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Foreword

This book is the tenth in a series of Proceedings for the Séminaire Poincaré, which
is directed towards a large audience of physicists, mathematicians, and biologists.

The goal of this Seminar is to provide up-to-date information about general
topics of great interest in physics. Both the theoretical and experimental aspects
of the topic are covered, generally with some historical background. Inspired by
the Nicolas Bourbaki seminar in mathematics, hence nicknamed “Bourbaphy”,
the Poincaré Seminar is held twice a year at the Institut Henri Poincaré in Paris,
with written contributions prepared in advance. Particular care is devoted to the
pedagogical nature of the presentations, so as to fulfill the goal of being useful to
a large audience of scientists.

This new volume of the Poincare Seminar Series, “Glasses and Grains”
(“Verres et Grains”), corresponds to the thirteenth such seminar, held on No-
vember 21, 2009. It describes recent developments in the statistical physics of two
related but still poorly understood topics — glasses, especially the glass transition,
and the statics and dynamics of granular systems. This field has emerged as one of
the most challenging frontiers of statistical physics in the last two decades, and is
notable for its very active interchange between experiment, theory, and numerical
studies.

The first survey, by JORGE KURCHAN, simply titled “Glasses”, summarizes
the elements of the low temperature and transition behavior of glasses. He em-
phasizes the collective nature of glassy “order”, as implied by the appearance
of non-Arrhenius relaxations; he also discusses aging, the significance of density-
functional approaches, and finally gives a brief introduction to the Random First
Order mean-field theory, which has refocused theoretical approaches to the under-
standing of the glass transition.

The second article, “Colloidal Glasses”, by DAVE WEITZ, presents an ex-
perimental perspective on the glass problem, by focusing on colloids, for which
glass-forming occurs even with relatively simple inter-particle interactions. Repul-
sive colloidal glasses seem to be highly analogous to granular materials, exhibiting
a “jamming” transition in which a correlation length appears to grow without limit.
The behavior of attractive colloidal glasses is more complex, showing a spinodal
decomposition followed by a kinetic gelation as the attraction is increased.

In the third contribution, “Glass and Jamming Transitions”, GIULIO BIROLI
returns to the theory of the glass transition, discussing in greater detail the Ran-
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dom First Order Transition theory originally proposed by Kirkpatrick, Thirumalai,
and Wolynes, and introduced in the first contribution to this volume. With the
help of a set of witty Galilean dialogues, Biroli summarizes both the seminal na-
ture of this breakthrough as well as its limitations as a full theory of the transition
and low-temperature properties of glasses.

The fascinating phenomenology of granular flows is then discussed by Y OEL
FORTERRE and OLIVIER POULIQUEN in “Granular Flows”. After a brief review of
the distinctive features of granular flows vis-a-vis liquid flows, they review recent
work emphasizing the role of the “Inertial Number” , measuring the ratio of inertial
forces to internal stresses, in controlling flow rheology. They then summarize a
recently proposed visco-plastic model, based on this insight, which organizes a
broad range of results for dense granular flows in a simple, intuitive way.

Finally, one of the editors of this volume, THOMAS HALSEY, examines the
underlying microscopic mechanisms that are expressed through this Inertial Num-
ber dependence in “Theoretical Considerations for Granular Flow”. He presents an
exact solution for the flow of a highly symmetric “honeycomb” granular packing,
extends these results to random packings, and proposes an interpretation, based
on an underlying length scale in the flow, for the Inertial Number dependence
summarized in the previous contribution.

In addition to the above contributions, which were presented at the original
seminar in November 2009, the editors have completed this volume by obtaining a
further review entitled “Grains, Glasses, and Jamming”, by OLIVIER DAUCHOT.
Dauchot focuses on the analogy between glassy relaxation and the relaxation of
granular packings under mechanical excitation, exploring similarities and differ-
ences in the spatio-temporal organization of relaxation modes in these two sys-
tems.

We hope that the continued publication of this series of Proceedings will serve
the scientific community, at both the professional and graduate levels. We thank
the COMMISSARIAT A L'ENERGIE ATOMIQUE (Division des Sciences de la Matiere),
the DANIEL TAGOLNITZER FOUNDATION, the TRIANGLE DE LA PHYSIQUE FOUN-
DATION, and the ECOLE POLYTECHNIQUE for sponsoring this Seminar. Special
thanks are due to CHANTAL DELONGEAS for the preparation of the manuscript.

BERTRAND DUPLANTIER, THOMAS C. HALSEY & VINCENT RIVASSEAU
Saclay, Houston and Orsay, May 2010
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Glasses

Jorge Kurchan

Abstract. It is customary to present glasses as an outstanding unsolved ques-
tion in condensed matter. The problem is the following: supercooled liquids
in equilibrium appear to have typical relaxation timescales that diverge, as
the temperature T is lowered, faster than with an exponential of 1/7T". Now,
for particles with smooth, soft interactions, this may only happen as a conse-
quence of a growing length of coherence between particle positions, diverging
at T' = 0. The mystery is that we do not actually see any recognizable form
of order when we look at configurations.

Quite apart from this issue, there is another side to glasses, more rel-
evant from the experimental point of view, the fact that in practice glasses
are performing out of equilibrium dynamics: they are aging. Understanding,
and even simply describing such a situation requires a new set of ideas and
techniques.

1. Introduction

At school we are taught that heat is motion, and that constant molecular collisions
are the explanation why a solid expands, and in general becomes more fluid as it
gets hotter. When a system is cooled to sufficiently low temperatures, we thus
expect it to collapse: molecules should become densely packed, leading to a form
of matter that does not flow easily.

We are later surprised to learn that, in many cases, this molecular crowding
is not a continuous process, but what happens rather is that upon cooling, all of
a sudden the system arranges itself in an ordered manner, all particles spending
most of their time around positions disposed regularly, in a periodic arrangement.
Crystallisation is the first inherently collective phenomenon we become aware of.

There are however exceptions to this miracle of crystallisation, in which sys-
tems, upon cooling, seem to behave in the most naive manner, gradually becoming
solid-like, with particles just moving slower and in a more constrained manner, but
with no evident spatial order emerging: we then say that we have formed a glass.



2 J. Kurchan

This at first sight most unremarkable behaviour is, strangely enough, the one we
understand the least.

The viscosity of a glass-former liquid (a substance able to avoid crystallisa-
tion) increases upon cooling without any important change in structure, but still
in an explosive way: many orders of magnitude in only a few degrees Celsius. How
are we to explain this, in the absence of anything sudden or remarkable happening
to the arrangement of the particles? Having avoided the obvious miracle of order-
ing, glass formers present us with the mystery of their sudden change of behaviour,
leaving us to wonder if there is a hidden-form organisation of matter, or an avoided
“nearby” sharp transition, which we have yet to discover.

The problem in glasses, and why we consider it still open, is neither a ques-
tion of fundamental interactions nor of practical calculations. On the fundamental
side, we have plenty of models that exhibit a glass transition, and computers that
can simulate by now very respectable times and sizes: they confirm that every
microscopic element has already been put into the models. On the other hand,
even if we do have limitations in our ability to compute things analytically, the
situation is the same with liquids or dense gases, both subjects that are not usu-
ally described as a challenge. Our problem is instead one of interpretation: we are
trained to believe that for every striking phenomenon there should be a set of
ideas that is simple, invokes entities that have a clear definition, lends itself to a
mathematical formulation, and is able to surprise us with a new prediction. We
are only beginning to envisage such a theory.

2. Crystallisation

When we cool a liquid, crystallisation may occur all of a sudden. The energy then
jumps to a lower value (Figure 1) — we say the system loses its latent heat — and
from the microscopic point of view the system is now organised (Figure 2). The
same situation arises with hard particles, with the volume and the inverse pressure
playing the role of energy and temperature (V, P~1) « (E,T).

A periodic distribution of matter has a spatial Fourier spectrum composed
of delta contributions: these are the Bragg peaks (Figure 3). They are directly
observable with diffraction measurements. Except at zero temperature, the in-
stantaneous location of particles fluctuates around their truly ordered positions.
For a crystal, these fluctuations do not affect the notion of order, since even in
their presence there are Bragg peaks — and what is more, they pose no problem
for our eye to recognise periodicity either.

Because we shall need to consider cases in which there is no periodicity, and
no tool playing the role of a Fourier transform, it is convenient to detect order in
an alternative fashion. The fact that there is an average density modulation can
be directly seen from the fact that the time-average density (Figure 4)):

) = 7! /OT dt p(w,t) = % /0 dt Sy Slza(t) — 1] (1)
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FIGURE 2. Ordering as the system jumps from a liquid (left) to

a crystalline configuration (right).

has a non-constant limit as 7 — oo (taken after the thermodynamic limit). Another
useful way of conveying the same information is to consider a two-time autocorre-

lation function, as in Figure 4:

Ct, ty) = V_l/dx [p(z,t)p(z,ty) — p2].

In terms of t — t,,, there is a fast relaxation, corresponding to the rapid motion
including the phonons, but the correlation saturates to a plateau C' = V! [ dx

[o(2) = pol®
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FI1GURE 3. Periodicity, fluctuations and a Bragg peak.
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3. Collective nature of solidity: Arrhenius versus super-Arrhenius

The popular, generic term jamming as applied to solidification [2] may be sugges-
tive of rigidity arising from hard constituents in contact with one another, each
one blocking its neighbour. However, it is important to bear in mind that rigidity
is, at least for crystals and glasses, a collective phenomenon that does not require
hard constituents at all, and does not imply or require that any individual one be
blocked. The crystal example allows us to discuss in a very simple manner what be-
ing a solid does, and what it does not, mean. The property of having a permanent
(average) density modulation is one characteristic defining a solid. Another, more
explicit one, is the fact that they do not flow when subjected to an infinitesimal
stress [1, 29].

Consider first the case of soft particles (without a hard core) at finite temper-
atures, as in Figure 5. It is clear that any particle may exchange its position with

000 00O0O0CGO
00000000
00000000
00 @ o000
00000 V()
X X X
0000 .

FIGURE 5. Permuting soft particles.

a neighbouring one with finite probability, so that there is no order in the particle
positions, if they are distinguished. Order is then a property of the density mod-
ulation, just as an army has permanent rank order independent of the changing
names of soldiers and generals. Another important point is that there can be no
order in a finite system, since for such a system there will be a finite probability
of being in any configuration, having started from any other. The same can be
said for a system of hard spheres (Figure 6), at finite pressure, because particles
can always “make way” for others to rearrange. And yet, we know that infinite
systems of this kind — soft spheres, hard particles at densities such that they do
not touch — do form solids in the thermodynamic limit.

Two further examples may be instructive. Consider the ferromagnetic Ising
model at 7' = T, /10. Equilibrium is given by a state with positive and one with
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FIGURE 6. Permuting hard particles.
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FIGURE 7. A collective, entropic, infinite barrier

negative magnetisation. The fact that an infinite system has a permanent magneti-
sation, and that symmetry is broken, relies on the impossibility of the magnetisa-
tion flipping. However, it is easy to find a path of constant energy leading from a
typical configuration of the positive magnetisation state to a typical configuration
of the negative magnetisation state. It suffices (Figure 7) to “herd” the minority
down spins into a large stripe, and to grow this stripe laterally as a constant energy.
The barrier is entropic in nature: it takes many simultaneous things to happen in
order to assure the passage, and the probability of all of them occurring, though
finite in a finite sample, becomes zero in the thermodynamic limit. Going back to
the soft-sphere crystal, a spontaneous deformation like that of Figure 8, has an
infinite energy barrier, because it involves an infinite amount of overlaps in the
thermodynamic limit. Infinite entropic or energetic barriers are, in all these cases,
collective phenomena.
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FIGURE 8. A collective, energetic, infinite barrier.

In contrast with the previous examples, one may have systems that are only
solid because already its individual constituents are. In that case, even a finite
version may be solid. Simple examples of this are depicted in Figure 9, where the
spheres are assumed to be hard, or if they are not, the temperature is assumed to
be zero.

A more subtle example of the same thing are the kinetically constrained
models [3]. These are lattice models in which the particles have some forbidden

FI1GURE 9. Non-collective rigidity.
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moves. For example if their number of neighbours is higher than a certain number,
the particle is immobile. The restrictions play, in this case, a role analogous to the
hard constraints of Figure 9: as soon as they are partially lifted, infinite timescales
and permanent modulations disappear.

In the situations in which rigidity and permanent modulations of density
do not have a collective origin, for example in the case of finite systems, the
timescales grow as T'— 0 or P — oo in a typical activated (Arrhenius) manner.
This is clear, because there is a finite barrier that takes more time to cross at lower
temperatures. On the other hand, a collective system in the thermodynamic limit
may have timescales that diverge at finite temperatures (e.g., the Ising model), or
at any rate grow faster than with an exponential Arrhenius law. What we have just
said can be made rigorous [4]: a system having a timescale that grows faster than
exponentially necessarily has some equilibrium cooperativity length that diverges
when the timescale diverges.

4. Avoiding crystallisation

Let us now turn to the situation when crystallisation does not happen. One can
cool a liquid in such a way that the crystalline phase does not have the opportunity
to nucleate. How easily this is done depends on the cooling protocol and on the
nature of the liquid — a “good” glass-former is a poor crystal-former, and vice-
versa.

The supercooled liquid just below the melting temperature is metastable,
but in an innocent way: it can be considered to be in “local” equilibrium: if the
temperature is not changed, the macroscopic observables do not evolve, and the
equilibrium theorems (Fluctuation-Dissipation, Onsager reciprocity) hold. In other
words, the supercooled liquid phase is in a situation similar to that of diamond,
a mixture of oxygen and hydrogen at room temperature, or a current-carrying
superconductor; which for all practical purposes ignore the possibility of nucleat-
ing graphite, water, or a lower supercurrent, and may be treated as equilibrium
systems.

Upon cooling further, the viscosity grows dramatically, and the liquid reaches
a point in which it falls out of equilibrium — but this time in a serious way. We
can tell this because energy and viscosity now start depending on the cooling
speed, and even if the temperature is held constant, they continue to evolve —
as do all other macroscopic observables. This situation is completely unrelated to
the existence of the crystal and very different from the innocent metastability of
diamond or the oxygen-hydrogen mixture. The system is now in a situation in
which something is constantly evolving so that, as we shall see, one can determine
experimentally its “age” since it fell out of equilibrium and it became a glass.

Consider the cooling of a system as in Figure 10. For a fast cooling, the
energy ceases to have its equilibrium value at a temperature Tb; for a slower
process, this happens at a lower temperature 7. We recognise the equilibrium
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F1GURE 10. Different annealing speeds. The dashed lines indicate out
of equilibrium situations, and are necessarily evolving in time. The full
line is the result of infinitely slow cooling: energy has a nonanaliticity,
and the relaxation timescale 7, a divergence, if there is a true phase
transition.

energy vs. temperature curve as the envelope beyond which all slower annealings
coincide. What we have said about energies, can be said about the viscosities, or
the relaxation times 7,. Consider an autocorrelation function, for example (2).
In the supercooled liquid phase, the autocorrelation falls in two steps: first to
a plateau, and the second, in a much longer time 7., to zero. The first drop
to the plateau is analogous to the one observed in a crystal (Figure 4), and is a
consequence of rapid vibrations, while the second drop — entirely absent in a crystal



10 J. Kurchan

density autocorrelation (t—t )

™
P (x) averaged over time T,

/\/\/\/_/\/

FI1GURE 11. Density profile in an « scale.

— reflects the large rearrangements that a liquid can afford to make. A direct way
to picture the a relaxation is to consider, as in Figure 11, the analogue of Figure
4: averaging out the rapid vibrations, as we did in the crystalline case, we obtain
an amorphous density profile that does not last forever, but takes a time ~ 7, to
evolve. Within (metastable) equilibrium, 7, increases rapidly as the temperature
is decreased, reflecting the increase in the viscosity (Figure 12, right). When the
system is further cooled and falls out of equilibrium, the autocorrelation function
is no longer an exclusive function of temperature, but depends also on history via
the “waiting” time ¢, (Figure 12, left): in particular, the system needs time to
become more viscous. This is the “aging” phenomenon. Still, at a temperature T}
(Figure 12, top), eventually 7, reaches its equilibrium value, although this may
take so long that we only observe aging.

This is how glasses present themselves to us in real, experimental life. We
may still be curious to know whether there is a temperature Tk below which
aging lasts forever, equilibrium is never achieved, and the timescale 7, becomes
infinite. If this were the case, one could ideally consider samples with a perma-
nent, amorphous, averaged density profile p(x), a solid just like a crystal in all
but the spatial periodicity. The discussion above about collective rigidity implies
that if such states with permanent spatial modulation of density exist at finite
temperature, then necessarily they involve a coherent behaviour of particles that
only exists rigorously in the thermodynamic limit, and requires the divergence of
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FIGURE 12. « time relaxation depends on temperature in equilibrium,
and on the waiting time out of equilibrium.

some correlation length. This is even the case if T = 0, but 7, grows faster than
an Arrhenius law 7, ~ /7 [5].

Within an « scale, we can classify configurations as in Figure 13: two config-
urations are considered to be in the same metastable state if the density profiles
obtained starting from either one, and averaging over a time 7, coincide up to,
say, Ta 12 (i.e., within the statistical error). This is sometimes depicted in a “land-
scape” picture (Figure 13, right). All the configurations that yield the same profile
constitute a “state”, and their number yields the entropy within the state. More
importantly, the logarithm of the number of states (per unit volume) is by defini-
tion the complezity ¥ [6].
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FiGURE 13. Free Energy Landscape picture.

5. Short digression: the nucleation argument

Two phases

Before continuing, it is useful to recall the nucleation argument, which allows us to
conclude that for finite-dimensional systems at non-zero temperature, with short
range interactions and soft potentials — these are all we consider here — a phase
with a free energy density higher than the equilibrium one cannot be stable. This
means that true stable states have a free energy that exceeds the equilibrium one
at most by a subertensive amount.

One considers phases a and b with free energy densities f, > fp. In the phase
a, a droplet of radius r of the phase b costs at most a surface energy or?~!, with
o <0, and involves a gain —(f, — f5)r%. In terms of r, we have:

0f(r) = o1t = (fa = foIr* (3)
which has a maximum 6 f(r*) at a critical radius r*:
N d—1)o N o
ik (4)

d(fa_fb) (fa_fb)d_l.

The droplet growth is activated up to r*, with Arrhenius probability ~ e=0/(")/T
and then proceeds downhill until phase b prevails. We have found a path leading
from state a to phase b with a finite free energy barrier requiring a finite number
of moves: it is perhaps not the best path, but it gives an upper bound on the
probability of nucleation. The only way in which the droplet will not unstabilise
a is that either 0 = oo (which requires hard, or long-range interactions), or that
(fa— fo) = 0as N — oo.
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The nucleation argument is stronger than this: it implies that state a cannot
have any sub-region of extensive volume having a free energy density larger than
the corresponding one of state b.

Entropic drive

A situation that arises in supercooled liquids is that a system has many options
of phases for nucleating. The question then is: does this multiplicity increase the
probability of nucleation? The argument against says that it does not, since once
one is nucleating one phase, in what way does it help to know that there was
another option? Or, put in another way, how can the system know, when it is
going somewhere, that there are other options out there?

To clarify the point, it is best to do a small calculation. Consider a system
at very low temperature, activating its escape out of the spherical crater V(r)
in Figure 14. Starting from a spherical distribution concentrated at the bottom,

FIGURE 14. Two trajectories escaping a crater.

the particle follows (say) a Langevin process, and the probability evolves via a
Fokker-Planck equation.

P=V[TV+VV]P. (5)
Assuming the distribution was spherically symmetric at the start, it will remain
so, and we may go to spherical coordinates:

. 1 d dP d dV dV dP
P=__—_|T— d—1%" P d—12"Y el
rd=1 { dr (T dr> + dr (T dr * dr dr (6)
Putting P = r% 1P we get the radial diffusion equation
P+ L vy —T@-1)mn)| P (7)
= |Tos+ (V@ nr)| P.
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This is the dynamics in a potential V' corrected by precisely the entropy(the log-
arithm of the volume) (d — 1)Inr of a shell of radius r. Indeed, the different
possibilities do add up, and help in lowering the effective barrier. With hindsight,
we can justify this even at very low temperatures by noting that before a passage
is actually made, many attempts that barely failed have been made — and these
take all possible paths. We shall use this in what follows.

6. Configurational entropy and metastable states

Local mean-field

Landau theory consists of writing a free energy in terms of a space-dependent
order parameter. This free energy functional contains an entropic term that takes
into account all the rapid thermal fluctuations, and temperature enters only as a
parameter. The order parameter itself represents the time-average of the micro-
scopic variables, for example the magnetisation is the time-average of the spins.
For simple forms of order, although we know that the theory is not exact, and in
general leads to the wrong exponents, it gives a satisfactory qualitative picture.
Phase transitions appear when the minima of the free energy functional are a
set of symmetry-breaking solutions related between one another by the symmetry
operation.

In glassy systems, when we attempt such a mean-field approach, for example
the Thouless-Anderson-Palmer (TAP [7] ) approach to spin glasses, we find that
at low temperatures the free energy functional now has an exponential number
of solutions, rather than two as in a ferromagnet. For the case of a liquid, the
analogue of the local magnetisation is clearly our time-averaged density p(z), and
a closely related approach is the so-called density functional theory. We are given
a free energy functional in d-dimensional space [8]:

Flo()]
- / d'x i plx) ~ 1] — 3 / dhx 4%’ [p(x) — po]C(x — x)[p(x) - pol.  (8)

Here C'(x — X/, p,) is the liquid direct correlation function at average density p,
computed within some, such as the Percus-Yevick, approximation. For short range
interactions, C(x) is short ranged. We look for the “local” free energy minima that
satisfy:

w = lnp(X) — /ddx/ C(X _ X/7p0)[p(xl) _ po} —0. (9)

At low average densities p,, the spatially constant “liquid” solution dominates.
As the density increases, a periodic, “crystalline” solution appears. What is in-
teresting from the glassy point of view [11], is that in the high density regime,
there appear also many non-periodic “amorphous” solutions, as depicted schemat-
ically in Figure 15. Each one of these is supposed to represent a metastable glassy
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state, as described in the previous section. These states are local minima of (8)
satisfying (9).

Now, as we have seen, the nucleation argument implies that as soon as we go
beyond the mean-field approximation and add fluctuations to this picture, solu-
tions with free-energy density O(1) above the lowest are unstabilized. We already
know that if the crystal has lower free energy, everything is metastable with re-
spect to it, but we have argued that we could ignore this. Here we are saying that
in fact essentially all solutions schematised in Figure 15 are metastable even if

constant (liquid)

amorphous !

. ———crystal

T

m

gradient
1T

n
|

T
crystal ? f

F1GURE 15. Complexity ¥ versus free energy f.

we neglect the crystal, they will nucleate one onto the other and only the lowest
of the amorphous ones are truly stable — or only unstable with respect to crystal
nucleation (which takes an altogether different scale).

We are now embarrassed: we have claimed that the amorphous solutions of
(9) represent a glass, but in fact, since all but the very lowest are metastable: they
correspond to the liquid phase. Worse of all, we have now two different representa-
tions of the liquid phase, one as a constant solution, and one as a set of metastable
amorphous solutions.
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A sum rule

Let us be more precise: consider all amorphous solutions at temperature 7', summed
with the Boltzmann weight:

Z = Esolutions eV[E(f)—Bf]. (10)

This sum is dominated by the saddle point, yielding:
> = l (11)
a T
The solution of this equation is obtained with a tangent construction as in Figure
15 (right). For sufficiently high temperatures, the saddle-point free energy corre-
sponds to solutions that are well above the lowest, so that the Boltzmann weight
is dominated by an exponential number of metastable states with a finite lifetime.
The question is now: what is the true representative of the supercooled liquid,
these states or the constant solution? The answer is quite surprising: it turns out
that within the models for which a full solution is available (more about these
later), there is a range of temperatures where both results coincide, so that the
liquid is given twice, once by a constant profile and once as a packet of amorphous
solutions. The latter give us the metastable states characteristics, such as one ob-
serves in that regime within the a scale. This sum rule has not been, to the best
of my knowledge, discussed or tested within these approaches “with space”.

An objection may now arise: given that states that dominate in the liquid
phase have the same free energy, how do we know that the free-energy barrier
separating is not infinite? This is indeed a valid question, since our nucleation
argument only showed that barriers are finite between states with a finite free-
energy density difference. Here we have to invoke the entropic drive we mentioned
above: just like in the escape from a crater, the system has many nucleation paths
(roughly ezﬁ*) leading to different density profiles, and this modifies accordingly
the activation time, cf. Eq. (7).

The transition

What happens within this approximation when we lower the temperature? Just
looking at Figure 15 (right), we see that if the ¥ versus f curve reaches zero with a
finite gradient equal to, say, 0., then below Tk = 1/, the equilibrium distribution
freezes in the lowest amorphous states. These are the ones that are stable (except
for crystal nucleation), and they represent the true glass phase. Hence, we have
obtained the glass transition as a condensation into a handful of low-lying density
profiles, coming from a supercooled liquid made of similar, though metastable,
states representing the liquid. This is the Kauzmann scenario [9].

If, on the contrary, ¥(f) reaches zero with infinite slope (a possibility advo-
cated in [10], we have that the glass transition temperature is zero. Note again,
that this will not make it more trivial, since the vanishing of entropy, even at
T = 0, implies some form of order. We cannot exclude yet other possibilities, and
the question marks on Figure 15 are there to express this.
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Reading the complexity and a coherence length from p

At any rate, it is interesting to note that as we find deeper and deeper amorphous
states, we expect that a correlation (or coherence) length will grow. A concrete
realisation of this length is the following [18]: given an infinite system, we choose
a block of size £, and see how far we have to go in order to find — within a certain
precision — a block with the same configuration of p. This length is exponential in
¢% in a truly random density configuration, but will be subexponential in a crystal,
a quasicrystal, and more general objects with hidden forms of order. The distance
of patch-repetition gives a direct measure of the complexity: if a patch repeats
every et/ ¥ then ¥ is the complexity. Note that ¥ — 0 implies a diverging length.

7. Analogy with — and lessons from — chaotic systems

The equations (9) are analogous to the equations of motion of a dynamical system,
with space playing the role of (multidimensional) time. A constant “liquid” solu-
tion is then analogous to a stationary point, a crystal to a periodic solution, and
amorphous solutions correspond to chaotic orbits. This similarity between dynam-
ical systems that are chaotic in time, and glassy systems that are chaotic in space,
was pointed out many years ago by Ruelle [15]. As it stands, the analogy is not
perfect, since we demand not only that the density profile be a solution of (9), but
that in addition it be a deep minimum of (8). In order to make the analogy closer,
we may consider a dynamical system, in which in addition we look for minimal
solutions of the action

5= [ dtLg.d (12)
so that (12) plays the role of (8), and the (Lagrange) equations of motion

ﬁ =0 (13)
dq(t)
play the role of (9). A realisation of this appeared in the theory of charge-density
waves [16, 17], in particular in the Frenkel-Kontorova model, for which the local
energy minima of the model are given by the trajectories of the “standard map”,
which has both regular and chaotic orbits.

In order that the action plays the role of a free energy, we need it to be
bounded from below. This is not in general the case, and one needs for example
that the potential be bounded from above. This should not worry us: in fact,
one can take Lagrange’s equations (13) as the analogue of (9) and any functional
A= [dt A(g,q) as the analogue of (8). One is then computing trajectories that
are a large deviation of A [13].

What seems to happen [16, 17, 13] when we look for trajectories that are
solutions of the equations of motion of a chaotic system and minimise globally some
quantity (5, A) is that the trajectories that dominate are periodic or quasiperiodic,
or have in general some form of regularity. In such systems, these trajectories are
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not in a regular region of phase-space, they are unstable and buried in the middle
of the chaotic sea.

With this analogy in hand, we now consider again the solutions of (13), but
classifying them according to (12) (when possible), or with any other functional
A, and the correspondence is:

e Stationary points correspond to the liquid solution.
e Periodic orbits in regular (unstable) regions correspond to a crystal.
e Chaotic trajectories correspond in general to the supercooled liquid phase.

e The glass state corresponds to chaotic solutions that minimise the chosen
functional (S or A). These may be unstable periodic or quasiperiodic or-
bits [13], or have a more subtle form of order [18].

However, note that even when they are periodic, these extremal orbits
are very different from an orbit of a regular system, in that they are in the
middle of a sea of chaotic solutions, and are dynamically unstable in the sense
that a perturbation in the boundaries will change the orbit dramatically.

An orbit minimising A, but with arbitrary boundary conditions in the
coordinates, will approach the unstable periodic one, shadow it for most of
the time, and then go to the prescribed endpoint.

If we take this analogy seriously, the ideal glass state may well be spatially
ordered (periodically, quasiperiodically, or in general with frequent motif repeti-
tion), but it would be of a different kind than a crystal or quasicrystal: the density
profile would be surrounded by disordered solutions, just as the unstable periodic
orbits which exist in purely chaotic systems, intermixed with the chaotic orbits as
the rationals are with the reals.

8. Glasses in the real world: aging

In the real world, glasses know nothing about an ideal transition, they are just
systems slowly working their way to equilibrium, insensitive to whether such an
equilibrium is eventually reachable or not. It would seem that the phenomenology
of such a situation would be all but universal, and that a theory of such a situation
is hopeless. This turns out not to be the case.

As mentioned above, in the aging phase the a relaxation time increases with
time, as does the viscosity '. When stress is applied to a plastic bar below the
glass transition, the contraction happens in two steps: a fast elastic step followed
by a slow “creep” motion [14]. Figure 16 shows the classical experiments by Struik,
where the creep motion as a function of time is measured for a sample at different
“waiting” times after it was quenched below the glass transition. Remarkably, the
creep step takes a time roughly proportional to the waiting time, and this in a range
from minutes to years. Clearly, no equilibrium theory can explain this behaviour,

INote that this would happen also in an imperfect crystal which is gradually healing its defects.
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FIGURE 16. Struik’s classical experiment: Evolution of creep after a
stress applied at different waiting times.

which has been obtained in a variety of glassy systems: plastics, colloids, spin
glasses, etc.

These experiments concern a response to a field. Similar curves are obtained
when one considers a correlation. In equilibrium, these correlate by the fluctuation-
dissipation relation, which states that the response of an average value x(t,t,,) =
W to a field that acts on Y from time ¢,,, is given in terms of the correlations

as:
TX(t,t,) = (XOY (1) - (XOY (1) = Ct1) — Clt.ty).  (14)

In equilibrium, a x versus C plot, parametric plot of all (¢,t,) should yield a
straight line with slope —1 /7.

A very different thing happens when we consider [22] the correlation and
response of an aging glass (Figure 17). All points fall on a line, which is now
composed of two apparently straight segments. For ¢ close to t,,, corresponding
to high frequencies, one obtains a line with gradient —1/7 as in equilibrium, but
for t and t,, farther apart — precisely in the range where the response is the creep
motion — one obtains a different line with slope, say, —1/T¢ ;. The remarkable fact
is that Tesy is the same (for the same time regime), for many different observables,
suggesting that Tcys is a genuine temperature. Indeed, one can show that this is
what a thermometer coupled to the slow degrees of freedom would measure [22].
This way of approaching the effective temperature comes to us from the analytic
solution of the aging dynamics of the random first-order theory (see below), but
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FicUure 17. Effective temperatures: Response versus correlation for a
binary mixture glass. The three lines correspond to density autocorre-
lations, and to diffusion versus mobility for each kind of particle. The
autocorrelation curve shows the two-temperature behaviour, while the
diffusion only the effective temperature, since it is a low-frequency quan-
tity. The effective temperatures seem to coincide, as witnessed by the
fact that the segments are parallel. Taken from Berthier and Barrat [23].

it seems to be the same kind of idea proposed at a phenomenological level many
years ago by Tool [24].

One should beware of simplistic explanations: what is most important to
keep in mind is that these effective temperatures are not due to some structure
that has remained frozen at the configuration it had when the system crossed
the glass temperature: since that time the system has decorrelated substantially,
and the identity of the particles responsible for the aging motion and the effective
temperature is constantly changing.

9. Random first-order theory

Random first-order theory is, or starts from, a family of models that are asserted to
be for glasses what the Curie-Weiss (fully-connected) models are for a ferromagnet.
First, it was observed in [31] that spin models with random disorder of the form

E = Z JiijiSjSk (15)

ijk
with J;;; random interactions, reproduce some of the phenomenological features
of glasses. Models like this have a static transition like Derrida’s Random Energy
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Model (REM) [35]. The mechanism is like the one described in Section 6, where
the measure freezes at a certain T this is indeed Kauzmann’s scenario [9] for an
ideal glass transition, with random energy levels playing the role of states.

Next, one can study the relaxational dynamics with this energy function.
Remarkably, in the high temperature phase, the dynamics turn out to be exactly
described by the Mode-Coupling (MCT) equations [33], which are a widely studied
model of the first stages of approach to the glass transition from the liquid side.
There is a Mode Coupling Transition at a certain Ty > Tk, known to be an artifact
of the approximation, and within the present perspective one can understand easily
why the MCT transition has to go away in finite dimensions.

Between Ty and Tk the sum rule mentioned in Section 6 is strictly obeyed:
the description of the liquid state may be made in terms of many metastable glassy
states, or a single high-temperature one, and both descriptions strictly coincide
thermodynamically.

You are not forced to restrict the dynamics to the high temperature phase. If
you quench the models to low temperatures, it turns out that the system does not
equilibrate: it “ages”, just like true glasses [21]. When one analyses the properties of
observables out of equilibrium, one discovers [22] that the slow fluctuations behave
as if they were “thermalized” in an effective temperature Teg. As mentioned above,
“fictive temperatures” have been around since the 1940s [24], and it is likely that
what one has discovered is precisely a non-phenomenological version of that. One
may also study how the system responds to forces that do work on it: one finds
the generic phenomenology of “shear thinning” of supercooled liquids, and in some
cases you can explain the much more rare “shear thickening” of certain glasses.

One may go back and study the free energy landscape, defined by the TAP [7]
equations, something that was not available in a pure mode coupling context. One
recovers the main features (importance and location of saddles, marginality, etc)
that were discussed many years ago by Goldstein [36] at a phenomenological level.

The next extension of the random first-order scenario, is getting rid of the
quenched disorder (the J;ji), which are artificial and foreign to the problem. This
has been done successfully, and by the 1990s there was a plethora of fully connected
models having the same properties as (15). As in all mean-field situations, we wish
to “put some space” into the formalism, in this way getting a Landau theory
which, although we know will not capture fully the essence of finite dimensions,
will at least give us a first hint. This was done by Mézard and Parisi [32] within
the hypernetted chain and other approximations, and using the replica trick [30].
Approaching the mean-field-with-space approximation with a free-energy TAP [7]
rather than a replica formalism, should finally give us a systematic and well-
controlled way to go back to a density functional formalism like the one described in
section 6 — which we now recognise as a form of the “random first-order” scenario.

As we have seen in section 6, the next big question is how to include fluctua-
tions beyond a mean-field, which will inevitably unstabilise metastable solutions,
and re-express the liquid in terms of those. This has been argued phenomenologi-
cally in the so-called mosaic picture [37, 38], with a degree of success [39]. A line
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that has not, to the best of my knowledge, been followed by many is an analytical
study of the constraints of a theory with space. How does one define rigorously the
complexity of density profiles, in analogy with the Kolmogorov-Sinai entropy? Are
the lowest free energy solutions regular, and what is the correlation length that
defines them (see discussion in [18])7 What is the relation between configurations
of a crystal with defects and the lowest amorphous ones; do they merge one into
the other?

10. Is mean-field circumstantial or essential?

Let us recap. We start out trying to explain why it is that a liquid may become
essentially solid by changing the temperature by a few degrees, with barely any
detectable change in its structure.

Clearly, the question whether there is a diverging timescale, or rather, whether
the longest (a) timescale is as long as it could be — that is, equal to the time of
nucleation of a crystal and not shorter — is one which we may as without an ap-
proximation scheme in mind. However, in attempting an explanation we introduce
notions such as metastable state, complexity, mosaic, effective temperature. We
are limited in our analytic powers, and we resort to mean-field like approximations,
or diagrammatic resummations? in order to obtain results.

The question we may ask is whether the concepts themselves are inher-
ently mean-field in nature. Clearly, this is the case of finite free-energy density
metastable states, and hence the complexity: once we step outside mean-field we
need to specify a lifetime above which we call a state a state. Similarly, mosaics
carrying a state label which has a meaning locally in space (rather than globally
for the whole system) are also mean-field constructs, and so on. Even the defi-
nition of “activated” processes is also related to an approximation, since at the
end of the day they are defined as being non-analytic corrections in the mean-field
parameter.

If it turned out that our mental constructs are inherently “mean-fieldy”, this
could pose a problem in cases that are far removed from being exactly of that kind,
but they could still provide the best (approximate) approach to thinking of the
glass transition. This situation would not be without parallel in other branches of
physics: for example superconductivity [26], superfluidity [27], elasticity [28] and
rigidity [29] are in principle, but not in practice, undermined by activation.

2] assimilate diagrammatic resummations with mean-field treatments because one can always find
a model for which the resummation is exact, and can be thought of as some form of mean-field
disordered system [25]
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Colloidal Glasses

David A. Weitz

Abstract. Glasses and granular materials share many features in common:
Both can flow under some conditions but form disordered solids under other
conditions. The similarity is captured within the jamming phase diagram,
which considers how the solid-like state is fluidized with decreasing density,
increasing shear stress, and increasing agitation, due to temperature in the
case of molecular glasses and to shaking or some other form of agitation in
the case of granular materials. Colloidal particles also undergo both jamming
and glass transitions. They have the advantage that they are thermalized by
temperature and that the particles themselves are large enough to be directly
visualized. Thus, the study of the glass transition in colloids can provide
an interesting comparison between molecular glasses and granular materials.
This paper reviews the properties of colloidal suspensions near the colloidal
glass transition, and explores both the glass-like properties and the jamming
properties of these materials.

1. Introduction

At first glance, the sand on a beach and the glass in a window are vastly different.
Sand sticks to your feet and makes the floor of your house dirty, much to the
dismay of your mother or spouse. The glass in your window keeps the sand out of
your house when the wind blows, while letting you look out and admire the view
of the beach, should you be so lucky as to have such a beautiful view. However,
despite these differences, the two materials share a surprising number of attributes.
Of course, the sand is primarily silica, and this can be made into glass. However,
the similarities go much deeper.

A glass is a material that has the same structure as a liquid. What distin-
guishes it from a liquid is its very slow relaxation time. In a liquid, thermal motion
causes the molecules to constantly move, and these fluctuations lead to relaxation
of the structure on short time scales. This structural relaxation is directly man-
ifested in the viscosity of the fluid; for a fluid to flow, its structure must relax,
and this relaxation is reflected directly in its viscosity. As a liquid approaches its
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glass transition, this structural relaxation becomes increasingly slow, ultimately
taking longer than any experimental time scale. This leads to a dramatic increase
in the viscosity of the liquid. Indeed, one definition of a glass is as a material where
viscosity approaches 10'2 Poise, which corresponds to flow that will take longer
than a day [AMOS86]. A glass can, in principle, be made to flow by applying a
shear stress, although of course, many glasses will fracture or break before this
happens. However, if the glass is not too brittle, and its elastic modulus is not too
large, shear will lead to structural relaxation and the glass will flow. Alternatively,
heating the glass above its glass transition will also lead to flow.

Sand, or any other granular material, is also a highly disordered structure
[JNB96b, JNB96a]. However, it does not typically seem to be a fluid, so it is
difficult to compare the structure of sand to that of a fluid. Nevertheless, if sand is
shaken, it can flow like a fluid. This can be seen if a bucket of dry sand is turned
gently on its side so the top of the sand begins to fall. If this is done slowly enough,
the sand flows much like a fluid. An even better example of this is observed if air is
gently blown up through sand [MD97]. If the flow rate is set exactly right, the level
of the sand rises ever so slightly and the sand becomes fluidized, as is immediately
seen if you try to run your hand through it; it feels much more like a fluid than
a solid, and the grains of sand flow around your hand as you draw it through
them. In this case, however, it is not thermal motion that is responsible for the
fluidization, but instead it is the forces of the air blowing up through the grains.
Thus, granular materials differ significantly from glasses because thermal energy
is not sufficient to cause the individual grains to move; structural relaxation, and
hence fluidization, can only occur through the addition of some larger form of
energy, such as shaking or blowing air through the medium. However, if the grains
are fluidized in this fashion, they can then explore their phase space, and they
can behave very much like a fluid. Moreover, as this structural relaxation ceases,
a granular material loses its ability to structurally relax, and retains the same
structure it had, very much like a glass.

The similarity between glasses and granular material has been elegantly de-
scribed through the concept of “jamming”, and the associated jamming phase
diagram [LN98]. The original jamming phase diagram has three control parame-
ters, each of whose values defines an axis on the graph. One axis is the temperature,
which provides a measure of how the system explores its phase space. For a glass,
this is just the temperature of the system, whereas for a granular material some
other mechanism must cause the system to explore its phase space and this effec-
tively becomes the temperature. The second axis is a measure of the density. For
a glass, this is a measure of the expansion of the system, whereas for a granular
material, this is a measure of the volume fraction of the grains. The third axis is
the amount of shear stress applied to the system. The temperature along an axis
is plotted as the inverse of the system temperature, so a decrease in the system
temperature leads to an increase along the axis. Similarly, the volume fraction
or density is also plotted as the inverse, again leading to a lower volume fraction
resulting in an increase along the axis of the system. When plotted in this fashion,
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the innermost quadrant becomes the jammed, or solid phase, and increasing along
any three of the axes leads to a point where the system is fluidized. Thus there
is a surface on the phase diagram that corresponds to the jamming transition for
granular materials or the glass transition for glasses.

The jamming picture provides an elegant means to compare glasses and gran-
ular materials, and highlights the similarity in their behavior. However, several es-
sential differences remain. Perhaps the most stark difference is the means by which
each system is fluidized. A glass depends on temperature for its fluidization, and
it falls out of equilibrium, and becomes a glass, as the temperature is lowered. By
contrast, thermal energy has no effect on a granular material, as it is an athermal
system; however, it too must be fluidized, and this must come from the addition
of energy in some other form.

There is one system that shares many of the features of both glasses and
granular matter. This system is a colloidal dispersion. Colloids are solid particles
immersed in a fluid. The particles are small enough that they undergo Brownian
motion. Typically the particles are less than a few microns in size. Their Brown-
ian motion ensures that the colloidal particles sample their phase space and are
therefore thermalized. However, the size of the particles is larger than that of the
molecules in a typical glass, and the granularity of the particles has important
implications for their behavior. Thus, colloidal particles fall between traditional
molecular glasses and traditional granular materials. They have the behavior of
“oranular glasses”. Their behavior offers insight into both traditional glasses and
granular materials. This paper will explore some examples of this.

Colloidal particles are of great interest in themselves, as they can model the
behavior of many complex fluid systems. However, even more interesting is the
scale of the particles and the control that is possible over their properties. The
particles can be synthesized with exquisite precision, leading to nearly perfect
monodispersity in particle size, with variations of less than a few percent in their
radii. Moreover the interparticle interactions can be precisely controlled and easily
tuned. Perhaps the most intriguing feature of their study is that their size, being
around one micron, is ideal for visualization in an optical microscope [VBW95];
moreover, the time scale of their motion is sufficiently slow that their dynamics can
be followed in real time. A typical time scale is given by the time it takes to move
their own diameter; since the particles are in a fluid, their microscopic motion
is diffusive, and a typical diffusion time, given by 7 = a?/Dy, ranges from msec
to sec. Here, a is the particle radius and Dy = kT /67na is the Stokes-Einstein
diffusion coefficient of an isolated particle in solution, where kp is Boltzmann’s
constant and 7 is the viscosity of the fluid. With modern confocal microscopy,
it is now possible to follow the motion of individual particles over time in 3D;
up to 10,000 particles can be followed simultaneously. Because the particles are
all the same shape and are spherical, their diffraction pattern is known; thus the
precision with which the location of the particle centers can be located is given
by signal-to-noise, rather than the more commonly assumed Rayleigh diffraction
limit; thus it is possible to identify the location of each particle to within a few
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percent of its radius [CG96]. This offers the opportunity to explore their dynamics
with unprecedented precision, and provides new insight into the behavior of these
“granular glasses.”

2. Repulsive colloidal glasses

In order to ensure that colloidal particles remain suspended, it is essential that
they do not stick together upon random collisions that invariably occur. Thus,
all stable colloidal colloids possess some form of repulsive interaction between the
particles. The simplest of these is through volume exclusion; the particles can not
occupy the same volume. This requires a very strong, yet very short-range repulsive
interaction between particles. There is no interaction except when two particles
touch, and then the interaction is very strongly repulsive. Such colloidal particles
then behave as hard spheres [PVMS86].

Hard-sphere colloidal particles exhibit a glass transition [PVMS87]. However,
since there is no repulsive energy between the particles, except when they exactly
touch, the enthalpic term of the free energy can be neglected, and the only contri-
bution to the free energy of the system is entropic. Moreover, the temperature of
the suspension can only be changed a relatively small amount before its proper-
ties are significantly modified. For example, the continuous fluid can either boil or
freeze, and in either case, the colloidal suspension would no longer behave as a sus-
pension. In fact, much smaller temperature changes usually suffice to drastically
modify the properties of the suspension, and as a result, temperature is typically
not a good control parameter for colloidal particles. Instead, the control parameter
is the entropy, and this is controlled by varying the particle volume fraction, ¢.
Perfectly uniform, or monodisperse, spherical particles will undergo a crystalliza-
tion transition at ¢ = 0.494, and will coexist with a fluid-like order of the particles
up to ¢ = 0.55, whereupon the sample will remain crystalline up to the maximum
packing of the face-centered cubic lattice that forms, ¢ = 0.74 [PVMS&6]. How-
ever, if the sample is rapidly quenched to a higher volume fraction, the structural
relaxation that is essential for it to undergo crystallization is suppressed: The par-
ticles become increasingly crowded as ¢ increases, making it increasingly difficult
for the particles to move and to undergo structural relaxation. As the particles
become increasingly crowded, the structural relaxation time becomes increasingly
larger. This behavior has all the hallmarks of a glass transition [PVMS87]. This
has been rather widely investigated as the behavior is well described using mode-
coupling theory, which describes the shape of the relaxation as measured with light
scattering, and correctly accounts for the divergence of the structural relaxation
time [VMU93].

One of the most direct manifestations of the onset of a glassy state is shown
by the mechanical response of the suspension, which can be measured with a
rheometer [MW95]. We use a sample of silica spheres suspended in ethylene glycol,
where they interacted as hard spheres. The particle radius is a = 0.21pm, with a
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polydispersity in radius of about 20%, which prevents crystallization. The sample
is held between the walls of a double-walled Couette geometry, enabling sensitive
measurement of the mechanical response. The rheometer is controlled-strain, and
applies a known strain at a given frequency and measured the resultant stress at the
same frequency. Frequency dependent measurements of the real, or elastic, G'(w),
and the imaginary, or viscous, G” (w), moduli are shown respectively in the upper
and lower parts of Figure 1.At the lower ¢, G”(w) is dominant, and both moduli
increase with frequency. However, as ¢ increases, G'(w) begins to dominate over
an extended range of frequencies; moreover, it develops a plateau where it varies
only very slowly with frequency, while G” (w) exhibits a definite and reproducible
minimum. At higher frequencies, both moduli begin to increase, with G”(w) rising
more sharply, ultimately overtaking G’(w). We can describe this behavior using the
same theoretical approach that was used to account for the structural relaxation.
We use a mode-coupling theory that also includes a contribution of the fluid at
high frequencies, where it must begin to dominate the measured response. The
results are in excellent agreement with the data, as shown by the solid lines in
Figure 1 [MW95]. This is direct evidence that the colloidal suspension behaves
like a glass.

The important feature to note in the data in Figure 1 is the fact that the
elastic, or storage modulus, G”(w), is greater than the viscous, or loss modulus,
G"(w), over an extended range of frequencies, including those that are most “ap-
parent” to common use. This implies that the material is behaving like a solid,
and does exhibit a shear modulus, over these frequencies. At lower frequencies,
the material undergoes structural relaxation; this relaxation extends to lower and
lower frequencies as the volume fraction of particles increases, and will ultimately
become so large that it can not be measured with these techniques: This is the glass
transition. These data highlight the fact that the control parameter for colloidal
hard spheres is volume fraction rather than temperature, and that an increase in ¢
corresponds to a decrease in T', reflecting the correspondence of ¢~! to T'. Because
there is no interparticle interaction energy, the solid-like behavior of the particles
must result from purely entropic origins.

To explore the origin of this elasticity, we use confocal microscopy to visu-
alize the particles as the glass transition is approached [WCLT00]. This allows us
to monitor the motion of the particles, and to observe the nature of the struc-
tural relaxation. For these experiments, we use poly-(methylmethacrylate) parti-
cles, sterically stabilized by a thin layer of poly-12-hydroxystearic acid [AGHS6].
The particles have a radius a &~ 1.18um, a polydispersity of &~ 5%, and are dyed
with rhodamine and suspended in a cycloheptylbromide/decalin mixture which
nearly matches both the density and the index of refraction of the particles. We
track particles for the entire duration of the experiment. We determine ¢ for each
sample by measuring the volume per particle directly with the microscope.

The motion of the individual particles is very revealing: We plot the trajecto-
ries of several particles as they evolve in time in Figure 2; the grey shading indicates
depth in the third dimension. Each particle is trapped in some local volume, with
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FIGURE 1. The frequency dependences of the (a) storage and (b) loss
moduli for different volume fractions. All the measurements were per-
formed at sufficiently low strains to be in the linear regime. The solid
lines represent the fit to the mode-coupling model.

its trajectory moving only a small fraction of its size, until, at some random time,
the particle moves a much larger amount, whereupon it is again trapped in a more
localized volume. All particles that we investigate share this same characteristic
motion. This motion reflects the nature of the structural relaxation. Physically,
each particle is trapped in a cage composed of its neighbors, due to the crowd-
ing of the particles. Over the course of this cage-trapping time, the mean square
displacement of the particle is almost independent of time; this also corresponds
directly to the frequencies over which the elastic modulus exhibits the plateau in
Figure 1. Eventually, the cage of neighbors surrounding the particle relaxes suffi-
ciently that it moves, and when it does, it moves a larger distance. This results
in structural relaxation of the system, and corresponds to the lowest frequencies
in Figure 1, where the elasticity falls. These results provide important insight into
the origin of the elasticity: During the time that the particle is trapped in its cage,
its most probable position is within this cage; a small shear strain, as is applied
to measure the elasticity, distorts the shape of the cage, reducing the number of
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FI1GURE 2. Temporal traces of the position of four different particles in
a sample with a volume fraction of ¢ = 0.56, near the glass transition,
exhibiting cage trapping and cage escape. Grey shading indicated depth.

configurations that the particle can sample by straining the cage. This results in
an increase in energy. If the strain is removed before the cage relaxes, the larger
number of configurations are restored, and the energy is reduced. This storage of
energy is directly reflected in the elasticity of the sample. It is strictly entropic in
origin.

The characteristic time of the structural relaxation can be determined from
the frequency of the relaxation measured with the rheological measurements, or
from the mean square displacement of the particles, which exhibits an upturn at
times corresponding to the structural relaxation frequency [WCLT00, WW02]. If
we measure the motion of the particles on that time scale, we highlight the motion
corresponding to the structural relaxation. When this is done, we observe that
the structural relaxation of the particles is not uniformly distributed in space;
instead, the motion of the relaxing particles is highly correlated among neigh-
bors. To demonstrate this, we plot the particles in uniform time intervals of five
minutes, and show those particles that have moved a large amount, and hence
have undergone structural relaxation in the previous time interval, as red parti-
cles, drawn to scale, while those particles that have remained trapped are plotted
as blue particles, and are drawn smaller, enabling the full 3D image to be visu-
alized. Surprisingly, the moving particles are very strongly correlated in space,
as shown in Figure 3. When one particle moves, it clearly opens a space behind
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FI1GURE 3. Correlation of particles undergoing structural relaxation in
previous time step. The moving particles are in red and are drawn to
scale, while the particles trapped in their cages, and hence more station-
ary in the previous time step, are shown in blue and are drawn smaller
to allow the full 3D image to be visualized. The time separation between
each image is five minutes.

it, through which a neighboring particle can move. This large scale correlation
between the relaxing particles is what drives the longer relaxation times; it is
not sufficient to have only a single particle move, but rather a large number of
particles must move collectively to enable structural relaxation. We can define a
length scale for these correlated motions by measuring the average size of regions
of nearest-neighbor particles that undergo this structural relaxation. The average
size increases dramatically as the volume fraction approaches the colloidal glass
transition, ¢4, ~ 0.58, but then decreases to essentially zero above ¢4, as show
in Figure 4. The structural relaxation is clearly very heterogenous in both space
and time. Similar behavior occurs in molecular glass formers, where this motion is
referred to as dynamic heterogeneities [SRS91, CE95]. However, direct observation
of such behavior is not feasible with molecular glass formers, whereas with colloidal
particles it is readily seen. It is also seen in computer simulation [DGP99].

When the sample is well within the glassy region, the structural relaxation
occurs much more rarely, and when it does occur, it tends to be more highly lo-
calized. The characteristic time scale between relaxation events gets very long,
corresponding to a large energy barrier for such a relaxation event to occur. In-
deed, it is virtually impossible to observe these events in any reasonable experi-
mental time frame. However, they can be sped up through application of a shear
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FIGURE 4. Average size of the correlated regions of particles undergoing
structural relaxation. The size increases sharply as ¢, is approached, and
then falls precipitously above.

strain. If this is done sufficiently slowly, local structural relaxation events are ob-
served [FL98, SWS07].

Similar structural relaxation must also occur in granular materials, although
these are more difficult to study as they are more difficult to observe in 3D. In
addition, for granular materials, the dynamic heterogeneity is not thermally acti-
vated as it is in a glassy material that has not quite reached the glass transition.
By contrast, similar more localized structural relaxation must occur in granular
material that is flowing due to a shear stress, such as grains of sand flowing down
an incline. These effects are probably best studied using colloidal particles, or these
“granular glasses.”

3. Attractive colloidal glasses

The interparticle interaction between the colloidal particles can be very precisely
controlled. Stability of the colloidal particles against aggregation demands a very
strongly repulsive interaction between the particles. For hard-sphere colloidal par-
ticles this is achieved by a very strong short range repulsion. For these repulsive
particles, the phase behavior is directly determined by the volume occupied by the
particles and by their crowding as ¢ increases and approaches ¢,. Such crowding
only occurs when the volume fraction of particles fills nearly all space. However,
colloidal particles are unique in that they can also have a weak attractive interac-
tion between particles. This attraction must be sufficiently weak to ensure that the
particles do not permanently stick to one another and aggregate. The attraction is
typically at energy scales of only a few kpT. However, this attractive interaction
means that the system can become solid-like with a more spatially heterogeneous
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structure. This is commonly called gelation, but this shares many of the features
of a glass transition. This behavior is actually quite common in technological uses
of colloidal suspensions or other complex fluids, and thus the study of the proper-
ties of colloidal gelation is of importance both for practical purposes as well as an
example of a glass-like transition.

This sort of colloidal glass transition, or gelation, is typically a very strongly
kinetic process. The particles are destabilized and begin to aggregate; if the at-
traction is very large, there is no possibility for the particles to come apart once
they have stuck to one another, and the aggregation is irreversible. In this case,
the motion of the particles prior to sticking to one another has very important
consequences for the resultant nature of the solid structure or gel. In the limit of
diffusive particle motion and diffusion-limited collisions, the aggregates formed are
fractal, with a fractal dimension of dy = 1.8; as a result, the aggregates become
more and more tenuous, and, on average, have a lower and lower density, as they
grow [WO84]. Thus, the sample can form a solid gel [CG92, BMGW92] at arbi-
trarily low volume fractions, and the actual lower limit of ¢ that will gel is set
by other factors, namely by the intrinsic strength of the gel which withstands the
thermal motion, which becomes larger with larger length scales [MCTT04]. This
process is known as diffusion-limited gelation. By contrast, if the attractive inter-
action is not as strong, there is some possibility that the bonds between particles
can break, and as a result, the solid-like transition occurs at higher concentration,
whose value depends on the magnitude of the attractive energy. In this case, the
particles can be very susceptible to sedimentation due to buoyancy mismatch; as
a result, there are many reports in the literature of behavior which is clearly af-
fected by gravitational collapse [PPIB94]. This tends to obscure the underlying
behavior, and thus experiments with buoyancy-matched samples are essential to
fully understand the properties.

The existence of a well-defined boundary between fluid-like and solid-like
states is most clearly shown by the rheological properties of the samples. The
rheological behavior of weakly attractive particles exhibits a remarkable property:
The data for every sample can be scaled onto a single master curve [TWO00], as
shown for samples of carbon black in oil at different volume fractions in Figure 5.
The interaction energy between particles can also be varied through addition of
different concentrations of a dispersant, a surfactant-like molecule that adsorbs
on the surface of the particles and imparts some steric stability. This results in
scaling of the rheological response onto exactly the same master curve. For a fixed
interaction energy and changing volume fraction, those samples with a higher ¢
have a larger elastic modulus, and their data occupy the lower frequency side of
the master curve. As ¢ decreases, the elastic modulus decreases, and the data fall
more and more to the higher frequency side of the master curve. The actual origin
of the scaling behavior can be understood by considering a model that simply adds
two contributions to the response: a frequency-independent, elastic contribution
that depends on the volume fraction of particles, and a viscous response that
increases linearly with frequency that reflects the contribution of the background
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FIGURE 5. Scaling of the rheological response of samples of carbon black
of different volume fractions. Similar behavior is observed for samples
of a fixed volume fraction and varying interaction energy.

fluid to the response. Thus, the dominant response at low frequencies is the elastic
response, whereas at high frequencies it is the viscous response. As a result, the
data must be scaled along both axes, and the relationship of the two resultant
scaling parameters should be linear; this is observed. Thus, this simple model
describes the behavior quite well. The important consequence of this scaling is
that even when the response is too weak to clearly measure the elastic component,
as occurs, for example, for samples at very low volume fractions, it is nevertheless
feasible to determine the elasticity by the scaling of the data. This allows us to quite
precisely identify the boundary between a solid-like gel state and a fluid-like state.

Interestingly, the behavior of the weakly attractive colloidal particles exhibits
exactly the same sort of behavior as that predicted for a “jamming” transition for
granular particles [TPC*01]. Indeed, the original speculation about jamming also
included a speculation that a jammed state should also exist for attractive parti-
cles; in this case, the attractive energy is what holds the system together, rather
than the excluded volume of repulsive particles. Here, the control parameters are
now kpT /U, where U is a measure of the attractive energy of the interparticle
potential, 1/¢ and o, the shear stress on the sample which can cause it to fluidize.
The measured jamming phase diagram for weakly attractive colloidal particles
exhibits a hyperbolic shape, shown in Figure 6, rather than the concave shape
originally predicted. Indeed, more recent work on jamming now predicts a shape
closer to that observed for colloidal particles.
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FIGURE 6. Jamming phase diagram for attractive colloidal particles.

Again, visualization of the individual colloidal particles provides important
new insight into the behavior [LZCT08]. When the attractive interaction is very
short range, the magnitude of the attractive interaction, as specified by kT /U,
can be determined precisely by measuring the cluster mass distribution, measured
for interaction energies below the gelation limit, where the clusters remain tran-
sient. These can be compared to predictions based either on analytic results ob-
tained using a model interaction, or through simulations. Interestingly, the bound-
ary of the solid-like behavior is always found to be exactly at the boundary of
spinodal decomposition. This suggests that the gelation, which is strictly a kinetic
phenomenon, is always preceded by spinodal decomposition, which is a quasiequi-
librium phenomenon. Thus, even when the system is quenched well into the gel
state, the system must first pass through spinodal decomposition. This leads to
phase separation into colloid-rich and colloid-poor regions, driven by spinodal de-
composition. The colloid-rich region is always at high volume fractions, compa-
rable to that of the attractive colloidal glass. As a result, the colloid-rich region
undergoes a kinetic arrest, freezing in the gel state, as shown in Figure 7. Simi-
lar behavior is observed for all attractive colloidal systems [VALT97]. Thus, this
provides new insights into the behavior of colloidal gelation.
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F1GURE 7. Model for gelation of attractive colloidal particles. A quench
into the gel state initially causes spinodal decomposition into colloid-
rich and colloid-poor regions. The colloid-rich region is always at the
volume fraction of an attractive colloidal glass.

4. Conclusions

This paper has presented a very brief summary of results which describe the prop-
erties of colloidal particles viewed as “granular glasses,” systems that share fea-
tures of traditional molecular glass formers and granular materials. The wealth of
behavior of such granular glasses is immense, and there are many more possible
analogies that have been explored but not reported here. There are even more that
are awaiting further work.
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Glass and Jamming Transitions

Giulio Biroli

Abstract. This is an introductory chapter to glass and jamming transitions.
We present basic facts as well as recent discoveries, such as dynamical het-
erogeneities. In the final part we discuss a prominent theoretical approach:
the Random First-Order Transition Theory. In order to convey the state of
the art and the running debates, we make use both of the usual presentation
style of physics papers but also of a dialogue format.

1. Introduction

Glasses are one of the materials most known and used by humans. Obsidian —
a volcanic glass — was used for prehistoric tools and weapons. Now we easily
design glasses with desired mechanical or optical properties on an industrial scale;
glasses are widely present in our daily life and even used to create art objects,
such as Murano glasses. Yet, a microscopic understanding of the glassy state of
matter remains a challenge for statistical physicists. Glasses share similarities with
crystalline solids, they are both mechanically rigid, but also with liquids since
they both have similar disordered structures at the molecular level. In 1995 P.W.
Anderson wrote that, the deepest and most interesting unsolved problem in solid
state theory is probably the nature of glass and the glass transition. The aim of this
article is to give an introduction to this problem, describe the mysteries related
to it, show the reasons why it is so much studied by theoretical physicists and,
finally, explain a theory that can possibly lead to its solution.

Since this is still an unsolved problem there are several — at least apparent —
contradictions in the literature, and several debated questions and biases in inter-
preting the experimental results, and even in deciding which ones are important
and which ones are not. In order to convey the state of the art and some of the
debated questions, I will make use both of the usual presentation style of physics
papers but also of a dialogue format between two characters: Salviati, a theoretical
physicist, and Cleverus, a laymen — but a very clever one!'

1 As the reader certainly knows, such dialogues are not new in the physics literature. Even some
characters, like Salviati, have appeared already several times [1, 2]. Of course, I have no ambition
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2. Basic facts

The usual way to obtain a glass consists in cooling a liquid. The quench must be
fast enough in order to avoid the standard first order phase transition towards the
crystalline phase. The metastable phase reached in this way is called ‘supercooled
phase’. In this regime the viscosity and the relaxation timescale, e.g., the decorre-
lation time of the density field, increase by more than 14 orders of magnitude: from
picoseconds to hours. This is a quite unusually broad range for a condensed matter
system. Depending on the cooling rate, typically of the order of 0.1-100 K/min,
and the patience of the people carrying out the experiment, typically hours, the
supercooled liquid falls out of equilibrium at a certain temperature, called the glass
transition temperature T, and becomes an amorphous rigid material — a glass.

This experimental glass ‘transition’ is clearly not a thermodynamic transition
at all, since T, is only empirically defined as the temperature below which the
material has become too viscous to flow on a ‘reasonable’ timescale. Pragmatically,
physicists have agreed upon a common definition of 7, as the temperature at which
the shear viscosity is equal to 1013 Poise (also 102 Pa s). In order to grasp how
viscous this is, recall that the typical viscosity of water at ambient temperature
is of the order of 1072 Pa.s. How long would one have to wait to drink a glass of
water with a viscosity 10 times larger?

The increase of the relaxation timescale of supercooled liquids is remarkable
not only because of the large number of decades involved but also because of its
temperature dependence. This is vividly demonstrated by plotting the logarithm
of the viscosity (or the relaxation time) as a function of T, /T, as in Figure 1 [3].
This is called the ‘Angell’ plot and is very helpful in classifying supercooled lig-
uids. A liquid is called strong or fragile depending on how the viscosity changes
as a function of T,/T in the Angell plot. Straight lines correspond to ‘strong’
glass-formers and to an Arrhenius behaviour. In this case, one can extract from
the plot an effective activation energy, suggesting quite a simple mechanism for
relaxation by ‘breaking’ locally a chemical bond. The typical relaxation time is
then dominated by the energy barrier to activate this process and, hence, has
an Arrhenius behaviour. Window glasses fall in this category. The terminology
‘strong’ and ‘fragile’ is not related to the mechanical properties of the glass but
to the evolution of the short-range order close to T,. Strong liquids, such as SiO,
have a locally tetrahedric structure which persists both below and above the glass
transition contrary to fragile liquids whose short-range amorphous structure dis-
appears rapidly upon heating above 7. If one tries to define an effective activation
energy for fragile glass formers using the slope of the curve in Figure 1, then one
finds that this energy scale increases when the temperature decreases, a ‘super-
Arrhenius’ behaviour. This increase of energy barriers immediately suggests that
the glass formation is a collective phenomenon for fragile supercooled liquids: many
degrees of freedom have to move cooperatively to make the system relax and this

whatsoever to share anything with the great scientists who wrote those dialogues, except maybe
the fun in writing them.
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FIGURE 1. Angell plot of the viscosity of several glass-forming liquids
approaching the glass temperature Ty [3]. For ‘strong’ liquids, the vis-
cosity increases in an Arrhenius manner as temperature is decreased,
logn ~ E/(KpT), where E is an activation energy and the plot is a
straight line, as for silica (SiO2). For ‘fragile’ liquids, the plot is bent
and the effective activation energy increases when T is decreased to-
wards Ty, as for ortho-terphenyl. Note that there exists a continuous
range of liquids from very fragile to very strong. By plotting their cor-
responding data one would fill the gap between the two curves in the
figure above.

leads to growing energy barriers. Support for this interpretation is provided by
the fact that a good fit of the relaxation time or the viscosity is given by the
Vogel-Fulcher-Tamman law (VFT):
DTy

To = To €XP [(T—TO)} ; (1)
which suggests a divergence of the relaxation time and of the effective barrier
DTyT/(T — Ty) and, hence, a phase transition of some kind at a temperature Tp.
A smaller D in the VFT law corresponds to a more fragile glass. Note that there
are other comparably good fits of these curves, such as the Béssler law,

T exp (K (TT>Q> , (@)
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Substance | o-terphenyl | 2-methyltetra-hydrofuran | n-propanol | 3-bromopentane
T, 246 91 97 108
To 202.4 69.6 70.2 82.9
Tk 204.2 69.3 72.2 82.5
Tk /To 1.009 0.996 1.028 0.995

TABLE 1. Values of glass transition temperature, VFT singularity and
Kauzmann temperatures Ty for four supercooled liquids [4].

that only leads to a divergence at zero temperature but still implies a divergent
effective energy barrier, K(7*)?/T, and hence some kind of growing cooperativity.
Actually, although the relaxation time increases by 14 orders of magnitude, the
increase of its logarithm, and therefore of the effective activation energy, is modest,
and experimental data do not allow one to unambiguously determine the true
underlying functional law beyond any reasonable doubt. For this and other reasons,
physical interpretations in terms of a finite temperature phase transition must
always be taken with a grain of salt.

However, there are other experimental facts that shed some light and re-
inforce the use of Eq. (1). Among them, there is an empirical connection found
between kinetic and thermodynamic behaviours. Consider the part of the entropy
of the liquids, Sexc, which is in excess compared to the entropy of the correspond-
ing crystal, and plot it as a function of T'. As for the relaxation time, one cannot
follow this curve below T, in thermal equilibrium. However, extrapolating the
curve below T, apparently indicates that the excess entropy vanishes at some fi-
nite temperature, called Tk 2. The big surprise is that Tk is generically very close
to Tp, the temperature at which a VFT fit diverges. This coincidence is quite re-
markable: for materials with glass transition temperatures that vary from 50 K
to 1000 K, the ratio Tx /Ty remains close to 1, up to a few percents®. Examples
reported in Ref. [4] are provided in Table 1. This link between kinetics and ther-
modynamics appears also in the empirical relation found by Adam-Gibbs, which
connects the relaxation time to the excess entropy mentioned above, and reads:
In7(T)  [TS.s(T)]~!. The Adam-Gibbs relation holds reasonably well both for
single liquids as temperature is varied, and cross-sectionally for different liquids.
Were this relation exact, it would indeed imply that the temperature at which the
relaxation time diverges must coincide with the one at which the excess entropy
vanishes.

But where do these empirical relations, in particular the one between Ty and
Tk, come from? This is a first mystery to elucidate. Note that the ‘coincidence’

2The sub-index K stands for Kauzmann, who first discussed the possible existence of Tk .
3Note, however, there are some liquids where T and Tg differ by as much as 20%, and so a
perfect correlation between the two temperatures is not established experimentally [5].
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between Ty and Tk strongly suggests that some kind of phase transition may well
take place at Ty = Tx. This underlying “ideal glass transition”* would be the
phenomenon responsible for the physical behavior of supercooled liquids and for
the glass transition seen in experiments. But what kind of transition is this? And
why is the excess entropy an important quantity anyway? Goldstein introduced
a physical picture that has been indeed very instrumental in our understanding
of the glass problem. He assumed — and this was later verified numerically — that
approaching T, the system of N particles (or molecules) forming the super-cooled
liquid explores a part of the energy landscape (or configuration space) which is
full of minima separated by barriers that increase® when temperature decreases.
In the Goldstein scenario the dynamic evolution in the energy landscape would
then consist in a rather short equilibration inside the minima, followed by ‘jumps’
between different minima. At 7, the barriers have become so large that the system
remains trapped in one minimum, identified as one of the possible microscopic
amorphous configurations of a glass. Following this interpretation, one can split the
entropy into two parts. A first contribution is due to the fast relaxation inside one
minimum, a second counts the number of metastable states, S, = log Nyetastables
which is called the ‘configurational’ entropy. Assuming that the contribution to the
entropy due to the ‘vibrations’ (or coarse-grained vibrations) around an amorphous
glass configuration is not very different from the entropy of the crystal®, one finds
that Sexe = Sliquid — Serystal = Se. Within this approximation, Tk corresponds to
a temperature at which the configurational entropy vanishes. Concomitantly, the
properties of the energy landscape visited by the system change drastically, since
below Tk the system becomes stuck in a handful of low-lying states. Assuming
that S, vanishes linearly as suggested by extrapolations of Sy, and using the
thermodynamic relation T% = (), one finds a downward jump of the specific
heat C), at Tx and therefore a truly thermodynamic phase transition.

At this point the reader might have reached the conclusion that the glass
transition may not be such a difficult problem: there are experimental indications
of a diverging timescale and a concomitant singularity in the thermodynamics.
It simply remains to find static correlation functions displaying a diverging cor-
relation length related to the emergence of ‘amorphous order’. This would allow
us to classify the glass transition as a standard second-order phase transition.
Remarkably, this remains an open and debated question despite several decades
of research. Simple static correlation functions are quite featureless in the super-
cooled regime, notwithstanding the dramatic changes in the dynamics. A simple

41t is called ideal because, if it exists, it would be a true phase transition, compared to the
cross-over taking place at Ty, and it could be reached only if one were able to equilibrate the
systems on arbitrarily large, meaning in practice unattainable, timescales.

5Note that the energy landscape does not change with temperature. The regions of the landscape
sampled by the system, instead, do depend on temperature. At low temperature, the sampled
regions are characterized by higher barriers in Goldstein’s scenario.

6Note, however, that the above assumptions should not be taken for granted, see for instance
the recent discussions in [6, 7, 8].
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static quantity is the structure factor defined by

() = ( 90a99-a ) 3)

where the Fourier component of the density reads

al N
Opq = Zelq'ri - 75%0’ (4)
i=1
where N is the number of particles, V' the volume, and r; is the position of particle
i. The structure factor measures the spatial correlations of particle positions, but
it does not show any diverging peak in contrast to what happens, for example, at
the liquid-gas tri-critical point where there is a divergence at small q. A snapshot
of a supercooled liquid configuration in fact just looks like a glass configuration,
despite their widely different dynamic properties. What happens then at the glass
transition? A more refined understanding can be gained by studying dynamic
correlations or response functions.
A dynamic observable studied in light and neutron scattering experiments is
the intermediate scattering function,

Faut) = { 500a(03-q(0) ). 5)

Different F(q,t) measured by neutron scattering in supercooled glycerol [9] are
shown in Figure 2 for different temperatures. These curves show a first, rather
fast, relaxation to a plateau followed by a second, much slower, relaxation. The
plateau is due to the fraction of density fluctuations that are frozen on interme-
diate timescales, but eventually relax during the second relaxation. The latter is
called ‘alpha-relaxation’, and corresponds to the structural relaxation of the lig-
uid. This plateau is akin to the Edwards-Anderson order parameter, ¢ 4, defined
for spin glasses, which measures the fraction of frozen spin fluctuations. Note that
qeA continuously increases from zero below the spin glass transition. Instead, for
structural glasses, a finite plateau appears above any transition.

Many other remarkable phenomena take place when a supercooled liquid
approaches the glass transition. I presented above some of the most important
ones, but many others have been left out for lack of space.

To sum up, approaching the glass transition, a liquid remains stuck for a very
long time in an amorphous configuration. It eventually evolves but this takes such a
long time that below a certain temperature this regime cannot be probed anymore.
As a matter of fact, the number of microscopic configurations in which the glass
can get stuck is exponentially large as shown by the value of the configurational
entropy at Ty: a few kp per particle. There seems to be a very large degeneracy in
the ways molecules can arrange themselves such as to form mechanically stable,
amorphous patterns around which they vibrate without exploring all the other sta-
ble patterns. The way in which this degeneracy decreases with temperature seems
to be tightly connected to the way the relaxation times increase. Possibly, an ideal
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FIGURE 2. Temperature evolution of the intermediate scattering func-
tion normalized by its value at time equal to zero for supercooled glyc-
erol [9]. Temperatures decrease from 413 K to 270 K from right to
left. The solid lines are fit with a stretched exponential with exponent
0 = 0.7. The dotted line represents another fit with § = 0.82.

glass transition takes place at Ty = Tk . At this temperature the configurational
entropy, a measure of this degeneracy, would vanish and the relaxation timescale
would diverge. This exponential degeneracy of the “phases” towards which the
liquid can freeze is a feature that classical theories of phase transitions cannot
easily handle, and that requires new tools. At the same time, this feature seems
to be the very essence of glassiness: in order to prevent fast crystallisation, the
interaction between molecules must be able to generate enough “frustration” to
make the energy landscape rough and rocky and trap the system in a configuration
not very different from an arbitrary initial configuration of the liquid.

3. The jamming-glass transition of colloids and grains

Colloidal suspensions consist of big particles suspended in a solvent. The typical
radii of the particles are in the range R = 1-500 nm. The solvent, which is at
equilibrium at temperature 7', renders the short-time dynamics of the particles
Brownian. The microscopic timescale for this diffusion is given by 7 = R?/D
where D is the short-time self-diffusion coefficient. Typical values are of the order
of 7 ~ 1 ms, and thus are much larger than the ones for molecular liquids (in the
picosecond regime). The interaction potential between particles depends on the
system, and this large tunability makes colloids very attractive objects for technical
applications. A particularly relevant case, on which we will focus in the following,
is a purely hard sphere potential, which is zero when particles do not overlap and
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infinite otherwise. In this case the temperature becomes irrelevant, apart from
a trivial rescaling of the microscopic timescale. Colloidal hard spheres systems
have been intensively studied in experiments, simulations and theory varying their
density p, or their volume fraction ¢ = %ﬂ'R3 p- Hard spheres display a fluid phase
from 0 to intermediate volume fractions, a freezing-crystallisation transition at
¢ ~ 0.494, and a melting transition at ¢ ~ 0.545. Above this latter value the system
can be compressed until the close packing point ¢ ~ 0.74, which corresponds to
the FCC crystal. Interestingly, a small amount of polydispersity (particles with
slightly different sizes) suppresses crystallization. In this case, the system can be
more easily ‘supercompressed’ above the freezing transition without nucleating the
crystal, at least on experimental timescales. In this regime the relaxation timescale
increases very fast. At a packing fraction ¢4 ~ 0.58 it becomes so large compared
to typical experimental timescales that the system does not relax anymore: it is
jammed. This ‘jamming transition’ is obviously reminiscent of the glass transition
of molecular systems and indeed several studies have shown that the phenomenon
that take place increasing the volume fraction are analogous to the ones seen in
molecular supercooled liquid: the relaxation timescales increase very fast and can
be fitted by a VFT law in density as in Eq. (1), dynamical correlation functions
display a broad spectrum of timescales and develop a plateau as in Figure 2, no
static growing correlation length has been found, etc. Also the phenomenon of
dynamic heterogeneity that we will address later is present in both cases.

It is important to stress that the super-compressed state of colloids is really
akin to the super-cooled state of molecular liquids: it is metastable with respect
to the crystal but otherwise at equilibrium. We will not address here problems in
which the colloid ages or is compressed extremely fast.

In theoretical studies of the jamming-glass transition it is customary to ne-
glect the hydrodynamics effects and focus on hard spheres mixtures undergoing a
Brownian dynamics. It is a well-known result that the probability distribution at
long times for such a system converges to the equilibrium Boltzmann distribution.

As a summary, comparing the jamming-glass transition of colloids to the glass
transition of liquids, one finds several astonishing similarities, despite the fact that
the systems are rather different in nature: for the former the dynamics is Brownian
and the order parameter of the Jamming-Glass transition is the density, whereas for
the latter the dynamics is Newtonian and the order parameter is the temperature.
Another major important difference is that experiments in colloids can only track
the first five decades of slowing down because the microscopic timescale for colloids
is very large. An important consequence is that the comparison between glass
and colloidal transitions must be performed by focusing in both cases on the
first five decades of the slowing down. This would correspond to relatively high
temperatures in molecular liquids. Understanding how much and to what extent
the glassiness of colloidal suspensions is related to the one of molecular liquids is
an active domain of research.

Another class of systems that display a Jamming-Glass transition which share
very similar properties with the glass transition of molecular liquids are driven
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FIGURE 3. A bi-dimensional, bi-disperse granular material, composed
of about 8.000 metallic cylinders of diameter 5 and 6 mm in equal pro-
portions, is sheared quasi-statically in a horizontal deformable parallelo-
gram. The shear is periodic, with an amplitude 6,4, = +5°. The volume
fraction (¢ = 0.84) is maintained constant by imposing the height of the
parallelogram. The dynamics of 2818 grains located in the center of the
device is followed by a High Resolution Digital Camera which takes a
picture each time the system is back to its initial position § = 0. The
microscopic unit of time is one cycle, a whole experiment lasting 10.000
cycles. Experiments with this setting have been performed and analyzed
in publications by Dauchot et al., see this volume, page 137.

granular media. If colloids can be thought of as siblings of molecular liquids, grains
must be thought as some more distant relatives, let’s say cousins. The reason is
that grains are macroscopic objects and, as a consequence, do not have any ther-
mal motion. A granular material is therefore frozen in a given configuration if no
energy is injected into the system. However, it can be forced in a steady state by
an external drive, such as shearing or tapping. An example of an experimental
setting studied in the group of O. Dauchot at CEA Saclay is shown in Figure 3.
It consists in a bi-dimensional and bi-disperse granular material, which is quasi-
statically sheared in a horizontal deformable parallelogram. The dynamics in the
steady state is quite different in nature from both the equilibrium dynamics of
colloids and molecular liquids: energy is continuously injected into the system and
subsequently dissipated. Time-averaged observables cannot be obtained from an
equilibrium Boltzmann measure. Actually, the steady state probability distribu-
tion is generally unknown. Despite these facts, steady state dynamics of granular
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systems at high density show remarkable similarities with the ones of colloids and
molecular liquids. First, the timescales for relaxation of the density field and for
diffusion of a tagged particle increase very fast when density is increased, without
any noticeable change in structural properties. It is now established that many
phenomenological properties of the glass transition also occur in granular assem-
blies. Going beyond the mere analogy and understanding how much these different
physical systems are related is a very active domain of research. Actually, since the
underlying dynamics and microscopic properties are so different between liquids
and grains, it would be highly non-trivial to find that the microscopic mechanism
responsible for the corresponding glass transitions are the same or even very sim-
ilar. We will discuss some very recent and astonishing results at the end of this

paper.

4. First dialogue

Here we present a first dialogue about the glass transition between two characters:
Salviati, a theoretical physicist, and Cleverus, a very clever laymen. Cleverus is
just back from a cruising trip around the globe with his sail boat, while Salviati
has been actively working on the glass transition lately”.

Cleverus: Hi Salviati, long time no see. How’re you doing? I'm just back from
a long sailing trip. As you know I like to bring some scientific stuff to read during
these trips. This time I brought with me several papers and books on the glass
transition. It looks like a hot topic. Recently, there was even an article about it
in the New York Times! Well, finally, I didn’t have much time. I read some stuff
though. I didn’t understand much and I have a lot of questions. First, why you
guys are so much interested in this problem? Liquids stop to flow at low enough
temperature and become glasses. So what? It looks like a very boring problem to
me. Why is this phenomenon difficult to explain?

Salviati: Hi Cleverus, I see you are fine and provocative as usual. You asked
many questions already, let me start from the last one. In order to answer it, let me
quote the Nobel laureate P.W. Anderson: “We are so accustomed to the rigidity
of solid bodies — the idea, for instance, that when we move one end of a ruler the
other end moves the same distance — that it is hard to realize that such an action
at a distance is not built into the laws of nature except in the case of the long-range
forces such as gravity and electrostatics.” We understand why crystals are rigid.
This is related to the spontaneous symmetry breaking of translation invariance:
particles arrange on a periodic lattice and is the lattice that transmits the force.
Of course this reasoning works for crystal, but why liquids become amorphous
rigid materials at the glass transition? Is there a related spontaneous symmetry
breaking transition? As Anderson put it: “We are so accustomed to this rigidity
property that we don’t accept its almost miraculous nature, that is an ‘emergent

7Of course, Salviati does not represent the author. Resemblances to well-known scientists are
coincidental, except for the ones you find out.
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property’ not contained in the simple law of physics, although it is a consequence
of them”. Why glasses are rigid is a very difficult question.

Cleverus: I see, when you are in trouble you start quoting Anderson. I still
don’t get it. If I consider the strong liquids you were describing before, then it
looks clear to me why they become rigid: each particle has to jump a barrier in
order to move. When the temperature becomes much less than the barrier the time
for this process is of the order of the age of the universe, so all particles are stuck
in their positions and the material is a solid. Concerning rigidity, well, the barriers
for motion are there, because particles are arranged on an amorphous lattice and
the interaction with their almost fixed neighbours creates a barrier for motion for
a given particle. So, the reason of rigidity is the same as for crystals.

Salviati: Yes, you might be right for strong liquids. But there are still several
mysteries related to the process of glass-formation. First, even if your explanation
might work for strong glasses, it does not for fragile ones. In those systems, the
barrier is increasing with temperature. Why is it so? Furthermore, you seem to
accept disingenuously that the low temperature phase of the liquid is a broken
symmetry state, where particles are arranged in an amorphous way. But this is
something completely new in physics! As for the emergence of chaos from purely
deterministic dynamics, here we have low disordered energy states that emerge
cooling a completely homogeneous high temperature liquid. Imagine, that a ther-
modynamic transition takes place, what kind of transition would it be? Moreover,
the number of amorphous configurations in which the glass can be stuck is huge.
That is something unheard of in usual theories of phase transitions.

Cleverus: OK, right, I start to see why the problem is difficult and even why
you are interested. Maybe it’s a new kind of phase transition that you cannot
handle and understand with the usual theory of phase transitions. But, still, why
should it be interesting for a laymen like me. I tried to understand it from the New
York Times article. I read a lot of amusing quotes but still didn’t find a reason to
be interested.

Salviati: Maybe, another reason to find it interesting is that glasses are the
archetype of complex systems. Their understanding, or more generally the research
on glassy systems, could lead to several spin-offs in other fields like computer
science, finance, biology.

Cleverus: Mhmm, don’t look at me with your wide blue eyes as the snake in
the Walt Disney’s “Jungle Book”. Maybe doing that and saying “Bzzzzz Glasses
Bzzzzz Complex Bzzzzzz Interesting” works with your friends. It does not with me,
pal. So you’ve got to explain me a little better. By the way I thought you guys used
the words “complex systems” just in your grant proposals. Do you really mean
it when you say that glasses are complex systems? What does it mean “complex
system” anyway?

Salviati: I won’t try to give a general definition of what is a complex system.
That looks like a difficult thing to do. I would say, as the Supreme Court justice
Potter Stewart that didn’t know how to define pornography: I don’t know how to
define it but I know it when I see it.
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Cleverus: Uhh, is that a joke? I would have indeed trouble defining “complex
systems” but pornography ...

Salviati: Cleverus, com’on, stop teasing me. I would say that glassy liquids

are complex because the properties of their low energy states are extremely diffi-
cult to obtain, in particular by a dumb and local optimization procedure. Imagine
that you want to find the most compact structure for hard spheres. Yes, don’t
look at me that way, I know that is just a crystal. But forget it for a moment
and think what a local optimization procedure would do or, even better, what a
particle subject to thermal noise would do. The particle would try to pack close
to itself as many neighboring spheres as possible. And its fellow spheres would do
the same. Well, doing this, one does not end up with a crystal on large scale in
three dimension® but in a relatively loose packing. Imagine now that you want to
obtain very compact amorphous packings, which is the counterpart of a “low en-
ergy state” for hard spheres. Then you have to optimize the way in which particles
are packed together on a large scale. And in this case you don’t know how to do it
a priori contrary to the crystal case. If you wait that the system does it by itself
just by thermal fluctuations, then you have to wait an extremely long time since
many particles have to rearrange cooperatively.
This kind of difficulty in finding low energy states is common to many other prob-
lems in science where many degrees of freedom, agents, boolean variables interact
in a contradictory way (we use the term frustration to denote this phenomenon).
In those cases the macroscopic properties that emerge are very much unexpected
and very often impossible to predict from heuristic or simple arguments. And, by
the way, I wasn’t trying to selling you an old car when I talked about spin-offs
in other branches of science. For example, a central problem in computer science,
random K-SAT, was recently analyzed in full detail with techniques developed for
glassy systems. The authors even showed that random K-SAT is characterized by
a glass transition [19]!

Cleverus: OK, I understand a little bit better your point now. I would have
many questions on complex systems in finance and biology but let’s stick to glasses.
I don’t understand why you made all that fuss about the behavior of fragile liquids.
Maybe the explanation is just the same one I gave you for strong glasses, except
that the local barrier increases approaching 7Ty.

Salviati: As I told you, there appears to be evidence that the barrier is actually
diverging. Our experience taught us that this may happen only when there is some
kind of collective phenomenon. A local barrier cannot diverge. You should read the
paper by Montanari and Semerjian [18], they proved that a diverging timescales
at finite temperature is necessarily related to a diverging length.

Cleverus: Actually, it was among the papers I brought with me. But, oh boy,
it’s difficult for me. I tried hard for two days. One night, while I was sailing in
the arctic ocean, I was so focused on it, or maybe I fell asleep I don’t remember,
that I almost crushed my boat against an iceberg. Ending my trip in a Titanic

8t does in two dimension because there is no frustration.
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way didn’t sound like a good idea, so I decided to wait and ask you for a full
explanation. Please, go to the blackboard and explain.

Salviati: Well, ehm, it would take some time. I will give you now an imprecise
poor man’s explanation — un argument a deuz balles — as the french say. I strongly
suggest you to read their paper afterwards. Imagine that you have a system charac-
terized by a diverging relaxation time. If there is no growing cooperation between
particles, or no growing correlation lengths whatsoever, then the system can be
thought of as formed by independent pieces. Each small microscopic sub-system
would then relax independently and have the same diverging relaxation time. On
the other hand a finite system, as a rule of thumb, cannot have a relaxation time
larger than e*™ where N is the number of its degrees of freedom and a is a con-
stant. Thus, if you start from the hypothesis that the relaxation time is diverging
at finite temperature then you are bound to conclude that there must be some kind
of cooperativity such that the macroscopic system cannot really be considered the
union of many microscopic independent parts.

Cleverus: Alas, my dear Salviati, you don’t know whether there is an ideal
glass transition and the time is really diverging. You just see it increasing. So,
although I like your explanation, you cannot really use it to prove that the glass
transition is not a just a complete local phenomenon. So, all your mumbo jumbo
about a new kind of phase transition, collective phenomena, etc. could well be
plain wrong.

Salviati: OK, you are right to be skeptical. But now we know for sure that
the glass transition is not just a completely local phenomenon. In the last decades
the research has focused on what we call the real space properties of the dynamics.
We have found that dynamical processes leading to relaxation are correlated on
length-scales that increase approaching the glass transition. Let me explain this
in detail because it is a very important point.

5. Dynamical heterogeneities and dynamical correlations

A common feature of the way particles, grains or molecules move in glassy liquids
is the so-called “cage effect”. This is shown in Figure 4 and means that dynamical
trajectories become very intermittent temporally: a particle typically rattles for
a long time inside a “cage” formed by its neighbors and then it moves abruptly
to a new position, around which it starts to rattle again. In order to show that
the glass transition is not just a complete local phenomenon one has to study
the way in which these “jumps out of the cage” (or cage jumps) are organized in
space-time. In particular, are they correlated or completely independent, as would
be the case for a completely local process? To answer this question, let us directly
focus on their correlation or, more generally, on the correlation of local dynamical
relaxations. In order to do that, let us write a global correlation C(0,t) as a sum
of local terms:

C0,1) = % / &1 e(r;0, 1), (6)
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FIGURE 4. These are three examples of the cage effect in glassy dynam-
ics. The three figures show typical particle trajectories approaching the
glass and jamming transitions for a liquid (left: obtained by simulation
[10]), a colloid (center: obtained by experiments [11]) and a granular
system (right: obtained by experiments [12]). In all cases the size of
the “cage” is some tenth of the average interparticle distance. Different
colors are used to highlight different cages.

where V' is the volume of the system. C(0,t) could be the intermediate scatter-
ing function considered previously or could be a measure of mobility: C(0,¢) =

+3.Qit) =%, e~ (®O-ri(01*/(20*) Ty the latter case

R —[ri(t)— rl(O)] /(2“ )
¢(r;0,¢t) NZ(S r)e

where a is equal to the particle distance or, alternatively, some fraction of it.
The correlations in the dynamics can be probed by using the correlation
function [13]:

Ga(r;0,t) = (c(0;0,t)c(r; 0,1)) — (c(050,t)) {c(r;0,1)), (7)

Since ¢(r; 0, ) is generally a two-point function, G4 is a four-point function. This is
the reason for the sub-index 4. Direct numerical studies in glass-forming liquids and
experimental studies in granular systems have shown that this function, evaluated



Glass and Jamming Transitions 55

20 —————————
A\
15 =10 £ A -
075 —v— el
06--o- 6
— 051 --o - P o
= 10 05 --%- P [ -
fé 047 --©-- *x ! |
045 -4 PLIGV
041 —— o ) .
e e
5 v -
() te 1 5 7
10 10 10 10° 10
t
100
10
= E Increasing ¢ —» ¥
~— I -
4 1| =
ey : // { )
01} [ AR
0.01 \«'—\ﬁ
el Toor 01 1 10 100 1,000
1)

FIGURE 5. Time dependence of x4(t) quantifying the spontaneous fluc-
tuations of the intermediate scattering function in a Lennard-Jones su-
percooled liquid [14] and in a granular system consisting in air-driven
steel spheres [15]. The peak of y4(t) increases by lowering the temper-
ature in the former case, and increasing the density in the latter one.
This reveals that the glassy dynamics becomes more and more corre-
lated approaching the glass and jamming transition.

at t equal to the relaxation time, becomes more and more long ranged approaching
the glass or the jamming transition. However, these measurements are difficult and
extracting precisely a length &, from G4 is complicated. The majority of works have
instead focused on its integral, which is called x4(t). This is akin to a standard
dynamical susceptibility in usual critical phenomena if one interprets C(0,t) as
the order parameter for the glass transition. It reads:

Xa(t) = p/dSTGz;(r;O’t) = N([C(¢,0) = (C(t,0))]?). (8)

This function shows a very similar behavior in molecular liquids, hard spheres and
grains. We show in Figure 5 the typical shape and the typical evolution of y, for
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liquids and granular media (hard spheres behave similarly). As a function of time
x4(t) first increases, it has a peak on a timescale that tracks the structural relax-
ation timescale and then it decreases. The peak value, which measures the volume
on which the structural relaxation processes are correlated, is found to increase
approaching the glass and jamming transitions. Note that if the dynamically cor-
related regions were compact, the peak of y4 would be just proportional to £3 in
three dimensions.

A visual characterization of dynamical correlations can be obtained by plot-
ting a color map of @Q;(7*) where 7* is the relaxation time of the system. In
Figure 6 we plot this map for a two-dimensional glass-forming liquid (right) and
a two-dimensional granular system close to jamming (left). There are clearly well-
formed spatial structures. Their extension is what is probed by G4 and y4. This
phenomenon has been called dynamical heterogeneity. Note that independent lo-
cal relaxations would instead lead to a homogeneously blurred figure displaying
no spatial structure.

In molecular liquids, contrary to the other glassy systems, y4(t) has been
measured only by numerical simulations and far from the glass transition because
probing G4 or x4 in experiments is beyond current capabilities. The reason is that
one can track the particle positions for colloids and grains. This is instead impossi-
ble for molecular liquids. There are two ways to overcome this difficulty. First, it has
been argued that non-linear responses should be directly related to x4 and these
have been measured recently by the group of D. L’Hote in CEA Saclay. Second, one
can obtain by fluctuation-dissipation relations and rigorous inequalities a relation-
ship between the way the relaxation timescale increases and the growing of dynam-
ical correlations. The main idea is to obtain a rigorous lower bound on x4(¢) using
the Cauchy-Schwarz inequality (JH(0)8C(0,¢))> < (§H(0)?) (6C(0,t)?), where
H(t) denotes the enthalpy at time ¢. By using fluctuation-dissipation relations the
previous inequality can be rewritten® as [16]

T2

xa(t) 2 & Der(6)?, (9)
P
where the multi-point response function xr(t) is defined by
OF (t) N
t) = ——= =— (0H . 1
)= S| = 7 GHOC0.0) (10)

As a consequence, one can obtain a lower bound on the increase of dynamical
correlations from the way the correlation function changes with temperature. This
is useful for two reasons. First, it is easy to check!'® that it implies that a diverg-
ing timescale at a finite temperature must be accompanied by a diverging y4.

9Henceforth we will take kg = 1.

10Tn order to do that, assume that the correlation function has a scaling behavior f(¢/7(T)) and
that 7(T") diverges at a finite temperature Tp. Plugging this expression into Eq. (9) one finds
that the lower bound diverges and this implies a diverging x4 at Tp.
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FIGURE 6. Color map of Q;(7*) for: (Right) a 2D non-equimolar bi-
nary mixture of particles interacting via purely repulsive potentials of
the form uqy(r) = e(oqp/7)*? and (Left) the two-dimensional granular
system described in Figure 3. Lowest values of Q;(7*) correspond to
particles that have already relaxed on the time 7* and to darker colors.
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F1GURE 7. Universal dynamic scaling relation between number of dy-
namically correlated particles, Neorr 4, and relaxation timescale, 7,, for
a number of glass-formers [17], determined using Eq. (9).

Second, it actually provides a quantitative way to estimate, via a lower bound,
dynamical correlations in glass-forming liquids close to the glass transition. Using
this method, Dalle-Ferrier et al. [17] have been able to obtain the evolution of
the peak value of x4 (or more precisely its estimation by the lower bound!!) for
many different glass-formers in the entire supercooled regime. In Figure 7 we show
some of these results as a function of the relaxation timescale. The value on the
y-axis, the peak of x4, is a proxy for the number of molecules, Necorr,4 that have to
evolve in a correlated way in order to relax the structure of the liquid. Note that
X4 is expected to be equal to Neopr 4, up to a proportionality constant which is not
known from experiments, probably explaining why the high temperature values of
Neorr,a are smaller than 1. Figure 7 also indicates that Neorr,4 grows faster when 7,
is not very large, close to the onset of slow dynamics, and a power law relationship
between Neorr 4 and 7, is good in this regime (74,/79 < 10%). The growth of Neoyr 4
becomes much slower closer to T,;. A change of six decades in time corresponds to
a mere increase of a factor about 4 of Ncorr 4, suggesting logarithmic rather than
power law growth of dynamic correlations.

M Numerical analysis suggested that the lower bound provides a rather good estimation of the
rate of growth of x4 approaching the glass transition.



Glass and Jamming Transitions 59

6. Second dialogue

Cleverus: Glassy dynamics have indeed a lot of interesting and remarkable real
space properties. I agree now that any explanation of the glass transition in terms
of a purely local process is bound to fail. Something I really find puzzling is the
apparent similarity between liquids, colloids and grains. They are really different
microscopically and yet ... You didn’t seem to be very much surprised. Are all
these glass-jamming transitions the same?

Salviati: You are right, I didn’t stressed enough this similarity. Actually, 1
find it very remarkable too. As I said, one has to be careful not comparing apples
to oranges: in colloids and grains one can probe only the first decades of slowing
down. Thus, we don’t really know whether their behavior is similar to the one of
molecular liquids close to their glass transition, since there the relaxation time has
grown of 14 or more decades. Still, at least in the first regime of slowing down of
the dynamics, they really are similar and this is remarkable. I have to admit that
we don’t have a clear idea of why this is so. We have just indications by analytical
[20] and numerical approaches [22] that indeed the glass transitions of hard spheres
and molecular liquids may be driven by the same mechanism. We have to work
more.

Cleverus: From your explanation on the real space properties of the dynamics
I got that the dynamical slowing down is accompanied by a growing dynamical
correlation length. This seems to suggest that the ideal glass transition — if such a
thing exists — is purely dynamical; no thermodynamic transition, right?

Salviati: This is a tricky point [21]. Let me again quote Anderson and not
because I feel in trouble! Already in 1983 he wrote: “This has, however, become a
very knotty question. Some — but not all — transitions to rigid, glasslike states, may
entail a hidden, microscopic order parameter which is not a microscopic variable in
any usual sense, and describes the rigidity of the system. This is the fundamental
difficulty of the order-parameter concept: at no point can one be totally certain
that one can really exclude a priori the appearance of some new hidden order.” He
was right and well ahead of his time — as in many other cases. Only recently, we
started to understand what this static correlation length could be. As a matter of
fact, in the Montanari and Semerjian work we discussed before, they prove that
the length which has to diverge together with the relaxation time is a static one!

Cleverus: Ahhh, I've got your point — I think. There could be a static cor-
relation length, and the fact that you don’t see it easily does not mean that it is
not there. One has to be careful. But then, what is the relationship between the
dynamic length you see, cf. your previous explanations, and the static one you
don’t?

Salviati: First, we have now direct evidences that there is a static growing
length, I can tell you more later. As for your question on the relation between
static and dynamic lengths, we didn’t make up our minds. We tend to believe that
if particles are correlated statically on a length &, then they will be dynamically
correlated on a length that is at least equal, but possibly larger, than &;. Actually,



60 G. Biroli

it is simple to construct models in which the dynamical length &; is much larger
than the static one. However, we don’t have any definite proof that £; > &, so it
is probably better not to make any categorical or dogmatic statement.

Cleverus: I see. But do you guys have some hints of what is the theoretical
explanation of the glass transition? I mean, if you don’t even know whether it is
static or purely dynamic ...

Salviati: Well, don’t be too negative. Of course, since the problem of the glass
transition is not solved there are many different theoretical approaches, different
schools of thought, ...

Cleverus: Ah, there was a funny quote in the New York Times article. D.
Weitz said: “There are more theories of the glass transition than there are theorists
who propose them”. Bravo, your experimental colleagues have a very good opinion
of you.

Salviati: Mhmm, it is true that there are possibly 1001 derivations of the
Vogel-Fulcher law. However there are very few real theories, meaning based on
solid microscopic basis and able to explain a lot of properties of glassy liquids.

Cleverus: Why you cannot sort out which is the right one?

Salviati: The main difficulty is that all these theories are based on some kind
of critical phenomenon. That’s reasonable since there are indeed growing corre-
lation lengths at the glass transition. The trouble is these lengths are not very
large! You saw that the dynamical correlation length takes, at best, a value of
10 at the glass transition. The static lengths are probably smaller. This means
that we are still rather far from the critical point, whatever it is. Hence, in order
to obtain quantitative predictions that can be tested in experiments and to con-
trast theories, critical and universal results are not enough. One should be able to
compute pre-asymptotic corrections. This is a fundamental difficulty of the glass
transition: the relaxation timescale increases so fast that one cannot get close to
the transition. This does not happen in standard critical phenomena because the
timescale diverges as power law of T — T,.

Cleverus: OK, well, you cannot compute pre-asymptotic effects. I hope you
are at least able to compute the asymptotic ones.

Salviati:... it depends on the theory.

Cleverus: Oh com’on, stop to be so balanced and sphinxish in your answers.
Tell me what theory you think is right and why.

Salviati: I have different reasons to believe that the most promising theory,
at least the one which is the correct starting point, is the Random First-Order
Transition Theory.

Cleverus: Ah, the RFOT theory! I tried to read many papers during my sailing
trip. Oh boy, it was a nightmare. I had to choose between some that do awkward
computations on very weird models: completely connected mean-field models with
quenched disorder and multiple spins interactions. Why on earth these models
should be related to glasses anyway? And others, with no computation at all. At
first sight, I was happy with the latter, but then I found them full of so many,
how do you call them — ah right — hand-waving arguments ... One night after
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reading one of those papers, I dreamt to have the Hindu goddess Kali in front of
me waving all her hands and explaining RFOT. It was a mesmerizing experience.
But, it didn’t help with RFOT. So, please, go ahead, explain it to me if you can.

7. The Random First-Order Transition Theory Part I:
Mean-field theory

Historically, the origin of RFOT lies in the study of mean-field disordered sys-
tems and starts with pioneering works by Kirkpatrick, Thirumalai and Wolynes.
Indeed the Random Energy Model of Derrida contains in a nutshell already many
important aspects of RFOT. Many workers in the field of the glass transition of-
ten criticizes RFOT on the basis that is not clear why mean-field spin systems
with quenched disorder have anything to do with glass-forming liquids, which are
formed instead by interacting particles and devoid of quenched disorder. They are
right. These systems are microscopically extremely different. However, they are
possibly related in the same way liquids close to the liquid-gas transition are re-
lated to spin systems close to the ferromagnetic transition. They belong to the
same universality class at least within mean-field theory. Nevertheless, it is clear
that analyzing these spin models and, then, applying directly the results to real
liquids can be baffling for researchers who want to understand how particles move
and rearrange in real systems and are not used to mean-field disordered systems.
At the very end, if RFOT is the theory of the glass transition, we must be able to
explain it without making a long detour on quenched disordered systems. In the
following, I shall endeavor to do that. As a consequence, alert and knowledgeable
readers may find that I'm starting from the end instead of from the beginning and,
at the same time, sweeping some difficult technical points under the rug. They are
right.

7.1. A chaotic free energy landscape

We saw that close to T, a liquid remains stuck in amorphous configurations and
that the number of these is exponentially large in the system size. A mean-field the-
ory of the problem should therefore be able to: (1) capture this kind of symmetry
breaking (2) deal with an exponential number of states. As usual, the first approach
to follow in order to get a handle on the physics, at least qualitatively, is mean-
field theory. As for ferromagnets the first step is studying the evolution of the free-
energy landscape. In the Curie-Weiss approach one computes the free-energy as a
function of the global magnetization by a mean-field approximation. However, com-
puting the free energy as a function of the global energy or density won’t be enough
for the glass transition. One has to be able to deal with the fact that the system
can be stuck in many different amorphous configurations. As a consequence one is
bound to compute the free-energy F' as a function of the entire density field. F' is de-
fined using the Legendre transform. Consider for simplicity an interacting particle
lattice model, the generalization to continuum systems is straightforward. In the



62 G. Biroli

lattice case a given configuration is determined by the number of particles, n;, on
every site 4. In order to define F', one first introduces the thermodynamic ‘potential’

W({pi}) = —%108; > exp <—5H({ni}) + Zﬂmm) : (11)
{n} i

The free energy function F({p;}) is then defined as

F({pi}) =W({pi}) +Zu2‘pi (12)

where the p's satisfy the equations g—l + p; = 0 and, hence, are functions of
all p;s. This is often called the TAP free energy because Thouless, Anderson and
Palmer introduced it to study mean-field spin glasses. The generalization to con-
tinuum systems can be also performed by replacing the discrete variable n; by a
continuum density field p(z). In this case F is called a density functional.

The free energy landscape is the hyper-surface generated by scanning F' over
all possible values of {p;}. Its critical points, in particular the minima, play a
crucial role. In fact by deriving the previous equation with respect to p; one finds

or

ap; = M-
Thus, when there are no external fields (or local chemical potentials) the solutions
of these equations are all the stationary points of the free energy landscape'?.

What are the main features of F' for a system approaching the glass transi-
tion? This question of course cannot be answered exactly for a three-dimensional
system. One has either to make use of approximations (as in the Curie-Weiss de-
scription of ferromagnets) or focus on mean-field lattices like Bethe lattices, which
often provide a good approximation to the finite-dimensional ones. Furthermore,
continuum systems are quite complicated; let us first focus on simple but reason-
able lattice models.

A concrete example is given by ‘lattice glass models’. These are models con-
taining hard particles sitting on the sites of a lattice. The Hamiltonian is infinite
if there is more than one particle on a site or if the number of occupied neighbors
of an occupied site is larger than a parameter, m, and is zero otherwise. Tuning
the parameter m, or changing the type of lattice, in particular its connectivity,
yields different models. Lattice glasses are constructed as simple statmech models
to study the glassiness of hard sphere systems and they have been shown by sim-
ulation to reproduce correctly the physics of glass-forming liquids (at least on the
timescales accessible to simulations). The constraint on the number of occupied
neighbors mimics the geometric frustration encountered when trying to pack hard
spheres in three dimensions. Other models, which have a finite energy and, hence,
are closer to molecular glass-formers, can be also constructed. The technical study

12For particle systems there is always a global chemical potential j fixing the number of particles.
In this case, one includes the global term p ", n; in the definition of F' so that all ! are zero.
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of their free-energy landscape is quite involved. Here we will only discuss the main
results and consider temperature as a control parameter. The generalization to
models where the density or the chemical potential are the control parameters is
straightforward.

The main result of the study of the free energy landscape is that it be-
comes ‘rugged’ at low temperature and characterized by many minima and saddle
points. Actually, the number of minima is so large that in order to count them
one has to introduce an entropy, called configurational entropy or complexity,
sc = + log N'(f), where N(f) is the number of free-energy minima with a given
free energy density f. The density profile corresponding to one given minimum is
amorphous and lacks any type of periodic long-range order, and different minima
are ... very different. This is a first result, which is very welcome. Glasses freeze
in an exponential number of different amorphous configurations, and within the
mean-field approximation of simple but reasonable lattice models we indeed find
a lot of amorphous free energy minima at low temperature. Assuming that all
the minima are mutually accessible, one can compute the thermodynamic proper-
ties, i.e., the partition function, by summing over all states with their Boltzmann
weights. Formally, one can introduce a free-energy dependent complexity, s.(f,T),
that counts the number of TAP minima with free-energy density f at temperature
T. The partition function of the system then reads:

Z(T):/df exp [NTf—l-Nsc(f,T) . (13)

For large N, one can as usual perform a saddle-point estimate of the integral,
which fixes the dominant value of f, f*(7T') that obeys:

T Osc(f,T)

of ‘f =f=(T)
The temperature dependent complexity is in fact defined by: s.(T') = s.(f*(T),T).
The free energy of the system is f,(T") = f* — T's.(T). The typical shape of the
configurational entropy as a function of f and a graphic solution of Eq. (13) are
plotted in Figure 8. The analysis of the configurational entropy, or complexity
sc(T), reveals that there is a temperature Tk below which s.(7T") vanishes and
that s.(T") increases by increasing the temperature above Tk . There exists a sec-
ond, higher temperature that we call T; > Tk (for reasons that will become clear
below) above which s.(T") drops discontinuously to zero again. There is just one
minimum'® above T, and it corresponds to the homogeneous density profile of the
high temperature liquid. The situation below Tk and above Ty is very different.
At these two temperatures the part of the free-energy landscape relevant for the
thermodynamics change drastically in two very different ways. At T,; the homoge-
neous liquid state fragments in an exponential number of states, or minima. At Tk
the number of minima is no more exponential in the system size, s.(T < Tk) = 0.

=1. (14)

13 Actually things are slightly more complicated than this but this is irrelevant for the present
discussion.
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FI1GURE 8. Typical shape of the configurational entropy, 3, as a function
of free energy density, f in the range T}, < T < Ty for random first-
order landscapes. A graphic solution of Eq. (13) is obtained by finding
the value of f at which the slope of the curve is 3 = 1/T. Note that s,
is also a function of temperature, so this curve in fact changes with 7'
Ty is indicated as Th;cor for the reasons explained in the text.

Surprisingly f,(T) is not singular at T4. This is one of the most unexpected re-
sults emerging from the analytical solution. It suggests that at T, the liquid state
fractures in an exponential number of amorphous states and that this transition is
only a dynamical phenomenon with no consequences on the thermodynamics. At
Tk instead a thermodynamic phase transition takes place since the contribution
to the entropy coming from the configurational entropy disappears'* and, hence,
the specific heat makes a jump downward.

In order to understand what’s going on at Ty one has to study the dynamics.
Such an analysis shows that a typical time dependent correlation function, e.g.,
> (ni(t)n;(0)), develops a plateau as a function of time, ¢, and has a shape which
is very much reminiscent of experimental curves, like Figure 2. Within mean-field
theory the barriers between states diverge with NV and hence at T there is a purely
dynamical ergodicity breaking'®.

In summary, the mean-field analysis of the free energy landscape leads to
many interesting results. There is a first temperature Ty at which many different
amorphous states appear and the “liquid state” fragments into all of them below
Ty A detailed analysis close to T, shows that they disappear discontinuously: they
melt because of thermal fluctuations in a spinodal-like way, which means that they

14The configurational entropy vanishes linearly at Tk .

15This result can be obtained in full detail for mean-field disordered systems only. For more
realistic but still mean-field systems, one can either perform a Landau like expansion or numerical
simulations. Both strongly support the existence of the dynamical transition discussed in the main
text.
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lose their stability. Several arguments suggest, and we shall show it directly later
on, that all the states we found between T; and Tk become metastable in finite
dimension. As a consequence, the temperature Ty is expected to become a cross-
over in finite dimension. Instead, at Tk, a thermodynamic transition at which the
configurational entropy vanishes takes place. This would lead to a downward jump
of the specific heat, to a thermodynamic phase transition and hence, generically,
to the divergence of the relaxation time. Clearly, we are finding several features
displayed by experiments:

(1) the existence of metastable states that make the dynamics slow down below
some temperature,

(2) a possible ideal glass transition where the configurational entropy and the
relaxation time diverge.

However, a complete explanation is still lacking. At this point it is not clear yet
how the relaxation time diverges and why this is related to the vanishing of the
configurational entropy.

It is important to stress that these results are general in the sense that they
emerge generically in mean-field treatments of models of glasses, both in the case
of liquids approaching the glass transition and hard spheres approaching the glass-
jamming transition. However, in practice, performing the analysis of the free en-
ergy landscape is already technically quite difficult for lattice glass models on a
Bethe lattice. As a consequence, more realistic continuum models of interacting
particles cannot be analyzed in full detail. Some numerical and analytical studies
of the density functional of more realistic models, such hard spheres, have been
performed though. They have indeed revealed that amorphous minima emerge at
low energy and high density. In order to compute approximatively the properties
of the metastable states and the configurational entropy one has to use different
tools. These are explained below and consist in a replica theory for models without
quenched disorder.

7.2. Boundary pinning field and replicas

In the following we shall describe an approach based on the replica method which,
although more abstract than the one described above, has the clear advantage
that analytical mean-field computations for finite-dimensional systems, even real-
istic ones such as hard spheres or binary Lennard-Jones mixtures, become feasible,
although quite involved. Readers allergic to replica or not interested in the formal-
ism can skip this section without any harm: it is not necessary to understand the
rest of the paper.

To understand how replicas come about in a model without disorder, let us
assume that the system is in a regime of temperatures where there are indeed
many very long-lived metastable states and that the Gibbs-Boltzmann measure is
distributed over all of them, as found in the previous section. In order to study the
statistical property of a typical metastable state and the number of such states, we
focus on a very large cavity of radius R, carved in an otherwise infinite (or much
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larger) system. The basic idea is to apply a suitable boundary external field in
an attempt to pin the system in one of the possible metastable states'®. Contrary
to simple cases, e.g., the ferromagnetic transition for which a positive or negative
magnetic field selects states, the external “field”, or analogously the boundary
condition one has to impose to select a given amorphous state, is as unpredictable
as the state one wants to select. To overcome this difficulty one can take an equi-
librium configuration «, freeze the position of all particles outside the cavity, and
use this as a boundary condition. If the system is a thermodynamic glass char-
acterized by many metastable states, then this boundary condition should force
the system inside the cavity to be in the same metastable state as the equilibrium
configuration a.

Concretely, the procedure consists in computing the cavity partition function,
for a fixed a:

Za(R) =Y exp(=BH(C))3(¢™"(C,Ca) = 1) (15)
C

where ¢°**(C, C,,) is a suitably defined overlap that measures the similarity between
density configuration C and that of the a state in the space outside the cavity.
When the overlap equals one, the two configurations are the same outside the
cavity. In the large R limit, the intensive free energy of the metastable state,
obtained by taking the logarithm of the partition function, is expected to be self-
averaging and independent of C,. Physically, this means that the overwhelming
majority of the metastable states sampled by the equilibrium Boltzmann measure
are characterized by the same intensive free energy.

Although, we started from a problem without quenched disorder, we find that
the analysis of the metastable states leads us to a problem where the configuration
Co plays the role of a (self-induced) quenched disorder. In order to proceed fur-
ther and compute the intensive free energy of a typical metastable state we have
therefore to average over C, with the Boltzmann weight exp(—GH (C,)). As usual
for a quenched disorder problem, one can make use of the replica trick:

1 Zm—l o
In Zoo = lim 22" o

m—1 m—l

(16)

In order to compute the average (Z™ 1), one can introduce replicated configura-
tions and write:

_ Yeuier ey OP(BH (Ca)) TS [exp(—BH (Ca))3(4™ (Cas Ca) — 1)]

(2" o S op( BHC))

(17)
As usual with replicas one computes the above sum for integer and positive values
of m — 1 and then makes an analytical continuation to make the m — 1 limit. It is
important to notice that the average in the numerator of the previous expression
can be rewritten as the partition function of m replicas constrained to be identical

16Qur presentation is different from that of the original papers but based on the same ideas.
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outside the cavity but free to fluctuate inside, since in the above expression C, is
no longer different from the other replicas.

Let us denote the logarithm of the partition function of the m constrained
replicas as —(F,,. Once this quantity is known, one can compute the partition
function of the large cavity as:

F=-T{nZy)e = lim Fn = 1) _ OFm . (18)

m—1 m—1 om

m=1

This gives the free energy of one typical state inside the cavity. Since we are
interested in thermodynamic quantities, henceforth we will consider R to be very
large. If there are many states, i.e., an exponential number in the size of the system,
then the free energy of the cavity F may be different from the unconstrained one
Fy. This can be seen by rewriting the replicated partition function as a sum over
all states with their Boltzmann weight. If the constraint is strong enough to force

the replicas a = 1,...,m — 1 to fall into the same state as « itself, then:
Fm - Tln Za e_ﬁ.famN
N N
In [ d N[- Af, T

where f* is the free energy density that maximizes the argument of the exponential,
$¢(T) = sc(f*,T) and N is the number of particles inside the cavity. Using Eq.
(18), one immediately finds that f* = F/N is the intensive free energy of a typical
metastable state. But the free energy of the system without constraint is F; =
f* = Ts.(T) that contains the configurational entropy contribution. The replica
method allows one to obtain both quantities, which yields the configurational
entropy:

o) =R +5 52 —p L[] \ . (20)
m |, om | m ||,

Hence, we have found that computing the statistical properties of metastable states
reduces to the computation of the thermodynamics of m — 1 replicas with the
constraint that the overlap outside a spherical cavity of radius R is equal to 1. In
practice one has to do a computation for m replicas and take the space dependent
overlap ¢q(r) between them in the bulk of the cavity as an order parameter.
Hence, one has to compute as accurately as possible the free energy as a function
of the overlap g, (r), and then find the stationary points.

One always finds a trivial solution with uncoupled replicas, i.e., gq5(r) = 0
for a # b. This is expected since if it was not for the boundary condition the
replicas would be indeed completely uncoupled. If this is the only solution then
F,, = mFi, and s. = 0 as it should be in a case without metastable states. One
has therefore to inspect whether another solution exists. If it is the case then the
constraint outside the cavity plays the role of a boundary condition for ¢, (r) and
selects this coupled replica solution.
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The approach outlined above is the starting point for several quantitative
mean-field investigations of realistic glass-formers [23, 24, 20]. It allows one to
compute the property of typical metastable states, the configurational entropy
and the characteristic temperatures T and Ty for realistic systems. The strategy
consists in obtaining an expression, as accurate as possible, of the m-replica free
energy as a function of the overlap g, and then in studying its stationary points
and in computing all the physically interesting quantities. Actually, some successful
approaches are close in spirit to what I described above but quite different in the
details [23].

8. Third dialogue

Cleverus: There are several things I find strange in the mean-field theory you
explained before. Why do you sum over all states in Eq. (13) if there are infinite
barriers between them, as you have stated?

Salviati: The reason lies in what we think is the generalization of RFOT in
finite dimension beyond the mean-field approximation. It is clear that finding so
many states with infinite lifetime is an artifact of mean-field theory. For instance,
it is impossible for a system to display two thermodynamic states with different
intensive free energies, because if the system sits in the highest free-energy one, it
will eventually nucleate the other, thus showing that the initial one didn’t have an
infinite life-time. We expect that all the states found in mean-field theory between
Tk and Ty will acquire a finite life time in a correct treatment. That is the reason
why we sum over all of them in Eq. (13).

Cleverus: OK, well, you will have then to explain me what the dynamics
between metastable states is, because there lies the final explanation of the glass
transition if RFOT is right.

Salviati: Yes, sure.

Cleverus: But, before, I have still some questions on RFOT: part I. You
seemed to be happy of finding Tx and Ty. Tk, I understand, based on what you
explained before, but what about T,7

Salviati: Yes, I didn’t have time to discuss this point, which is interesting.
The physical properties of the dynamical transition taking place at Ty coincide
with the ones found for the so-called Mode Coupling Transition Theory (MCT)
of glasses. This is a self-consistent approach for the dynamics of dense and low
temperature liquids that was developed by Gotze and collaborators. It has been
already tested a lot in simulations and experiments and, indeed, it seems that
there is a characteristic temperature where a dynamical cross-over takes place and
that this is rather well described by MCT.

Cleverus: Really? T didn’t have this impression reading some papers about
MCT.

Salviati: You are right, maybe I'm a bit biased. The problem is that the
dynamical transition becomes just a cross-over. And a cross-over is difficult to test
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in a clear cut way. Furthermore, even theoretically, we don’t understand well the
properties of this cross-over yet.

Cleverus: I have a final question about grand-mothers.

Salviati: Uh?

Cleverys: Yes! In the papers I brought with me, I often read strange sen-
tences stating that even a grand-mother would have a glass transition with your
approximations. This apparently shows two things: first, you guys don’t respect
much grand-mothers, which is bad, and second, that what you find is just due to
the approximations you have done.

Salviati: Well, yes and no. No, we respect grand-mothers, this was just a
joke. Yes, what we find is due to the approximations but we think that a cor-
rect treatment would change somehow the results without jeopardizing the whole
scenario.

Cleverus: Is this wishful thinking or is it based on some concrete analysis?

Salviati: In the last years indeed we have found ways to perform concrete
analysis and even test our ideas in numerical simulations. I can explain if you
want.

Cleverus: Sure! Keep in mind that the things I would like to know are: (1)
what happens in real space within the RFOT scenario. You discussed a lot the
importance of understanding the glass transition in real space in Section 5, but in
your previous sections about RFOT real space was completely out of the game.
(2) Why and how the relaxation time diverges at Tx within RFOT?

9. The Random First-Order Transition Theory Part II:
Beyond mean-field theory and the real space description

9.1. The Mosaic State

We have discussed already that the multiple states found in mean-field theory must
become metastable, i.e., with a finite lifetime, in a correct treatment. As Cleverus
correctly pointed out, understanding how this comes about and how the dynamics
between metastable states takes place is central for the application of RFOT to
real glass-formers and hard spheres systems.

In a pioneering work, Kirkpatrick, Thirumalai and Wolynes [25] proposed
that liquids must become a mosaic of mean-field states with a typical “tile” size
of the order of I* « 1/(T — Tk). As before, we shall not reproduce the original
arguments but present more recent (and at least to our eyes clearer) ones [26].

Consider the following Gedanken experiment. Suppose we could identify one
of the exponentially numerous TAP states relevant at a given temperature 7', which
we call a,, and characterize the average position of all the particles in that state.
We shall first establish that there exists a length scale above which the assumption
that this TAP state has an infinite lifetime is inconsistent. In order to do this, we
freeze the motion of all particles outside a spherical cavity of radius R and focus on
the thermodynamics of the particles inside the sphere, S(R), that are free to move
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but are subject to the boundary conditions imposed by the frozen particles outside
the sphere. Because of the ‘pinning’ field imposed by these frozen particles, some
configurations inside S(R) are particularly favored energetically. When s.(T)R? is
much larger than unity there are many metastable states accessible to the particles
in the cavity. The boundary condition imposed by the external particles, frozen in
state «, act as a random boundary field for all other metastable states except a
itself, for which these boundary conditions perfectly match. Any other metastable
state v has a positive mismatch energy. We assume this interface energy can be
written as ToRY. We first imagine that we wait long enough so that the cavity
embedded in state « is fully equilibrated. The partition function Z, can then be
decomposed into two contributions:
0
Zo(R,T) = Cxp[—QdefTa] + ; exp [—Qde% - TOTR] (21)
YyEo

.fmax

~ exp[—Qdef—a] + /

T fmin
where f, is the excess free energy per unit volume of state v, {24 the volume of the
sphere with unit radius in dimension d*7. We focus on the case T close to Tk where
R is large, allowing one to invoke saddle point arguments. We focus on a typical
state a at that temperature, i.e., a state with the free energy f* that dominates
the integral over f above, such that T0s./0f = 1. The partition function of the
cavity embedded in the « state becomes independent of o and reads:

(Tse(f,T) — f)QuR — TORQ]

dfexp[ T

af” d YoR’
Z(R,T) ~exp |—Q4R T 1+exp |[QuRs.(T) — T . (22)
The above expression is central to our argument. It points out the existence of a
cross-over length £*:

= (%&T)) o (23)

When R is smaller than ¢* but still large, the second term is exponentially small
even if an exponentially large number of terms contribute. The mismatch energy
dominates and the state « favored by the boundary conditions is the most probable
state, even if the particles inside the cavity are free to move. In this sense, the
cavity is in a glass phase, where only one (or a few) amorphous configurations,
selected by the boundary conditions, are relevant. When R > ¢* on the other
hand, the second term becomes overwhelming. There are so many other states to
explore that it becomes very improbable to observe the a state. There is “entropic
melting” of the cavity. Note that approaching Tk, s.(T') — 0 and the length ¢*
diverges.

The main conclusion is that a TAP state does not make sense on scales
larger than [*. The arguments above strongly suggest that if one starts from the

1"Here and below, all lengths are in units of the interparticle distance a.
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mean-field free energy and adds all fluctuations needed to recover the correct
result, then one would obtain the following: For lengths R < £* there is a set of
boundary conditions indexed by « such that the true free energy — not the one
computed within the mean-field approximation — has one different minimum for
each boundary condition. Each minimum corresponds to a density profile which is
very close to the one, called «, obtained by analyzing the mean-field free energy.
Instead, for R > ¢*, there is just one minimum, or analogously, the density profile
at the minimum is just the flat liquid one and is insensitive to the boundary
conditions, whatever they are.

One therefore identifies the scale £* as the one over which the liquid can be
considered as formed by independent pieces or sub-systems'®. A sketchy repre-
sentation of this state is a mosaic composed by tiles which are the different TAP
states that exist on the scale £*. The free-energy of the liquid is therefore, up to a
subleading contribution:

fiiq = f1(T) = Tse(T), (24)
which is formally identical to the mean-field result but very different in terms of
the real space interpretation. Approaching Tk the mosaic tiles increase in size and
at Tk there is a spontaneous symmetry breaking of translation invariance toward
states with amorphous long range order.

Let us now discuss the dynamics. Since the picture we ended up with is one
where the liquid is composed by a mosaic of different states on the scale £*, it is
natural to expect that the relaxation time of the system is the relaxation time,
7(0*), of a finite size region of the system of size £*. Contrary to mean-field theory,
barriers are now finite, hence T, is no longer a true transition. Focusing for the
time being on the dynamical evolution close to Tk, it is natural to assume that
the dynamical process leading to relaxation of the cavity is thermal activation
over energy barriers which are supposed to grow with size as £¥, as in disordered
systems. One predicts finally that:

T\ _ Yo v Yo Yo =0

where ¢ is a constant. Kirkpatrick, Thirumalai and Wolynes argued that ¢ =
0 = 3/2, and hence /(3 — ) = 1, thus recovering the Adam-Gibbs law, at least
close enough to Tk . This is one of the main results of RFOT: the decrease of the
configurational entropy and the increase of the effective barrier are linked together:
the latter has to diverge when the former vanishes. Furthermore, with ¢»/(3—60) = 1
one indeed recovers the Vogel-Fulcher law and obtains the identity Ty = Tk .
This is certainly very impressive. However, we are still far from having this
theory and, hence, these results do not lie on a firm ground. In fact, the pre-
vious argument is a phenomenological one. However, it has been backed up by
microscopic computations based on the replica formalism discussed in a previous

18Using the concept of “generalized rigidity” of Anderson, one would say that above £* the
system is no longer rigid.
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section [27, 28]. These analyses have indeed confirmed the existence of the length
£*. Technically, they found an instability length of the homogenous strongly cou-
pled replica solution using instanton techniques. However, the exponent 6 that has
been found is equal to 2 and not 3/2. As for the exponent , there is no reliable
computation yet. We are at a stage where we don’t know how to compute reliably
the exponents and, it is not clear yet that the victory claimed by Wolynes and
collaborators is the final word. More work is ahead.

9.2. Dynamics close to Ty

We have found that in mean-field theory, amorphous states lose their stability in a
spinodal-like way close to Ty. Approaching Ty from below the frozen part of density
fluctuations, called Edwards-Anderson parameters in the spin-glass jargon, does
not go to zero although the states become unstable just above T;. This means that,
approaching T, from above, dynamical two-point correlation functions must show
a plateau whose value converges at T, toward the Edwards-Anderson parameter of
the TAP states. Above Ty, one expects a behavior of the type found in experiments,
see Figure 1: first a relaxation toward a plateau and then a relaxation away from it.

As we have shown, TAP states are unstable in a correct — beyond mean-field-
treatment. As a consequence, at Ty there is no dynamical transition, but instead
possibly a cross-over. Understanding this cross-over is still an open problem, but
one can already obtain many interesting results on the real space dynamics pre-
tending that the transition is real. Of course, it is a crucial issue understanding
how much these results persist in a correct treatment where the transition is re-
placed by a cross-over. In the following we shall list some of the main properties
of the dynamics close to Tz that one can obtain within the mean-field approxima-
tion. Note that, contrary, to what happens below T}, where mean-field results on
the dynamics are completely changed in a correct treatment, we expect that this
shouldn’t be the case above T, at least not too close to 1.

First, mean-field theory leads to specific predictions on the form of the dy-
namical correlation function, which has been tested during the last decades, be-
cause they coincide with the ones obtained from MCT. They are qualitatively cor-
rect and quantitatively in rather good agreement both for models of glass-formers
and for hard sphere systems. Unfortunately, the existence of the cross-over makes
any precise test difficult if not impossible.

Furthermore mean-field theory correctly reproduces qualitatively the vast
majority of the phenomena discussed in Section 5 under the name of dynam-
ical heterogeneity and dynamical correlations. One obtains from first principle
computations a diverging x4 and a diverging dynamical correlation length at T}.
Physically, this is due to the fact that TAP states become unstable at T,; because
of the emergence of amorphous soft modes that make the system yield above Tj.
The dynamics above T takes place mainly along these soft modes and is therefore
correlated on a large scale. The quantitative predictions for dynamical correlations
and dynamical heterogeneity are under current investigation. The evolution of x4
is quite in agreement with simulation results, although of course it does not diverge
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at Ty since the transition is avoided. Actually, one finds results whose deviations
remain very close to Ty. Instead the agreement for the growing correlation length
is under debate because it appears very difficult to extract reliably the precise
values of £, in simulations.

10. Fourth and final dialogue

Cleverus: I see that you still have to wave many hands, but I understand your
theory — more or less. There are many loose ends though. You have work to do!

Salviati: Yes, right.

Cleverus: Your Gedanken experiment is nice but couldn’t you test it at least
in a simulation?

Salviati: This has been done actually in [29] for a model of glass-forming
liquids: the authors froze a liquid equilibrium configuration and re-equilibrated
the cavity. They found that after re-equilibration the configuration at the center
of the cavity becomes independent of boundary conditions only for radii larger
than a typical length ¢*, which increases approaching the glass transition. They
also found that the relaxation time changes from the bulk behavior for radii smaller
than £*.

Cleverus: Interesting. This indicates that maybe you are on the right track.
It also shows that, again, a complete local explanation of the dynamical slowing
down is completely hopeless. But what about other theories? I guess that their
advocates wouldn’t be so satisfied with RFOT as you are.

Salviati: You bet! They wouldn’t certainly be. There are indeed other theories
whose advocates also claim at least partial victory. I think we are still a bit far
from the final solution. Our current most important challenge is to nail down what
is the closest starting point to the Theory of the glass transition. I believe this is
RFOT for several reasons that I partially try to explain before: In particular it’s
what it comes out naturally from mean-field theory and when one tries to correct
mean-field theory one ends up with results that are physically sound.

Cleverus: Yes, but for example you don’t know how to compute the exponents
0 and . Maybe a correct computation would show that § = 0, so states are
unstable, or that /(3 — ) is very far from 1, so bye bye RFOT!

Salviati: Yes, dear Cleverus, it’s indeed a possibility. However, look at the
good side of it: there is a clear route to follow, ahead of us, in order to prove
whether the theory is right or wrong and many highly non-trivial tests to do to
reinforce and eventually validate or disprove RFOT. Note, for example, that the
simulation of [29] was indeed already a very important test to pass.

Cleverus: I see ... you are viciously implying that this is not the case for the
other theories.

Salviati: Nah, not all theories at least. Anyway, I am confident that in a few
years from now we will be at a stage where it will be clear beyond any reasonable
doubt which theory is the good starting point.
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Cleverus: All the discussion about the dynamical transition looked fishy: you
seems to claim victory saying that it works, and when it does not, you say it is
because of the cross-over. Isn’t it a bit too easy?

Salviati: Well, yes and no. No, there are some qualitative results of the mean-
field theory that are really non-trivial and that one finds in simulations of glass-
formers. These results just come straight from first principle computations, they
could have been very different, you know. For example, no growing dynamic corre-
lations or growing in a weird way and then, bye bye, mean-field theory. However,
yes, you are right, the lack of a good description of the cross-over close to Ty is a
weak point.

Cleverus: But, physically, you said that it should be related to the emergence
of soft modes in the states and that the dynamical relaxation should mainly take
place along them. This is something it should be possible to test in simulations.

Salviati: Actually, yes! This has been done for example in [30] for glass-
formers and also in [31] for hard spheres.

Cleverus: OK. So, finally, tell me your view on glassy relax — not the balanced
one you write in papers but the wild guess.

Salviati: Mhmm, ok. I think that close to T,; the dynamics is a mix of ac-
tivation combined with relaxation along the soft modes. There, the dynamics is
characterized by small clusters of particles, which relax by activation and cooper-
atively. And this triggers an avalanche process along soft modes or regions that
are soft. Actually, some of what I am saying has been found in simulations [10] of
glass-formers and in experiments of granular systems [12]. Decreasing the temper-
ature, the importance of the soft modes decreases, cooperative clusters increase in
size and the relaxation time is determined by some variants of the RFOT argument
described before.

Cleverus: Two final questions. From the point of view of RFOT, hard sphere
colloids and molecular liquids display the very same transition. But what about
granular systems, they are phenomenologically very similar but you cannot de-
scribe them in terms of Boltzmann equilibrium, they are in an out of equilibrium
steady state.

Salviati: You are right. This is puzzling and very fascinating. Could it be
that despite the important physical differences, the glass transitions of liquids and
grains are driven by the same underlying critical phenomenon? One experiment I
would love to see is the Gendanken one for a granular system. Maybe, it would
show that the very same kind of subtle amorphous static correlations develops also
in a granular system despite the stationary distribution is not Boltzmann.

Cleverus: Final question or comment: you swept the crystal problem under
the rug. But in general there is an underlying crystal, so the super-cooled liquid
state is not a true equilibrium state and the glass transition cannot be a true phase
transition.

Salviati: Com’on Cleverus ... I got the same comment from Simplicius.

Cleverus: OK, right, it was just to tease you. Thank you very much for all
the explanations. No way, I could have understood all this alone during my sailing
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trip. It was good to see you. By the way, you cited a lot Anderson, but you never
quoted the last sentence of his famous article on glasses: “The solution of the more
important and puzzling glass problem may also have a substantial intellectual spin-
off. Whether it will help make better glass is questionable.” Bye Bye.

Acknowledgment

I thank all my glassy collaborators, in particular Jean-Philippe Bouchaud, my
long-standing collaborator on glasses. Our last five years of research together were
a great adventure. I also would like to acknowledge that some parts of this paper
have been largely “inspired” by the reviews I have written with L. Berthier and
J.-P. Bouchaud. I thank both of them for the patience they had in writing those
reviews with me.

Some References

Since this is meant to be an informal introduction to the glass and jamming tran-
sitions, in the main text I almost didn’t cite any paper besides very few random
exceptions. I owe an apology to all my colleagues that are not finding their works
cited. I suggest below few formal reviews for readers which want to know more
about the topics treated in this paper.

Sections 1-5

L. Berthier and G. Biroli, A theoretical perspective on the glass transition and
nonequilibrium phenomena in disordered materials, arxiv.org 1011.2578, sub-
mitted to Review of Modern Physics.

P.G. Debenedetti and F.H. Stillinger, Nature 410, 259 (2001).

The book “Dynamical heterogeneities in glasses, colloids and granular materials”
to be published in 2011 by Oxford University Press, see
http://w3.levn.univ-montp2.fr /~lucacip/DH_book.htm.

Section 7-9

T.R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes, Phys. Rev. A 40, 1045 (1989).
J.-P. Bouchaud and G. Biroli, J. Chem. Phys. 121, 7347 (2004).

A. Cavagna, Supercooled liquids for pedestrians, Physics Reports 476, 51 (2009).
G. Biroli and J.-P. Bouchaud, arXiv:0912.2542.

References

[1] G. Galilei, Dialogue Concerning the Two Chief World Systems.
[2] S. Coleman, Aspects of Symmetry, Cambridge University Press, 1985.
[3] P.G. Debenedetti and F.H. Stillinger, Nature 410 (2001), 259.
[4] R. Richert and C.A. Angell, J. Chem. Phys. 108 (1998), 9016.
[5] H. Tanaka, Phys. Rev. Lett. 90, 055701 (2003).

[6] C.A. Angell and S. Borick, J. Non-Cryst. Solids 307, 393 (2002).

[7] J. Dyre, Rev. Mod. Phys. 78, 953 (2006).

[8] M. Wyart, Phys. Rev. Lett. 104, 095901 (2010).


http://w3.lcvn.univ-montp2.fr/%E2%88%BClucacip/DH
http://w3.lcvn.univ-montp2.fr/%E2%88%BClucacip/DH
http://w3.lcvn.univ-montp2.fr/%E2%88%BClucacip/DH

76 G. Biroli

[9] J. Wuttke, W. Petry, and S. Pouget, J. Chem. Phys. 105 (1996), 5177.
[10] R. Candelier, PhD Thesis, Univ. Paris VI (2009).
[11] E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, and D.A. Weitz, Science 287
(2000), 627.
[12] R. Candelier, O. Dauchot, and G. Biroli, Phys. Rev. Lett, 102 (2009), 088001.
[13] L. Berthier, G. Biroli, J.-P. Bouchaud, R.L. Jack, arXiv:1009.4765

[14] L. Berthier and G. Biroli, A Statistical Mechanics Perspective on Glasses and Aging
Encyclopedia of Complexity and Systems Science, Springer (2009).

[15] A.S. Keys, A.R. Abate, S.C. Glotzer, and D.J. Durian, Nature Physics 3 (2007), 260.

[16] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote, F.
Ladieu, and M. Pierno, Science 310 (2005), 1797.

[17] C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J.-P.
Bouchaud, F. Ladieu, D. L’Ho6te, and G. Tarjus, Phys. Rev. E 76 (2007), 041510.

[18] A. Montanari, G. Semerjian, J. Stat. Phys. 125 (2006), 23.

[19] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborova, Proc.
Natl. Acad. Sci. 104 (2007), 10318.

[20] G. Parisi and F. Zamponi, arXiv:0802.2180.

[21] L. Santen and W. Krauth, Nature 405 (2000), 550.

[22] L. Berthier and T.A. Witten, Phys. Rev. E 80 (2009), 021502.

[23] M. Mézard and G. Parisi, Phys. Rev. Lett. 82 (1999), 747.

[24] S. Franz, M. Cardenas, G. Parisi J.Phys. A: Math. Gen. 31 (1998), L163.

[25] T.R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes, Phys. Rev. A 40 (1989), 1045.

[26] J.-P. Bouchaud and G. Biroli, J. Chem. Phys. 121 (2004), 7347.

[27] S. Franz, A. Montanari J. Phys. A: Math. and Theor. 40 (2007), F251.

[28] M. Dzero, J. Schmalian, and P.G. Wolynes, Phys. Rev. B 72 (2005), 100201.

[29] G. Biroli, J.-P. Bouchaud, A. Cavagna, T.S. Grigera, P. Verrocchio, Nature Physics 4
(2008), 771. C. Cammarota, A. Cavagna, G. Gradenigo, T.S. Grigera, P. Verrocchio,
arXiv:0904.1522; Chiara Cammarota, Andrea Cavagna, Giacomo Gradenigo, Tomas
S. Grigera, Paolo Verrocchio, arXiv:0906.3868.

[30] A. Widmer-Cooper, H. Perry, P. Harrowell and D.R. Reichman, Nature Physics 4
(2008), 711.

[31] C. Brito, M. Wyart, J. Chem. Phys. 131 (2009), 024504.

Giulio Biroli

Institut de Physique Théorique

Orme des Merisiers

CEA Saclay

F-91191 Gif-sur-Yvette Cedex, France
e-mail: giulio.biroli@cea.fr


mailto:biroli@cea.fr

Glasses and Grains, 77-109

© 2011 Springer Basel AG I Poincaré Seminar 2009

Granular Flows

Yoél Forterre and Olivier Pouliquen

Abstract. Those who have played with sand on the beach or with sugar in
their kitchen are aware that a collection of solid grains can behave macroscop-
ically like a liquid flow. However, the description of this peculiar fluid still
represents a challenge due to the lack of constitutive laws able to describe
the rich phenomenology observed. In this paper we review the properties of
dry granular flows and we present recent advances in our understanding of
their rheological behavior. The success and limits of a simple visco-plastic
model recently developed is presented. In a second part of the paper, we go
beyond the simple and ideal situation where the material is made of grains
having the same size and interacting by contact interactions only. We present
studies on more complex and realistic granular media such as polydispersed
media, cohesive granular media or granular pastes made of grains immersed
in a liquid. We analyse to what extent the progress made in our description
of monodispersed dry granular flows can help us to understand these more
complex granular media.

1. Introduction

Sand, gravels, rice, sugar ... Granular matter is everywhere in our everyday life
(Figure 1). Strong enough to support buildings, a granular medium can flow like
a liquid, for example in an hourglass, or can be transported by the wind to create
dunes in the desert. This variety of behaviour represents one of the difficulties of
the physics of granular media [45]. Research in this area is motivated by numerous
applications encountered in industrial processes and especially in geophysics for
the description and prediction of natural hazards like landslides, rock avalanches
or pyroclastic flows. However, the recent interest in granular flows is certainly also
stimulated by new fundamental questions raised by this peculiar fluid, which shares
similarities with other athermal disordered systems such as foam, amorphous solids
or emulsions [63, 17] and which exhibits a very rich phenomenology [5].

A granular medium is a collection of macroscopic particles, their size being
typically greater than 100 pm. This limitation in size corresponds to a limitation in
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FI1GURE 1. Examples of granular materials.

the type of interaction between particles. A granular medium means non-brownian
particles, which interact solely by friction and collision. For smaller particles, other
interactions such as Van der Waals forces or humidity, start to play a role and one
enters the world of powder. At even smaller sizes, below 1 pum, thermal agitation is
no longer negligible and one enters the world of colloids. Granular media are then
a priori simple systems made of solid particles interacting through contact inter-
actions. However, they still resist our understanding and no theoretical framework
is available to describe the variety of behaviours observed. One can try to list the
difficulties encountered when dealing with granular material.

First, granular media are composed of a large number of particles. A spoon
of sugar contains more than one millions of grains, which is larger than what we
can compute numerically with ideal spherical particles. There is then a need for
a continuous description, trying to define averaged quantities and to model the
granular medium as a continuum medium. A large number of particles is not nec-
essarily a serious obstacle, if one consider gases or liquids, for which the number of
molecules is much larger than the number of grains in a spoon of sugar. However,
in the case of gases or liquids, the presence of thermal agitation allows a proper
statistical approach, allowing us to derive macroscopic quantities from microscopic
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ones. In the case of a granular medium, particles are too large to experience Brow-
nian motion and a statistical average over different configurations is not possible.
The system is stuck in metastable states. Granular media are then often qualified
as athermal systems [63]. Another difficulty encountered when one tries to apply
tools from statistical physics to granular media, is the dissipative nature of the
particle interaction. Contact interactions including friction and inelastic collisions
are highly nonlinear and dissipative mechanisms. This dissipation at the micro-
scopic level is an important difference with classical systems studied in statistical
physics. The continuum description of granular media is also made difficult by
the lack of a clear scale separation between the microscopic scale, i.e., the grain
size, and the macroscopic scale, i.e., the size of the flow. Typically, when sand
flows down on a pile, the flow thickness is about 10 to 20 particle diameters. The
physics of granular media shares this difficulty with nanofluidics, when effects of
the size of the molecule start to play a role. The last difficulty is the observation
that granular media exists under different states [83]. Depending on the way it
is handled, a granular material can behave like a solid, a liquid or a gas (Figure
2). Grains can sustain stresses and create a static pile, but can also flow like a
liquid in an hourglass, or can create a gas when they are strongly agitated. These
different flow regimes can coexist in a single configuration as shown by the flow of
beads on a pile shown in Figure 2.

“solid” “liquid” “gas”

Ficure 2. Different states of granular media.
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In the face of such a complexity, different frameworks have been developed
to describe the different flow regimes. The dense quasi-static regime where the
deformations are very slow and the particles interact by frictional contacts is usu-
ally described using plasticity theories [100, 109, 91]. The gaseous regime where
the flow is very rapid and dilute and the particles interact by collision [38] has
motivated a lot of work based on the concept of the kinetic theory of gases. The
intermediate liquid regime where the material is dense but still flows like a liquid
is the less understood regime [34]. In this paper we focus on this last liquid regime,
which is most often encountered in applications, and discuss the possibility of a
hydrodynamic description of dense granular flows.

2. The granular liquid

Rock avalanches, flows of cereals out of a silo, are typical examples of dense gran-
ular flows. In this flow regime, the volume fraction of the material (ratio of the
volume occupied by the grains to the total volume) is high and close to the max-
imum value. The grains interact both by friction and collision through a contact
network. From a phenomenological point of view, the material flows like a liquid
with peculiar features. To better understand this regime, different flow configura-
tions have been investigated, the most common being sketched in Figure 3. They
can be divided in two families: flows confined between walls as in shear cells or
silo, and free surface flows like flows down an inclined plane, flows in rotating
drums or flows on a pile. Their characteristics in terms of velocity profiles, den-
sity profiles and velocity fluctuations are discussed in detail in [36]. Recently, by
analogy with classical hydrodynamics problems, more complex flow configurations
have been analyzed, such as dam break problems [59, 68], coating-like problems
[28, 22], mixing experiments [76], split Couette devices [30], drag problems [55]
and instabilities [5].

A recurrent and central question underlying all these studies is the question
of the constitutive equations of this peculiar liquid. Dense granular flows belong
to the visco-plastic family of materials because of two broad properties. First, a
flow threshold exists, although it is expressed in terms of friction instead of a
yield stress, as in a classical visco-plastic material. Second, when the material is
flowing, shear rate dependence is observed, which gives a viscous-like behavior.
In the following section we present recent advances in our understanding of the
rheology of dense granular flows. We first discuss the plane shear configuration,
which provides the basic ideas allowing us to propose a constitutive law for dense
granular flows. The applications to other configurations are discussed and the
limits of this simple local rheology is discussed.

2.1. Local rheology

Let us consider a granular material made of particles of diameter d and density
pp under a confinement pressure P. The material is confined between two rough
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Ficure 3. Different configurations used to study granular flows. (a)
Plane shear (b) Couette cell (c) vertical silo (d) Inclined plane (e) Heap
flow (f) rotating drum.

plates by a pressure P imposed to the top plate. The material is sheared at a
given shear rate 4 = V,,/L imposed by the relative displacement of the top plate
at a velocity V,,. (Figure 4). In absence of gravity, the force balance implies that
both the shear stress 7 = o,, and the normal stress P = ¢,, are homogeneous
across the cell. This configuration is then the simplest configuration to study the
rheology of granular flows, namely to study how the shear stress 7 and the volume
fraction ¢ vary with the shear rate 4 and the pressure P.

A crucial observation raised by Da cruz et al. [18, 19] and by Lois et al. [64] is
that, in the simple sheared configuration for infinitely rigid particles, dimensional
analysis strongly constrains the stress/shear rate relations [36]. For large systems
(L/d >> 1), and for rigid particles (the young modulus being much higher than the
confining pressure), the system is controlled by a single dimensionless parameter
called the inertial number:

yd
I=—X_ (1)
vV P/pp
As a consequence, dimensional analysis imposes that the volume fraction ¢
is a function of I only, and that the shear stress 7 has to be proportional to the
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FIGURE 4. Plane shear at constant pressure.

normal stress P, which is the only stress scale of the problem. The constitutive
laws can then be written as follows:

7=Pu(I) and ¢=¢(I), (2)

where p(I) is a friction coefficient, which depends on the inertial number. The
shape of the friction coefficient (I) and of the volume fraction ¢(I) are provided
by numerical simulations using discrete element models and by experimental mea-
surements. Figure 5 presents a summary of results coming from different studies
for 2D systems (disks) or 3D (spheres). One observes that the friction coefficient p
is an increasing function of the inertial number. Friction increases when increasing
the shear rate and/or decreasing the pressure. In the limit of quasi-static flows
(I— > 0) the friction coefficient tends towards a constant. The volume fraction
also varies with I. It starts at a maximum value when (I— > 0) and decreases more
or less linearly with I. It is interesting to note that in the range of inertial number
corresponding to the dense flow regime, the macroscopic friction coefficient p(I)
and the volume fraction ¢(I) do not depend on microscopic properties of grains.
Changing the coefficient of restitution of the grains, or changing the inter-particle
friction coefficient (as long as it is not zero), does not change the macroscopic
friction [19].

The inertial number appears to be the most important parameter controlling
the rheology of dense granular flows. It can be interpreted in terms of the ratio
between two time scales: a microscopic time scale d/+/P/p,, which represents the
time it takes for a particle to fall in a hole of size d under the pressure P, and
which gives the typical timescale of rearrangements; and a macroscopic timescale
1/4 linked to the mean deformation. This interpretation allows to classify more
precisely the different flow regimes. Small I correspond to a quasi-static regime
in the sense that macroscopic deformation is slow compared to microscopic rear-
rangements, whereas large values of I correspond to rapid flows. The dimensional
analysis tells us that, to switch from quasi-static to inertial regime, one can either
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increase the shear rate or decrease the pressure. This inertial number is also equiv-
alent to the square root of the Savage number or Coulomb number introduced by

some authors as the ratio of collisional stress to total stress [96, 1].

In the plane shear configuration, the velocity profile is linear. It is then tempt-
ing to assume that relations (2) obtained in this configuration give the intrinsic
rheology of the granular medium. This is true only if the stresses that develop in
an inhomogeneous flow are the same as in the plane shear. It is the case if the
rheology is local, namely, if the stresses depend only on the local shear rate and on
the local pressure. Under the assumption of a local rheology one can then use Egs.
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(2) as constitutive equations. Fitting the experiments and numerical simulations,
it is possible to propose analytical expressions for the friction law and the volume
fraction law, which can then be used to study other configurations. An example
of phenomenological expressions are:

:U/(I) = K1 + ;1102/1%”11 and (ZS = ¢max + ((bmin - Qsmax)l‘ (3)

Typical values of the constants obtained for monodispersed glass beads in 3D are:
w1 = tan21° po = tan33°, Iy = 0.3, dmax = 0.6, Pmin = 0.4. Those functional
forms have not been tested for large values of the inertial number I. However, the
choice of a friction law that saturates to a finite value uo when I goes to infinity is
supported by experiments of steady granular fronts flowing down a slope [81]: at
the tip of a front the shear rate goes to infinity, whereas experiments reveal that
the slope, and hence the friction coefficient, remains finite. This is consistent with
the saturation of pu(I) to pse.

Before discussing applications of this simple phenomenological description
of granular flows, it is important to say that Eq. (2) can be generalised to a
tensorial form. When written in terms of a scalar like in (2), the rheology can only
describe flows sheared in a single direction. In order to describe more complex 3D
configurations the friction law has to be written in terms of the shear rate tensor
[51]. The simplest way to do so, is to assume that the flow is incompressible,
i.e., we neglect variation of volume fraction and that the pressure is isotropic. We
also assumed that the shear stress tensor is colinear to the shear rate tensor, as
proposed by previous authors [37, 94] and as suggested by numerical simulations
[23]. The stress tensor can then be written in terms of an effective viscosity as
follows:

oij = —Pdij + 7ij (4)
where P is the isotropic pressure,
: . w(I)P
Tij = NeffYij, — With  negp = T (5)

and where |§] is the second invariant of the shear rate tensor: |y| = ,/%%ﬁij.

Within this description, the granular liquid is described as an incompressible
non-newtonian fluid, with an effective viscosity n.yy = wu(I)P/|¥|. This viscosity
diverges when the shear rate |§| goes to zero, which insures the existence of a flow

threshold given by:
1
7| > P with |7| =4/ 5T Tid- (6)

This description is very similar to the one developed in other visco-plastic
material like mud. However, granular matter is peculiar, because the viscosity
depends on the pressure and not only on the shear rate.

In the following, we show that this approach predicts some important features
of granular flows.
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2.2. Example of application of the local rheology

2.2.1. Flow down an inclined plane. Let us consider a granular layer flowing down
a rough inclined plane (Figure 6a). We first consider the steady and uniform
regime. The stress distribution in this configuration is given by o,., = pgsin 8(h—z)
and 0,, = P = —pgcosf(h — z). One can then apply the constitutive law 3 to
predict the velocity profile u(z) and the volume fraction profile ¢(z). The ratio be-
tween shear and normal stress being constant, one obtains the following relation:

ddu/dz ' )
gpcosf(h — z)

w(l)=tanf with I =

This equation implies that the inertial number is constant across the layer,
which directly implies that the volume fraction ¢ is independent of z. The velocity
profile can also be integrated, assuming that the roughness condition corresponds
to a zero velocity at the base. The predicted velocity varies like z3/2 and is called
a Bagnold profile [6, 101]:

u(z) 2 tanf — h3/%2 — (h — 2)3/?
m = gIOilLQ _tanevqﬁcosﬁ ( d3/2 ) . (8)
These predictions can be compared with experiments and numerical simula-
tions. The first comparison concerns the flow threshold. According to Eq. (8) a
steady and uniform flow is possible only if the inclination is comprised in between
a minimum angle #; = arctan g3 and a maximum angle #, = arctan . This is ob-
served in experiments, in which steady uniform flows are observed only in a range
of inclination [80]. However, contrary to the prediction, the minimum angle to get
a flow is not a constant, but depends on the thickness of the layer (Figure 6¢).
This critical angle fsop(h) is higher for thin layers than for thick layers, which is
a signature of non-local effects. The second comparison concerns the shape of the
velocity and volume fraction profile. For a thick layer, numerical simulations show
that the flow is well described by the Bagnold profile (Figure 6b). The agreement
is less good for thin layers, where the profile becomes more linear [88]. A constant
volume fraction profile is also observed in the simulation. A last prediction con-
cerns the evolution of the mean velocity. Experiments [80] and simulations [102]
show that there exists a correlation between the depth averaged velocity u, the
thickness of the layer h and the inclination angle 6:

U h
ﬁ —5m7 9)

with 8 =~ 0.14 is a constant and hgtop (0) = H;ép is the minimal thickness necessary
to get a flow at inclination 6. The scaling of @ with h3/? is compatible with the
prediction of the local rheology wu(I). However, the angle dependence suggests a
relation between the function hgiop () and the friction law p(I) [36]. Whether this
link is a coincidence or reveals a more profound physical meaning remains an open

question [27].
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FIGURE 6. (a) Flow down inclined planes and the prediction of the
local rheology; (b) Comparison between the Bagnold velocity profile
(lines) and molecular simulation for spheres. Inset, volume fraction pro-
file (data from [9]). (c) domain of existence of steady uniform flows. (d)
Normalised depth averaged velocity as function of (h/hsop) (from [80]).

The local rheology is then able to capture some characteristics of the steady
uniform flows down inclined planes. One can go one step further and analyse
the stability of such thin flows. It is well known with classical fluids that, when
the flow becomes faster and faster, the free surface eventually becomes unstable
and presents long wave modulations [93]. This instability is called the Kapitza
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instability for viscous liquids, roll waves instability for turbulent flows, and is
also observed with mud [7]. It has been shown that the same kind of free surface
deformation is also observed with granular materials (Figure 7 [32]). The granular
roll waves have been experimentally investigated and the dispersion relation of
the instability, namely how the small perturbations are amplified or attenuated
depending on their frequency, has been measured using a well-controlled forcing
method at the entrance of the flow [32]. These measurements provide a severe test
for rheological models, as the characteristics of the instability strongly depend on
the rheological properties of the liquid. In order to test the relevance of the local
visco-plastic rheology, Forterre [33] has performed a linear stability analysis of the
problem, using the tensorial formulation of the friction law Eq. (4). He has shown
that once the parameters of the friction law are calibrated using the steady uniform
flows, the theory gives quantitative predictions for the instability threshold and
the dispersion relation of the instability (Figure 7). This study shows that the
proposed local rheology is relevant to describe non-trivial three-dimensional flows.

o0sl unstable
of 1t T
Fr t ¢t
0.4} |
stable
0.2}
(b)
0 .

FIGURE 7. (a) picture showing the free surface waves observed when a
granular media flows down an inclined plane. (b) Instability threshold
in terms of the Froude number versus the inclination. lines: prediction
of the local rheology, markers, experimental measurements. (c) spatial
growth rate versus frequency (from [33]).



88 Y. Forterre and O. Pouliquen

2.2.2. Flow on a pile. Another interesting configuration to study the granular
rheology is the flow on a pile, obtained when a granular layer flows on a static heap
(Figure 8). Contrary to the case of the flow down an inclined plane, the inclination
0 and the thickness h of the flow are not imposed by the experimentalist, but are
selected by the system itself. The only control parameter is the flow rate (). In this
configuration, it has been shown that steady and uniform flows are possible if the
system is confined in between two walls. In this case, the additional friction induced
by the lateral walls plays a crucial role and is responsible for the localisation of the
flow at the free surface [104, 50]. One can try to model this configuration using the
visco-plastic description, by taking into account the lateral boundary conditions.
In the case of lateral rough walls, a typical velocity profile predicted by the theory
is plotted in Figure 8a. The model correctly predicts the shape of the profile with
a localisation close to the free surface. The agreement is not only qualitative, but
quantitative predictions can be made for the free surface velocity, once the friction
law p(I) is calibrated as explained in the previous section (Figure 8b) [51]. This is a
second example of a flow with a shear deformation in different directions, which is
well described within the framework of a local rheology. However, the description
is not perfect and some experimental observations are not well captured by the
model. First a transition from a continuous flow regime to an avalanching regime
is observed when the flow rate decreases [62, 51]. This transition is not predicted
by the model. Secondly, the interface between the flowing region and the static pile
is not as discontinuous as predicted by the theory. Experimentally, a slow creep is
observed in the static region, with an exponential tail which is not predicted by
the local rheology [56].

(a) (b; Vaut/V9d

20 40 60 80 100 120 140
y/d

FIGURE 8. Flow on pile. (a) 3D velocity profile predicted by the visco-
plastic local rheology. (b) quantative comparison between the theory
and experiments for the velocity profile observed at the free surface
(from [51]).

2.2.3. Granular collapse. A flow configuration, which has attracted a lot of at-
tention the last ten years, is the collapse of a granular column under gravity. A
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cylinder full of grains is suddenly lifted up. The material then spreads over the
surface. This configuration is a model for cliff collapses in geophysics [59, 68, 8].
Experiments have revealed interesting scaling for the spreading distance as a func-
tion of the aspect ratio of the initial column. However a complete description is
still lacking. An interesting question is whether the local visco-plastic approach
would be able to correctly predict the dynamics of this fully three-dimensional
flow. However, implementing the rheology in three-dimensional fluid mechanics
code is a tricky work [35], which to our knowledge is not yet completely achieved.
However, a recent study performed by Lacaze and Kerswell [58] suggests that the
approach may be relevant to describe the whole dynamics. This authors have per-
formed numerical simulations of the collapse problem using molecular dynamics
simulations. Knowing at each time, the position of the particles, their velocities,
the forces at each contact, their were able by a suitable coarse graining process to
compute the shear rate, the shear stress, the pressure, and check at each position,
at each time, how the friction coefficient varies with the inertial number. Figure 9
shows that all the points collapse quite well along a line, which has the same shape
as the one obtained in simple configurations as plane shear. This result gives good
hope that the visco-plastic description is enough to capture most of the dynamics
of this complex three-dimensional flows.

Fi1GURE 9. Collapse of a granular column under gravity simulated using
molecular dynamics. Each point corresponds to the ratio p = 7/P as
a function of I for different positions, different times, different aspect
ratios. The continuous curve is the best fit (from [58]).

2.2.4. Confined flows. The flows considered in the previous sections are free surface
flows. Other geometries, in which the material is confined in between walls, have
been also intensively studied, including the cylindrical Couette cell [106](Figure
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3b), the vertical silo (Figure 3¢), and the plane shear with gravity ([10, 36] and
references therein). In all these configurations, the velocity profile is localized in
a shear band 5 to 10 particles thick located close to the moving wall. In more
complex 3D geometries such as the modified Couette cell, where the bottom is
split in a rotating and a static part, shear zones up to 40 particle diameters wide
are observed [30]. It is important to keep in mind that all these flows are most of
the time conducted in a quasi-static regime, for which the inertial number is less
than 10~*. In this regime, the u(I) rheology reduces to a simple frictional Drucker-
Prager plasticity criterion (Eq. (6)) and does not correctly predict the shear bands
observed experimentally. The localization of the shear close to the moving wall is
predicted, as it is due to a non-uniform stress distribution. However, the thickness
of the predicted shear bands depends on the shear velocity and vanishes in the
quasi-static limit. This is in contradiction with the observations and clearly shows
that the local rheology is not able to capture the quasi-static regime.

Although the u(I) rheology does not correctly predict the width of the shear
bands, it can be useful to predict their position in cases where a complex 3D
pattern develops. For example, in the case of the flow induced by the rotation of
a disk in a granular media, the shear band takes the form of a cap (Figure 10),
or a column. The local rheology captures the correct shape and the transition
between a cap and a column state, depending on the aspect ratio. In this example
the viscous part of the visco-plastic rheology does not play any role, but allows us
to approach this quasi-static problem from a fluid mechanics point of view, which
appears to be easier than from a pure plasticity point of view.

2.3. Beyond p(I)

The previous examples have shown that the phenomenological rheology u(1) allows
us to describe many properties of dense granular flows. However, we have seen that
some characteristics are not predicted by this simple approach. In this section we
discuss the different limits of the local approach and the other theoretical attempts
developed to describe granular flows.

2.3.1. The solid-liquid transition: Role of the preparation, hysteresis, and finite
size effects. The first limit of the u(7) rheology concerns the starting and stopping
properties. Within the model, the flow threshold is described by a unique friction
angle p1, which corresponds to a simple Coulomb criterion. However, the transition
between flow and no flow in a granular medium is a more complex phenomenon.

First, the way the material starts depends on the initial preparation of the
sample. Both the initial volume fraction and the history of the previous deforma-
tion play a role [21]. In order to describe these effects, it is necessary to introduce
additional internal variables, like the volume fraction, the texture, which charac-
terize the anisotropy of the force network. Attempts exist within plasticity models
[92], but the link with the p(I) rheology remains to be done.

A second limit of a simple Coulomb criterion is that it does not describe the
hysteresis observed in some flow configurations. For example, let us consider the
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FIGURE 10. Shear bands created by a split bottom container. Depend-
ing on the aspect ratio, the granular media entrained by the disk take
different forms, well predicted by the simulation of the local rheology
(bottom line) (figure from [52]).

case of a granular layer on a rough inclined plane. Starting from a static layer of
thickness h, one has to incline the plane up to a critical angle g,y in order for
the flow to start. Once the layer moves, one has to decrease the inclination below
Ostop less than gy in order to stop the flow [79]. In between these two angles, the
system is metastable: a small perturbation can be enough to trigger an avalanche.
Depending on the inclination, the avalanche can propagate down the slope only or
can go uphill and put into motion the whole layer [20] (Figure 11a). This kind of
hysteresis is also observed in other configurations when the system is driven by the
stress, for example in a Couette cell when imposing a torque on the inner cylinder
[36]. The physical origin of the hysteresis is not clear, although an analysis based
on the dynamics of a single grain on a bumpy surface shows that it is related
to the balance between the external stress, the dissipation due to collision and
the geometrical traps formed by the bump [86, 2]. A phenomenological theoretical
approach has been developed [107, 4] to describe this hysteresis. The granular
media is described as a mixture of solid and liquid, which proportion is controlled
by an order parameter.



92 Y. Forterre and O. Pouliquen

(a)

X

estop < 0 < gstart

32

(b)
30

28

I / §° 26
9 estart 24 -

Qstop 2

20

FIGURE 11. (a) Avalanches on a thin layer of grains initially static on
a rough plane inclined in a metastable state. Depending on the incli-
nation angle, the avalanche, which is triggered by a tiny perturbation,
propagates downhill only or uphill (from [20]). (b) starting and stopping
angles of a granular layer on a rough incline for glass beads (from [31]).

The last limit of the simple Coulomb description of the solid-liquid transition
of a granular medium concerns finite size effects. In the case of the inclined plane for
example, the starting angle fsiare and stopping angle 0sop depend on the thickness
of the layer h, as shown in Figure 11b [79, 80]. For thick layers larger than 20
particle diameters, these angles are independent of h. However, for thin layers,
both angles increase. This additional rigidity of a thin layer compared to a thick
layer is not yet understood, but could be related to non-trivial collective effects.
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2.3.2. Quasi-static flows. The second serious limit of the local rheology u(I) con-
cerns the description of quasi-static flows. We have seen that for confined flows
in a quasi-static regime the rheology correctly captures the location of the shear
bands but fails in predicting their thickness, which goes to zero when I goes to
zero, in contradiction with the observations. For flow on a heap also, far from the
free surface, the rheology predicts a zero velocity with a true solid part, whereas
experimentally an exponential tail is measured, corresponding to a slow creep mo-
tion. These observations of a slow creep motion on typically 10 particle diameters
suggests that the simple assumption of a local rheology, i.e., a one-to-one relation
between the shear rate and the stresses, is wrong. Several approaches have been
proposed to describe these quasi-static flows. The first consists in modifying plas-
ticity models to take into account fluctuations of stresses [53], or rotation [73]. A
second approach consists in writing non-local rheological laws [72, 85]. One idea
which seems to emerge from the different attempts to describe this regime is the
role played by the mechanical noise and correlation [11, 84, 87]. In all the athermal
systems such as foams, glasses and granular systems, a rearrangement somewhere
induces stress and strain fluctuations, which can in turn influence deformation
somewhere else. How to take into account such non-local effects in constitutive
equations remains an open question.

2.3.3. Transition liquid/gas and link with the kinetic theory. A last limit of the
local rheology concerns the transition towards the gaseous regime described by
the kinetic theory of granular gases [14, 38, 46, 47, 69]. This transition is much
less studied than the solid-liquid transition, although it can be observed in several
configurations [64, 65]. For example, it can be observed when a flow layers on a very
steep plane. It does not reach a steady regime but accelerates and becomes more
and more dilute [31]. In a flow on a heap confined between two walls also, if the flow
rate is too large, a gaseous layer develops at the free surface [67, 50]. This transition
to a very dilute regime is not predicted by the simple p(I) approach, but it is well
described by the kinetic theory of granular flows. However, the kinetic theory does
not predict the correct behaviour in the dense flow regime, and predicts a friction
coefficient 1 which decreases with the inertial number [34]. Trying to reconcile
the two approaches has motivated several theoretical works trying to modify the
standard kinetic theory of granular gases to be compatible with dense flow regimes
[49, 66, 48, 57].

2.3.4. Conclusion about the local rheology. We have shown that, to the first or-
der, the behaviours of a dense granular flow can be described using simple dimen-
sional arguments and the assumption of a local rheology. Within this approach,
the granular medium is described as frictional visco-plastic liquid, with a friction
coefficient depending on the shear rate. This phenomenological approach predicts
with success many flow configurations. However, serious limits exist concerning the
transition to the static regime or the rapid regime. Morevover, most of the stud-
ies deal with spherical particles and the generalisation to more complex material
media is another open question.
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We show in the next section that the lack of more precise information about
the rheology can in some cases be circumvented by writing depth-averaged conser-
vation equations. By depth averaging, it is no longer necessary to specify a bulk
rheology of the material, an expression for the basal stress being sufficient. This
depth-averaged approach is very useful in many geophysical contexts.

3. Depth-averaged approach

Depth-averaged or Saint-Venant equations were introduced in the context of gran-
ular flows by Savage & Hutter [98]. The initial motivation was to model natural
hazards such as landslides or debris flows [75, 42]. Assuming that the flow is in-
compressible and that the spatial variation of the flow takes place on a scale
larger than the flow thickness, one obtains the Saint-Venant equations by inte-
grating the three-dimensional mass and momentum conservation equations. For
two-dimensional flows down a slope making an angle 6 with the horizontal (see
Figure 12), the depth-averaged equations reduce to

oh  Oh{u)
ot o =0 (10)
Oh(u) Oh(u)®\ oh
Ps® < ot +a o = (tanf — pup — K% psdgh cos b, (11)

where h is the local flow thickness, (u) = Q/h is the depth-averaged velocity (Q
being the flow rate per unit of width), and ¢ is the volume fraction, assumed
constant.

pressure

basal friction

FIGURE 12. Forces balance in shallow water description.

Equation (10) is the mass conservation and (11) is the momentum equation,
where the acceleration is balanced by three forces (Figure 12): the gravity parallel
to the plane, the tangential stress between the fixed bottom and the flowing layer
(written as a basal friction coefficient py, times the normal stress), and a pressure
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force related to the thickness gradient. The coefficient « is related to the assumed
velocity profile across the layer and is of order 1. The coefficient K represents
the ratio of the normal horizontal stress (2-direction) to the normal vertical stress
(z-direction) and is close to 1 for steady uniform flows [101]. The main advantage
of the Saint-Venant equations is that the dynamics of the flowing layer can be
predicted without knowing in detail the internal structure of the flow. The complex

three-dimensional rheology of the material is mainly embedded in the basal friction
term .

(a)

FIGURE 13. (a) spreading of a granular mass down an inclined plane
measured by a Moiré (picture). (b)Final deposit as a function of the
inclination. Comparison between experiment (top row) and depth aver-
aged equations (bottom row). (c¢) Spreading dynamics as a function of
time: experiment (solid line) and theory (broken line).
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Taking a simple constant Coulomb-like basal friction is sometimes sufficient
to capture the main flow characteristics [98] and has been used to describe gran-
ular slumping [8, 60, 70], rapid flows down smooth inclines [41, 108], and shock
waves [40, 43]. However, for flows down rough inclines, the assumption of a con-
stant solid friction is not compatible with the observation of steady uniform flows
over a range of inclination angles. One can then use the local rheology developed
in the previous section to propose an expression for the basal friction. In order
to properly capture the hysteresis and the influence of finite size, more complex
basal friction laws pp((u), h) have been proposed, which lead to quantitative pre-
dictions in complex situations such as a propagating steady front, mass spreading,
or surface instabilities [81, 82, 32, 71] (Figure 13). It should be noticed that the
Saint-Venant Equations (11) and (12) represent a first-order development in terms
of the flow aspect ratio. Therefore, they do not capture second-order effects like
longitudinal and lateral momentum diffusion, which stabilize instabilities [33] and
control lateral stresses. The knowledge of the full 3D constitutive equations (Eq.
(4)) may allow the development of more complex depth-averaged models [93, 7].

Another application of the depth-averaged equations concerns situations
where the flowing layer propagates on an erodible layer, such as flows on top
of a static pile. In this case, an exchange of matter exists between the liquid and
solid phase. An additional equation is then needed to determine the solid-liquid
interface. Several closures have been proposed [3]. The first model [12, 13] assumes
that erosion/deposition is controlled by the difference between the local slope and
the critical pile angle. Other approaches assume a relation between the averaged
velocity and the flow thickness, either by fixing the velocity gradient [25] or by
prescribing a basal shear stress at the solid/liquid boundary [54]. These models
predict qualitatively non-trivial behaviours such as the propagation of avalanche
fronts [26, 105]. Although these two-layer approaches seem a promising framework
to study avalanching flows on erodible beds, it is important to note that the clo-
sures proposed to date are not compatible with observations of steady uniform
flow on a pile, where the flowing thickness is selected by the side walls [50]. This
clearly shows that a proper development of shallow water models has to rely on the
knowledge of the full constitutive equations, a goal not yet completely achieved.

To conclude this section on depth-averaged equations, it is important to em-
phasize that this framework is often used to model real situations encountered in
geophysics. It is possible to take into account a complex topography by considering
an inclination which varies with space and by adding additional centrifugal forces
[39]. Examples of simulation of rock avalanches and pyroclastic flows are shown in
Figure 14.
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FIGURE 14. Applications of depth-averaged equations to natural events
(a) trajectory observed for the land slide of Charmonetiers, Isere 1987
and simulation (b) from [75]. (b)simulation of the boxing day event
(December 26th 1997), Montserrat Island, Lesser antilles (from [42]).

4. Towards more complex granular materials

We have seen that, in the case of a simple granular medium, some advances have
been made in the description of the flow properties. In this section we discuss
to what extent this progress in our understanding of granular flows can help in
describing more complex material encountered in applications. We discuss the
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role of the polydispersity, the role of cohesion and the role of the presence of an
interstitial liquid.

4.1. Polydispersed media

Most of the granular media encountered in applications are made of grains having
different sizes. A major problem, which arises when manipulating polydispersed
material, is the size segregation 76, 97, 29]. During the flow, particles of different
sizes tend to separate. Despite its importance in industrial processes, and despite
the large number of studies, the mechanisms responsible for segregation are far
from being understood. Different scenarii have been proposed (percolation, statis-
tic sieving [97]). A review of the research on segregatation is far beyond the scope
of this paper. In this section, we will focus on the rheology of polydispersed mate-
rial and discuss how the friction law evidenced in monodispersed granular media
can be modified to account for the presence of different grains.

For monodispersed material the rheology is given by a friction coefficient
depending on the inertial number I = 4d/\/P/p,, where d is the particle diameter.
It is then tempting to generalize this approach to the case of polydispersed material
by using the local mean particle diameter d in the definition of I:

(12)

This idea has been recently tested for the flow of disks down inclined planes
[90]. In this study, the material is composed of two different sizes: large disks of
diameter d; and small ones of diameter ds. As for monodispersed material, there
exists a range of inclination for which a steady uniform flow develops. Segregation
induces a non-uniform distribution of large particles across the layer: the large
are at the free surface, whereas the small concentrate at the bottom. The authors
introduced a local mean diameter defined by:

d—(z) _ gbs(s)d;?-z)ﬁﬁb(z)db’

where ¢ is the volume fraction of the medium, and ¢s and ¢ are the local volume
fraction of small and large particles respectively (¢ = ¢s + ¢). The first results
obtained by Rognon et al. [90] is that the inertial number computed using this
mean diameter is constant across the layer in agreement with the local rheology.
Consequently, if I is constant, this implies that 4 oc 1/d for a given inclination and
position. The velocity gradient is then inversely proportional to the mean size of the
particles. This prediction is observed in the simulation: the shear rate is higher at
the bottom where there is an accumulation of small particles, and decreases at the
top where large particles migrate. This result strongly suggests that the frictional
visco-plastic rheology may be relevant for polydispersed material. However, if the
rheology tells us how the change in relative concentration of species changes the
flows, it does not predict the segregation leading to the distribution of grains. This
point remains a challenge in the physics of granular media.

(13)
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(a) (b)

FIGURE 15. Flow of bidispersed material on an inclined plane in 2D (a)
Sketch of the flow. (b) Velocity profile (solid line) compare to velocity
profile observed in the monodispersed case (symbols). The shaded region
corresponds to the concentration of large particles (from [90]).

4.2. Cohesive granular media

The local rheology can also be generalized to the case of cohesive material. In
this case one can consider that the grains interact not only by contact interaction
but that an additional attractive force exists, which tends to put the grains in
contact. The origin of cohesion can be the Van der Waals interactions, capillary
bridges, electrostatic forces ... Taking into account in the rheology the details of
these cohesive interactions is still an open question. However, some authors have
studied a simpler case [89], in which the force interaction is simply characterized
by a maximum force N.. The interaction force is then zero if the particles are not
in contact, decreases to a maximum — /N, and increases again when approaching
the grains further. The force then becomes again positive, i.e., repulsive, when
the overlap between particles becomes large (one recovers the repulsive elastic
interaction) (Figure 16). This model represents the simplest cohesive material and
allows the authors to capture the major features of the flow of cohesive granular
media.

To study the rheology of this simple cohesive material, one can consider the
plane shear configuration (Figure 4) where the material is sheared at a constant
shear rate 4 and confined under a pressure P. This analysis has been carried
out by Rognon et al. [89] using molecular dynamics simulation. In this case also,
the dimensional analysis of the problem appears to be very fruitful. By contrast
with the dry case for which the inertial number I = 4d/\/P/p, was the single
dimensionless control parameter of the problem, the case of the cohesive material
introduces a second dimensionless number C', which is the ratio of the maximum
attractive force N, divided by the characteristic pressure force Pd? (Pd in 2D):

— NC
T pd?

(14)
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One can then directly conclude that the friction coefficient and the volume fraction
can be written as follows:

p=pu(I,C) and 6= o(I,C). (15)
Rognon et al. [89] have systematically studied the variation of p and ¢ with T
and C (Figure 16).

Although this study concerns an oversimplified model of cohesive material,
it suggests that the progress made in our understanding of the rheology of dry

granular materials can serve as a base to develop rheological models for cohesive
material.
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FIGURE 16. (a) Interaction force versus overlap between particles for
the model of cohesive material studied in [89].(b) Friction coefficient as
a function of the inertial number for different values of the cohesion
parameter C' (C' =0, 10, 30, 50, 70 from top to bottom) (from [89]).

4.3. Immersed granular media

The last example we would like to discuss concerns the case of granular media
immersed in a liquid. To what extent does the presence of the liquid modify the
rheology of the material, and is it possible to propose constitutive equations for the
granular paste? A simple way to address this question consists again in considering
the plane shear configuration under constant pressure. The grains immersed in a
liquid are confined by a porous plate which applies a pressure PP on the particle
and imposes a shear rate 4. As in the dry case, we want to know how the shear
stress 7P and the volume fraction varies with 4 and PP. We have seen that the
important idea is to compare the typical time of deformation t;aero = 1/% and the
typical time of rearrangement tyicro. If the deformation is slow compared to the
typical time it takes for a particle to fall in a hole, it can be considered as a quasi-
static deformation. This picture suggests a first naive approach of the rheology of
immersed granular media. The presence of the fluid is going to change the typical
falling time of a grains tmicro and will then change the constitutive law of the
material.
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FIGURE 17. The plane shear configuration under constant normal
stress for an immersed granular material.

The study of the time taken by a particle to fall in a fluid under a pressure P,
has been done in [16, 15] and has put in evidence different regimes. The equation
controlling the motion of the particle of mass m can be written as follows:

d?z
mog = PPd? — Fyrag. (16)
One can then distinguish between three regimes:

e Free fall regime. In this regime the drag induced by the fluid is negligible
during the fall. The particle during its motion follows an accelerated motion
described by the two first terms of Eq. (16). This is the dry regime discussed
before. Considering that z ~ d and ¢t >~ tyicro in the first term, we get
tfi%lcro = d/ V Pp/pp.

e Viscous regime. In this regime the grain rapidly reaches its terminal velocity
given by the balance between the viscous drag and the pressure. Knowing
that Furag ~ nd dz/dt one finds that 75~ n/PP.

e [nertial regime. In this regime the grain also reaches its terminal velocity but
it is controlled by the inertial drag force given by Farag ~ Cad?ps(dz/dt)?

where Cj is the drag coefficient. One gets that ¢ ~ d/\/P?[(p;Cy).

micro
The transition between the different regimes is then controlled by two dimen-
sionless numbers: a Stokes number St, which is the ratio between the free fall time
scale over the viscous time scale, and the number r ratio of the free fall time over
the inertial time scale

fall d Pr
St — Imiero ., CV P (17)

)

visc -
micro n
fall
i Pp
__ “micro .
r= tincrt - C,;’ (18)
micro Prla

A phase diagram can then be drawn in the parameters space (St, 7). If the
longest time is tf2IL (if St > 1 and r > 1), one gets the regime of dry granular

micro

flows, for which the fluid is negligible. If the longest time is ¢715¢ = (if St < 1 and

micro’
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FIGURE 18. The different flow regimes in the plane (St,r) for immersed
granular flows sheared under a confining pressure PP. The expression of
the dimensionless number 7 is given in each regime.

r < St) the regime is a viscous regime. Finally, if the longest time is ¢ (if
St < rand r < 1), the regime is inertial.

When coming back to the problem of the plane shear configuration, one can
then suggest that the relevant dimensionless number is going to be given by the
shear rate multiplied by the microscopic time scale. We then call this number 7.
The different expressions of Z for the three regimes are presented in Figure 18.

From this analysis one can then propose that the constitutive laws describing
the rheology of immersed granular material are given by the friction law and the
volume fraction law:

0 = p(Z)P? and ¢ = (7). (19)

One recovers the rheology of dry granular material in the free fall regime, but
other scaling laws are obtained in the other regimes. To our knowledge, there is
no precise test of such a phase diagram based on the analysis of the typical time
scales, and no direct measurement of the function u(Z) and ¢(Z) are available
(except in the dry regime as discussed previously).

However, in the viscous regime, indirect measurements exist derived from
experiments of flows down an inclined plane. These measurements show that the
friction law as a function of the viscous number Z follows a shape similar to the
one observed in the dry case [15, 78]. This approach has been successfully applied
to describe the immersed flow down a pile confined between lateral walls [24].

Up to now, we have discussed the rheology of immersed granular media
sheared under a constant pressure, by analogy with the dry granular case. This
configuration is relevant for free surface flows like submarine avalanches, in which
the gravity prescribes the stress. However, this situation is not conventional in the
field of the rheology of suspensions. Most of the studies concern shear at constant
volume fraction, in a situation where particles have the same density as the fluid
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[103]. This is equivalent to keeping the top plate at a fixed distance in Figure 17.
In this case, the pressure P, on the top plate is no longer a control parameter, but
has to be measured. In this configuration, the existence of different regimes has
been discussed in several papers ([1, 61]). The viscous regime has attracted most
of the studies on the rheology of suspensions. Under the assumption that inertia
does not play any role, dimensional analysis implies that the shear stress 7, and
the normal stress P, measured at the top plate varies with 7 [74, 61]:

™ = file)ny et Py = fa(d)ny. (20)

The function fi(¢) is the relative viscosity, which has been measured in a wide
range of ¢. f1(¢) increases with ¢ and seems to diverge at a maximum volume
fraction [44]. The normal stress f2(¢) has been much less studied. Discussing the
different models and implications of such rheology for dense suspensions is far
beyond the scope of this paper dedicated to granular flows. The only important
point we would like to underline, is the analogy that exists between the granular
approach (19) and the suspension approach (20). The two expressions are the
same if one chooses ¢(I) = f, *(1/Z) and u(Z) = Zfi(f; *(1/Z)). For the two
expressions to be really identical, the divergence of f2(¢) when approaching the
maximum volume fraction has to be the same as the divergence of f1(¢), in order
to have a friction coefficient 77 /PP going to a constant. This analogy suggests
that immersed granular media and suspension could be described within the same
framework.

In the simple shear cell configuration we have discussed, there is no relative
motion between the fluid and the granular material. The fluid moves with the
grains. However, there are configurations for which it is no longer the case. One
example is the sediment transport. When a liquid flows on top of a granular bed,
the fluid puts the grains into motion. In this case, the drag force induced by the
velocity difference between the fluid and the grains is the motor of the granular
flows. Another example in which the fluid moves relatively to the grains is the
initiation of avalanches. When a granular matter starts to deform, it compacts or
dilates depending on the initial preparation. In presence of a liquid, a dilatation
(resp. a compaction) of the granular layer means that the liquid has to flow into
(resp. out of) the granular layer. This fluid motion induces an additional stress on
the granular skeleton, which modifies the deformation. A framework, which seems
to be relevant to address this coupling problem, is the two-phase flow equations
framework. The idea is to consider the liquid phase and the solid phase as two
continuum media, and in writing the mass and momentum conservation equations
for the two phases. The challenge lies in proposing an expression for the stresses
in each phase. The simple idea we have developed in this section based on the
friction law and the volume fraction law (Eq. (19)) gives a relevant suggestion for
the rheology of the granular phase. Some recent works on sediment transport [77]
and on the triggering of submarine avalanches [78] seem to show the relevance of
this approach.
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5. Conclusion

We have presented a survey of our current understanding of dense granular flows.
Our main intention was to emphasize that a zero-order description of the viscous-
like behavior of dense granular flows is now available, which relies on simple but
solid dimensional arguments. A frictional visco-plastic formulation has been devel-
oped which gives quantitative predictions for different flow configurations and can
serve as a first tool to predict other configurations encountered in applications.
Although promising, this approach fails to capture the details of the quasi-static
flows and the transition to solid or gaseous regimes. It is difficult to anticipate
that more elaborated constitutive equations will be developed in the near future
that can describe the whole phenomenology of granular flows. The diversity of the
theoretical approaches clearly shows that the task is difficult, the central question
being, in our opinion, how to take into account non-local effects created by the
network of enduring contacts.

We have also discussed in this paper how recent progress in our understanding
of simple dry granular flows can serve as a base to tackle more complex materials
such as the one used in industry or encountered in geophysics. The role of cohesion,
the role of polydispersity, the role of the interstitial fluid has been discussed. Fun-
damental research on such complex granular materials is very young, and no doubt
that the intense activity will give rise in the next future to important progress.
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Theoretical Considerations for Granular Flow

Thomas C. Halsey

Abstract. Friction plays a key role in controlling the rheology of granular flows
in both the “critical-state” and the “dense granular flow” regimes. Ertag and
Halsey, among others, have proposed that friction and inelasticity-enabled
structures with a characteristic length scale in such flows can be directly
linked to such rheologies, particularly that summarized in the “Pouliquen flow
rule.” In dense flows, “gear” states in which all contacts roll without frictional
sliding are naively possible below critical coordination numbers. We construct
an explicit example of such a state in D = 2; and show that organized shear
can exist in this state only on scales | < d/I, where d is the grain size and [ is
the Inertial Number, characterizing the balance between inertial and pressure
forces in the flow. Above this scale the packing is destabilized by centrifugal
forces. Similar conclusions can be drawn in disordered packings of grains. We
comment on the possible relationship between this length scale [ and that
which has been hypothesized to control the rheology.

1. Introduction

Flows of hard granular systems are ubiquitous in nature and technology, yet are
still poorly understood. Compared to truly microscopic dynamical or statistical
mechanical systems, an unusual feature of granular systems is that they are intrin-
sically frictional and dissipative. Not only can dissipation arise through inelastic
collisions between the particles, but also from frictional sliding between smooth or
rough grain surfaces.

In the quasi-static “critical state” regime [1], the strain rates are smaller than
any time scale of the system. One would expect deformations in this regime to be
predominantly plastic in nature, corresponding to relatively long-lived particle
contacts on the time scale 4~!. Beyond this regime, there appears to be a “dense
granular flow” regime, marked by strain rates obeying

\/P/pgl? < < \/P/png, (1)
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with P the pressure, p, the density, L a characteristic flow scale, and d the grain
diameter. It is suspected that this regime has a rheology that distinguishes it from
a higher strain-rate regime, in which

5> \[P/py. (2)

This higher-strain rate regime seems to be appropriately described by kinetic-
theory based studies [2].

The degree to which such studies can be extended into the dense granular
flow regime defined by Eq. (1) remains controversial. A number of authors have
claimed that key aspects of the rheology of dense granular flow can be recovered
within kinetic theory treatments that include particle inelasticity and interparticle
friction [3]. Halsey and Ertas, and Jenkins, have posited the appearance of coher-
ent structures in dense granular flows, which are difficult to reconcile with the
underlying assumptions of kinetic theories [4, 5]. A significant work by the group
author GDR MiDi pointed out that much of the phenomenology of dense granular
flows can be organized using the “Inertia Number” [6]

1=dv/\/P/p, (3)

An interesting feature of these results is the anomalously large fluctuations in the
grain velocities, which scale with I in the dense flow regime,

(@) = @@))*) -«

- ~ , 4
(d)? @
where in dimensionalities D = 2,3, x &~ 1 [6, 7]. Setting

I=dje, (5)

defines the scale ¢ of the coherent structures hypothesized by Halsey and Ertas.

The motivation to consider the dimensionless parameter I as a ratio of the
particle diameter and a “mesoscopic” length scale ¢ arises from the overall phase
diagram of flow on an incline. The dominant observational fact about the steady-
state incline flows is the “Pouliquen flow rule,” which connects the average velocity
u of a flow of height h with the height hgtop(6) at which flow ceases for a chute of
inclination @ [8]. [The angle of repose 6z (h) is the inverse of the function Agop(6).]
The Pouliquen flow rule gives a scaling form for u,

u h
T = PG ()
with g the gravitational acceleration, and where the function F(z) ~ 0.136x for
glass beads, and has a similar linear form for other types of particles [8, 9, 10].
The scaling u oc h3/? in the Pouliquen flow rule is consistent with the classical
Bagnold rheology [11]. But the Pouliquen flow rule also connects the coefficient
of this proportionality, u = Apag(0)h3/? with the thickness of the pile at that
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inclination below which flow arrests. Halsey and Ertag have pointed out that this
feature of the Pouliquen flow rule follows from the dependence of the rheology on
I if it is assumed that flow is arrested for thicknesses less than hgop ~ d/I =
¢ [4]. Although Halsey and Ertag proposed that this length scale corresponded
to large-scale “eddy” structures in the flow, such eddies have proven elusive; a
direct attempt to measure ¢ by measuring velocity correlations in flows was not
successful [7].

The broad features of Pouliquen’s conclusions have been confirmed by a se-
ries of numerical studies [9]. For relatively thin piles, the Bagnold rheology breaks
down, but the thicker piles show a Bagnold rheology and obey the Pouliquen flow
rule, albeit with a slightly larger value of 8 (the crossover is examined numerically
n [12]). Although at large, but not enormous, values of particle stiffness, instan-
taneous coordination numbers are high (unlike in kinetic theory treatments), the
duration of two-body collisions is still short compared to inverse strain rates 4!
[13]. The density in the interior of the piles is independent of depth.

In this article I turn to the role of friction at enduring contacts in plastic flows.
Of course, assuming that such long-lived contacts persist into the dense granular
flow regime is problematic, due to the considerations regarding the short duration
of two-body collisions mentioned above. To extend the conclusions of this work
into this regime will require that the correlations characteristic of plastic flow with
rolling and sliding contacts survive in a regime of frequent, albeit short, collisions
between any particle and its neighbors. This would imply that a full theoretical
description of this regime will require a synthesis of plastic flow and kinetic theory
concepts.

Provided that the microscopic coefficient of friction p defining the maximum
value of the tangential force T at a contact divided by the normal force N is
appreciable, we would anticipate that a significant fraction of long-lived contacts in
a deforming granular packing will be rolling as opposed to sliding. Simple counting
of the number of constraints vs the number of variables indicates that states in
which all contacts are rolling are not possible at coordination numbers Z, > 3 for
D =2or Z, >4 for D = 4. These results are simple extensions to the dynamical
case of the famous “isostatic” criteria for static packings [14].

An interesting soluble case in D = 2 is presented by the honeycomb lattice,
for which all particles have a coordination number Z. = 3 exactly. This allows
for a general solution of all states obeying the rolling constraint, corresponding
to a full solution of the kinematics for this packing, in the limit y — oo, over
times short enough that collisions do not degrade the lattice. It is also possible
to solve exactly for both the tangential and normal forces exerted between the
particles in this lattice; I present this explicitly for a particularly symmetric case
of motion.

A striking feature of the kinematic solution is that even if the overall shear
remains moderate, the rotational velocities of the particles are quite large. For
a region of the packing of size ¢ with a constant shear +, the typical rotational
velocity of the particles is w ~ 4¢/d. In addition, forces develop that limit the size
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of these regions of constant shear to

0< ——,
Y

\% P/pg (7)

due to the requirement that all normal forces remain compressive. (Dry granular
packings are unable to support tensions between the particles.) Equation (7) cor-
responds to the definition of the coherent structure size ¢ given in Egs. (3), (5)
above.

Turning to disordered lattices, we see that the rotations arise from an un-
derlying short-ranged anti-ferromagnetic ordering in the rotational velocities of
the individual grains. This short-ranged ordering is frustrated by the existence in
disordered lattices of “odd plaquettes” with odd numbers of links around the pla-
quette. In fact, it follows that it is not possible, even for quite large values of the
coefficient of friction, for all of the particle contacts in a lattice with odd plaque-
ttes to be rolling contacts. However, if sliding contacts are allowed, such that every
odd plaquette has at least one sliding contact, then the remaining contacts can
be rolling contacts; results on spin glasses then imply that it is possible that long-
range ordered antiferromagnetic “spin-glass” regions will form. Of course, given
the lack of direct correspondence between a statistical mechanical model (spin
glasses) and a driven dissipative non-equilibrium system, it is not possible to draw
rigorous conclusions from this analogy.

The remainder of this article is divided into four sections. In Section 2, we
derive the critical coordination numbers for rolling states, and we solve the rolling
kinematics of the honeycomb lattice. In Section 3, we solve a special case for the
dynamics of this state. In Section 4, we turn to disordered lattices in D = 2, using
a Fokker-Planck approach to show the basis for the anti-ferromagnetic ordering
and the analogy to spin glasses. We also comment on the applicability of these
results to the three-dimensional case. In Section 5, we conclude.

2. Kinematics of rolling states

Consider a set of N, spherical grains of diameter d, indexed by 4, in D dimensions
with velocities ¥; and rotational velocities (in D = 2 or D = 3, the generalization
to higher dimensions is obvious) ;. We further suppose the existence of pairs of
grains (i) in contact with one another, and for which there is no relative motion of
the surface points in contact (corresponding to frictional locking of the particles).
Suppose that the vector connecting the pair (ij) is 9y, with [0 ;)| = d. Then
the requirement that the relative motion of the surface points in contact be zero is

—_
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Taking the derivative with respect to time of this constraint yields a con-
straint for the accelerations of the grains @; and angular accelerations T';:
_ . . _ 1= = o
8a iy = 5 (@i + &) X 0T + 5 (L + L) x 0wy (9)
These equations substantially constrain both the motion of the grains and the
forces between the grains. Equation (8) gives D — 1 constraints per contact. The
requirement that the grains stay in contact gives one further constraint. Since each
particle has D(D +1)/2 degrees of freedom without contacts, this means that the
total number of degrees of freedom Np is

Nr D

Ng - 9 (D+ 1 Zc)> (10)
where Z. is the average coordination number of the grains. We thus see that the
average coordination Z. < D + 1 in order for the rolling state to be mobile at all,
and Eq. (10) then gives the effective number of degrees of freedom remaining to
the packing.

Note that the coordination number can exceed this value if some of the con-
tacts are sliding instead of rolling. In this case, there are D constraints per rolling
contact, and only one contraint at a sliding contact. If we write the average number
of rolling and sliding contacts per particle respectively as Zg and Zg, then[16]

Ne _1Dpip- L

Ny 2 2
which is similar to an “isostatic” argument for a packing with a mixture of Coulomb
saturated and unsaturated contacts [17].

The forces are even more completely determined. The total number of contact
forces is exactly the same as the number of constraints on the accelerations given
by Eq. (9), with the result that all of these forces are determined by the contact
network, the velocities and angular velocities of the particles, and the boundary
conditions, even for Z. < D+ 1. (This result can be extended to the case of sliding
contacts [18].)

With the kinematics thus determined, the equations of motion of the particles
can be integrated until one of two possible types of crisis occurs to disrupt the
network (See Figure 1).

1
zr - Lzg]. (1)

1. If two grains collide, they will very rapidly (within a collision time set by the
Young’s modulus of the particles) establish a contact with a finite normal
force, provided they are sufficiently inelastic. This also changes the network,
and hence the kinematics. In this case the impulse arising from the collision
will, in general, result in a jump in the velocities and forces, which may be
significant in the neighborhood of the new contact. Corresponding to the
change in kinetic energy caused by the velocity jumps there will be a net
energy dissipation corresponding to the collision event [19)].

2. If the normal force between two grains becomes zero, the grains will separate.
This effectively changes the contact network, and the kinematics must now
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Particle Collision | Contact Failure |

FIGURE 1. Two types of crisis can disrupt a lattice of rolling grains: a)
two grains collide, creating a new contact, or b) two grains separate due
to the normal force between them reaching zero.

be solved with the new contact network. However, we do not anticipate that
this change in kinematics will correspond to any jump in the velocities or
forces. This event does not lead to any dissipation.

In a statistical steady state, the number of contact failures per unit time should
equal the number of new contacts created by collisions per unit time.

2.1. The honeycomb lattice

In D = 2, we can construct an explicit example of a rolling state at the critical
coordination number Z. = 3 by considering a honeycomb lattice (Figure 2). We
consider a relatively symmetric lattice, characterized by one angle #; the basic
plaquettes of the lattice are equilateral (although not necessarily regular) hexagons.

We describe the system as a lattice of “doublets” made up of two grains
in contact. The positions of these doublets we index by (j, k), with either j, k
both even, or j, k both odd. The positions of the centers of the doublets are then

FIGURE 2. A honeycomb lattice has the critical coordination number
Z. = 3 at which a frictional packing becomes mobile in D = 2. We work
with a set of honeycomb lattices characterized by the single parameter
0. We also show the fundamental “doublet” and the coordinate system.
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(z,y)=(czj, cyk), with c; = d(1+ cosf) and ¢, = dsinf. Note that the axes of the
Bravais lattice of doublets are oriented along the angles £6/2. With the doublets
oriented along the x-axis, the requirement that the two grains stay in contact
and have a rolling contact constrains the velocities and rotational velocities of the
left-hand and right-hand grains, uX, ul, QF; uft uft QF,

x Py s W Uy

L _ ,R_ L
Uy = Uy = Uy, Uy,

Uy — %(QL + 0f), ug =uy + %(QL +0f) | (12)

which reduces the six degrees of freedom of the two grains taken independently to
the four degrees of freedom remaining after the imposition of the constraint that
the contact be a permanent, rolling contact. These four degrees of freedom are
conveniently taken as the average x and y velocities of the doublet, u,, u,, and two
(re-dimensioned) combinations of the two rotational velocities A = 4(QF 4+ QF),
¢ = 2(Qk - QF),

Now let us consider the constraints imposed by the requirement that the
contacts between the doublet and other grains be rolling. Consider the contacts
between the doublet at j, k and the doublets at j — 1,k —1 and 5+ 1,k — 1. Let
us write the vector z(j, k) descibing the doublet kinematical state,

The contact rolling equations have the form

with A_(0) and A (0) given, after some labor, by

1 1 0 1 0
5 3 tan(§) 0 1 tan(ﬁ)
B cot(0) 1 1 0
A= (2) _ 21 _41 1 _cos@ ’ (15)
1+cos O 2 2 1+4cos @
csch 0 —% %
and
1 1 0 1 [
5 -3 tal’l(g) 0 —Ztan(§)
B _cot(h) 1 1 0
Ay = 02 % _i 1 _cos# (16)
1+4cos @ 2 2 1+4+cos @
—cscb 0 % %

Solutions to Eq. (14) can be written in the Bloch-Floquet form

w/2 ) 4
k) = [ LS au@)O0n(0) ona), (17)
n=1

—n/2 T

with

A(q)vn(q) = An(q)vn(q), (18)
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where A(q) is

1 0 0 O
- 01 0 0
Al =cos@) | o o 1 o
0 0 0 1
0 —tan(%) 0 —Lltan()
. — cot(h) 0 -1 0
+Zsm(q) 0 2 ] __cosf
1+cos@ 1+cos @
—2cscl 0 1 0

We can now directly diagonalize A(q) to obtain the eigenvalues and eigen-
vectors.

{Mi(g)vi} = {=1;[0,-1/2,2c0t(q/2), 1]}, (19)
Dal@yeah = {110,-1/2, ~rtan(a/2), 1]}, (20)
Dolies) = femn (220 C%0 o 1y, 21)
Palayoad = o[- 252,20 011 22)

These modes can obviously be combined to give a wide variety of different
possible motions. We are most interested, however, in motions corresponding to
low wavenumber deformations of the lattice. With some manipulations, we can
determine the general solution for constant velocity gradients. With 81234 € R,
we write

L GG =R A k)
7(63(3 - k) +%ll(j(t1k))k) —3J + T(_l) ) (23)
Boj + B3(j — k) + Ba(j + k) — B (~1)F

Note that for 31 # 0, but 8234 = 0, there is no large-scale motion of the
lattice, but rather compensating motions of neighboring doublets. Although we
have not introduced the concept of an excitation energy, the 31 mode is reminiscent
of “optical” modes in standard lattice dynamics, which have finite energy even
at zero wave-vector, and corresponds similarly to compensating motions inside a
Bravais lattice cell.

The other three modes correspond to simple shear motions. The F2 mode
corresponding to shear along the y-direction (Figure 3), while the 5 and 4 modes
corresponding to flow perpendicular to the directions +6 (see Figure 4). Flows such
as extensional flows that combine simple shear motions can be easily constructed
from these three simple shearing modes.

It is notable that in all of the simple shearing modes, the parameter £ =
4(QF — QF) increases linearly across the shearing region (Figure 3). While the

Z(], k) =
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4

net velocity

FIGURE 3. The (33 mode from Eq. (23) corresponds to grains counter-
rotating in each vertical chain, with the magnitude of the rotations
increasing linearly with the coordinate x. This generates an overall pure
shear, with the velocity in the vertical direction.

average angular velocity (w) obeys

(w) ~ 7, (24)
where 7 is the overall shear, the average value of the angular velocity squared,
(w?) depends additionally on the size of the system (or of the coherently shearing

region within the system) ¢,
N
AL
(w?) ~ (g) : (25)

3. Forces in rolling states

Simply showing that a state is kinematically possible does not imply that it is
dynamically feasible — to accomplish this latter, we must also determine a set of
interparticle forces with which it is consistent. For a granular system, this will be
a set of normal forces IV and tangential forces T across each contact, subject to
the two constraints that N > 0, since grains cannot exert tensional forces on one
another, and T' < N, with u the coefficient of friction.
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FIGURE 4. The three acoustic modes of the kinematics correspond to
shear directed perpendicular to the y-axis, and perpendicular to the
directions +6/2.

Note that despite the fact that we are considering rolling contacts, we assume
that any value of T' < pN is admissable, and do not restrict ourselves to values
of T corresponding to “free rolling” [19]. This is due to the fact that our particles
are in general constrained by several contact forces, so the contact dynamics will
be governed by the laws of “tractive rolling”, which allow any value of T < uN.

Returning to our honeycomb lattice, consider a doublet at position (j, k).
Such a doublet is influenced by eight forces exerted across its four contacts, as well
as by two internal forces exerted by the two grains on one another. It is convenient
to use a geographical notation to describe the external forces — the forces exerted
by the doublet at (j—1,k+1) on the doublet at (j, k) are termed Nyw, Tnw, with
T defined so that a force in the counterclockwise direction is positive. Similarly,
we define the forces exerted by the (j +1,k+1), (j+1,k—1) and (j —1,k—1)
doublets respectively as (Nyg, Tng), (Nsg, Tsg), and (Nsw, Tsw) (see Figure 5).
The force exerted at the internal contact is (No, Tp), with Ty defined so that T > 0
corresponds to a counterclockwise force on each grain.

With some tedious but straightforward algebra, we can convert the six equa-
tions of motion of the two particles in the doublet into four equations coupled
to our natural kinematical variables, plus two equations determining the internal
forces Ny, Ty (which we here omit). We write M and Ij; for the masses and mo-
ments of inertia of the grains, with x = I;/Md?. The result for the dynamical
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(Nyw > Tow) (Nye  Tne)
(NO ’ TO)

fundamental

FI1GURE 5. Eight forces are exerted on a fundamental doublet of the
honeycomb lattice by its neighbors; two additional forces are exerted by
the doublet particles on one another.

equation for the doublet is [15]

Nnw Nsw Uy
Tnw | _ & Tsw A Uy
Nye | = B(6) Nsg +2MC(0) 1+mA | (26)
TNE Tsk K&
with B(6) and C(6) given by
25in%(6/2) —sinf cos @ —sind
B(0) = sinf —tan(6/2)  —cosf  —sinf +tan(f/2) 2sin*(6/2)
N cos 0 sin 0 2sin?(0/2) sin 0 '
sinf — tan(/2) 2sin*(0/2) —sinf+tan(f/2)  —cosf
(27)
and
1 —cscf  tan(f/2) —cotf
~o 1| —tan(6/2) 0 et 1
co) = 2 -1 —cscf —tan(0/2) —cotf |’ (28)
—tan(6/2) 0 et -1

Note that (Nsw(j, ]f),Tsw(j, k’)) = (NNE(] — 1,]{7 — 1)7TNE(] — 1, k— 1))7
with equivalent identities for the other forces. The forces can be written as

Nyw (4, k) Nnw (g, k)

Tnw (k) | _ /”/2 dq i | Tnwl(a, k) (20)
NnE(j, k) a2 T Nne(g, k) |’

TnE(j k) TnE(g, k)
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We then can immediately write the equation determining solutions to the homo-
geneous problem,

TNW(Q7k) D, M TNW(Q7k_ 1)
= B(0)D 30
Nyz(q. k) OP@| Nyplgk-1) | (30)
TNE(q>k) TNE(Q7k_ 1)
with
0 0 e™™ 0
— 0 0 0 e™
0 e 0 0

The eigenvalues and eigenvectors {v,,; u, } of B(6,q) = B(§)D(q) are given by

{ri(@);u1} = {-1;[e"tanf,e "1, —tanb, 1]}, (32)
{a(q);us} = {1;[—e “tanf, —e™ ", —tanb, 1]}, (33)
{rs(q);us} = {e79[0,0,cot(0/2),1]}, (34)
{va(@);ua} = {e";[-cot(0/2),1,0,0]}. (35)

These eigenvectors are in fact quite intuitive. Each of the eigenvectors 2-4
corresponds to a set of parallel force chains in one direction in the lattice, as is
illustrated in Figure 6; eigenvector 1 is more complex.

Given the homogeneous solutions, it is straightforward to determine the so-
lution to the inhomogeneous problem for which the packing is moving. Writing

Uz (q, k) .
s uy( 7k) _
QMC(G) (1 + H)A(q, k) = 7; Un (Qa k)un (07 Q)a (36)
K&(q, k)
with
/2 o
vk = [ Hemiu, g, (37)
—7/2 s
we have the inhomogeneous equation
NNW(Q7k) NNW(q>k_1) 4
TNW(q>k) 2 TNW(Q7k_ 1)
= B(# n(q, k) 38
NNE(Q7k) ( aQ) NNE(q>k_ 1) +;U (q )’LL ( )
This equation is easy to solve. Writing
NNW(q> 0) 4
NNE(Q7O) - n:1Tn q)Un,
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FIGURE 6. The fundamental homogeneous modes of the forces corre-
spond principally to force chains, including both normal and tangential
forces, directed along the lattice directions of the honeycomb lattice. The

force chains shown correspond to the second force eigenvector, given in
Eq. (33).

we immediately obtain

Nnw (g, k) L e

Tnwl(q, k) | y , .

Nne(g, k) | ; IC/Z:OVn Un(q, k= ') +vp1(q) | tn- (40)
Tne(q,k)

As an example, let us consider extensional flow: u, o< z, uy o< —y. This
type of flow has the advantage that it preserves the overall symmetries of the
honeycomb lattice, and can thus be interpreted parametrically by making the
angle 6 a function of time, 6(t). Let us choose the simple case that

O(t) = —At + 0o (41)

with A > 0.

With some labor, it is possible to determine the inhomogeneous contribution
to the forces corresponding to this motion,

Nyw (4, k)
TNW(]7k)
NNE(jv k)
TNE(j’ k) inhom.
, " tand —cot(60/2)
MA
_d 5 [cos O tan(6/2)] > tai& +jk cot(19/2) (42)
—1 1

where we have neglected terms of less than quadratic order in j, k.
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It is clear that this inhomogeneous contribution includes negative values of
the normal forces at sufficiently low values of k/j, and that these scale with k2 (at
fixed k/j). In addition, it is also easy to determine the inhomogeneous part of the
internal normal force within a doublet, No inhom. (at quadratic order in 7, k) [15],
_daM A?sind 2

2
which is also negative, and also scales with k2.

Thus, no matter what the value of the homogeneous term for the forces (cor-
responding to the term proportional to 7 in Eq. (40)), the requirement that normal
forces be positive will ultimately be overwhelmed by the growth of the inhomo-
geneous term. Note that it is the contacts most perpendicular to the direction
of acceleration that are most at risk of losing their normal forces. In addition,
with a finite coefficient of friction, the tangential forces will ultimately saturate
the Coulomb criterion and slippage will occur at grain contacts, invalidating our
kinematical assumptions. However, even with an infinite coefficient of friction, the
motion of the packing is limited to a domain size controlled by the requirement
that all normal forces be compressional. If the scale of the homogeneous forces
is determined by the average pressure in the packing P, then the scale ¢ of this

domain size is determined by
l 1
—=_ /P 44
—=2\/Ples (4)

with the density pg ~ M/d?. Comparing to Eq. (3), we see that this is equivalent to

NO,inhom. = (43)

t=7 (45)
which connects the length scale over which frictionally dominated motion can
determine the kinematics with the Inertia Number I, in a manner consistent with
the physical picture of Halsey and Ertas.

Note that this result can also be obtained on dimensional grounds. The accel-
erations in a shearing state, as determined in the above calculation, will typically
be directed normal to the contacts, leading to a local relative acceleration of

d; —d; ~ 5°d. (46)

However, if the motions are coherent, as in a shearing motion, then accelerations
will accumulate across a region ¢, so that the typical acceleration in this region
will be
a; ~ 2. (47)
Similarly, the forces will need to accumulate to drive these accelerations, so we
conclude that the force scale will be
< )2
N~M (’y%) (48)

which is the scale of the inhomogenenous forces computed explicitly above. This
follows entirely from the coherent nature of the accelerations, and does not require
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that the contacts be rolling. Thus, any state in which Eqgs. (46)—(48) hold will also
have its regions of coherent shear limited to the scale £ = d/I, including much
more disorderly states than the honeycomb lattice. I will return to this point in
Section 4 below.

4. Kinematics of random grain packings

Let us reconsider the kinematics of the honeycomb lattice state, as defined by
Eq. (17). An initially surprising feature of this state is the role played by & =
%(QL — Of), which increases linearly with distance in states with overall linear
behavior of the average velocities u, and wu,. Thus, one way to view the motion
of the honeycomb state is by decomposing it into alternating sub-lattices, A and
B (see Figure 7), on which the particles are approximately counter-rotating with
respect to one another. The spatial variations of these counter-rotations then de-
termine the overall spatial structure of the flow. Now we must consider random
lattices, and determine, in particular, if there is any remnant of this feature for
such lattices.

To determine the nature of the random lattice solution that respects the con-
straining large-scale motions, we apply a two-point Fokker-Planck approximation.
Consider a random walk that moves entirely between grains in contact with one
another (see Figure 8). Provided that the instantaneous contact network perco-
lates, such a random walk can access arbitrarily distantly separated parts of the
grain packing. Over the set of all particle contacts (ij) we can define a probabil-
ity distribution p(6, %) on the angles of the contacts #;; and the differences in
grain velocity across the contacts 6v3; = ¥; — ¥j. For simplicity of notation we

o
¥
b

B

FI1GURE 7. The honeycomb lattice shear solutions correspond to ap-
proximate counter-rotation of two alternating sublattices of grains, here
indexed by A, B.
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FicURE 8. In the Fokker-Planck approximation, we consider random
walks from grain to grain passing always through contacts between the
grains.

are confining ourselves to two dimensions; however, the generalization to arbitrary
dimensions is clear, and is assumed in much of the discussion below.

We now assume that in the random walk described in the previous paragraph,
subsequent steps in the random walk correspond to uncorrelated choices of 6,5, 6/
from the distribution p(6, 6¥). (The neglect of correlations in this approximation
is clearly dangerous, particularly in lower dimensionalities, of which more later.)

Let us define a matrix corresponding to the average changes in position and
velocity corresponding to one step in this random walk,

(Owgpdws)  (dwzdwy) (dwydvy) (dwyzdvy)
M= (Owydwy)  (dwydwy) (dwydvg) (dwy,dvy)
(0vp0wy)  (dvgdwy) (0vz0vy)  (dvgdvy)
(0vy0wg)  (dvydwy)  (dvydvy)  (dvydvy)

In this matrix, the averages are easily written, e.g.,
(G duw,) = / d / d(57)p(0, 67)(d cos 0)2, (50)

We can now write directly the limiting result for the probability distribution
pn (AW, AT) after n steps of the random walk, with n — oo,

o (AT, AT) = N exp{_%[( Ad Aﬁ)M‘l(Ag ﬂ}

vV (27n)* det(M) 51)

(49)
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We can use this probability distribution to compute properties of the velocity
distribution arising from the fundamental two-particle correlations expressed in
M. Thus the expectation value of the velocity at the spatial point Z is given by

s dn [ dv(0)pn(Z,7)

@y = Lo

fdnfdvpn 7,7)
As an example, consider a case in which (dw,dw,) = (dvzdv,) = 0, and

(0w, dvy) = (dwy,0vy) = (dw,0v,) = 0, but in which (dw,dv,) # 0. In this case we

can write

(52)

(0wy dw,) 0 0 (0w 0vy)
- 0 (0w, dwy) 0 0
M= 0 0 (0v0v,) 0 : (53)
(0vy0wy) 0 0 (v 0vy)

We can now invert M and use Eq. (52) to show that

O(vy) _ (0w 0vy)
ox ((dwy)2)’

(54)

and

a<vw> _ 8<Uﬂv7y> _
or oy 0, (55)

corresponding to pure shear motion.

In this way, any motion that is linear in the coordinates can be associated with
values of the coefficents of the matrix M, corresponding to particular correlations
of neighboring grains. This approach has an interesting feature, however, in that

it leads to divergent fluctuations in dimensions below D = 4.

The generalization of the above formulae to p%D) (Z,7) with D > 2 is simple,

so we can consider, for instance,
. N dn [ di(i? <77>2)p£f’> (7.7)
N—oo f dnfdvpn (%,7)
Simple power-counting leads immediately to the conclusion that
((9(&) — ((@))*) ~ N*~P/2. (57)

If we suppose that ¢ ~ /N corresponds to some maximum “coherent” length scale
that can be probed by the random walk, then we see that

((9(&) = (5(2)))%) ~ 7P (58)

Note that assuming that I = d/¢, as is done in the theory of incline flow of Halsey
and Ertag [4], gives a divergence of the squared velocity fluctuation

(@) = (0@))?) ~ 1P, (59)
compared to the numerical result

((W() — (W(@)))") ~ T, (60)

((#(7) - (W()))?) (56)
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The numerical results for the values of x in D = 2, 3 are not definitive on its actual
value, although x ~ 1 in D = 2 is likely [6], and a similar and perhaps smaller
value seems to hold in D = 3 [7].

It is striking that an argument with so little physics predicts a divergence
of the velocity fluctuations, and with an exponent similar to that observed nu-
merically [6, 7]. However, the neglect of correlations undermines the quantitative
credibility of this argument®.

Up to now, we have not implemented any requirement that the velocities
be determined by the angular motions of the particles. This is seemingly quite
straightforward, e.g., the averages of §7' appearing in M can easily be written
in terms of the angular motions of the particles, using Eq. (8), for the rolling
contacts. Then, as remarked above, the percolation of the contact network insures
that we can still construct the master probability distribution for the fluctuations
of Aw, Av, as in the above argument. There is, however, a subtle and important
flaw in this procedure.

Restricting ourselves for the moment to two dimensions, let us try to deter-
mine large scale variations in the angular velocities (2; using a procedure analogous
to that we used above for large scale variations in the velocity. Since the velocity
moments for neighboring particles are functions of the sum of the angular veloci-
ties, U; — ¥ = £ x (W; — ;) (€ + ), we will restrict ourselves to these variables in
computing large-scale variations of 2, which is feasible provided we consider the
combination of two successive steps on the lattice of rolling contacts.

If we construct an analogous formula to Eq. (51) for the evolution of the
distribution of €2 over a random walk, we can write

8_9 _ <5wm69>' (61)

oxr  {(dw,;)?)
Note that we have assumed above that there is a stationary distribution p(6, 6;;).
If such a distribution is not a function of position, then there is no local indicator
of position arising neither from the angular distribution of contacts, nor from the
nearest-neighbor velocity differences. For rolling contacts, this implies, as utilized
in the above, a stationary distribution p(6,€; + €2;). To use this to evaluate an
average of €; —();, we can concatenate two subsequent steps in our random walk,
from i — j — k, and write that for this compound step

(Owgsimre (e — )
= ((Owasinj + 0wjr) X [ + ;) — (5 + Q)]) (62)
= d<COS Gij (Qz + Q]) — COSs ij(Qj + Qk)> =0,
so that we conclude that it is not possible for a distribution with a stationary

p(0:5, + ;) to describe a grain packing with any large-scale spatial varia-
tion of Q.

INote that a similar argument could be used for a molecular fluid, in which case it would clearly
be wrong, by equipartition — highlighting the importance of correlations.
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However, inspired by the discussion above regarding the role of £ = %(Q A—
Qp) in the honeycomb lattice case, we can immediately find a way around this.
Suppose the packing of grains connected by rolling contacts can be described as
consisting of two disjoint sub-packings A and B, so that no two A grains, nor any
two B grains, are in rolling contact with one another. In this case, we can posit that
the distribution used in the random walk depends on whether one is passing from
an A grain to a B grain or vice versa, i.e., pap(0, Q4+ Qp) # ppa(0,Qp +Q4) =
paB(0 4+ 7,Qa + Qp), where this latter requirement follows from the reversiblity
of the random walk. Then we see that in this case, supposing that ¢, k are on the
A packing, and j is on the B packing,

<5wm;i—>k(9k - Qz»
= ((Owasi—j + owj—i) (U + €5) — (5 + Qy)]) (63)
= 2d{cos 0;; (2 + Q) aB,

where () ap is defined as the integral over pap(0,Q24 + Qp). Now we can develop
linear gradients in € on sub-lattice A, provided that the gradient of 2 on the al-
ternating sub-lattice B has the opposite sign, as in the honeycomb lattice solution.
Thus, the state will be characterized by a function Q4(z,y) on the A sub-
lattice, and by Qp(z,y) on the B sub-lattice, with
(9<QA> N _8<QB> N <COS€Z‘J‘(QZ‘ +Qlj)>AB (64)
or oz d{(cosbi;)®)ap
This criterion will enforce that relative local particle surface velocities will be
small where an A-lattice particle contacts a B-lattice particle, which is suitable to
a slowly strained system with frictional contacts. Both Q4 and Qp vary linearly
across a shearing region. Thus, the dimensional constraint on the forces, Eq. (48),
should still apply for random lattices, resulting in a restriction of the coherently
shearing region to a scale £ = d/I. Finally, the overall shear is determined in this
case by

6<Uy> B <COS2 92](91 +Qj)>AB (65)
ow,  2d{(cos;;)2)ap
To build an explicit example of a shearing state on a random graph, suppose
that we fix the rotations on the A and B sub-lattices to be simple functions of

position alone,

Qa=0a@) =00+ a0z (66)
Op = (&) =Y + 0% . & (67)

Then for two particles in contact at positions Z and & + d,
A7) + Qp(F + 6w) = (QV + o) + (O + 68 . 2+ 65 5w (68)

In order for local velocity gradients to be independent of position, as in the above,
we need

—

a5 = -4y =T, (69)



130 T.C. Halsey

and we also write, for convenience,
00 409 — o, (70)

Since we have fixed the angular velocities 24 p as functions of position alone,
we can suppress the dependence of pap on Q4 + Qp, and approximate

pas(0) = po + pib - 6 + O(6?), (71)
with, of course,
0w = d(cos 8, sin ). (72)
Reviewing Eqgs. (54, 65), we see that to lowest order in the anisotropy, the nu-
merator of this expression will determine the overall shear structure. Thus let us
consider the following tensor,

Tlm,AB = <5w1511m>,43 ~ /(détﬁ)(po + p1b : 5117)511)1 {%(gp +1I- 5117)73 X Jlﬁil s

"(73)

where we have used the vector structure appropriate to D = 2 as well as the
fundamental contact rolling Eq. (8). The integral is easily performed, yielding

d? d? - =

Em,AB = ZpO‘pelm + Epl |:b : 1_‘elm - bl(emprp) - Fl(empbp):| . (74)

From this formula, it is easy to find, for any 5, the values of ¢ and r corresponding

to any particular shearing motion. Note that it is necessary to have both a linear

gradient in the angular velocities (non-zero f) and anisotropy in the contact dis-

tribution among the two sub-lattices (non-zero 5) in order to generate a shearing

motion. Of course, for any such motion, the value of b will be determined by the

kinetics of the motion, so in practice such motions will be realized as functionals

of (¢,T).

In general, it is not possible to decompose a random lattice into two alternate
sub-lattices such that no contacts are created among elements of a single sub-
lattice. The situation is analogous to an anti-ferromagnet on a random graph,
for which plaquettes bounded by odd numbers of particles are frustrated (see
Figure 9) [22]. In order to preserve the structure of the state indicated above, with
Q4 ~ —Qp, we require that enough of the particle contacts are sliding so that all
remaining contacts can be rolling contacts between grains on alternate sublattices.
It then follows that pap is understood as the distribution across rolling contacts
only, not including sliding contacts.

If we wish to apply the reasoning of Egs. (44-48) to the random lattice,
and derive a length scale ¢ beyond which a coherently shearing patch will be
destabilized by the disappearance of normal forces, we must specify what we mean
by a “coherently shearing patch” in a random lattice. For a general random lattice
with some density of “odd” plaquettes, there will be a number of possible choices
of which contacts must slide so that the others may roll. From the argument of the
preceding paragraph, it is clear that this enumeration problem is exactly analogous
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FIGURE 9. In a random lattice, a decomposition of the lattice into two
alternating sub-lattices will generally result in “frustrated” contacts,
across which sliding must occur.

to the enumeration of the states of an anti-ferromagnet on the corresponding
random graph. The statistical mechanics of this latter problem has been studied
— in two dimensions, there appears to be a spin-glass phase at zero temperature,
which does not extend to finite temperature [21]. Although the granular problem is
not a thermal statistical mechanical problem, it is natural to identify the coherence
that is destroyed by the disappearing normal forces with the zero-temperature
spin glass order of the analogous anti-ferromagnet. With this interpretation of the
meaning of “coherence”, we again expect

{= 7 (75)
to set the maximum size of a coherent domain, following the argument of Eqgs. (44—
48). A more dramatic indicator of the existence of the state which we are discussing
would be a strong short-ranged anti-ferromagnetic order corresponding to a pre-
dominance of rolling contacts.

We can compare our results with numerical simulations reported by the group
of Alonso-Marroquin et al. [20]. In a two-dimensional shear cell, this group ob-
served that the macroscopic shearing motions of a dense granular packing (simu-
lating fault gouge) decomposed, on smaller scales, into regions of coherent vorticity
(which in our notation corresponds to A constant, £ ~ 0), regions of “ball-bearing
motion” (corresponding to the counter-rotating motion of our two sub-lattices),
and shear zones in which sliding dominated. Due to the predominance of rolling
contacts, particularly at high coefficients of friction, the overall macroscopic fric-
tion observed in the shear cell was considerably less than the microscopic coefficient
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of friction. The decomposition of the solution into regions with qualitatively differ-
ent properties violates the assumption that there is a uniform distribution p(6, 67),
on which our argument above was based.

The first of the Alonso-Marroquin motions, corresponding to large-scale vor-
ticity, was not observed in three-dimensional numerical studies specifically de-
signed to look for velocity correlations in chute flows [7]. Also, at high coefficents
of friction, the Alonso-Marroquin kinematics was “earthquake-like”, with much of
the slip occuring in discontinuous jumps. We might suspect that such discontin-
uous kinetics, associated with pattern formation, are more characteristic of low
values of I (corresponding to ¢ > L, with L an overall flow scale), than they are
of intermediate values of I.

Finally, we are also able to use this picture to speculate on the nature of the
i — oo limit. Consider the tangential and normal forces T., N, at a typical sliding
contact, T./N. = p. These forces will be determined by the overall force balances
subject to the motions of the grains, and we expect that both T, and N, will be
~ PdP~1. Since these forces have a fixed ratio at the sliding contacts, we see that
lim,_.oc N = 0, since this will be the solution to the force balances in preference
to a case in which T, — oo. Thus, in the limit, the sliding contacts will see their
normal forces driven to zero; i.e., these contacts will be eliminated as physical
contacts. We would thus expect that in the limit ;1 — oo all of the plaquettes will
have even numbers of sides, and the frustration will be eliminated, in any mobile
state.

4.1. Three-Dimensional Case

The extension of these arguments to three dimensions is straightforward. The
original contact-rolling equations Egs. (8, 9) clearly apply in three dimensions,
and the diamond lattice plays the same role in D = 3 of a potential model system
as did the honeycomb lattice in D = 2. To conserve the labor of the author and
the patience of the reader, we are not presenting details of the diamond lattice
kinematics in this work; we only wish to point out that the diamond lattice does
support alternating A and B sublattices analogously to the honeycomb lattice case,
which allows shearing states obeying 0 AR ~ -0 B to be constructed.

For random lattices, the arguments of the previous section should hold in
three dimensions just as in two dimensions (indeed, they should be more valid,
since the upper critical dimension of D = 4 is closer). Again, the optimal decom-
position of the random lattice into two alternating sublattices is analogous to the
problem of determining a ground state for an anti-ferromagnet on a random graph.
Again, odd plaquettes must have at least one sliding contact, corresponding to a
frustrated bond in the random anti-ferromagnet. In three dimensions, these odd
plaquettes can be viewed as threaded by “odd lines”, introduced by Rivier and
Duffy [23]. For pure shear, we expect the direction of the typical angular velocity
to be perpendicular to the shearing motions, so that the analogy is to an Ising



Theoretical Considerations for Granular Flow 133

anti-ferromagnet, and not to a Heisenberg anti-ferromagnet. Note that the degen-
erate case in which particles rotate about an axis through the contact between the
particles is assumed not to play a significant role.

5. Conclusions

The principal conclusions of this article are:

1. Frictional packings, dominated by rolling contacts, cannot be mobile above
a coordination number Z, = 3 (D = 2) or Z. = 4 (D = 3). These thresh-
olds are consistent with those obtained using similar arguments by authors
studying the isostaticity of static packings. These criteria are modified in
a straightforward manner if some of the contacts are sliding as opposed to
rolling.

2. The honeycomb lattice in D = 2 offers a case in which the rolling kinematics
can be exactly solved. The most surprising feature of the result is that the
scale of the angular velocities w grows linearly with the size of the system,
although the average of the angular velocity is moderated by the fact that
the rotations on two alternating sub-lattices roughly cancel.

3. The dynamics of the honeycomb lattice can also be solved. The conclusion
is that the requirement that all normal forces be compressive can only be
satisfied for packings smaller than ¢, with

0~djI, (76)

where I is the Inertia Number, given by Eq. (3).

4. For random lattices, a Fokker-Planck approximation to the kinetics yields the
same key result as for the honeycomb lattice, i.e., that the typical angular
velocity grows linearly with the size of a coherently rolling region. Again, the
average angular velocity is much smaller. The presence of odd plaquettes of
particles in contact will require compensating sliding contacts even if the coef-
ficient of friction is large; the statistics of these sliding contacts are analogous
to those of frustrated bonds in random anti-ferromagnets.

There remains the very interesting question of the nature of the flow for scales
larger than /. We can understand the role of ¢ by considering the free volume in
the system. For flows in systems of size L < ¢, while free volume might be created
by collisions generating a granular temperature, such free volume can be removed
from the system through the role of inelasticity (or friction) in quenching the
granular temperature. On the other hand, for L > ¢, free volume must be created
and persist in the system, regardless of the quenching effect of inelasticity. It is
simply no longer possible for all of the stress-transmitting contacts to have lifetimes
> 471, consistent with observations of the relatively short duration of most two-
particle collisions [13]. Although we have focused on the continuous motion of
systems for which L < ¢, the fact remains that the chute flow phase diagram,
or the results of Alonso-Marroquin mentioned above, emphasize the difficulty of
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flowing granular systems of size < ¢, suggesting that as a practical matter free
volume is necessary to achieve a robust flowing state.

I would claim that the rheology of this state, in which free volume plays
a significant role, while many neighboring particles also have rotational motions
effectively locked to one another, is probably poorly addressed by conventional or
modified kinetic theory approaches, due to the presence of long-range correlations
in particle motion. The interpretation of the GDR MiDi or Pouliquen flow rule
type rheologies in terms of a length scale ¢ obviously disallows such approaches.
In this article, I have shown that this length scale ¢ does have a clear physical
meaning for L < {; however, it remains to be seen what aspects of this meaning
persist for systems of size L > /.
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Grains, Glasses and Jamming

Olivier Dauchot

Abstract. On the one hand, very strong similarities have been reported be-
tween the dynamical behaviour of vibrated dense packings of grains and su-
percooled liquids at the onset of the glass transition. On the other hand a
lot of attention has been paid to the mechanical properties of granular pack-
ings close to jamming. Here, after a necessary clarification of the different
meanings of jamming, we propose to review some of the hereabove mentioned
similarities. We discuss, through the comparative study of two different gran-
ular systems and one super-cooled repulsive liquid, how elementary relaxation
events spatio-temporally organize close to the glass transition. The decompo-
sition of the microscopic dynamics into a “trivial” vibration-like motion and
rare “cage jumps”’, which dominate the relaxation dynamics, is a common
feature of these systems. As a result the origin of the vibrating motion, ther-
mal or mechanical, becomes irrelevant, hence the similarities observed at the
macroscopic scale. We discuss the evolution of the spatio-temporal organi-
sation of these relaxation events when approaching the glass transition and
investigate its relation to softness of the structure.

1. Introduction and preliminary remarks

Everyday life tells us that matter acquires rigidity when it cools down — lava
flows turn into solid rocks — or when it is compacted — remember kids packing
down the sand to build up castles on the sea shore. As suggested by these exam-
ples, this is not only the case for materials, that crystallize at low temperature or
high pressure. It also happens for disordered media such as foams, emulsions, col-
loidal suspensions, granular media and glasses, which can jam in a rigid disordered
state [40, 53].

When a liquid is cooled down fast enough to avoid crystallization, it enters
the metastable super-cooled regime. Further decreasing the temperature, one ob-
serves a dramatic slowing down of the dynamics and a corresponding increase of
the viscosity over several decades. Eventually, depending on the cooling rate, the
system falls off equilibrium, ages, and becomes an amorphous rigid material: this
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is the glass transition. Another well-studied instance of glassy behaviour is that of
hard spheres at thermal equilibrium [47]. In this case the transition is controlled by
the packing fraction and the colloidal suspensions are a good experimental model
of this idealized system as clearly illustrated in the chapter by D. Weitz in the
present book.

In the last two decades an intense activity in the field of granular matter has
reported strong experimental evidence of such glassy dynamics in dense granular
media under low mechanical excitations: dynamical slowing down, aging phenom-
ena, rigid response to external stress [20]. Here also the control parameter of the
dynamics is the packing fraction. These observations suggest a possible unified
description despite the very essential difference between grains and supercooled
liquids: for the former the dynamics is dissipative and the system is forced into a
steady state by various types of mechanical excitations, whereas for the latter the
dynamics is that of thermodynamic equilibrium.

In 1998 Liu and Nagel [40] presented their provocative jamming phase dia-
gram, while discussing the concept of fragile matter introduced by Cates et al. [16]
in the context of granular materials. The purpose of this (Temperature-Stress-
Density) diagram was to generalize the discussion both to the case of microscopic
systems with attractive interactions, which unjam as one raises the temperature,
and to the case of stressed macroscopic systems with repulsive interactions, which
unjam as one applies an incompatible stress. According to this diagram, a glass
would have a lower glass transition temperature under high shear stress. Likewise,
a jammed granular material or foam would have a lower yield stress when random
motions are present. One must realize the boldness of such a proposition, which
encompasses in a unique framework the glass transition [3, 22] and the emergence
of a yield stress [4], two of the most challenging issues in modern condensed matter
physics.

As long as jamming is understood in the loose sense described above, the
jamming diagram is a challenging proposal and as such it has been a source of
inspiration for many fascinating studies. However, jamming also has a very precise
meaning when it refers to a zero temperature and zero stress transition which can
be defined in purely geometric terms and is closely related to the notion of random
close packing [44, 45]. This transition occurs when a given packing of particles can
not be compressed further without allowing overlaps between particles. Because
this last transition does not need to invoke thermal equilibrium, it rapidly became
a favorite candidate for explaining the glassy behaviour of granular media first and,
by virtue of the ‘universality’ of the jamming diagram, of thermal systems also.
This line of thought has been reinforced by the existence of remarkable scaling
properties observed on the approach to ‘point J’ for various kinds of repulsive
particles [25, 28, 39, 46]. And naturally this led to the conjecture that the properties
of this ‘critical point’ can influence the physical behaviour of dense particle systems
throughout the whole jamming diagram.

Confusion has been endemic until recently, when strong theoretical [47] and
numerical evidence [6, 7, 18] has been provided for the ideal case of frictionless
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hard spheres. First, even in the thermodynamic limit, jamming transitions occur
along a continuous range of volume fractions, contrasting with the idea of a unique
‘point J’. Second it was shown that at the glass transition, where the relaxation
time becomes infinite, pressure remains finite. On the contrary, at the jamming
transition of hard spheres, pressure must diverge because of the infinitely hard
repulsive interaction. More precisely the structure — the averaged positions of the
particles — is frozen at the glass transition, but there is still room for vibrations
around this configuration. Jamming occurs at higher packing fractions when there
is no more room to accommodate the increase of the packing fraction without
overlapping the particles. Clearly the jamming and the glass transitions are dis-
tinct, the former happening in the glass phase. As a matter of fact the same holds
in the case of crystallisation. The relaxation time of the liquid diverges, but the
pressure remains finite. One can still increase the packing fraction of the crystal
until it reaches an ordered close packing: only then is the crystal jammed! In the
following we shall concentrate on the glass transition of dense granular media and
super-cooled liquids. Accordingly the word jamming here should be understood in
its most general and common sense, and not as referring to any specific transition.

Now that the above necessary clarifications have been made, we can turn
ourselves to the main purpose of the present notes. We first present a brief review
of the glassy phenomenology in granular media. We then illustrate, through the
comparative study of two different granular systems and one super-cooled repulsive
liquid, how elementary relaxation events spatio-temporally organize and develop
dynamical heterogeneities. In the case of one of the granular experiments, we
further discuss how this spatio-temporal organization evolves when approaching
the glass transition. In the case of the super-cooled liquid simulations, we can
investigate the relation of these dynamical properties to the structural properties
of the material. Finally in a last section, we discuss what appears to us as some of
the most challenging issues for the near future.

2. Glassy behaviour of vibrated grains

In this part we will briefly present a selection of experimental results, which under-
lines the similarity between granular media and super-cooled liquids close to the
glass transition. It is assumed that the reader is familiar with the glass transition.
He might otherwise refer to the other chapters of the present book. A more detailed
review of these similarities can also be found in [20]. We first review macroscopic
behaviours observed under compaction and then concentrate on the microscopic
dynamics at the origin of these striking similarities.

2.1. Macroscopic evidence

Generically, one considers a three-dimensional sample of grains under compaction.
The packing is prepared in a reproducible low density initial stage and is then
vibrated with an amplitude ¢ and a frequency w. Different shapes of vibration
can be applied, but the overall control parameter is usually defined as I' = aw?/g.
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The column density is then monitored for instance with capacitors [36], or via
X-ray absorption measurements [49, 48]. Other ways of compacting include cyclic
shear [42] or flow pulses in a fluidized bed [50].

2.1.1. Slow relaxations. The very first evidence of a “glassy” behaviour in dense
granular media under compaction is the very slow relaxation towards a station-
ary state with a well-defined volume fraction. Figure 1 presents the dynamics of
compaction as observed in Chicago [36] and Rennes [49, 48]. In both cases, the
logarithmic time scale emphasises the very slow dynamics and in the Chicago ex-
periment (Figure 1(a) it is not even clear that a stationary state is reached within
the duration of the experiment. In the case of the experiment in Rennes (Fig-
ure 1(b), a stationary state is obtained, but for large vibration amplitudes only.
For small values of I'; it is difficult, if not experimentally impossible, to reach a
steady-state by merely applying a sufficiently large number of taps of identical
intensity. Nowak et al. [43] showed that, in this case, it is possible to reach a
steady state by annealing the system 1(c). Experimentally, the value of T" is slowly
raised from 0 to a value beyond I'* ~ 3, above which subsequent increases as well
as decreases in ' at a sufficiently slow rate dI'/dt lead to reversible, steady-state
behaviour. If T" is rapidly reduced to 0 then the system falls out of the steady state
branch. Along the reversible branch, the density is monotonically related to the
acceleration. As I is increased both the magnitude of the fluctuations around the
steady state and the amount of high-frequency noise increase.

Various fits have been proposed to describe these experimental data among
which is the one introduced by Kohlrausch [38], Williams and Watts [32], often de-
noted as the KWW law, which is commonly observed in the relaxation of thermal
glasses. Also, in the “Rennes” experiment, the relaxation time dependence is rem-
iniscent of an Arrhenius law 7 = exp(I/I") for T’ > 1, suggesting the existence of
activated processes (Figure 1d). For I' < 1, one clearly observes a sharp increase
of the relaxation times. The slope variation in the log-lin plot, which indicates
a jump in the ‘energy barrier’ of the mechanically activated processes suggested
by the Arrhenius laws, finds a natural interpretation in the difference of energy
landscape seen by a grain, whether it lifts off or not!

2.1.2. Aging. More specific behaviours of glasses such as aging and memory effects
have also been observed in granular media under compaction. Using multi-speckle
diffusive wave spectroscopy (MSDWS) to probe the micron-scale dynamics of a
water saturated granular pile submitted to discrete gentle taps, Kabla and De-
bregeas [34] experimentally demonstrated aging effects. The pile is first prepared
in a reproducible way at low volume fraction, then submitted to high amplitude
taps until it reaches a prescribed packing fraction. Only then is the dynamics of
contacts probed by submitting the cell to very gentle taps. Figure 2(a) displays
the compaction curves during the full procedure. One recognises a typical com-
paction curve during the first stage. In contrast, the low intensity vibrations do
not induce significant further evolution of the packing fraction except for initially
very loose packs. In order to quantify the internal dynamics, one measures the
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FIGURE 1. Compaction experiments. (a): “Chicago” experiment [36]:
packing density p as a function of the logarithm of the number of taps for
various amplitudes of vibration ranging from I' = 1.4 to 5.4 (inset is the
same plot in linear scale); (b): “Rennes” experiment [49, 48]: temporal
evolution of the mean volume fraction for different tapping intensities
ranging from I' = 0.96 to 5.0; (c): Steady state branch from [36]: the
sample is prepared in a low density initial configuration and then the
acceleration amplitude is first slowly increased — solid symbols — and
then decreased — open symbols. — The upper branch is reversible, see
square symbols. (d): Dependence of the relaxation time as a function of
the vibration amplitude in “Rennes” experiment. Inset: variation of the
final volume fraction in the cases where a steady state is actually
reached.

intensity correlation g(t,,,t) of speckle images — produced by the multiple scatter-

ing of photons through the sample —, taken between taps at time ¢,

and t,, + 1,

where t,, is the elapsed number of taps since the beginning of the gentle vibration.
Figure 2(b) shows three correlation functions obtained with the same sandpile at
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FIGURE 2. Aging in a gently vibrated (I' ~ 1) granular media [34]
(a): Evolution of the packing fraction for four experimental runs. Each
run consists of a first step in which high amplitude taps allow rapid
compaction of the sample, followed by a sequence of gentle vibrations,
during which the internal dynamics is probed. The arrows indicate the
change in tapping intensity. (b): Two-time relaxation curves for different
waiting time.

different values of ,,. These functions, well fitted by stretched exponentials, clearly
demonstrate an increase of the relaxation time with ¢,,. This dynamical arrest is
the signature of the aging behaviour as exhibited in various glassy systems.

Altogether, we have seen in this section that the jamming of granular media
shares strong similarities — exceedingly slow relaxation and aging — with the glassy
dynamics of super-cooled liquids. These similarities are not trivial given the very
distinct microscopic processes underlying the dynamics in both systems. In glassy
liquids, relaxation occurs by thermally activated rearrangements of the structure.
In granular materials, the thermal environment is ineffective and relaxation results
from the local yielding of contacts triggered by externally applied vibrations. Still
the phenomenologies recorded at the macroscopic level suggest the existence of
similar mechanisms at the “microscopic” scale, that is the molecular scale for
structural glasses and the grain scale for granular media.

2.2. Microscopic Dynamics: Granular media vs Structural Glasses

At the end of the day, forgetting about thermal equilibrium vs. mechanical steady
state issues, the macroscopic properties must find their origin in the complex
interplay of the trajectories of the individual particles, whether they are grains or
molecules. Bidimensional experiments in granular media, confocal microscopy for
the study of colloids and numerical simulations give access to the instantaneous
positions of many particles, making available formidable data sets to investigate
the dynamics at the microscopic scale. We will now review some of the recent
results obtained in these systems at the “microscopic” scale.
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2.2.1. Systems. Most of the results described below come from the analysis of three
sets of data stemming from two different granular media experiments, a Cyclic
Shear Experiment (CSE) [41, 13] and a Fluidized Bed Experiment (FBE) [1, 35,
14], and one Soft Repulsive Particle simulation (SRPS) [15]. A detailed description
of these experiments and simulations can be found in the original papers. Here are
some of their essential characteristics:

e A picture of the CSE can be found in the chapter by G. Biroli in the present
book. A bi-dimensional, bi-disperse granular material, composed of about
8,000 metallic cylinders of diameters 5 and 6 mm in equal proportions, is
sheared quasi-statically in a horizontal deformable parallelogram. The shear is
periodic, with an amplitude 0,,x = +5°. The packing fraction is maintained
constant (¢ ~ 0.84). Images are taken at each cycle.

e The bi-dimensional fluidized bed of beads is made of a 1:1 bidisperse mixture
of steel beads of diameters 3.18 and 3.97 mm, confined to a circular cell. Bead
motion is excited by an upward flow of air at a fixed superficial flow speed of
545 4 10cm.s~! (resp. 500 4 10cm.s~1) for the three loosest (resp. densest)
packing fractions. We will consider packing fraction ranging from ¢ = 0.758

to ¢ = 0.802.
e The model of supercooled liquid is a bi-dimensional non-additive binary
mixture of N = 5,760 particles enclosed in a square box with periodic

boundary conditions, interacting via purely repulsive potentials of the form
uab(r) = €(oap/r)'2. The mole fraction of the smaller particles is taken to be
x1 = 0.3167. Molecular dynamics simulations were carried out at constant
NVT (T=0.4) using the Nosé-Poincaré Hamiltonian [11] after equilibration
at constant NPT as described in [59].

In all cases, the length scale unit is the typical size of the particles and the time
unit is chosen in such a way that the structural relaxation time 7, defined as
the time required for the self-intermediate scattering function to decay of 1/2,
equals 103.

2.2.2. Trajectories, cage-jumps and statistics of the displacements. Typical tra-
jectories 7, (t) for the three systems considered here are shown on Figure 3. They
exhibit remarkable features which are common to both the granular systems and
the repulsive liquid. The particles perform localized, vibrational motion around a
metastable position, as in a disordered solid, interrupted by quasi-instantaneous
“cage jumps”. Note that the size of the jumps is distributed, and represents on
average only a small fraction of the particle size, implying that jumps probably
result from cooperative events involving a large number of particles moving by
a small amount. As a matter of fact, in all these systems the packing fraction is
rather large and local re-arrangements necessarily lead to displacements of neigh-
boring particles — this observation is at the root of the idea of cooperative motion
and dynamical heterogeneities.

This very specific dynamics immediately translates into the statistics of the
displacements. Recently Chauduri et al. [17] compared the distributions of the
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FI1GURE 3. Trajectories of one particle (a): in a cyclic shear granular
experiment over 5,000 time steps; (b): in the fluidized bed granular
experiment over 3,000 time steps; (c): in the soft repulsive liquid simu-
lation over 4,000 time steps.

displacements performed by the particle during a time interval 7 for different
systems, namely two super-cooled liquids, a colloidal suspension and the CSE
granular experiment(see left side of Figure 4). These distributions have the same
structure over a broad time window comprising the structural relaxation. They are
all made of a central gaussian part corresponding to the short time vibration and
large exponential tails associated with the rare and important displacements: the
“cage jumps”. The width of these distributions also reflects the existence of the
cages: the mean-square displacements plotted on the right side of Figure 4 for other
but similar systems exhibit a subdiffusive plateau at intermediate timescales. This
non-Fickian character of single particle displacements in systems exhibiting glassy
dynamics is well known and it can be associated with the non-exponential decay
of the time correlation functions. Again one observes the very strong similarities
among the very different systems considered here: Lennard-Jones and Hard spheres
liquids, colloidal suspensions, granular media.

As far as the comparison between granular media and super-cooled liquids
is concerned, the important observation is that the vibrational part of the mo-
tion separates from the “cage jumps” dynamics. Following this line of thought,
it was suggested to isolate those cage jumps using for instance the iterative algo-
rithm introduced in [13] and to evaluate their relative importance in the structural
relaxation. The local relaxation between time ¢t and ¢t + 7 is quantified by:

_IAFp(t,HT)IQ)

20(7)? (1)

Qpi(r) =
where A7, (t,t+7) = 7, (t+7) —Tp(t) is the displacement of the particle p, between
t and t + 7 and o(7)? = (||AF, (¢, t + 7)||*) is the root mean-square displacement
on a lag 7. The interpretation is straightforward: when a particle p moves less,
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FIGURE 4. Left: Probability distribution of the particles displacements
during a lag time 7 for silicon atoms in silica, Lennard-Jones particles,
hard sphere colloids and grains (from [17]). The data are fitted with
a stochastic model of the cage jumps events (see [17]). They exhibit a
Gaussian central part and a fat, exponential tail. (a) and (b) show the
distributions of |ry,(t+7) —7,(t)|, (c) and (d) the distributions of z,(t+
T) — xp(t). Right: Root mean-square displacements as a function of 7
for (top) polydisperse hard spheres from [23], (middle) colloids from [56]
and (bottom) granular media from the fluidized bed experiment [1, 14].

respectively more, than o(7) between ¢ and t+ 7, @ +(7) remains close to one, re-
spectively decreases to zero. Averaging this quantity over all particles, one obtains
Q:(r) = (prt(7)>p, which evaluates the overall relaxation of the system between
t and t + 7. Typically the relaxation time 7, is then given by (Q(7.)), = 1/2.
As we shall see below, Q¢(7) is a highly fluctuating quantity and one can identify
a timescale 7%, for which the fluctuations of @Q;(7) are maximal. Figure 5 com-
pares the relative Q¢(7*)/ (Q¢(7*)), with P,(7*)/ (P:(7*)), the relative percentage
of particles that have not jumped during the same lag 7*. The correspondence is
excellent: the bursts of cage jumps are responsible for the major relaxation events
of the system.

At this point, we have the evidence that the individual particle dynamics

in the various systems considered here, ranging from thermal super-cooled liquids
to colloids and athermal granular media, are very similar and decompose into a
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FIGURE 5. Cage jumps and structural relaxation: comparison between
the relative averaged relaxation Q(7*)/(Q:(7*)), (in cyan) and the
relative percentage Py (7*)/ (Pi(7*)), of particles that haven’t jumped
between ¢ and t 4 7* (in dark), for (a) the CSE (7* = 720), (b) the FBE
at ¢ = 0.773 (7* = 611) and (c) the SRPS (7% = 428).

somewhat trivial jerky dynamics around a metastable position interrupted by the
cage jumps, responsible for the relaxation of the structure. This very important
result is at the root of the similarities reported among the glassy dynamics of these
very different systems. Since the relaxation is fully encoded in the cage jumps, the
vibrational part of the dynamics — whether it has a thermal or a mechanical origin
— averages out, and the details of it do not contribute to the glassy dynamics. We
now take advantage of these similarities to describe in the same framework the
collective dynamics responsible for the glassy dynamics in all these systems.

3. Dynamical heterogeneities in glassy systems

In particular we want to describe the so-called dynamical heterogeneities, which
have recently attracted a lot of attention [31, 26, 5, 9]. In this section we will see
how dynamical heterogeneities emerge from a hierarchical spatio-temporal organ-
isation of the cage jumps. Then, we shall see that in the case of granular media at
least, this spatio-temporal organisation evolves in favour of less facilitation when
approaching the glass transition. Finally, we will take advantage of the numerical
simulations of the repulsive liquids to discuss the relation of the dynamics with
the underlying structural properties.

3.1. Spatio-temporal organisation of the cage jumps

Dynamical heterogeneities are a key characteristic of glassy dynamics in ther-
mal systems [26, 31, 5, 33, 37] colloidal suspensions [55, 19] and granular me-
dia [21, 35, 13]. They were first proposed to explain the stretched exponential
relaxation of super-cooled liquids. At low enough temperature or high enough
packing fraction, the dynamics becomes heterogeneous: domains of slow and fast
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relaxation coexist in real space and slowly evolve on long time scales. The length-
scale associated with these heterogeneities has been argued to be at the origin of
the quasi-universal behaviour of glassy systems. In particular, it suggests that the
slowing down of the dynamics is related to a collective phenomenon, possibly to a
true phase transition. Many different possible origins of these heterogeneities have
been highlighted in the literature: dynamic facilitation [30], soft modes [12, 59],
proximity to a mode coupling transition [24, 10], growing amorphous order [9], etc.
Providing a microscopic explanation for this phenomenology has become a central
issue.
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FIGURE 6. Spatial field of the local relaxation @, .(7*), for (a) the CSE
(7* = 720), (b) the FBE at ¢ = 0.773 (7* = 611) and (c) the SRPS
(7 = 428). Particles jumping between t and ¢+ 7 are represented with
black circles, and lie preferentially in the moving areas.

It was briefly mentioned in the previous section that the fluctuations ob-
served in the temporal evolution of the spatially averaged Q¢(7) = (Qp,¢(7)),, (see
Figure 5) are maximal for a given timescale 7*. These fluctuations can easily be
understood as the result of the existence of regions of correlated particles sharing
the same relaxation dynamics, exactly like Ising domains being responsible of the
fluctuations of the magnetization in a system of spins. Hence 7* corresponds to
the timescale at which these domains are the largest: on shorter timescales the
particles move on small enough distances and they don’t feel their neighbors; on
larger timescales the domains form and deform and the spatial correlation dies
away. In practice, 7* and 7, are of the same order.

The simplest way to realize the importance of the dynamical heterogeneities
is to visualize the spatial field of the local relaxation @, (7). Figure 6 displays the
fields Qp+(7*), for the two granular experiments (CSE and FBE) and the repulsive
liquid simulation (SRPS), together with, superposed on top of it, the location of
the cage jumps, that have occurred between ¢ and ¢t + 7. Again the similarity
among the three different systems is amazing. There are some differences, as also
reflected by the temporal evolutions of Q¢(7*) on Figure 5: clearly the domains are
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larger in the CSE than in the FBE, and in the FBE than in the SRPS. However,
one must remember that these systems are a priori not at the same distance
from their glass transition and that the domains grow in sizes when approaching
the transition. This last effect is usually quantified by computing the so-called
dynamical susceptibility xj = N ((Q:(7%)?) — (Q:(7*))?), exactly in the same way
as the magnetic susceptibility finds its origin in the spatial correlation of the local
magnetization.

Also shown in Figure 6 are the cage jumps responsible for the relaxation
of the dynamics. The distribution in space and time of these events is far from
homogeneous. The left panel of Figure 7 illustrates how cage jumps form clusters
in space, occurring on a relatively short time scale 7.y ster-- The distribution of the
lag times separating two adjacent clusters can be described by the superposition of
two distributions: one for the long times corresponding to the distribution of the
time spent by the particles in its cage T¢qge, and one for the short delays between
adjacent clusters 7.o.-. When the ratio of these two timescales is large enough,
the clusters form well-separated avalanches. Selecting a time interval of duration
7* initiated at the beginning of a given avalanche, the middle panel of Figure 7
displays the spatial organization of the clusters in the avalanche. One can see
how the clusters spread and build up a region of identical temporal decorrelation.
This mechanism is a perfect illustration of facilitation: a local relaxation has a
very high probability of happening nearby another relaxation after a certain time,
which is short compared to the macroscopic relaxation time but large compared
to the microscopic one. In the present case, the avalanches have a finite duration:
they are the dynamical heterogeneities. We shall see in the next section that the
scenario depends on the distance to the glass transition.

Finally, the most remarkable fact is that the spatio-temporal organization of
the cage jumps is also remarkably similar in both types of system, as demonstrated
by the values provided in the table on the right of Figure 7, where the timescales
have been rescaled with the relaxation timescale arbitrarily set to 7, = 1000.
This observation suggests the possibility of universal mechanisms, which could
be captured at the level of coarse-grained models, such as kinetically constrained
models (KCM). However, we shall see now that the recent knowledge acquired
from the study of the cage jumps organisation also draws new constraints on these
models and calls for alternative proposals.

3.2. Towards the glass transition

We just saw the important role played by dynamical facilitation. Effective models
based on kinetic constrains [29, 30] posit that this effect is the underlying cause of
particle mobility by assuming that a region of frozen atoms can recover mobility
only when it is adjacent to a region already mobile. Within the models this is
due to the existence of mobility inducing defects, which cannot disappear (or
appear) except if there is another defect nearby. This constraint implies that local
relaxations cannot start or end without correspondingly being preceded or followed
in space and time by other local relaxations. We will refer to this property as
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FIGURE 7. Spatio-temporal organization of the cage jumps: Left: Sketch
of the spatio temporal organization of the cage jumps. Center: Spatial
location of cage jumps, showing how cage jumps facilitate each other
to form dynamical heterogeneities in the CSE (from [13]. Right: Com-
parison of the time and length scales involved in the spatio-temporal
dynamics for the CSE and the SRPS.

conservation of dynamical facilitation. In other approaches [8], instead, dynamical
facilitation is an important piece of the theoretical description but not the driving
mechanism of glassy dynamics.
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FiGURE 8. Facilitation patterns in space and time during the typical
relaxation time 7,(¢) for 3 packing fractions: from left to right ¢ =
0.780, 0.791, 0.802 (from [14]). The two directions of space are in the
horizontal plane and time is the vertical axis. The ratio 75/7; /o is given
in the upper-right corners. Jumps are represented with black dots, and
all possible tetrahedrons which edges are the facilitating links between
jumps are shown, forming volumes. Each separate connected structure
has a different color.
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The dynamical process leading to the avalanches reported in the previous
section provides a clear evidence of the important role played by dynamical fa-
cilitation: a local relaxation due to a cluster of cage jumps is typically followed
nearby in space and in time by another cluster relaxation, and so on and so forth
until the entire avalanche process is formed in a typical facilitation timescale 7.
However, the existence of finite duration avalanches already clearly demonstrate
that, in this particular case, dynamical facilitation is not conserved. In order to
understand precisely the role played by dynamical facilitation, we will now charac-
terize the evolution of the avalanche process when approaching the glass transition,
focusing on the case of the FBE.

The way in which clusters aggregate and the resulting facilitation patterns
are represented on Figure 8 for three packing fractions in 3D space/time, the
time axis being rescaled with respect to the relaxation time 7y/5 >~ 7,, the time
needed for observing half of the particles having jumped. We draw all cage jumps
(black dots) and link the ones separated by a lag time less than 7or,. This defines a
network whose vertices are the cage jumps and whose edges are the orientated links
towards facilitated jumps. For the loosest packing fraction, all jumps are connected
by a facilitation link and form a highly interconnected monolith: 74 > 71,5 and
dynamical facilitation is conserved on timescales relevant for structural relaxation.
When raising ¢, an increasing number of adjacent clusters become separated by
more than a few 7., within a time interval equal to the relaxation time. Several
independent avalanches start and end within a time interval of the order of the
relaxation timescale and dynamical facilitation is clearly not conserved anymore.
The above observations suggest that at even higher density 7y would become of
the order of 7¢..: each avalanche would reduce to a single cluster and dynamical
facilitation would disappear completely.

At this point, we see that the spatio-temporal organisation of the cage jumps
stands at the root of the dynamical heterogeneities and their evolution when ap-
proaching the glass transition. The very strong similarities reported among the
granular systems and the repulsive liquid provide a good physical ground for the
existence of a universal mechanism ruling the glass transition in these very differ-
ent systems. Dynamical facilitation should be a key ingredient in these models. If
the observations just reported in the case of the FBE also hold in the case of the
liquids — which remains to be checked — then coarse grained models should not
impose the conservation of facilitation.

3.3. Relation to the underlying structure

A natural question [27] related to these findings is what, if any, structural features
are correlated with the heterogeneity noted in the real space dynamics. Important
progress in this direction has been obtained [57], through the introduction of the
quantitative notion of “propensity”, and then later in [59, 12, 61, 62], where it has
been shown that irreversible motion is correlated with the spatial characteristics
of soft modes.
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FIGURE 9. Left: Cage jumps occurring between ¢ (blue) and ¢ + 7o
(red) for two different isoconfigurational trajectories, on top of a DW
factor map computed at time ¢ (in grey). Right: Cage jumps occurring
in 7 = 17 on top of a map of the relative difference (DW (t + 7) —
DW (t))/(DW) (from [15]).

Characterizing the structure of amorphous media is a difficult task. Identify-
ing the kind of order, if any, hidden inside the amorphous structure has not been
achieved yet. For 2D systems, several authors inspired by solid state approaches
propose to define defects in the neighborhood structure. Aharanov et al. [2] for
instance could provide evidences of the existence of two liquid-like and glass-like
defects in a bidisperse soft repulsive disks system. In this case, the glass transition
would coincide with the density of liquid-like defects going to zero. A variation of
the structural role of defects has been proposed by Tanaka and coworkers [52, 54],
who looked at the orientational order and observed some correlation with the dy-
namical heterogeneities. However such a correlation was never observed, neither
in the CSE, nor in the FBE and one may suspect that these approaches based on
the identification of defects is not as robust as one would expect for a minimal
mechanism.

An alternative way of characterizing the structure is to evaluate the dynami-
cal properties averaged over many initial configurations, identical in structure and
with no dynamical information: the so-called iso-configurational ensemble[59, 58|.
In practice one selects an initial equilibrium configuration, replaces the momen-
tum of the particles by random variables and runs the dynamics. Then computing
the Debye-Waller (DW) factor for particle i DW; = ([r;(t) — (77)5¢)*)st.c, Where
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the average is performed over the isoconfiguration ensemble and over a short time
interval ¢, one obtains a measure of the local ability to move, as encoded in the
structure only. DW; is a good estimate of the local softness.

Starting from the same equilibrated configuration, one can compute the long
time dynamics of several iso-configurational trajectories, identify the cage jumps
and compare their location to the map of the local DW. Comparing the two
panels on the left of Figure 9, one sees that the cage jumps are always located
on top of high DW areas, that is at the softest place of the system. Also one
observes that for each run they cover only a part of the high DW area, and that
they take place at different times and places for each trajectory underlining the
stochastic character of these events. So the following picture emerges. There are
indeed spatial heterogeneities in the structure: the softness is not evenly distributed
and cage jumps occur preferentially in the softest place. However this is not a
deterministic process. This is a qualitative but nonetheless clear evidence that
structural properties are good predictors of dynamics on large enough time and
length scale. However one must realize that when cage jumps occur, they also
contribute to the renewal of the DW map. And they do not simply relax the softer
regions to harder ones. Otherwise the system would harden and the dynamics
would not be stationary. Hence it must be quite a non-local and complicated
process. The right of Figure 9 indeed shows that the relative variation of DW
on a timescale comparable to the duration of the clusters of cage jumps, spread
over large regions, while the cage jumps are grouped in more localized clusters as
already discussed above. What is mediating the non-local interaction between cage
jumps and DWs is an intriguing question. One possibility is that a slowly varying
spatial field, like the thermal strain discussed in [60], plays an important role by
providing long ranged dynamical interactions.

4. Summary and open questions

Despite the very deep differences between thermal supercooled liquids at equilib-
rium and athermal granular media in out of equilibrium steady states, we have
seen in this note that the jamming of granular media shares strong similarities —
exceedingly slow relaxation and aging — with the glassy dynamics of super-cooled
liquids.

These similarities extend and find their origin at the microscopic scale. The
trajectories are composed of a short time vibrational part, which does not con-
tribute to the structural relaxation, and quasi-instantaneous events, the cage
jumps. For both the two granular media experiment CSE and FBE and the repul-
sive liquid simulations the dynamics occurs via a two-time scale process that gives
rise to dynamical heterogeneities and induces macroscopic relaxation. At short
times, the particles cooperatively jump within clusters whose sizes are widely dis-
tributed. These clustered jumps trigger other ones nearby, in a facilitated process,
leading to large scale avalanches. This organization of the dynamics is strikingly
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similar despite the differences between the systems considered here. This is related
to the separation of the dynamics into well-identified vibrations and cage jumps.
whether such processes would also be identified in simulations of other super-cooled
liquids like Lennard Jones liquids, or Silica as well as in colloidal suspensions is an
obvious question and a quite easy one to answer in the light of the existing data.

In the case of the granular FBE, the dynamical facilitation becomes less
conserved and plays a smaller role when increasing the packing fraction towards
the glass transition; whether the same scenario holds for thermal liquids is a key
issue. Studying the evolution of dynamical properties with decreasing temperature
following the same analysis would allow for direct tests of prominent theories of
the glass transition. For example, in the picture based on kinetically constrained
models of glasses [30] facilitation should become more relevant and conserved upon
lowering the temperature. In the Random First-Order Transition Theory [51], the
dynamics should be correlated with soft regions for moderately supercooled liquids
but, closer to the glass transition, the relaxation should be dominated by other
processes.

Finally in the case of the liquid, we have seen that dynamical facilitation
is clearly coupled to the structure: mobility preferentially follows the soft regions
and has a non-local influence on the evolution of the topography of hard and soft
areas. The resulting picture of facilitation is quite different from the one based on
the propagation of a conserved mobility field. What are the physical mechanisms
at stake in this strong coupling? Are they as general as the cage jumps or does
dissipation play a specific role in the case of granular media. These are certainly
important questions for the near future.
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