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Synopsis
We investigate the structural, dynamical, and rheological properties of colloid-polymer mixtures in
a volume fraction range of !=0.15–0.35. Our systems are density-matched, residual charges are
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screened, and the polymer-colloid size ratio is #0.37. For these systems, the transition to
kinetically arrested states, including disconnected clusters and gels, coincides with the fluid-fluid
phase separation boundary. Structural investigations reveal that the characteristic length, L, of the
networks is a strong function of the quench depth: for shallow quenches, L is significantly larger
than that obtained for deep quenches. By contrast, L is for a given quench depth almost
independent of !; this indicates that the strand thickness increases with !. The strand thickness
determines the linear rheology: the final relaxation time exhibits a strong dependence on !,
whereas the high frequency modulus does not. We present a simple model based on estimates of
the strand breaking time and shear modulus that semiquantitatively describes the observed
behavior. © 2010 The Society of Rheology. $DOI: 10.1122/1.3314295%

I. INTRODUCTION

Colloidal suspensions exhibit a wide range of disordered dynamically arrested states,
including repulsive and attractive glasses $Pusey and van Megen "1987!; Pham et al.
"2002!%, ramified gels $Weitz and Oliveria "1984!; Lin et al. "1989!; Poon et al. "1995!;
Verhaegh et al. "1997!%, and disconnected glassy cluster phases $Sedgwick et al. "2004!;
Lu et al. "2006!%. The two main control parameters driving this dynamic arrest are the
particle volume fraction, !, and the magnitude of the attractive interaction energy, U. In
the limit of low ! and large U, irreversible aggregation leads to the formation of fractal
gels $Kolb et al. "1983!; Meakin "1983!; Weitz and Oliveria "1984!; Lin et al. "1989!%. In
the limit of very low U, increasing ! leads to the arrest in a glassy state, where the
particles are permanently trapped within cages of nearest neighbors $Pusey and van
Megen "1987!%. Between these two limits, at intermediate U and !, the interplay between
fluid-fluid phase separation and glassy arrest drives the transitions to arrested states $Poon
et al. "1995!; Verhaegh et al. "1997!; Foffi et al. "2005!; Manley et al. "2005!; Buzzacaro
et al. "2007!; Cardinaux et al. "2007!; Charbonneau and Reichman "2007!; Lu et al.
"2008!%. This interplay has been recently the subject of intense research, which indicated
that parameters such as the range of the attractive potential $Sedgwick et al. "2004!; Lu
et al. "2006!%, the density matching conditions $Shah et al. "2003!; Sedgwick et al.
"2004!%, and the presence of Coulomb interactions $Groenewold and Kegel "2001!; Sedg-
wick et al. "2004!; Stradner et al. "2004!; Sanchez and Bartlett "2005!; Dibble et al.
"2006!% can significantly alter the observed behavior. This wide variety of parameters is
one of the key difficulties in experimental investigations, where control over all of them
is not always easily achieved. To date, the model system offering the best control is the
well-studied depletion system composed of poly-methylmethacrylate "PMMA! spheres
and polystyrene coils.

In this work we use such a system to explore the phase behavior of colloidal systems
with a medium range attraction "polymer-colloid size ratio #0.37!. Our systems are
density matched and the effect of charges is minimized by the addition of salt. We
explore a volume fraction range of !=0.15–0.35, where we find that the arrest of the
fluid-fluid phase separation leads to both disconnected clusters and space-spanning net-
works. These networks are composed of interconnected strands, whose characteristic
length scale, L, decreases as the quench depth increases; however, L is independent of
particle volume fraction, implying that the strand thickness increases with !. The me-
chanics of these networks are determined by the strand thickness. The high frequency
shear modulus depends only weakly on !, while the relaxation time exhibits a strong
dependence. We propose a simple model that accounts for this behavior by incorporating
the effects of heterogeneity of the strands, which results in weak points that are most
likely to break. This picture also accounts for the origin of the glassy cluster phase
through the competition between strand breaking and cluster diffusion. We also rational-
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ize the observed changes in the phase behavior of systems that are not density matched,
where shear fluidization due to gravity can interfere with the coarsening process of the
spinodal decomposition.

II. EXPERIMENT

A. Sample preparation

The colloidal particles used in this work are PMMA spheres, sterically stabilized by
poly-12-hydroxystearic acid $Antl et al. "1986!%; the average colloid radius is a
=136 nm and the polydispersity #5%. To minimize sedimentation and scattering, the
colloids are suspended in a mixture of cycloheptyl bromide and decahydronapthalene
"DHN!, which nearly matches both their density, "=1.225 mg /mL, and index of refrac-
tion, n&1.50. Electrophoresis measurements on similar suspensions indicated that
PMMA particles are charged in these solvent mixtures $Yethiraj and van Blaaderen
"2003!%. To screen out any long-range Coulombic interactions, we add #1 mM of an
organic salt, tetrabutyl ammonium chloride, to all our samples.

Depletion attractions between the colloids are induced by addition of linear polysty-
rene "PS! of weight-averaged molecular weight Mw=2#106 g /mol and radius of gyra-
tion Rp=50 nm, where we parameterize the range of the attraction by $=Rp /a&0.37.
The strength of the depletion attraction is set by the concentration of polymer in the free
volume, cp, which we calculate from the polymer concentration in the total volume, cp

tot,
via cp=cp

tot"V /Vfree!; the free volume is calculated by subtracting both the colloid volume
and the volume excluded to the polymer’s center of mass from the total volume of the
sample $Lekkerkerker et al. "1992!%. The range of polymer concentrations investigated is
cp=4.21–7.93 mg /mL, as reported in Table I; the overlap concentration of the polymer

TABLE I. List of samples with nonzero polymer concentrations studied
in this investigation. The polymer concentrations are indicated as polymer
concentration in the total sample volume, cp

tot, and polymer concentration
in the free volume, cp, as calculated following Lekkerkerker et al. "1992!.

%
cp

tot

"mg/mL!
cp

"mg/mL!

0.15 5.88 7.93
4.75 6.41

0.20 4.50 6.98
4.27 6.62
3.74 5.80
3.54 5.49
3.28 5.09
2.94 4.56

0.25 4.04 7.43
3.72 6.84
3.35 6.16
3.03 5.57
2.87 5.28
2.63 4.84
2.29 4.21

0.35 2.59 7.64
1.95 5.75
1.74 5.13
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is cp
! &8 mg /mL, as determined from viscometry measurements.

To homogenize the samples and break up any particle aggregates, each sample is
tumbled for 24 h prior to each experiment. Both the dynamics and structure of our
colloid-polymer mixtures typically evolve for 30 min after cessation of tumbling or shear
applied in a rheometer; we thus equilibrate our samples for at least this time before all
experiments.

B. Determination of structural hallmarks

To determine the spatial arrangement of the colloids in our samples, we use both a
scanning microscopy method based on coherent anti-Stokes Raman spectroscopy
"CARS! $Zumbusch et al. "1999!; Potma et al. "2002!% and static light scattering "SLS!.
For our CARS experiments, we use two pulsed lasers to generate an anti-Stokes signal at
a frequency &as=2&p−&s via a nonlinear three-photon optical process, where &p and &s
are, respectively, the frequencies of the pump excitation field and the Stokes excitation
field. We tune the lasers to a frequency difference, '&=&p−&s=2842 cm−1, that excites
a Raman-active vibration of the DHN molecules, thereby creating optical contrast be-
tween the colloids and the solvent. The resultant CARS signal is proportional to Ip

2Is,
where Ip is the incident laser intensity and Is is the Stokes laser intensity, and is therefore
restricted to contributions from a small focal volume. Consequently the CARS signal is
inherently confocal and can be used to acquire images by scanning the sample. Two-
dimensional images of the samples are obtained by raster scanning the focal point of the
lasers over an area of 84#84 (m2 in #8 s; the typical time for a 3 (m cluster to
diffuse its radius in this solvent is #10 s. The scan speed therefore sets the resolution
limit for freely diffusing objects at #3 (m; for arrested structures, the resolution limit is
#400 nm.

For our SLS experiments, we use two different set-ups, a simple small angle device
and a commercial goniometer, to determine the intensity of the light scattered by our
samples, I"q!, in two different ranges of wave vectors, q. We access a q-range of
4.8–34 (m−1 by using the goniometer equipped with an argon-ion laser operating at a
wavelength of )0=514.5 nm in vacuo. In this range of wave-vectors, the form factor,
F"q!, of our particles varies with q, for which we must account when determining the
static structure factor S"q! from I"q!. Because our intensity data are somewhat corrupted
by multiple scattering and flare, we adopt the following procedure to determine S"q!: for
a given !, we measure the ensemble-averaged scattered light intensity I!"q! for a sample
with no added polymer, which we expect to exhibit hard sphere behavior $Pusey and van
Megen "1986!%. We then calculate the expected static structure factor SHS"q! using the
Percus–Yevick approximation $Percus and Yevick "1958!% and estimate the “form factor”
needed to calculate S"q! as F!"q!= I!"q! /SHS"q!. The structure factor for our depletion
systems is then calculated according to S"q!= I"q! /F!"q!. For dynamically arrested sys-
tems, we obtain the ensemble-averaged intensity by integrating the intensity signal while
rotating the sample.

To measure the intensity of scattered light in a lower q-range of 0.22–2.9 (m−1, we
illuminate the sample with light from a He-Ne laser ")0=632.8 nm in vacuo! and image
the scattered light onto a screen while allowing the transmitted beam to pass through a
hole in the screen. We obtain I"q! by averaging the intensity around rings of constant q.
In the q-range accessible with this setup the particle form factor, F"q!, is nearly indepen-
dent of q; thus, we approximate S"q! with I"q!. To match the data sets obtained in the low
and high q-range, we determine the normalization factor that best matches the data sets
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obtained for samples with cp=0. For all data sets, we then correct the low q data by this
factor.

C. Determination of dynamical and rheological properties

To gain insight into the dynamics and rheology of our samples, we perform dynamic
light scattering "DLS! and steady and oscillatory shear experiments. We investigate the
dynamics at length scales comparable to the particle size "qa=3.52! using DLS. The
experiments are performed with the goniometer setup used for the SLS experiments. We
quantify the intensity fluctuations by calculating the intensity-intensity correlation func-
tion g2"q , t!= 'I"q ,*!I"q ,*+ t!( / 'I"q ,*!2( online using a multi-tau correlator "ALV-5000
Multiple Tau Digital Correlator!. We collect data for 1800 s to ensure a good statistical
average. For ergodic samples, we use the Siegert relation g2"q , t!=1++)f"q , t!)2 to deter-
mine the dynamic structure factor f"q , t!; the parameter +&1 depends on the ratio of the
speckle size to the collection area of the detector. For non-ergodic samples, we use the
Pusey–van Megen method to determine f"q , t! $Pusey and van Megen "1989!%: after each
measurement of the time-averaged g2"q , t!, we measure the ensemble-averaged scattering
intensity 'I"0!(E by rotating the sample cuvette during a one-minute measurement. We
then obtain f"q , t! from a modified Siegert relationship, f"q , t!=Y −1 /Y +1 /Y$g2"q , t!
−,2%1/2, with ,2= 'I2"0!(T / 'I"0!(T

2 −1 and Y = 'I"0!(E / 'I"0!(T, where 'I"0!(T is the time-
averaged intensity.

We perform steady-shear-rate and oscillatory measurements at T&25 °C using a
strain-controlled rheometer "TA-Instruments, ARES!. To maximize the measurable range
of stress, we use a double-wall couette geometry with a large surface area. Before each
measurement, we preshear the sample at a rate of 300 s−1 to break up any structures;
subsequently, the sample is allowed to equilibrate for 1200 s to allow long-range struc-
tures to form. During equilibration, we monitor the viscoelastic response of the evolving
system in a small-strain oscillatory measurement to ensure that the system reaches a
steady state. The viscoelastic response is characterized by performing frequency-
dependent oscillatory measurements. An oscillatory strain -0"t!=-0ei&t is applied to the
sample and the resulting time-dependent stress ,"t!=-0"t!$G!"&!+ iG""&!% is measured,
where the storage modulus G!"&! and the loss modulus G""&!, respectively, characterize
the elastic and the viscous contributions to the measured stress response. For each
sample, we choose the strain amplitude -0 to be within the linear viscoelastic regime,
which we determine by measuring the strain dependence of G!"&! and G""&! at several
frequencies. The flow behavior of our systems is characterized by performing steady-
shear measurements as a function of shear rate; the structure and flow are allowed to
equilibrate for 15 s and data are then collected for 15 s at each shear rate.

To account for the varying contribution of the background solvent to both dynamics
and rheology, we determine the concentration dependence of the viscosity . of the
polymer solutions. We use this data to rescale all times and frequencies by .0 /. and
. /.o, respectively, where .o is the viscosity of the solvent mixture.

III. RESULTS AND DISCUSSION

In Fig. 1, we display the structure factors obtained for our depletion systems in the
volume fraction range of !=0.15–0.35. In the high q-range, we observe the same quali-
tative behavior for all systems: the position of the nearest-neighbor peak is shifted to
larger qa as compared to that expected for hard sphere suspensions "solid lines! $Percus
and Yevick "1958!%. This shift is nearly independent of polymer concentration, indicating
that the nearest-neighbor separation generally decreases as the colloidal particles become
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attractive. However, as cp is increased, we detect an additional small shift in the peak
position; concurrently the height of the nearest-neighbor peak increases, indicating an
increase in the average number of nearest neighbors. This sudden increase in peak height
occurs at a critical polymer concentration cp,c"!!, which depends on !. We find that cp,c
first systematically decreases from cp,c#7 mg /mL for !=0.15 to cp,c#5.3 mg /mL for
!=0.20 and cp,c#4.6 mg /mL for !=0.25, and then increases to cp,c#5.3 mg /mL be-
tween !=0.25 and !=0.35. Concomitant with the sudden increase in the height of the
nearest-neighbor peak, a second peak appears in the low q-range of S"q!, indicating the
emergence of large length scale structural heterogeneities that are characterized by a
well-defined correlation length, L.

Additional support for the formation of large length scale structures is obtained from
CARS microscopy, as shown for !=0.20 and !=0.25 in Fig. 2. Raising the polymer
concentration above cp,c for !=0.20 leads to the formation of large length scale struc-
tures, whose characteristic length does not appear to depend on cp. This qualitatively
agrees with the development of the position of the peak observed in the low q-range of
S"q!, qL, which exhibits almost no variation with cp/cp,c for !=0.20 $Fig. 1"b!%. The
agreement between low-angle light scattering and CARS-microscopy data also holds on
an absolute scale: the q-dependent intensities obtained from the Fourier transform of the
CARS images "not shown! exhibit a characteristic turn-over at low q that coincides with
the qL obtained in the scattering experiments. To convey this agreement, we report the
characteristic length L=20 /qL as circles in Fig. 2. In our series of samples at !=0.20, we
find that the large length scale structures are disconnected for cp just above cp,c "cp
=5.49 mg /mL!; they diffuse slowly during the CARS experiment, exhibiting the typical
behavior of a “fluid cluster phase” $Segrè et al. "2001!; Lu et al. "2006!%. These fluid
clusters coarsen slightly over the duration of our experiment without appearing to coa-
lesce. Increasing the attraction further results in structures that are interconnected and for
which we do not observe any temporal evolution. In contrast to the behavior found for
!=0.20, the large length scale structures obtained at !=0.25 display a striking variation
in the characteristic length scale as cp is varied. Samples with a polymer concentration
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FIG. 1. Wave-vector dependence of the static structure factor obtained in two different q-ranges. Solid black
lines indicate the structure factor expected for the hard-sphere system as calculated using the Percus–Yevick
approximation. "a! !=0.15 with cp=6.41 mg /mL ""!, 7.93 mg/mL "!!. "b! !=0.20 with cp=5.09 mg /mL
""!, 5.49 mg/mL "!!, 5.80 mg/mL "#!, 6.62 mg/mL "#!. "c! !=0.25 with cp=4.21 mg /mL ""!, 4.84 mg/mL
"#!, 5.28 mg/mL "$!, 7.43 mg/mL "!!. "d! !=0.35 with cp=5.13 mg /mL ""!, 5.75 mg/mL "#!, 7.64 mg/mL
"!!.
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just above cp,c exhibit an interconnected structure whose characteristic length is signifi-
cantly larger than that of samples at larger cp. This finding again agrees with the devel-
opment of the peak position qL $Fig. 1"c!%, where we find L /2a=4513 for the samples
with a polymer concentration just above cp,c, while L /2a=1813 for the samples at larger
cp. Qualitatively similar behavior is also observed for the samples with !=0.35 $Fig.
1"d!, CARS images not shown%. For the sample with cp just above cp,c, coarse network
structures with a large characteristic length are formed; for the sample at larger cp, the
network exhibits a smaller characteristic length. All networks at !=0.25 and !=0.35
appear static over the duration of the CARS measurement, which suggests that at this
volume fraction arrested gels are obtained for all cp/cp,c.

The sudden appearance of large length scale structures above cp,c"!! in conjunction
with the sudden increase in particle-particle correlation indicates that cp,c"!! corresponds
to a well-defined boundary, beyond which the system becomes unstable and starts to
phase separate $Verhaegh et al. "1997!; Manley et al. "2005!; Cardinaux et al. "2007!; Lu
et al. "2008!%. In this case, the kinetic arrest of the phase separation results from the
dynamic arrest of the particles in the colloid-rich regions through an attractive glass

(d)

c p
[m
g/
m
L]

φ

φ=0.20
cp=6.98 mg/mL

(a)

(b) (e)

(c) (f)

φ=0.20
cp=5.80 mg/mL

φ=0.20
cp=5.49 mg/mL

φ=0.25
cp=7.43 mg/mL

φ=0.25
cp=5.28 mg/mL

φ=0.25
cp=4.84 mg/mL

FIG. 2. CARS micrographs obtained at various cp for "a!–"c! !=0.20 and "d!–"f! !=0.25. The particles appear
dark in these images; the scale bars correspond to 10 (m. Circles correspond to the characteristic length
obtained in small angle light scattering L#20 /qL.
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transition $Manley et al. "2005!%. In this scenario, the variation of L with increasing cp
may be understood as a consequence of an arrest in the early stage of phase separation,
where the quench depth determines the fastest growing length scale: the deeper the
quench, the smaller the length scale $Cahn and Hilliard "1958, 1959!%. However, these
length scales are generally predicted to be, at most, of the order of a few particle diam-
eters for colloid-polymer mixtures $Aarts et al. "2004!; Bailey et al. "2007!%. By contrast,
the characteristic lengths of our arrested systems are rather large, L /2a=15–50; this
suggests that the dynamic arrest occurs during the intermediate stage of phase separation,
where the system simultaneously coarsens and densifies in time $Siggia "1979!%.

Support for this scenario is obtained by comparing the characteristic lengths obtained
in our arrested systems to those obtained during the phase separation of a depletion
system similar to the one investigated here. Indeed, Bailey et al. investigated the temporal
development of qL after shear melting a PMMA-particle–PS mixture with a=159 nm,
$=0.63, cp

tot=1.285 mg /mL, and !=0.22 in microgravity $Bailey et al. "2007!%. In this
experiment, qL decreases in a short window of 4–80 s from #20 000 to #4000 cm−1,
which corresponds to an increase of L /2a from #11 to #46, the range of length-scales
characterizing our arrested systems. This indicates that the length scales of our systems
are typically obtained in a stage of phase separation where L is already evolving in time.
In the experiment performed by Bailey et al., the temporal evolution of L within the time
window of interest "4–80 s! indicated that coarsening was still predominantly determined
by diffusion. Based on these findings, it therefore seems likely that the kinetic arrest of
the phase separation observed in our system occurs during the intermediate stage of phase
separation. In this scenario, the variation in the characteristic length scale with increasing
cp can be understood as a consequence of an increasing rate of coarsening. As cp is
increased, the phase separation is faster and thus less time remains for coarsening to
proceed before the arrest condition is reached; this leads to the formation of structures
with smaller correlation lengths, in agreement with the observed behavior. Interestingly,
we find only little variation of the structural hallmarks as ! is varied. For sufficiently
high cp, the network structure is nearly identical for different !; this can be seen by
comparing the structures formed at !=0.20 and !=0.25 and cp#7 mg /mL $Figs. 2"a!
and 2"d!% and the shape and position of the low-q peak in S"q! for !=0.20, !=0.25, and
!=0.35 and cp#7 mg /mL $Figs. 1"b!–1"d!%. Assuming that the critical density leading
to the dynamic arrest of the denser phase is constant at a given cp, L"!!&const indicates
that the density of the denser phase is directly correlated with the characteristic length
during the phase separation process.

The origin of the disconnected cluster phase observed at !=0.20 for cp just above cp,c
is not evident. One possibility would be that the disconnected clusters form by a nucle-
ation and growth process, which is arrested when the density of the colloids exceeds the
critical density of a glass; here, the glassy clusters are stable if the time it takes to fuse
two clusters is much longer than the time it takes for them to diffuse away $Cates et al.
"2004!; Lu et al. "2006!%. We note, however, that the q-dependence of S"q! obtained at
!=0.20 for the connected and disconnected structures are nearly identical; this implies
that the kinetic pathways leading to their formation are similar. As will be discussed later,
the linear mechanical response function of the connected networks reveals a residual
relaxation mechanism, which exhibits a strong dependence on !. This suggests that the
disconnected cluster phases are formed by spinodal decomposition, where the relaxation
mechanism is so fast that a connected network cannot be preserved.

To gain further insight into the dynamical arrest conditions of our systems, we probe
the dynamics of the individual particles at the nearest-neighbor length scale by determin-
ing the dynamic structure factor, f"q , t!, at qa=3.52. In the absence of polymer "cp=0!,
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f"q , t! decays exponentially for all !, as shown by the solid lines in Fig. 3, where we
report f"q , t! as a function of t.o /. to account for the changes in the background vis-
cosity due to the presence of the polymer. For cp2cp,c, the dynamics of our systems is
essentially indistinguishable from that obtained at cp=0, indicating that the particles
diffuse freely. By contrast, for cp/cp,c, the dynamic structure factor exhibits strong
deviations from the free-diffusion profile. For !=0.25 and !=0.35, the dynamic struc-
ture factors decay only partially, exhibiting a nearly time-independent nonzero value at
long times for all cp/cp,c. This behavior indicates a sharp transition to full arrest of the
system in a connected state for all cp/cp,c. By contrast, the system at !=0.20 exhibits a
slow structural relaxation for cp just above cp,c, in agreement with our observation of
diffusing clusters in CARS microscopy. Increasing the polymer concentration further
again leads to dynamic arrest at the nearest-neighbor separation, which indicates the
existence of an arrested, space-spanning network. For !=0.15, the dynamics of a sample
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with cp=7.93 mg /mL is noticeably slower than free diffusion, even though we observe
neither a structure peak at low q nor any large scale structure in CARS microscopy.
However, the nearest-neighbor peak is more pronounced for this sample than for the
sample with cp=6.41 mg /mL. We tentatively explain these results with the formation of
clusters that are too small to be resolved by CARS and too broadly distributed in size to
give rise to a well-developed low q peak.

We summarize the structural and dynamic hallmarks of our system in a phase diagram,
shown in Fig. 4. The solid line indicates the boundary beyond which the system under-
goes phase separation that becomes arrested when the colloidal-rich regions reach the
critical density of a glass. Depending on volume fraction this arrest leads either to dis-
connected clusters or space spanning networks. The dashed line indicates the boundary
beyond which the dynamics of the system becomes arrested, indicating the transition to
interconnected space spanning networks.

To gain a better understanding of the various parameters determining the conditions
for arrested phase separation, we compare our phase diagram to that reported for other
depletion systems. As pointed out in the Introduction, the effects of gravity and charge
can significantly modify the phase behavior $Groenewold and Kegel "2001!; Shah et al.
"2003!; Sedgwick et al. "2004!; Stradner et al. "2004!; Sanchez and Bartlett "2005!;
Dibble et al. "2006!%. Moreover, the range of the attraction plays a major role in deter-
mining both the equilibrium phase behavior and the position and shape of the arrest line
$Lekkerkerker et al. "1992!; Ilett et al. "1995!; Foffi et al. "2002!%. Here we study a
buoyancy-matched system, where residual charges are screened by the addition of salt.
The range of the attraction, $#0.37, is intermediate between short and long ranged.
Though our measure of the phase behavior is somewhat coarse, our results indicate that
arrested phases are formed for all polymer concentrations exceeding cp,c. This is at least
partly consistent with the phase behavior observed in a depletion system with a shorter
range potential, $=0.059, in which the particle and solvent densities were perfectly
matched and all charges were screened by the addition of salt $Lu et al. "2008!%. One of
the main findings of that work was that the gelation boundary exactly coincided with the
phase separation line. Such coincidence of the gelation boundary with the phase separa-
tion line is also observed in our system at !=0.25 and !=0.35. By contrast, phase
separation that is not interrupted by dynamic arrest of the dense phase can be achieved at
even larger $ as shown for $=0.63 in $Bailey et al. "2007!%. This dependence of the arrest
condition on $ is consistent with theoretical work on phase behavior $for example, Foffi
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FIG. 4. State diagram of colloid-polymer mixtures with an attraction range of $#0.37. Symbols indicate the
state of the colloidal system: ""! dispersed particles; "!! clusters; "#! gels. Solid line indicates the boundary
between the stable dispersed state and the arrested phase separation states; dashed line indicates the boundary
between the fluid clusters and dynamically arrested gel states.
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et al. "2002!%: for large $, the attractive-colloidal-glass-line intersects the fluid-fluid
boundary in the decreasing branch of the T-! diagram "the increasing branch of the U-!
diagram!, whereas for small $, the glass-line intersects the fluid-fluid boundary in the top,
flat part of the T-! diagram "the bottom, flat part of the U-! diagram!. Thus, for large $,
there is a range of polymer concentrations where phase separation can proceed fully
without arrest, whereas for small $, the fluid-fluid phase separation will invariably be
interrupted by vitrification of the denser phase. Our findings indicate that the range of our
potential is still sufficiently small to lead to arrested states for all cp/cp,c. We note,
however, that we did not systematically probe the phase behavior in the direct vicinity of
the fluid-fluid phase boundary; we can thus not exclude the possibility that there is a very
narrow range of polymer concentrations for which our medium-range potential system
would fully phase separate without dynamic arrest.

Interestingly, for systems that are not density matched, full phase separation can also
be obtained for short-range attraction. In a PMMA-PS depletion system with $=0.08,
where the density difference between particle and solvent was '"#0.2–0.3 g /cm3, the
hallmarks of classic spinodal decomposition were observed for cp just above cp,c, while
the formation of transient gels was observed at larger cp $Poon et al. "1995!%. Similarly,
for a depletion system with $=0.25 and an even higher buoyancy mismatch of '"
#1.2 g /cm3, a phase boundary to a two-phase region was observed before crossing the
boundary to a transient gel region $Verhaegh et al. "1997!%. Both the formation of tran-
sient gels that collapse after a certain latency period and the regime of non-arrested phase
separation for cp just above cp,c can be understood as the result of the gravitational load
on the system.

As denoted in our data and in recent work on the arrested phase separation of
lysozyme $Gibaud and Schurtenberger "2009!%, the characteristic length of the arrested
state is a function of the quench depth: the shallower the quench, the larger the L. This
size dependence bears important consequences on the phase behavior of density-
mismatched systems. Indeed, for such systems, the capillary length Lc=*- / "'"!g! de-
fines the length scale beyond which gravity determines the phase separation behavior
$Aarts et al. "2005!%; - and '"! are, respectively, the interfacial tension and the density
differences between low and high density phases and g is the earth’s gravitational accel-
eration. Depending on density mismatch and quench depth, it is possible that Lc is
exceeded during phase separation before the arrest conditions are reached. In such cases,
the denser phase will never vitrify as shear constantly fluidizes the system; consequently,
the phase separation never arrests. For shallow quenches, the characteristic length scale L
grows larger before arrest occurs and thus Lc is more likely exceeded before arrest in a
shallow quench than in a deep quench. Therefore, phase separation proceeds for shallow
quenches but becomes arrested for deeper quenches in systems that are not density
matched. Accordingly, the gap between the fluid-fluid phase separation boundary and the
gel line should depend sensitively on the ratio of L /Lc, where L is understood here as the
length scale determining the potentially arrested state: for L /Lc/1 phase separation
proceeds, whereas for L /Lc21 the arrested gel-state is reached. The position of the gel
boundary should thus be at L /Lc#1. In our experiment, where the phase boundary
coincides with the arrest boundary, Lc/L for all cp/cp,c.

Gels formed by arrested spinodal decomposition exhibit features of both colloidal gels
and glasses. They form long-range networks and thus exhibit the typical space-spanning
features of gels; they dynamically arrest when the local density exceeds a critical thresh-
old and thus also exhibit typical features of glasses. Which of these two characteristics
dominates their macroscopic response is not evident. To address this issue, we determine
the mechanical behavior of our samples by performing both steady and oscillatory shear
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measurements. The steady shear experiments essentially confirm the dynamical behavior
observed in dynamic light scattering. For samples with cp2cp,c, the shear stress increases
linearly with the applied shear rate, consistent with Newtonian behavior, as shown in Fig.
5. Deviations from this behavior are observed as the polymer concentration exceeds cp,c.
For samples with the highest cp,c, the stress is independent of shear rate in the low range
of shear rates measured, which is a characteristic of solid-like systems exhibiting a
dynamical yield stress. This indicates that dynamical and structural arrests are accompa-
nied by the development of mechanical stability. This stress response is remarkably
insensitive to polymer concentration when cp is sufficiently large. Moreover, the dynami-
cal yield stress exhibits a surprisingly weak dependence on volume fraction. At the
highest polymer concentration investigated, cp&7 mg /mL, increasing the volume frac-
tion from !=0.20 to !=0.25 results in an increase of the yield stress by only a factor of
#2.

In agreement with these observations, we find for the samples with higher cp that the
frequency dependence of the storage and loss modulus exhibits only little variation when
cp is varied. As a typical example for the high-cp behavior at !=0.20 and !=0.25, we
display the frequency dependent response of the two samples with cp&7 mg /mL in Fig.
6. Consistent with the expected solid-like properties of the networks, we find that G!
dominates over G" at high frequencies. However, the frequency dependent response also
reveals the onset of a dissipative process at low frequencies. The characteristic time of
this process exhibits a strong dependence on volume fraction. This is in contrast to the
weak increase in the magnitude of the high frequency elastic modulus, which increases
by only a factor of 2–4 as ! is increased from !=0.20 to !=0.25. For the sample with
!=0.20, the relaxation frequency is &c#0.2–0.6 rad /s near the low end of accessible
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FIG. 5. Stress, ,, as a function of shear rate -̇. To account for the variation in the background viscosity due to
the varying polymer concentration, the shear rate axis is rescaled by the ratio of the background viscosity to the
solvent viscosity, . /.o. "a! !=0.20 with cp=4.56 mg /mL "&!, 5.09 mg/mL ""!, 5.80 mg/mL "#!, 6.62
mg/mL "#!, 6.98 mg/mL "!!. "b! !=0.25 with cp=4.21 mg /mL "&!, 5.28 mg/mL "$!, 6.16 mg/mL "#!, 6.84
mg/mL "#!, 7.43 mg/mL "!!. Dashed lines indicate the viscosity of the background solvent.
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frequencies. For the sample with !=0.25, the relaxation frequency decreases by a factor
of 30–100, as estimated by extrapolating the frequency dependence of G! and G" in the
low range of accessible frequencies to G!"&c!=G""&c!. Although the relaxation time of
this process is longer than the time scale accessible in our dynamic light scattering
experiments, it is surprising that our DLS data, which probe the dynamics at the particle-
particle length scale, show no sign of a final relaxation. This indicates that the dissipative
process does not affect the average configuration of the particles.

To account for both the weak !-dependence of the elastic modulus and the strong
!-dependence of the relaxation time, we examine the structural properties of the two
samples under consideration, !=0.20 and !=0.25 with cp&7 mg /mL. Both the SLS
data and the CARS microscopy images indicate that the characteristic strand length L is
essentially identical for these two samples. As we expect the denser phase to occupy less
volume as ! decreases, a change in ! must alter the diameter ds of the strands. To
estimate the strand diameter, we assume that the local volume fractions of the colloid-rich
and colloid-poor phases, !1 and !2, do not depend on the total ! of the sample at a given
cp; this in turn implies that the fraction of volume occupied by the colloid-rich phase 3
= "!−!2! / "!1−!2! increases linearly with !. Since the actual configuration of the net-
work remains unchanged as ! is varied, 3 should be proportional to the volume of a
single strand, Vs=Lds

2; assuming that the number density of strands is 1 /L3, we can write
3=Vs /L3=ds

2 /L2, such that ds=L*3.
To estimate the elastic properties of the network, we assume that the dense phase can

be described as a isotropic bulk material with an elastic shear modulus given by the
interaction energy density, Gbulk&U /a3, with U the magnitude of the attractive interpar-
ticle potential. Additionally, we consider that the load-bearing properties of the network
structure are determined by the area fraction of the strands "ds /L!2, which corresponds to
3, and we write G!&Gbulk3. Using this expression, we expect for the ratio of the
G!-values at !=0.25 and !=0.20 that G!=0.25! /G!=0.20! = "0.25−!2! / "0.2−!2!&1.6,
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FIG. 6. Frequency dependence of storage $G!"&!, $% and loss $G""&!, '% moduli for two samples with
comparable values of cp at "a! !=0.20 and "b! !=0.25.
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where we estimate !2#0.12 from the phase diagram in Fig. 4. This ratio is in fair
agreement with our experimental finding: using the G!-values at the frequency at which
G" attains its minimum, we obtain a ratio of !4, and using the values at a fixed frequency
of 10 rad/s, we obtain a ratio of !2.8. To further check the validity of this simple
description, we evaluate the interaction potential that would best describe the magnitude
of the experimental shear modulus according to U&Ga3 /3, where we estimate from the
phase diagram that !1#0.5. This evaluation yields U=712kBT, in reasonable agreement
with predictions of the Asakura–Oosawa theory $Asakura and Oosawa "1954!%. We note,
however, that the Asakura–Oosawa theory is only strictly valid at low particle volume
fractions, where the depletion effect can be treated as inducing an effective attraction
between the colloids. Moreover, recent studies have shown that it is not exact when
applied to colloid-polymer mixtures, in particular if partitionings of the polymer between
the colloid-rich and the colloid-poor phases are not taken into account $Ramakrishnan et
al. "2002!%.

Our simple picture of the network morphology should also allow us to estimate the
relaxation time of the dissipative process, which we assume to be governed by the
breaking of strands. As the strand thickness increases, its cross section contains more
interparticle bonds and thus the energy required to break the strand also increases. To
estimate the characteristic time scale, we assume a Boltzmann factor with an energy
barrier of Ueff=NeffU, where Neff is the number of bonds that must be broken within the
cross section of a strand. We account for the attempt frequency of escaping a potential
well with the triangular shape expected for a depletion potential $Shih et al. "1990!;
Smith et al. "2007!; Laurati et al. "2009!%. The relaxation time is then described by

* =
42

Ds
"s!

e−Ueff/kBT − "1 − Ueff/kBT!
"Ueff/kBT!2 , "1!

with 4=Rp the width of the potential well and Ds
"s! the short time self-diffusion coefficient

of the particles within the well, which we estimate from the diffusion coefficient of hard
spheres at !=0.5, where Ds

"s!&0.12D0; D0 is the free diffusion coefficient $Segrè et al.
"1995!%. For the number of bonds per cross section area of a strand, we presume !1 /0a2;
accordingly, the number of bonds in the total cross section is given by Neff
&!1"ds /2a!2, such that Neff&34 and Neff&55 for the samples at !=0.20 and !=0.25,
respectively. Using these values in Eq. "1! yields relaxation times that are many orders of
magnitude larger than those observed in the experiments. Moreover, even the ratio be-
tween the two time scales, *!=0.25 /*!=0.20&exp+'NeffU /kBT,&1064, exceeds by many
orders of magnitude the experimental finding, where *!=0.25 /*!=0.20=30–100.

To account for this discrepancy, we consider the variation of the strand thickness along
its length. As seen in the micrographs of Fig. 2, the strand thickness is indeed not
uniform, but shows significant variations. It is reasonable to assume that the strands will
break at the weak points where the diameter and thus the number of bonds are minimal.
Such a scenario is also suggested by our dynamic light scattering data taken at the
nearest-neighbor particle peak, where we find no sign of a final relaxation time. This
indicates that on average, the local particle configuration does not change. As we do not
observe a temporal evolution of the network structure on the large length scales probed in
CARS-microscopy, we can further infer that the local breakage of a strand will not be
permanent and that reconnection to the network occurs close to the breaking point. Our
macroscopic oscillatory experiment thus captures a very localized relaxation process at
the rare breakage point of the network, while our dynamic light scattering experiment
probes the average position of the particles, which remains unchanged. To test this inter-
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pretation, we assume that the minimum strand thickness ds"min! is proportional to the
average strand thickness, ds"min!=5ds. We set 5=0.19 such that the predicted relaxation
time for !=0.20, *!=0.2&10 s, matches the experimentally observed time scale; we then
calculate the corresponding relaxation time scale for !=0.25, where we find *!=0.25
&840 s: this relaxation time is well within the range of the experimental estimate
*!=0.25&300–1000 s. Moreover, the ratio of the two time scales, *!=0.25 /*!=0.20&84,
now also agrees with the ratio determined from the experiments, *!=0.25 /*!=0.20
=10–100.

While simplistic and semiquantitative, this analysis highlights the significance of the
strand thickness on the relaxation time of the material. The dependence of the strand
thickness on volume fraction may in fact be at the origin of the fluid cluster phases
observed at lower volume fractions. Indeed, the relaxation time of a strand should even-
tually become so fast that a connected network structure can no longer be maintained.
Calculating the relaxation time expected for !=0.15, we find *!=0.15&0.25 s. This time
scale is much faster than the time scale for the rotational diffusion of a single strand;
using the Broersma relationships for the diffusion of rods $Zero and Pecora "1982!%, we
estimate a time of *rot&160 s for a strand formed at !=0.15 and cp&7 mg /mL to
rotate by an angle of 0 /4. This implies that for this system, the vast majority of possible
inter-strand bonds are broken on the time scale of diffusion; consequently, the system
remains diffusive, in agreement with the observed behavior.

In conclusion, we have investigated the structural, dynamical, and rheological proper-
ties of colloidal systems in the volume fraction range !=0.15–0.35, where a medium
range attraction between the colloids is induced by the addition of a non-adsorbing
polymer. In this system, the solvent and particle densities are matched and the effect of
residual charges is minimized by the addition of salt. Under these conditions, the transi-
tion to arrested states coincides with the boundary for phase separation. At lower volume
fractions, !60.20, disconnected glassy clusters form near the boundary, whereas at
higher volume fractions, !70.25, space-spanning networks form as soon as the bound-
ary is crossed. Our structural investigations reveal that the characteristic length, L, of the
networks is a strong function of the quench depth: for shallow quenches, L is significantly
larger than that obtained for deep quenches. We suggest that the variation of L with
quench depth leads to the significantly different behavior observed for colloid-polymer
systems that are not density matched, where phase separation and kinetic arrest occur at
different values of ! $Poon et al. "1995!%. Since for shallow quenches L grows larger
before arrest occurs, the likelihood that the capillary length is exceeded before arrest is
highest near the phase separation boundary. Once the capillary length is exceeded, the
system is shear-fluidized, such that the phase separation process is never arrested; this
leads to an off-set of the phase separation boundary and the boundary to kinetically
arrested states.

In contrast to the dependence of L on cp, L is almost independent of ! at a given cp;
this implies that the strand thickness increases with !. At higher polymer concentrations,
we find that both the dynamic yield stress and the high frequency elastic modulus of the
networks depend only weakly on !. However, the oscillatory shear measurements reveal
the existence of a dissipative process with a characteristic time that strongly depends on
!. We present a simple model description that is based on the properties of single strands.
This model predicts an exponential dependence of the relaxation time on strand thick-
ness, while the strand thickness enters linearly in the description of the high frequency
modulus. The strong dependence of the relaxation time on volume fraction also suggests
that a likely origin of the formation of fluid clusters is that the strand breaking-time
becomes faster than the strand diffusion-time at sufficiently low volume fractions. By
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describing the elastic and dissipative properties based on the structure of single strands,
our simple model description semiquantitatively accounts for the experimentally ob-
served !-dependence of both the relaxation time and the elastic modulus. It highlights the
significance of the strand thickness, thereby providing a good starting point for under-
standing the relation between structure and rheology of colloidal gels formed by arrested
phase separation of systems with medium range attraction.
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