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A direct consequence of the finite compressibility of a swollen microgel is that it can shrink and de-
form in response to an external perturbation. As a result, concentrated suspensions of these particles
exhibit relaxation dynamics and rheological properties which can be very different with respect to
those of a hard sphere suspension or an emulsion. We study the reduction in size of ionic microgels in
response to increasing number of particles to show that particle shrinkage originates primarily from
steric compression, and that the effect of ion-induced de-swelling of the polymer network is negli-
gible. With increasing particle concentration, the single particle dynamics switch from those typical
of a liquid to those of a super-cooled liquid and finally to those of a glass. However, the transitions
occur at volume fractions much higher than those characterizing a hard sphere system. In the super-
cooled state, the distribution of displacements is non-Gaussian and the dependence of the structural
relaxation time on volume fraction is describable by a Volger-Fulcher-Tammann function. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3697762]

I. INTRODUCTION

Colloidal suspensions of purely repulsive particles may
undergo a liquid to glass transition similarly to molecular
systems. For particles characterized by a hard-sphere (HS)
interaction, the phase behaviour is dictated only by one
parameter: the volume fraction φ. As φ increases, particle
rearrangements slow down and the characteristic time for
structural relaxation τ increases accordingly. At random
close packing, φhs

rcp � 0.64, particles reach the maximum
packing density and τ diverges:1 the hard sphere system
undergoes dynamic arrest. The system also undergoes a
glass transition, usually at lower volume fractions. If the
inter-particle potential is soft, the glass transition can occur at
volume fractions that are higher than random close packing;2

the way this transition is approached may significantly differ
from the case of hard spheres.3, 4

Experimentally, one way of designing a system with a
soft inter-particle potential is by using microgel particles. In-
deed, the intrinsic compressibility of the polymer network of
a microgel plays a major role in dictating the phase behav-
ior. These particles are prepared by chemically cross-linking
a polymer to form gel particles with sub-micron size. Highly
swollen microgels are compressible and can be packed up to
very high concentrations, conveniently described by a gen-
eralized volume fraction ζ = n · v, where n is the particle
number concentration and v is the volume of the particle
measured at n → 0. For these dilute suspensions ζ = φ. How-
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ever, ζ can attain values larger than one, reflecting that micro-
gel particles can shrink; in such a case microgels are not at
swelling equilibrium since they have absorbed all the solvent
that is available. In this case, ζ is a measure of the compres-
sion of the particles relative to their equilibrium size in dilute
conditions.

The size of a fully swollen particle and its softness can
be controlled in the polymerization process by adjusting the
cross-link density and, in some cases, by tuning external stim-
uli such as temperature.5, 6 If the polymer that constitutes the
particles contains ionic groups, the degree of swelling can
also be controlled by pH and electrolyte concentration.7, 8

These characteristics make the system highly versatile and
tunable.

In the case of ionic microgels, two phenomena can be re-
sponsible for particle shrinkage as ζ increases, namely steric
compression and ion-induced de-swelling. Steric compres-
sion occurs when ζ increases above φhs

rcp and particles reduce
in size due to the physical constraints imposed by the neigh-
boring particles. However, in ionic microgels de-swelling may
occur even at volume fractions below φhs

rcp.9, 10 In fact, the
size of a particle depends on the relative concentration of
counterions inside and outside the particle. Since the electric
charge is distributed within the polymer network, most of the
counterions are located inside the microgel, with only a small
fraction outside the particle. However, when ζ increases, the
volume available outside the particles decreases, and the rela-
tive balance between the inside and outside ion-concentration
decreases. This determines a change in the osmotic pressure
that can lead to particle de-swelling even before φhs

rcp. From
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this point of view, the effects of both ion-induced de-swelling
and steric compression on particle shrinkage need to be quan-
tified in order to evaluate their relative importance in dictating
the phase behavior and the dynamics in the dense state.

In this paper we investigate particle de-swelling in a sys-
tem of ionic microgels. Microgel particles are obtained by
copolymerization of poly-N-isopropylacrylamide (pNipa), a
neutral polymer, and acrylic acid (AAc) which adds ionic
groups to the polymer network. The resulting microgels
respond to temperature and pH variations. We work at
7 � pH � 8 corresponding to complete dissociation of the
ionic groups; the equilibrium state of the microgel particle
is thus the fully swollen configuration. Then, by means of
confocal microscopy and static light scattering, we measure
the particle size as a function of particle concentration. We
show that particle shrinking begins when particles are physi-
cally touching. In fact, we show theoretically that for this sys-
tem ion-induced de-swelling becomes significant only for ζ

� 0.8, well above random close packing. This allows a direct
correlation between the particle dynamics in the dense state
and the generalized volume fraction ζ . The single particle dy-
namics are measured by means of particle tracking confocal
microscopy and dynamic light scattering. The dynamics in the
dense state reveal that particle compression results in a glass
transition that is approached smoother than in the hard-sphere
case. Indeed, the structural relaxation time τ increases with ζ

following a Vogel-Fulcher-Tammann (VFT) function, in line
with recent results.3

II. MATERIALS AND CHARACTERIZATION METHODS

A. Particle synthesis and characterization

The microgel particles are synthesized with a standard
precipitation polymerization method.11 All reagents have
been purchased from Sigma Aldrich. A solution of 385 ml
of water with 3.69 g N-isopropylacrylamide, 0.029 g N,N′-
methylenebisacrylamide (BIS), and 0.29 g Acrylic acid is in-
troduced in a 500 ml three-neck flask equipped with a stirrer,
nitrogen flow, and water cooling. While stirring, the solution
temperature is slowly raised to 68 ◦C in an environment satu-
rated with nitrogen. At this point we add a 10 ml solution of
water with 0.29 g of the initiator potassium persulfate (KPS).
After about ten minutes from the introduction of the initia-
tor, the solution becomes milky, indicating that colloidal nu-
clei have formed. The system is left reacting for five hours.
At the end of the reaction, the suspension is allowed to cool
down to 25 ◦C. To obtain fluorescent particles, we use rho-
damine monomer (methacryloxethyl thiocarbonyl rhodamine
B or fluor 570; polysciences), which we add during polymer-
ization after ≈15 min from the introduction of the initiator.
Both non-fluorescent and fluorescent suspensions are cleaned
by dialyzing against pure water for 15 days and freeze-dried
afterwards. The resulting powder is then re-dispersed in water
at a polymer concentration c � 15 wt%. This concentrated so-
lution is agitated at T ∼ 27 ◦C for about 10 days to allow ho-
mogenization between the phases. Samples at different con-
centrations are finally obtained by dilution from this batch.

B. Particle characterization: Viscometry
and titration measurements

The viscosity η of the microgel suspensions is measured
with an Ubbelohde tube immersed in a water bath at a temper-
ature of (25.00 ± 0.01) ◦C. We obtain the relative viscosity ηr

= η/ηo, with ηo the viscosity of water, of dilute suspensions
for different polymer concentrations at pH7 and 8. At each
polymer concentration, the pH is adjusted by slowly adding a
solution of NaOH. As shown in Figure 1, the relative viscosi-
ties as a function of polymer concentration lie on the same
curve for both pH7 and 8. This suggests that particle size is
constant within this pH range. In fact, these pH values are well
above the pKa � 4.25 of the AAc and the carboxyl groups in
the microgel are expected to remain dissociated, keeping the
microgel in its fully swollen configuration.

Using the Einstein-Batchelor relation,10 ηr = 1 + 2.5
(k · c) + 5.9(k · c)2, we fit the data at a fixed temperature
and obtain the intrinsic volume fraction k = ζ /c. Since
the suspension density is essentially equal to that of water,
1 g cm−3, the intrinsic volume fraction is k = ζ /c = v/mp,
with mp the mass of a particle. From viscometry, we obtain
k = 220 and from dynamic light scattering measurements,
we find v = 2.1 μm3. As a result, mp � 9.7 × 10−15 g. From
this value we can calculate the radius of a completely col-
lapsed particle R0 � ( 3mp

4π

)1/3 = 130 nm. Since the radius we
measure by DLS on a dilute sample at 43.5 ◦C and pH3 is
R = 155 nm, we conclude that even in the de-swollen state
pNIPA particles contain a high amount of water. This result
suggests that at preparation conditions the polymer volume
fraction in a microgel particle is ϕo � 0.7, in agreement with
previous reports.12–14

To determine the particle charge we perform titration ex-
periments on microgel suspensions and use pure water as
reference. NaOH is slowly added to the microgel suspen-
sion and the change in pH is recorded. The net polymer
charge per unit volume [Q] at each pH value is calculated by

FIG. 1. Dependence of the relative viscosity ηr = η/ηo on polymer concen-
tration c at pH7 (circles) and pH8 (squares). The solid line is a fit to the
Einstein-Batchelor relation: ηr = 1 + 2.5(k · c) + B(k · c)2 giving k = (2.2
± 0.2) × 102 and B = 4 ± 2. Dashed line is a fit to the Einstein equation.
The inset shows the fluorescent particles deposited on a glass slide.
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FIG. 2. Number of ionized groups per particle q as function of pH, obtained
from titration of three solutions at polymer concentrations c= 0.19% (dia-
monds), 0.56% (squares), 0.9% (triangles). The solid line is a fit to the equa-
tion y = Q

1+10(pKa−x) and gives Q = 6.7 × 106 and pKa = 5. The inset shows
the product of the total number of ions per unit volume and particle mass as
function of polymer concentration c for samples at pH � 7; the slope of the
linear fit is Q = 7.8 × 106.

subtracting the moles of NaOH added to the water and those
added to the sample at the same pH value. The number of
dissociated charges per particle q(pH) is then calculated by
q = [Q]

n·NA
, where NA is the Avogadro number and n = c/mp

the number of microgels per unit volume in solution. In Fig-
ure 2, we show titration curves performed on three samples at
different polymer concentrations. Error bars are related to the
uncertainty on the determination of c. At pH � 6, the charge
of the particle saturates to a maximum value Q � 6.7 × 106.
This result confirms that no changes in particle size are ex-
pected for pH varying between 7 and 8, as obtained from vis-
cometry measurements.

In addition, as shown in the inset of Figure 2, the amount
of NaOH required to bring the microgel suspensions to pH
� 7 increases linearly with polymer concentration. This sug-
gests that the fraction of free counterions per particle remains
unchanged with increasing polymer concentration.

C. Dynamic light scattering

We use an ALV/CGS3 Compact Goniometer system op-
erating with a laser of wavelength λ = 633 nm in vacuo and
a time correlator ALV/LSE-5003 to perform dynamic light
scattering experiments. We measure the normalized time av-
eraged intensity correlation function, 〈g(2)(q, τ )〉t, of the light
scattered by the microgel suspension, in homodyne exper-
iments. Here τ is the lag-time and q = |q| = 4πn

λ
sin( θ

2 ) is
the modulus of the scattering wavevector, q, with n = 1.33
the refractive index of water and θ the scattering angle.
From 〈g(2)(q, τ )〉t, the normalized ensemble averaged elec-
tric field correlation function 〈g(1)(q, τ )〉E can be obtained.
This measures the normalized dynamic structure factor: f(q,
τ ) = F(q, τ )/S(q), where S(q) = F(q, τ → 0) is the static
structure factor. Since for ergodic systems, time and ensem-
ble averages are the same, the ensemble averaged field cor-
relation function can be obtained from the time average of

the intensity correlation function using the Siegert relation:16

f (q, τ ) = 〈g(1)(q, τ )〉E =
√

〈g(2)(q, τ )〉t − 1. In dilute solu-
tions, particle correlations are negligible and the dynamic
structure factor reduces to f(q, τ ) = exp (− D0q2t) with D0

the diffusion coefficient of a particle. From this relation, we
measure the particle hydrodynamic radius, Rh, in solutions
at polymer concentrations c ∼ 0.01 wt%, which is dilute
enough to avoid any particle interactions. At sufficiently small
wavevectors, the decay of f(q, τ ) is not influenced by the in-
ternal modes of the microgel particle. Indeed, we find that f(q,
τ ) follows an exponential decay. We fit the relaxation and ex-
tract the diffusion coefficient of the particle from the slope of
a linear fit of the relaxation frequency, γ = D0q2, versus q2.
Using the Stokes-Einstein equation, we obtain Rh= 0.8 μm
for T= 20 ◦C and pH = 7.

As the particle concentration increases, interactions be-
tween particles are no longer negligible and determine
particle-particle correlations. These result in short range or-
der which, in reciprocal space, shows up as oscillations in S(q)
around 1. For q 
 qmax, where q−1

max is related to the character-
istic interparticle spacing, S(q) = 1. If the scattering particles
are identical, the dynamic structure factor reduces to

F (q, τ ) = 1

N

N∑
j=1

N∑
k=1

〈exp{iq · [rj (0) − rk(τ )]}〉E, (1)

where N is the number of particles in the scattering volume,
and rj , rk their positions. The sum in Eq. (1) can be easily
separated in two parts, one running over terms k = j which
describes single particle motion, Fs(q, τ ), and the other, run-
ning over all terms k �= j, describing the correlated motion of
different particles, Fd (q, τ ). In the limit τ → 0, Fs(q, τ → 0)
= 1 and S(q) = 1 + Fd (q, τ → 0); this shows that the depar-
ture of S(q) from 1 is a measure of particle correlations, and
that Fs(q, τ ) can be obtained at q values such that S(q) � 1.15

For large q, when q 
 qmax, S(q) = 1 and 〈g(1)(q, τ )〉E

directly measures the self dynamic structure factor16

fs(q, τ ) = 1

N

N∑
j=1

〈exp{iq · rj (0) − rj (τ )]}〉E. (2)

For very high concentrations, particles are confined by
their neighbors and are only able to explore an extremely
small region of the available space during the experimental
time. In such non-ergodic samples f(q, τ ) may be obtained
by measuring the intensity of the light scattered by different
sub-ensembles of the sample, which assumes that the range of
correlation between particles is much smaller than the scatter-
ing volume to the one third. In this case, the electric field of
the scattered light taken over the full ensemble is a zero mean
Gaussian variable,16 and the Siegert relation is valid. Exper-
imentally, ensemble averages are performed by changing the
position of the vial with respect to the incident beam and then
averaging in time. However, a much simpler and less tedious
procedure was suggested by Pusey and van Megen17 to obtain
f(τ ) from 〈g2(τ )〉t

f (τ ) = 1 + 〈I 〉t
〈I 〉E

⎡⎣√
1 + 〈g(2)(τ )〉t − 〈g(2)(0)〉t

β
− 1

⎤⎦ , (3)
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where 〈I〉t is the time averaged intensity obtained during a
measurement of 〈g(2)(τ )〉t, for a fixed sample orientation, 〈I〉E

is the ensemble averaged intensity obtained by rotating the
sample, and β = 〈g(2)(τ → 0)〉E − 1 ≤ 1 depends on the
collection optics. It is straightforward to observe that Eq. (3)
reduces to the Siegert relation for ergodic samples where 〈I〉E

= 〈I〉t, 〈g(2)(0)〉t = 1 + β. For our apparatus, in which the
collection optics is a three-mode optical fiber, β = 0.4. Non
ergodicity can be easily verified experimentally since the τ

→ 0 intercept of 〈g(2)(τ )〉t is smaller than that of 〈g(2)(τ )〉E

and 〈g(2)(τ → ∞)〉t does not decay to zero in the experimental
time.

To extract the mean square displacement of the parti-
cles from a scattering experiment it is necessary to construct
a model for the dynamic structure factor. If it is assumed
that particle displacements are Gaussian distributed, Eq. (2)
reduces to

fs(q, τ ) = exp{−(q2/6) · 〈�r2(τ )〉} (4)

with

〈�r2(τ )〉 = 〈[rj (τ ) − rj (0)]2〉 (5)

the particle mean square displacement (MSD). For non-
Gaussian distributions, Eq. (4) represents the second order ap-
proximation of a Taylor expansion of Eq. (2). Non-Gaussian
behavior can be measured by the magnitude of the next non
zero term in the expansion16

fs(q, τ ) = exp{−(q2/6) · 〈�r2(τ )〉

+ q4

360
[3〈�r4(τ )〉 − 5〈�r2(τ )〉2]}. (6)

The q4 coefficient suggests a definition for a non-
Gaussian parameter: α2(τ ) = 3〈�r4〉

5〈�r2〉2 − 1.
Usually, non-Gaussian distributions become relevant at

the structural relaxation time,18–20 while they are negligible
for much shorter or longer lag times. In this study the struc-
tural relaxation time is observed in the time region investi-
gated by confocal microscopy. We thus neglect non-Gaussian
effects in DLS measurements and use Eq. (4) to extract the
mean square displacement from the self dynamic structure
factor. To verify that this relation holds in concentrated sam-
ples we measure 〈g(1)(q, τ )〉 at different q values and calculate
the resulting MSD curves from Eq. (4). As shown in Figure 3
for a sample in the concentrated regime, ζ � 1.2, the collapse
of the MSD curves calculated at different wavevectors on a
single curve confirms that non-Gaussian effects are negligible
at lag-times τ investigated in DLS experiments. The relative
electric field correlation functions 〈g(1)(q, τ )〉 from which the
MSD are extracted are reported in the inset of Figure 3.

We also find that for ζ � 1.2, a peak at low q in the
scattered intensity appears suggesting that interparticle cor-
relations are no longer negligible. We identify the position
of this peak with qmax. In the concentration range 4.8 � ζ

� 1.3 the peak moves in the range 8 � qmax � 5 μm−1. In
this concentration range our experiments are performed at
q � 9 μm−1 > qmax . We assume that this q value is high
enough to allow us to measure fs(q, τ ). At the same time,
q is assumed small enough to neglect the terms of order q4

FIG. 3. MSD curves for different wavevectors q(1/μm). q = 9 (squares),
13.2 (circles), 17 (triangles), 20.2 (reverse triangles), 22.9 (diamonds) as a
function of lag-time τ for a sample at ζ � 1.2. In the inset, the time average
correlation function of the electric field is reported as function of lag-time.
Symbols are the same of the main plot.

and higher in Eq. (6): this is equivalent to the assumption
that non-Gaussian effects are minimal in our light scattering
experiments.

Finally, since our suspensions are nearly transparent, as
we only work with extremely swollen microgels, multiple
scattering is negligible.

D. Static light scattering

We determine the concentration dependence of the par-
ticle radius, R, using static light scattering. In general the q
dependence of the scattered intensity is a function of both the
single particle form factor, P(q), and of the structure factor.
For microgels, P(q) depends on R, polydispersity, and poly-
mer density distribution within the particle. While the real dis-
tribution of polymer density in the particle remains unknown,
different scattering experiments13, 21–23 suggest the presence
of a uniformly cross-linked core and a corona in which the
polymer density decreases towards the particle periphery. Fol-
lowing Stieger et al.,21 the particle form factor can be mod-
eled, in reciprocal space, as the product of the form factor of
a homogeneous sphere and an error function with a character-
istic length scale ρ proportional to the thickness of the corona

P̃ (q) ∝
[

3
Rq cos(Rq) − sin(Rq)

(Rq)3
· exp

(−ρ2q2

2

)]2

. (7)

This model has been successfully applied to study the struc-
tural changes of pNipa-AAc microgels induced by hydrostatic
pressure and temperature.24 Within the model, the polymer
density decreases to half of its core value at r = R and ap-
proaches 0 at r = R + 2ρ, with r the distance from the particle
center.
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Μ

FIG. 4. Scattered intensity (arbitrary units) as function of wavevector q for
samples at volume fractions ζ = 0.15 (open circles) and ζ = 3.1 (solid cir-
cles). Solid line is the fitting of data-points of the dilute sample to the form
factors of polydisperse inhomogeneous spheres (Eq. (9)) giving a radius R
= 0.65 μm. Dashed line is the form factor of monodisperse inhomogeneous
spheres of radius R = 0.48 μm.

We include polydispersity in the core by assuming a
Gaussian distribution for R

W (R,R, σ ) = 1√
2πσ 2R

2
exp

[
− (R − R)2

2σ 2R
2

]
, (8)

where R is the mean radius and σ 2 the variance of the distribu-
tion. The form factor for dilute suspensions is thus described
by

P (q) =
∫

P̃ (q) · W (R,R, σ ) dR. (9)

As an example, consider the sample at ζ = 0.15. The data
is well described by Eq. (9), as shown in Figure 4, with R

= 0.65 μm, σ = 0.07 and ρ = 0.045 μm. From these results
we find that the particle radius in dilute conditions is R + 2ρ

= 0.74 μm, in good agreement with the hydrodynamic radius,
Rh = 0.8 μm, measured by dynamic light scattering.

For concentrated samples, inter-particle correlations are
important and S(q) �= 1. As a result, the q-dependence of the
scattered intensity is hard to model. However, since in our
experiments S(q) mainly influences the low q region of the
scattered intensity,22 we can use the high q region to infer the
size of our particles. Indeed, for each particle concentration
there are at least two peaks in the form factor within the high
q region; thus we can safely estimate the particle radius in
dense suspensions by comparing the experimental scattered
intensity to the theoretical form factor of monodisperse, inho-
mogeneous particles. We assume a constant corona thickness
ρ(c) = ρ and adjust the concentration-dependent radius, R(c),
of the theoretical form factor to match the high q peaks ob-
served experimentally. As an example, the case of ζ = 3.1
is shown in Figure 4. Following this procedure we obtain a
particle radius R = 0.48 μm.

E. Confocal measurements of particle radius
and dynamics

We prepare samples at different microgel volume frac-
tions, all containing a small amount, c � 0.01%, of fluores-
cent microgels. We use a confocal microscope (ConfoCor 2,
Zeiss) working with a water-immersion 63× objective to di-
rectly measure the particle size as a function of particle con-
centration in dense samples. We acquire 3D stacks, each con-
taining 25 slices, in which successive 2D images are vertically
separated by 0.3 μm. The acquisition time per frame is about
1 s. To improve visibility and reduce errors due to particles
out of focus, we project the 3D stack in a single 2D image.
Finally we apply standard image analysis tools25 to improve
the signal and remove aggregates, and measure the area cor-
responding to each particle. In Figure 5, a 2D projection is
compared to an image containing the particle contours after
processing, for a sample at ζ � 1.35.

Confocal microscopy is also used to measure particle
dynamics. We focus on a fixed plane which was always at
least 15 μm far from the substrate, and capture sequences of
images in time. The particle tracking routines for IDL writ-
ten by Crocker and Grier26 are used to determine the loca-
tions of the center of mass of the fluorescent particles in each
frame, from which particle trajectories are constructed. The
mean square displacement (MSD) at time τ is obtained by
fitting the distribution of particle displacements to a gaussian
function:

f (�r) = exp

(
−�r2

2ω2

)
, (10)

where f(�r) is the probability density function of displace-
ments �r = |r(t) − r(0)| and ω is the standard deviation of
the distribution. The MSD is obtained as the standard devia-
tion ω. When particles move freely by Brownian motion, the
displacements are random by definition and hence their distri-
bution is perfectly described by a gaussian function: ω is then
mathematically equivalent to the MSD of Eq. (5). When par-
ticles movements are constrained, the distribution of displace-
ments is not described by a gaussian. In this case, ω gives a
value of MSD which is representative of the great majority of
particle displacements.27

FIG. 5. Left: 2D superposition of 25 slices vertically separated by 0.3 μm
obtained from a solution of microgels at c = 0.6% (ζ = 1.35). Right: Con-
tours of the only particles measured by the software after image processing.
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III. RESULTS AND DISCUSSION

A. Origin of particle de-swelling

The equilibrium size of a microgel particle is obtained
from the condition of having a zero osmotic pressure differ-
ence inside and outside the particle. If the particle surrounding
is only water, then28

π = πm + πel + πi = 0. (11)

In this equation, the first term, πm, takes into account the
variation in free energy due to polymer/solvent mixing. The
second term, π el, results from the deformation of the polymer
chains inside the microgel with respect to their equilibrium
configuration. Both contributions depend on the swelling ratio
and can be estimated using Flory’s theory for polymer gels28

πm/kT = −Na

vs

[
ϕ0

α
+ ln

(
1 − ϕ0

α

)
+ χ

(ϕ0

α

)2
]

, (12)

πel/kT = Nc

v0

[ ϕ0

2α
− 1

α1/3

]
, (13)

where kT is the thermal energy, α = v
v0

= ϕ0

ϕ
is the volumetric

swelling ratio, vs = 18 cm3 the molar volume of the solvent
and Nc the effective number of chains in a microgel particle.
In addition, ϕ and v are the polymer volume fraction and the
particle volume, respectively, and ϕ0 and v0 are their values
in the microgel generation state, the deswollen state in our
case. On writing π el, it is assumed that the polymer chains
are Gaussian.12–14

The last term in Eq. (11) describes the additional osmotic
pressure arising from the presence of charged groups in the
polymer network. In the absence of salt, the main contribution
to this ionic term is given by the gas of counterions within
the particle.7, 8, 29 Assuming electroneutrality, the number of
counterions inside a particle is equal to the total number of
ionized groups per particle. As a result

πi/kT = Q

v0α
. (14)

Using these expressions, we solve Eq. (11) for T = 20 ◦C
and using the values of ϕ0, α = α∞, χ , v0, and Q reported
in Table I. We find that Nc = 2.5 × 105, which is in very
good agreement with what we expect from stoichiometry,
Nc = 3.8 × 105.

Equation (14) assumes that all counterions are trapped in-
side the microgel particle as a result of the electrostatic attrac-
tion of the opposite charges in the polymer network. However,
for solutions of polyelectrolyte chains, it is more energetically
favorable for the counterions to reside in the bulk solution be-
cause of the gain in translational entropy. This effect over-

comes the electrostatic interactions with the polyelectrolyte,
resulting in an almost absence of counterions within the poly-
electrolyte coil.30 By denoting the fraction of the counterions
outside the coil as � and introducing the total volume outside
the polyelectrolyte, Vout, the ionic contribution to the osmotic
pressure π i can be split in terms of the osmotic pressure inside
and outside the polyelectrolyte10, 30

πi/kT = πin
i − πout

i

kT
= Q

v0α
(1 − �) − Q

Vout

�. (15)

For cross-linked particles, � continuously decreases with
increasing number of chains Nc.30 Thus, since the microgel
size is generally much larger than that of a polymer chain,
the number of chains is huge and most of the counterions are
retained inside the particle. Thus, the term πout

i is negligible
in dilute conditions.

Nevertheless, for sufficiently concentrated suspensions,
Vout can be small and πout

i can become significant. This
can lead to particle de-swelling at volume fractions smaller
than random close packing.10, 31 This effect is clearly seen
when expressing Vout through the particle volume fraction,
Vout = αv0

1−ζ

ζ
, and using the expression for πout

πout
i /kT = Q�

v0α

( ζ

1 − ζ

)
. (16)

This equation predicts that the ionic osmotic pressure
outside the particles diverges as ζ → 1. However, the
importance of this effect is determined by the prefactor
�. � can be calculated by considering that the counteri-
ons that leave the particle are those in a peripheral re-
gion of thickness d, equal to the inverse Debye screen-
ing length k−1

in . The latter is associated to the decay of
the electrostatic Donnan potential at the periphery of the
particle:10 k−1

in � (4πlBQ/v0α)−1/2 =
√

R3/3lBQ, with lB
= 0.714 nm the Bjerrum length for water at room tem-
perature. In the approximation that k−1

in � R, the frac-
tion of counterions that leave the particle is simply given

by � � (k−1
in +R)3

R3 − 1 � 3k−1
in /R. For our microgels, Q � 7

× 106 for pH � 6 (Figure 2) and R = 0.8 μm, resulting in
� = 0.022.

With this value of �, we solve Eq. (11) using Eqs. (12),
(13), (15), and (16), together with the values of Nc and v0 re-
ported in Table I. In this way, we are able to determine the de-
pendence of the swelling ratio α with ζ . In this procedure we
assume that � does not depend on ζ , as suggested by our titra-
tion results. We find that α decreases by 10% of its value at in-
finite dilution, α∞, when ζ � 0.8. This 10% is by volume and
obviously corresponds to a very small change in size. Note
also that the ζ for which this de-swelling is predicted, is above

TABLE I. Physical and chemical properties of the partially ionic microgel particles: polymer volume fraction
in a particle ϕ0 at preparation conditions; Flory interaction parameter χ at 20 ◦C; particle volume at preparation
conditions v0; particle volume in the swollen state v; swelling ratio at infinite dilution α∞; particle polymer mass
mp; polymer charge Q per particle; effective number of chains Nc; counterion screening length k−1

in ; � is the
fraction of counterions that leave the microgel particle at infinite dilution.

ϕ0 χ v0(μm3) v(μm3) α∞ mp (g) Q (e) Nc k−1
in (μm) �

0.7 0.3 0.014 2.1 154 9.7 × 10−15 7 × 106 2.5 × 105 0.006 0.022
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random close packing φrcp, above which other effects asso-
ciated with particle interpenetration, distortion, and/or com-
pression take place. As a result, these estimations suggest that
particle shrinking does not occur before φrcp for our microgel
particles.

A more rigorous calculation of � can be performed fol-
lowing the calculations of Denton for the interaction potential
between ionic microgels.32 The result is an effective interac-
tion, V, that depends on R, Q, and the Debye screening length
k−1 =

√
R3/3lBζQ. The microgel-microgel interaction thus

explicitly depends on ζ through k−1; it softens as ζ increases.
From V, � can be obtained as32

� = 3

y

(
1 + 1

y

)
e−y

(
cosh[y] − sinh[y]

y

)
(17)

with y = R/k−1. We observe that for y 
 1 Eq (17) reduces
to � � 3/2y in agreement with the approximate solution of
Borrega et al.10 Using this expression for � and considering
that R = R∞[α/α∞]1/3, we solve Eqs. (11)–(16) iteratively
and we obtain the dependence of α/α∞ on ζ . As shown in
Figure 6, the result agrees very well with our previous esti-
mate based on the model of Borrega et al.10

To test the expectations based on these calculations, we
measure the microgel radius as a function of ζ , from both con-
focal images and static light scattering (SLS). Both Rconf, the
radius extracted from real space confocal images, and RSLS,
the radius extracted in Fourier space using SLS, show that de-
swelling begins at ζ ≈ 1, as shown in Figure 7; this confirms
that counterion-induced de-swelling is negligible for our mi-
crogel suspensions when ζ is smaller than 1. Furthermore, for
ζ ≥ 1 the available volume is completely filled with microgels
and de-swelling proceeds as R ∝ ζ−1/3 (Figure 7), consistent
with what is expected for an isotropic compression. Particle
shrinking thus occurs as a result of the steric compression ex-
erted by the neighboring particles.

This can be understood after comparing the relevant
length scale for counterion-induced de-swelling, κ−1

in , and the
length of the outer corona of the particles, ρ. For our mi-
crogels, ρ 
 k−1

in . This suggests that before any significant

FIG. 6. Prediction of the dependence of the swelling ratio α, normalized to
its value at infinite dilution α∞, on the generalized volume fraction ζ , as
obtained from Eq. (11) (dashed line), and from Eq. (17) (solid line).

µ µ

FIG. 7. Dependence of the microgel radius on generalized volume fraction.
The radius measured from confocal images Rconf is reported on the left axis
for samples at pH7 (circles) and pH8 (stars). The radius measured from static
light scattering RSLS (crosses) is reported on the right axis for samples at
pH7. Vertical axes are scaled to collapse Rconf and RSLS in dilute samples on
the same horizontal line (dashed line). Solid line is a plot of the equation
R∝ζ−1/3.

change in counterion concentration outside the particle hap-
pens, the microgel starts shrinking as a result of the steric
compression of the corona. We note that the difference in
density between particle core and corona also determines a
non-uniform distribution of counterions within the microgel
particle. In particular, the ions residing outside the particle
are less in number with respect to having a microgel with a
denser corona. This structure contributes to reduce the depen-
dence of πout

i on Vout, with respect to what is expected for a
homogeneous microgel particle. Indeed, for large ρ, the mi-
crogel consists of a thick polyelectrolyte outskirt that provides
extra volume for the counterions that leave the particle core.
As a result, the fraction of counterions in a shell of length
κ−1

in do not significantly alter πout and counterion-induced
de-swelling cannot occur. Our interpretation thus suggests
that for counterion-induced de-swelling to be significant, the
structure of the microgel should be such that κ−1

in ≥ ρ. Mi-
crogels that are more homogeneous than ours would then
be required to observe ion-induced de-swelling. Interestingly,
this has only been seen with small microgels, for which � is
higher and which are likely to be much more homogeneous
than our larger microgels.9, 10

B. Dynamics in dense suspensions

The results above establish a firm basis for identifying ζ

with the particle volume fraction, for ζ < 1. For larger values
of ζ , φ ≈ 1, and the microgels must deswell in order to fit
into the available space. Using this direct mapping between ζ

and φ, we explore the dynamics of dense suspensions and ob-
serve different mechanisms for particle motion as ζ increases.
For dilute suspensions, ζ = 0.02, the slope of the MSD ver-
sus time is equal to 1, as shown in Figure 8(a). The linear-
ity of MSD in time indicates the diffusive character of parti-
cle dynamics at these small concentrations. This is also illus-
trated by the trajectory of one of the particles, which is that
of a random walk, as shown in Figure 8(b). Similar results are
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(a)

FIG. 8. Left: Dependence of the MSD on lag-delay time τ for particle vol-
ume fractions ζ = 0.02 (squares); 0.5 (circles); 1.22 (triangles); 1.96 (dia-
monds); 2.77 (stars). Open symbols are from DLS and solid symbols from
CM. The images on the right represent particle trajectories at ζ = 0.02 (top)
and ζ = 1.96 (bottom) of duration 26 and 500 s respectively.

also obtained at ζ = 0.5. However, in this case the diffusion
coefficient D is smaller by a factor 3 compared to the case
ζ = 0.02. Remarkably, for hard spheres at the same volume
fractions, this difference in D is a factor of 50.33 This re-
sult highlights the effect of particle softness on suspension
behavior.34

For 1 < ζ < 2.3 we observe dynamics typical of su-
percooled liquids. At short times the motion of the particles
is diffusive. However, when the MSD becomes sufficiently
large, the motion of the particle is constrained by a cage
formed by the neighboring particles. This effect is reflected by
an inflection point in the MSD curve, as shown in Figure 8(a).
For ζ = 1.22, this inflection spans the time range 1 ≤ τ

≤ 10 s. For larger times, the MSD of the particles becomes
again linear in time. This indicates that, on those time scales,
the caging effect does not affect particle motion, as particles
are expected to diffuse out of their cages within that time
frame. For even larger volume fractions, ζ = 1.96, the caging
effect is maintained for over two decades in time, as shown in
Figure 8(a). Nevertheless, for sufficiently long times, the par-
ticles are again able to escape the cage and diffuse away; this
is clearly seen in the time evolution of the particle trajectory
shown in Figure 8(c). At higher volume fractions, the behav-
ior is sub-diffusive even at the shortest time-scales and cage
rearrangement is not observed, as shown in Figure 8(a); in our
experimental time window the system is kinetically trapped in
a glassy state.

The presence of a cage in hard sphere systems is ac-
companied by the development of dynamic heterogeneities
in the sample: at a fixed lag-time, the particles involved in
a cage rearrangement move over longer distances than those
still trapped inside their cages. Since particle dynamics are
not homogeneous, the distribution of displacements at a fixed
lag-time is non-Gaussian. As a result, by quantifying the de-
viations from gaussianity, we quantify the extent of caging in
our samples. This is done by using the parameter α2(τ ), which
is zero for a perfectly gaussian distribution and increases as
the distribution deviates from Gaussian. For our suspensions,
α2 remains essentially zero, reflecting Gaussian dynamics
(Figure 9(a)), except at ζ = 1.96, deep in the super-
cooled state, where the dynamics are clearly non-Gaussian
(Figure 9(b)). At this high ζ , α2 strongly depends on lag-

(c)

FIG. 9. Left: displacement distributions for samples at ζ = 0.02 (top) and ζ

= 1.96 (bottom). Lines are Gaussian fits to the data. For each sample, solid
and empty symbols are for shorter and longer τ values respectively. Right:
Non-Gaussian parameter α2 for samples at different ζ as function of lag-
time. Symbols are the same as in Figure 8.

time, as shown in Figure 9(c); it exhibits a maximum at
τ � 100 s, which is comparable to the structural relax-
ation time of the sample. This suggests that dynamic hetero-
geneities, and hence cage rearrangement, are greatest at the
structural relaxation of the system, further emphasizing the
fundamental role played by these local rearrangements in this
relaxation process.

Compared to hard spheres, our results suggest that parti-
cle softness strongly broadens the range of volume fractions
over which structural relaxation occurs. To quantify this, we
define the relaxation time, τ r = τ /τ 0, as the lag-time value
at which a particle displacement is comparable to the parti-
cle radius,

√
MSD � R, normalized to the relaxation time

of a free diffusing particle τ 0. Neglecting the small varia-
tions of particle radius with ζ in the range 2.3 > ζ > 1,
for our particles τ corresponds to the lag-time for a MSD
� 0.4 μm. We then plot how this time depends on ζ . We
find that the ζ -dependence of τ r follows a modified Vogel-
Fulcher-Tammann equation, τr = exp[ Aζ

ζg−ζ
], with ζ g = 6.87

the ζ value corresponding to the glass transition and hence

Ζ

Τ
Η

Ζ
Ζ

Τ
Η

FIG. 10. Structural relaxation time τ r for microgel solutions at pH7 (circles)
and pH8 (diamonds) and relative zero-shear viscosity (squares) as function of
ζ . Solid line is a fit of the data in the supercooled state (ζ > 1.1) to the VFT
equation τr = exp[ Aζ

ζg−ζ
] with A = 22.32 and ζ g = 6.87. The inset shows a

log-log plot of ln (τ r) as function of the normalized volume fraction ζ /ζ g.
Solid line is the same as in the main figure and the dashed line describes the
divergence of hard spheres according to τr = C

(φg−φ)2 with C = 0.0098 and

φg = 0.64 (Ref. 35).
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to the divergence of τ r. This result is in line with recent
findings for other microgel suspensions.3 We note this is
very different from hard sphere behavior, with a correspond-
ing ζ -dependence of the structural relaxation time given by
τr = C

(φg−φ)2 .35 To emphasize these differences, we plot our
results and the hard sphere expectations in terms of ζ /ζ g. As
shown in the inset of Figure 10, our soft particles display a
slower approach to the glass than hard spheres, similar to what
is found for strong molecular glass formers. The behavior of
our suspensions in the supercooled state, on their approach to
the glass, corresponds to an intermediate fragility, character-
ized by a structural relaxation time that slowly diverges with
increasing ζ .3

IV. CONCLUSIONS

We have shown both experimentally and through calcu-
lations based on theoretical models that ionic, swollen pNipa
microgel particles do not appreciably shrink with increas-
ing particle concentration as a consequence of counterion-
induced de-swelling. This is a consequence of both the small
fraction of free counterions � and of the inhomogeneous
structure of the microgels. Indeed our microgel particles
shrink because of the steric compression between overlapping
chains belonging to neighboring particles. This conclusion
has allowed to directly relate the structural relaxation time of
the suspension to ζ and compare it to the hard sphere system.
We find that because of particle compressibility, the struc-
tural relaxation time and zero-shear viscosity of the microgel
suspension increases much slower with particle concentration
compared to hard sphere suspensions.
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