003), as shown in Figure S4. The results

suggested, therefore, that highly motile cancer cells have a more

active cytoplasm. The enhanced motor activity reflected by the

larger magnitude in the force spectrum measured with FSM is

consistent with cancer cells exerting increased traction force on

the extracellular matrix (Agus et al., 2013), despite their

decreased stiffness; this observation also fits well with biochem-

ical studies showing changes in metabolic and proliferative rates

of cancer cells (Deberardinis et al., 2008; Sherr, 1996). Therefore,

FSM provides a tool to identify changes in ensemble intracellular

forces and dynamic states of the cytoplasm, even though the

origin of these changes is complex. Moreover, our results with

malignant cells provide an additional metastatic signature at the

subcellular scale and may help elucidate the physical and chem-

ical forces that shape and govern the progression of cancer.

Force Spectrum Microscopy Reveals that Expression of
Vimentin Intermediate Filaments Does Not Affect
Intracellular Forces
Force spectrum microscopy can identify the contribution of

specific cellular components to the overall level of intracellular

activity. To demonstrate this, we apply FSM to measure the ef-

fect of vimentin intermediate filaments (VIFs) in mesenchymal

cells. Vimentin is a type III IF protein that is typically expressed

in cells of mesenchymal origin and is widely used as a marker

of the epithelial to mesenchymal transition (EMT). VIFs have
been shown to induce changes in cell shape, motility, and adhe-

sion during EMT (Mendez et al., 2010); however, the role of VIFs

in the level of aggregate intracellular forces is unknown because

no technique has been able to quantify this property. We used

FSM to probe intracellular force spectrum in mouse embryonic

fibroblasts (mEFs) from wild-type (WT) and vimentin knockout

(Vim�/�) mice; we found no significant difference in the intracel-

lular force spectrum betweenWT and Vim�/�mEFs, as shown in

Figure S5. In contrast, the force spectrumwasmarkedly reduced

when we depolymerize actin filaments with 5 mg/ml cytochalasin

D in WT mEFs. These results suggested that vimentin IFs are

mainly structural polymers that are an important contributor to

the internal stiffness of cells, but do not affect the aggregate

intracellular forces.

Force Spectrum Reveals Motor Processivity Time
The frequency spectrum can quantify additional important, but

heretofore unresolved, features of motor activity. This is seen in

a more precise investigation of the time dependence of the

MSD.At long times, tR 0.1 s,we observe an approximately linear

time dependence in the MSD averaged over many particles. By

contrast, our model predicts a stronger time dependence, as

given by < Dx2(t) > f t1+2b/K0
2. This difference arises from the

ensemble averaging over different trajectories; indeed when we

examine the MSDs of individual particles, we find that most tra-

jectories exhibit amarkedly largermaximum local slope reflecting

a stronger time dependence. However, they also exhibit clear ev-

idence of a roll-off or saturation at the longest times, on the order

of 10 s, as shown in Figures 6A and S1B. This roll-off behavior is

consistent with the finite processivity of motor contractions, at a

processivity time, tp; processive forces are generated by motors

with an average duration, tp, and result in finite displacements in

the cytoplasm over corresponding timescales. To quantify this,

we measure the distribution of logarithmic slopes of the MSD

and find a peak near 1.2, as shown in Figure 6B; this is in excellent

agreement with the prediction of < Dx2(t) >f t1+2b with bz0.15.

Moreover, the distribution of processivity times is peaked around

5 s, as shown in Figure 6C; this is an experimental measure of
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Figure 6. Logarithmic Slope and Processiv-

ity Time Analyzed fromMSDof Single Tracer

Particles and Cytoplasmic Organelles

(A) Individual MSD curves of single 100 nm parti-

cles. Colored lines highlight representative de-

viations from the ensemble average. The full data

set is shown in Figure S1B.

(B) Distribution of the average logarithmic slopes

of each particle’s MSD curve in untreated A7

cells, calculated between 1 to 2 s lag time as

indicated by the red dashed lines in the inset. The

mean and standard deviation of the slopes are

1.1 and 0.26, respectively, and the mode is

about 1.2.

(C) Distribution of processivity times tp associ-

ating with the random intracellular fluctuations,

calculated from the transition between the diffu-

sive-like regime and the long time saturation of

the time-averaged MSD of each single particle,

as pointed by a red arrow in (A). Inset, schematic of the time-dependent force due to activity of myosin filament.

(D) Two dimensional MSD of the movement of intracellular vesicles and protein complexes, in untreated (solid squares) and blebbistatin treated (open squares)

A7 cells, tracked by bright-field microscopy.

(E and F) Logarithmic slopes (E) and distribution of processivity times (F) are calculated from MSD curves of single vesicle and protein complex in the untreated

cells.

See also Movie S2.
processivity times for the ensemble aggregate forces. The proc-

essivity time is not apparent in the ensemble average data, due to

the large distribution in processivity times, tp, obscures the effect

of individual turnover.

Active Force Fluctuations Increase Vesicle and
Organelle Motion
FSM provides a powerful assay to probe the consequences of

the aggregate random forces due to motor activity within cells.

In particular, it can be used to explore the consequences of these

forces on the motion of vesicles, protein complexes, and organ-

elles within the cell, providing insight into the origin of their

random motion. We used FSM to probe the effects of random

forces on the overall movements of these various structures.

The motion of vesicles and protein complexes were tracked us-

ing bright-field microscopy in A7 cells. Occasionally, the move-

ment was directed, with these structures moving along a straight

path at a constant velocity; however, the majority of the motion

was random in nature, with the MSD increasing approximately

linearly in time (Figure 6D). We inferred the force spectrum acting

on these vesicles and protein complexes using a combination of

their MSD and the cytoplasmic mechanics measured with active

microrheology using laser tweezers on tracer beads. We found

that the force spectrum was in excellent accord, both in magni-

tude and frequency dependence, with that measured for injected

probe particles (Figure 4B). Moreover, when we suppressed the

random cytoplasmic force by inhibiting acto-myosin contraction

with 10 mMblebbistatin, we observed a marked decrease in their

movements in direct analogy to the behavior observed for probe

particles (Figure 6D; Movie S2). These results show that the

random aggregate motor forces within the cell act on endoge-

nous cytoplasmic structures in the exact same fashion as they

do on the probe particles. This illustrates the ubiquity of the ef-

fects of the active random forces, and suggests that they may

also contribute to intracellular transport.
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We also applied FSM to probe the movement of mitochondria

within the cell (see details in Extended Results). Interestingly, we

observed a force spectrum that exhibits the same frequency

dependence as that of the probe particles, but is larger in ampli-

tude by about a factor of 2, as shown in Figure 4B. By carefully

observing the shape of mitochondria over time, we identified sig-

nificant changes in their local configuration. This has an effect of

shifting the center of the mitochondria identified during the

tracking, thereby adding to the fluctuations, and is likely to

contribute to the additional amplitude of the force spectrum.

Moreover, it is known that mitochondria are occasionally trans-

ported by specific motors along microtubules (Wang and

Schwarz, 2009). Therefore, the observed movement includes

contributions from both random force fluctuations and effects

from mitochondria specific motors; this is also consistent with

larger amplitude of forces observed on mitochondria. Thus,

FSM is also able to probe the consequences of shape changes

of the objects induced by the random forces and might also pro-

vide a way to distinguish the specific and nonspecific effects of

motor activity on certain organelles.

Active Force Fluctuations Increase Protein Movement
The force spectra revealed by FSM show that active processes

dominate the ensemble cytoplasmic forces at relatively low fre-

quencies (Figure 4A), which corresponds to long timescales. In

contrast to micron-sized organelles and particles, smaller ob-

jects such as nanometer-sized proteins that are smaller than

the typical cytoplasmic mesh size, are much more mobile, and

the role of the random forces on individual proteins is unclear.

To investigate this, we examined both short and long timescale

diffusive-like behavior of nanometer-sized proteins. To examine

short timescale behavior, we transfected HeLa cells with GFP,

and perform fluorescent correlation spectroscopy (FCS) to mea-

sure the local dynamics of GFP, over timescales of tens of micro-

seconds. At this scale, we did not resolve significant differences



Figure 7. Movement of Dendra2 in Cells Is

Increased with ATP

(A) Typical confocal fluorescence images of the

red-channel of Dendra2 during photoconversion

by a 405 nm pulse. Before photoconversion, cells

have low background red fluorescence; the

flashed region rapidly converts to red and begins

to move throughout the cell over several seconds.

Comparing the untreated and ATP depleted con-

ditions, we see that red fluorescence spreads

more quickly in cells with ATP.

(B) By quantifying the red fluorescence intensity as

a function of distance (along the red dashed line in

A) at several different times, we see that ATP

approximately doubles Dendra2 transport over

longer length scales.

(C) Plotting the spatial width of the red fluores-

cence intensity as a function of time demonstrates

that, without ATP, photoconverted Dendra2

spreads more slowly. Inset: Replotting in log-log

format shows that with or without ATP Dendra2

spreads proportional to t1/2, demonstrating that in

both cases movement appears random. Error

bars, 145 ms (based on measurement uncertainty

from limited imaging frequency).

See also Figure S6 and Movie S3.
in the apparent diffusion coefficient of GFP between untreated

and ATP depleted cells (Figure S6), implying that the random

active forces do not affect the motion of individual proteins on

short timescales.

Sincemany signaling proteins and even nutrients travel across

larger parts of the cell, over timescales of seconds, this is likely to

be affected by the active fluctuating forces at long timescales. To

investigate this, we transfected HeLa cells with Dendra2, a

26-kDa fluorescent protein that switches from green GFP-like

fluorescence to red RFP-like fluorescence when flashed with

405 nm light (Chudakov et al., 2007a). By tracking the RFP signal

after local photoconversion, we visualize the Dendra2-protein

movement throughout the cell, which takes a few seconds; we

observe a marked decrease of the spreading of the RFP signal

in the ATP-depleted cells as compared to the untreated cells

(Figure 7A; Movie S3). This is confirmed by plotting the time

dependence of the fluorescence intensity profile of the proteins.

In the presence of ATP, the profile spreads more rapidly (Fig-

ure 7B) with the width of the profile exhibiting more rapid expan-

sion with time (Figure 7C). This result confirms that active forces

contribute to the large-scale transport of individual proteins,

suggesting that even the transport of small molecules or nutri-

ents can be enhanced by random active processes.

DISCUSSION

We introduce a new assay, force spectrum microscopy (FSM),

which directly quantifies the magnitude and frequency-depen-

dence of the aggregate random active processes in the cell.

We determine the force spectrum by tracking the random fluctu-

ations of objects combined with the micromechanical character-

ization of the intracellular environment. This technique provides a

direct measure of the forces within cells, which is very chal-

lenging by comparison to making measurements of position or
motion using microscopy. Furthermore, FSM provides a direct

measure of the random aggregate forces attributable to active

processes inside the cell and enables these to be distinguished

from purely mechanical effects. This provides insight into the

consequences of the overall activity within the cell. Using FSM,

we show that malignant cancer cells have significantly larger

intracellular activity as compared to benign cells, demonstrating

its utility in probing the internal dynamic state of cells. We

confirm that vimentin IFs contribute mainly to structural me-

chanics, and not to the forces within the cell. These results

demonstrate the ability of FSM to isolate the effects of cellular

activity and distinguish it from the effects of cytoplasmic visco-

elastic properties on intracellular dynamics. We further show

that FSM can be performed on intracellular organelles to inves-

tigate random forces experienced by organelles or different ob-

jects in cells. These results suggest that FSM may be used as a

general assay to quantify the role of the random forces in driving

many cellular and developmental processes, such as prolifera-

tion and the epithelial to mesenchymal transition. In addition,

the information provided by FSM on both the amplitude and fre-

quency spectrum of the random aggregate forces in the cell may

yield new insights into the dynamic nature of the cytoplasm,

which may help resolve some long-standing issues in disease

development and progression and may provide the basis for

new diagnostic and therapeutic approaches.

Furthermore, our findings alter the way that we view the cyto-

plasm of eukaryotic cells. We demonstrate that force fluctua-

tions driven by motor activity play an important, even dominant

role in intracellular motion over a broad range of length and

timescales, from micron-sized organelles to nanometer-sized

proteins and nutrients. These results also confirm that random

motion, so ubiquitous in cells, is not a result of thermally-induced

fluctuations, but is instead the result of the random forces due

to the aggregate motor activity in cells. Thus, interpretation of
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intracellular motion based on equilibrium thermal fluctuations,

such as is done for passive microrheology (Baker et al., 2010;

del Alamo et al., 2008; Wu et al., 2012; Yamada et al., 2000) is

incorrect. Moreover, this random motion driven by intracellular

force fluctuations can have important consequences for many

aspects of cell physiology. For example, many cellular compo-

nents, such as protein filaments and complexes, storage gran-

ules, and intracellular organelles, will be impacted by these

active fluctuations in the cytoplasm; these components are

involved in processes that are essential for life in natural environ-

ments, and their functions depend on their ability to move in the

cytoplasm. More specifically, these random fluctuations are

likely to be crucial for spatially distributing key cellular machin-

eries, such as ribosomes and proteasomes, to facilitate efficient

translation and degradation of proteins. They also could be vital

for quick removal of enzyme products from their site of synthesis

in metabolic reactions to avoid local concentration effects.

Finally, growth and remodeling of the cytoskeleton may depend

on these random force fluctuations, which may help ensure, for

example, that actin monomers are in continual supply to rapidly

growing filaments in the cell periphery.

EXPERIMENTAL PROCEDURES

Cell Culture, Microinjection, and Pharmacological Interventions

Cells are maintained under 5% CO2 at 37�C in a humidified incubator. A7 cells

(Cunningham et al., 1992) (gift from Tom Stossel’s lab at Harvard Medical

School) are cultured in Dulbecco’s minimal essential medium (DMEM) supple-

mented with 2% fetal calf serum, 8% newborn calf serum (Invitrogen), 10 mM

HEPES buffer, 100 U/ml penicillin, and 100 mg/ml streptomycin. WT and

Vim�/� mEFs (Guo et al., 2013) are cultured in DMEM with 10% fetal calf

serum, 5 mM nonessential amino acids, 100 U/ml penicillin, and 100 mg/ml

streptomycin. MCF-10A cells are cultured in 1:1 DMEM:F12media (Invitrogen)

with 5% house serum (Invitrogen), 20 mM HEPES, 10 mg/ml insulin, 0.1 mg/ml

Cholera Toxin, 500 ng/ml hydrocortisone, 100 U/ml penicillin, and 100 mg/ml

streptomycin. MCF-7 cells andHeLa cells are cultured in DMEMwith 10% fetal

calf serum. Cells are plated on collagen I coated MatTek dishes at a density of

20 per mm2 overnight before experiment.

Microinjection is performed using a glass needle and a FemtoJetmicroinjec-

tor (Eppendorf) mounted on a bright-field microscope. About 50 cells are

injected per dish; each cell is injected up to 50 tracer particles to eliminate

the interference to cell function. Cells are then allowed to recover in culture

medium for 6 hr, and are imaged on a confocal microscope at 37 �C and

5% CO2. Organelles and injected tracer particles are imaged with bright-field

or confocal microscopy using a 633/1.2NA water immersion lens on a Leica

TSC SP5. Please refer to Extended Experimental Procedures for more details.

To inhibit myosin II motor activity, blebbistatin (Toronto Research Chemi-

cals) is dissolved in DMSO and added to cell culture media to a 10 mM final

concentration, incubating for 30 min. ATP depletion is achieved by incubating

cells with 2 mM NaN3 and 10 mM 2-deoxyglucose in PBS for 1 hr.

Particle Surface Chemistry

Fluorescent carboxylate-modified polystyrene spherical particles (100, 200,

and 500 nm, from Molecular Probes) are rendered inert by grafting short

amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxyl-

ated microspheres, as described previously (Valentine et al., 2004). PEG

coated particles are stored at 4�C and used within 2 weeks. Both yellow-green

and far red particles for each size are used in this study.

Particle Tracking and Analysis

The trajectories of the fluorescent particles are recorded every 10ms for about

2 min. The images are processed with particle tracking software written by

J. Crocker, D. Grier and E. Weeks, in IDL (http://www.physics.emory.edu/
830 Cell 158, 822–832, August 14, 2014 ª2014 Elsevier Inc.
�weeks/idl/). Particle centers are found in each image with an accuracy of

22 nm. The MSD of the probe particles is nearly constant in time at short time-

scales (t % 0.1 s), and is about an order of magnitude greater than the noise

floor, as shown in Figure S1A. Please refer to Extended Experimental Proce-

dures for more details.

Optical Tweezers Setup

To optically trap and manipulate 500 nm beads in the cytoplasm of living cells,

the beam from a variable-power Nd:YAG solid-state laser (4 W, 1064 nm;

Spectra Physics) is steered through a series of Keplerian beam expanders to

overfill the back aperture of a 1003 1.3 numerical aperture microscope objec-

tive (Nikon S-fluor; Nikon). To steer the beam and manipulate the trapped

bead, two acousto-optic deflectors (NEOS Technologies) are used to manip-

ulate the beam in the plane of the microscope glass slide. For detection, the

bead is centered on a high-resolution position detection quadrant detector

(MBPS; Spectral Applied Research) and illuminated using brightfield illumina-

tion from a 75WXe lamp. The linear region of the detector is calibrated by trap-

ping a bead identical to those used in the cells in water and moving it across

the detector using the acousto-optic deflectors in known step sizes. The

trap stiffness is calibrated to 0.05 pN/nm using the mean-squared Brownian

motion of a trapped bead in water at various laser power settings using the

principle of energy equipartition as previously described (Veigel et al., 1998).

A trapped bead is oscillated across a frequency range of 0.3–70 Hz using

the acousto-optic deflectors, and the laser position and bead displacement

are recorded simultaneously, from which the elastic and viscous shear moduli

are determined.

Osmotic Stress

Hyperosmotic stress is applied by adding polyethylene glycol 300 (PEG300) to

isotonic culture medium. Cells are then allowed to equilibrate for 10 min at

37 �C and 5% CO2, before we perform the imaging or optical-tweezer mea-

surement. The cell size and mechanics equilibrate in 2 min after adding

PEG, based on our imaging and previous studies (Zhou et al., 2009).

Measurement of Protein Movement with Photoconvertable Dendra2

To measure the large length scale movement of small proteins, we use the

photonically switchable fluorescent proteins Dendra2, a photoconvertible

fluorescent protein which irreversibly switches from green (GFP-like) to red

(RFP-like) when exposed to a brief flash of 405 nm light (Chudakov et al.,

2007a). We transfect HeLa cells with Dendra2 (Evrogen), then perform fluores-

cence loss after photoconversion (FLAC) measurements as described previ-

ously (Ehrlicher et al., 2011). In FLAC measurements using Dendra2, we start

with the green fluorescence of unconverted Dendra2, which allows us to iden-

tify cells with high expression that are bright. We then flash the cell with a brief

(�50ms) flash of 405 nm light, while monitoring both the green and red fluores-

cence. A dip in the green fluorescence is observed, but a bright spot of red

fluorescence in the pulsed region is clearly visible. By monitoring the increase

of red fluorescence at different distances from the pulsed region, we can quan-

tify the movement of the Dendra2 probe throughout the cell. Please refer to

Extended Experimental Procedures for more details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Results, Extended Experimental

Procedures, six figures, and three movies and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2014.06.051.
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