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We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of

!0:08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean

square displacement increases linearly with strain and the step size distribution becomes Gaussian. The

effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified

Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is

set by the size of cooperatively moving regions consisting of !3 particles.
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Colloidal suspensions provide a valuable model system
for the study of the glass transition [1]. They exhibit many
properties that mimic the behavior of more traditional
molecular glass formers; moreover, the large particle size
and the slow dynamics makes it possible to use direct
imaging techniques to study the behavior of individual
particles. This provides considerable new insight into fea-
tures that are ubiquitous to the glass transition such as
cooperativity and dynamic heterogeneity [2,3]. However,
colloidal glasses also possess features that are unique to
them. Perhaps the most remarkable is shear melting.
Because of the large particle size, colloids form soft solids;
thus they can be fluidized through shear [4], which cannot
be easily done for molecular glasses. Shear melting helps
account for the widespread utility of these systems, since
they can be solidlike under quiescent conditions, but can
flow like a fluid when sheared. Such shear-induced fluid-
ization is one means of driving a solid-to-fluid transition
within the generic jamming ‘‘phase’’ diagram [5], wherein
strong similarities should exist among shear-induced [6],
concentration-induced, and temperature-induced fluidiza-
tion. However, a full understanding of the relationship of
shear-induced fluidization to the other, more common
methods of fluidization requires a detailed understanding
of the microscopic behavior of shear melting; this remains
elusive.

In this Letter, we explore the microscopic nature of shear
melting of colloidal glasses by using confocal microscopy
to measure the fluctuations of particle motion beyond the
average imposed strain. We find that shear melting induces
cooperative motion, extending over 3 particles on average,
provided a strain, ! " 0:08, is exceeded. At large strains,
the mean square displacement (MSD) of the particles in-
creases linearly with strain and the distribution of step sizes
becomes Gaussian. Remarkably, this diffusive behavior
can be accounted for by a modified Stokes-Einstein ex-
pression, where thermal energy is replaced by shear energy
and the length scale is set by the size of the cooperative
regions.

We investigate a colloidal suspension of poly(methyl
methacrylate) particles with an average radius R ¼

0:6 "m and a polydispersity of !4%. The particles are
sterically stabilized with a thin layer of poly(hydroxy
stearic acid) and are fluorescently labeled with nitroben-
zoxadiazole. They are suspended in a mixture of cis-
decalin and cycloheptylbromide, which matches both the
particle density and index of refraction. To minimize the
effects of charge on the particles, we add 1 g=L of the salt
tetrabutylammonium chloride [7]. The volume fraction is
# ¼ 0:61$ 0:03; this is a colloidal glass, as confirmed by
its nonergodic behavior probed by dynamic light scatter-
ing. The suspension is contained between two parallel
glass plates separated by a 40 "m gap in a specially
designed air-tight shear cell. The surfaces of the plates
are roughened by a sintered coating of polydisperse par-
ticles (average radius is 1:5 "m and polydispersity!30%)
to avoid slip at the surface and to inhibit surface-induced
ordering. We observed a linear shear gradient throughout
the sample and did not detect any sign of crystallinity.
We follow the motions of individual colloidal particles

under shear using confocal laser scanning microscopy; the
particle positions are tracked as the suspension is subjected
to shear. We focus the analysis on the central region of the
suspension to avoid wall effects and restrict the analysis to
a two-dimensional plane to allow us to follow the rapid
motion of individual particles. A symmetrical triangular
time-dependent strain is applied to the sample in the y
direction with strain amplitudes up to ! " 0:5 and strain
periods varying between 25 and 100 s, resulting in shear
rates between 0:003 and 0:02 s%1. The Péclet number,
which determines the ratio of the shear rate to the rate of
diffusion, is less than 0.1 if the self-diffusion coefficient of
dilute particles, D0 ¼ 0:14 "m2=s, is used. However, be-
cause we are investigating particles’ motions that are com-
parable to their size, the diffusion coefficient should more
properly be chosen as the long-time diffusion coefficient,
which reflects the structural relaxation of the particles and
is many orders of magnitude smaller than D0. As a result
the effective Péclet number is very large and the motion is
dominated by the imposed shear [8]. To ensure reproduc-
ible results, the sample is subjected to strain for many
periods at the chosen strain rate, after which data are
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collected for ten cycles at two frames per second. We track
the position of each particle in the two-dimensional plane
and determine its position xðtÞ; yðtÞ after subtraction of the
mean displacement due to the applied shear.

To investigate initiation of shear melting, we take ad-
vantage of the periodic application of strain and calculate
an effective MSD, h!x2ð!tÞi0 ¼ hðxðt0 þ!tÞ % xðt0ÞÞ2i,
where t0 is always taken as the initial time of a half-cycle
and the averaging is repeated over 10 shear cycles. The
behaviors in the x and y directions are very similar, but the
y component is about 30%–50% larger, consistent with
previous results [9,10] and presumably reflecting the an-
isotropy expected as a result of Taylor dispersion [11].
Since the qualitative behavior is so similar, here we focus
only on the x component, h!x2ð!tÞi0.

Since the motion is driven by the strain, we plot the
MSD as a function of the strain accumulated during the lag
time !t, allowing us to compare the data obtained at all
shear rates. In all cases the behavior of the MSD is nearly
identical: For !< 0:08, subdiffusive behavior is observed;
this is followed by a crossover to a diffusive regime, as
shown in Fig. 1(a). This behavior is reminiscent of that
found for materials that shear melt at a critical strain [4]. To
explore whether our results are consistent with such be-
havior, we calculate the MSD averaged over start times ty
chosen after the onset of diffusive behavior, corresponding
to !> 0:08, h!x2ð!tÞiy ¼ hðxðty þ !tÞ % xðtyÞÞ2i. As
shown in Fig. 1(b), we find a similar behavior for every
start time implying that the observed behavior does not
reflect a critical strain. This result is consistent with pre-
vious findings of both ‘‘in-cage’’ rattling motions [10] and

a significant elastic contribution [4,12] for shear-melted
collolidal hard sphere glasses at strains well above !!
0:07–0:15.
The distribution of particle displacements in the liquid

state of a colloidal suspension is Gaussian. By contrast, as
the glass transition is approached, strongly non-Gaussian
behavior is observed reflecting the existence of dynamic
heterogeneities [13]. To examine the behavior of a shear-
melted glass, we determine the displacement distribution
function Pð!xð!tÞÞ. For large lag times, corresponding to
!> 0:08, the distribution is Gaussian, consistent with
liquidlike dynamics; by contrast, for short lag times corre-
sponding to !! 0:08, the distribution is strongly non-
Gaussian and is instead better described as exponential,
as shown in the inset of Fig. 1(a). This suggests that the
motion is highly heterogeneous at small strains, but be-
comes more homogeneous at large strains.
We can further quantify the observed behavior by cal-

culating the non-Gaussian parameter $2ðtÞ ¼ h!x4i
3h!x2i2 % 1,

which is zero for Gaussian dynamics and nonzero other-
wise. To compare the data, we normalize $2 for each data
set by its maximum. Independent of the starting time, we
find identical behavior for the normalized $2; it reaches a
maximum at !! 0:08 independent of _!, as shown in
Figs. 1(c) and 1(d). This maximum corresponds to the
crossover between subdiffusive and diffusive regimes in
the MSD. Similar behavior is observed for a colloidal
liquid near its glass transition [3], where $2 reaches a
maximum at the onset of structural relaxation and particle
flow. Moreover, the maximum value of $2 decreases with
_!, but reaches a plateau at high _! as shown in the inset of
Fig. 1(d); a qualitatively similar behavior has been ob-
served in [10].
To explore the nature of the non-Gaussian behavior, we

calculate the two-point correlation function Drrðr;!tÞ ¼
h!rið!tÞ!rjð!tÞijri%rjj¼r, where !rið!tÞ is the projec-
tion of the displacement onto the vector between the two
particles [14]. For any continuum material either fluid
or solid Drrðr;!tÞ ! 1=r; a deviation from this behavior
is direct evidence of anomalous particle dynamics. We
therefore calculate rDrr, to sensitively explore the range
of the 1=r behavior. For long delay times the data fol-
low a straight line with zero slope, as shown in Fig. 2(a).
However, as the delay time decreases, the data instead
exhibit an increasingly sharp decay. These results sug-
gest the onset of a shear-induced behavior. To quantify
this behavior we calculate the ratio of rDrr measured at
r ¼ 10 "m and r ¼ 3 "m; a value of 1 corresponds to
Drr ! 1=r, whereas a smaller value indicates faster de-
cay. We plot this ratio as a function of ! and find an
exponential growth from 0 to a value near 1, as shown in
Fig. 2(b). An exponential fit gives a characteristic strain
! " 0:08, in accord with the strain amplitude where the
MSD crosses over from subdiffusive to a steady state
diffusive behavior.
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FIG. 1 (color online). (a) h!x2ð!tÞi0 vs ! for a sheared col-
loidal glass for _! varying from 0:003 to 0:02 s%1.
Inset: Distribution function Pð!xð!tÞÞ for the sheared glass
( _! ¼ 0:02 s%1) for !t ¼ 4 s [(red) squares] and !t ¼ 50 s
[(blue) circles], together with an exponential and a Gaussian
fit, respectively. (b) h!x2ð!tÞiy vs !, calculated with a start time
always chosen in the ‘‘yielded’’ regime. (c) $2, as calculated
from the data in (a) as a function of !; $2 is normalized by its
maximum value. (d) Normalized $2;y calculated from the data
in (b). Inset: Maximum of $2;y as a function of _!.
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To explore the nature of cooperative motions in the
sheared sample, we quantify the range of cooperativity in
the particle motions. We focus on particles that move
further than a threshold distance % within a lag time !t
corresponding to a fixed accumulated strain in the diffusive
regime. We find that the particular choice of strain and
threshold distance is not critical and any reasonable choice
of parameters characterizing the diffusive regime gives
very similar results; typically, we use a threshold distance
% ’ 0:3 "m ’ R=2 and ! ’ 0:15. We color-code the par-
ticles with respect to their direction of movement: Particles

with a large displacement component in the positive x
direction, !~rð!tÞ ) x̂=!r * 0:8 and !rð!tÞ * %, are col-
ored in green (gray); analogously orange (light gray) is
used for motions in the %x while red (dark gray) and blue
(black) are used for theþy and%y directions, respectively.
We compare the cooperative particle motions of a shear-
melted glass to those of a low # (!40%) colloidal liquid
with a comparable diffusion coefficient. Snapshots of the
particle motions as shown in Fig. 3 document the develop-
ment of larger clusters for the shear-melted glass than for
the unsheared low-volume fraction liquid. Interestingly, we
observe clusters of particles moving both parallel and
perpendicular to the direction of the applied strain.
To quantitatively compare the average dynamic cluster

size for the low-volume fraction liquid and the sheared
glass, we plot the dynamic cluster size distribution for each
sample. Two particles of the same color were assigned to
the same dynamic cluster if the interparticle distance was
less than the first minimum in the distinct radial distribu-
tion function. We find that the sheared glass has a longer
tail of larger dynamic clusters, as shown in Fig. 3(c).
Integrating the data, we obtain an average dynamic cluster
size of about 2–3 particles, setting the scale of the coop-
erative motion. We do not find any shear-rate dependence
of this size within the accuracy of the measurements. This
size is in good agreement with the measurements of shear
transformation zones observed in a colloidal glass sub-
jected to small strains and low shear rates [15].
A further comparison between the fluid sample and the

shear-melted sample is obtained by measuring the shear-
induced diffusion coefficient for the particle motion. We
calculate the MSDs for the shear-melted sample as
h!x2ðtÞiy and find that the MSDs are linear in time as
shown in Fig. 4(a). From linear fits to the data, we extract
the long-time diffusion constants D of the shear-melted
glass from h!x2ðtÞiy ¼ 2Dt. The increase of the diffusion
constant D with _! is consistent with a linear behavior, as
shown in Fig. 4(b). A recent study [10] on a similar shear-
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FIG. 3 (color online). Dynamic clusters for a low-volume
fraction, !40%, liquid (a) and a sheared glass with
_! ¼ 0:01 s%1 (b). The full symbols indicate particle positions
at t ¼ t0, the open symbols positions at t ¼ t0 þ 15 s, corre-
sponding to ! ¼ 0:15. Red (dark gray) and blue (black): Moving
in þ=% y direction. Green (gray) and orange (light
gray): Moving in þ=% x direction. The sample is sheared in
the y direction. For clarity, particle sizes are not drawn to scale.
(c) Size histogram for the dynamic clusters of the shear-melted
glass (blue empty symbols) for various _!’s from 0.008 to
0:02 s%1, at the same ! ¼ 0:15 and the unsheared low-volume
fraction liquid (red filled circles). The lines are guides to the eye.
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FIG. 4 (color online). (a) h!x2ð!tÞiy as a function of lag time
!t for a shear-melted glass at different applied shear rates. The
lines are linear fits to the data. (b) Long-time diffusion coeffi-
cientD, extracted from the linear fits in (a), as a function of shear
rate _!. The symbols correspond to those of the data in (a) except
the þ symbols, showing data taken from Ref. [19]. The dashed
line corresponds to D ¼ 2

9Rs
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FIG. 2 (color online). (a) Two-point correlation function Drr,
multiplied by r for a sheared glass ( _! ¼ 0:02 s%1) for different
lag times ranging from !t ¼ 0:5 s [bottom (red) line] to !t ¼
25 s [top (purple) line]. (b) Ratio of rDrr at r ¼ 10 "m and r ¼
3 "m vs !. The line is an exponential fit with a characteristic
strain !c ¼ 0:08.
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melted hard sphere colloidal glass instead suggests D /
_!0:8. However, these samples exhibited shear banding al-
beit somewhat away from the studied region; by contrast,
shear banding is never observed in our samples. These
different shear profiles may lead to the difference in the
_! dependence ofD. Similarly, theoretical predictions forD
suggest that D scales as _! [8,16]; other theoretical ap-
proaches suggest similar scaling through calculation of
structural relaxation times [17], although one suggests a
lower exponent [18]. Moreover, a behavior highly similar
to our observations was observed in a simulation that
approximated the behavior of a 2D foam at zero tempera-
ture [19]; in fact, these data are in good agreement with
ours when we scale the characteristic foam size to the size
of our colloidal particles, see Fig. 4(b). This similarity in
the observations suggests that the behavior might be quite
general for shear-melted glassy samples.

To account for our results with an approximately linear
dependence of the diffusion constant with shear rate, we
consider an analogy to the Stokes-Einstein expression for
an equilibrium fluid, D ¼ kBT=6&"R, which is the ratio
of the thermal energy to the friction factor, where " is
the viscosity. To describe the behavior of the diffusion
constant of the shear-melted samples, we replace the ther-
mal energy term by the shear energy, given by 4&

3 Rs
3' _!,

where Rs is the radius of a characteristic volume and
' is the suspension viscosity. The friction factor is then
6&'Rs and the diffusion coefficient is D ¼ 2

9Rs
2 _!. This

expression is consistent with the linear dependence of _!
observed in the data. Moreover, we obtain quantitative
agreement between this expression and the data by using
Rs ¼ 1:8R, as shown by the dashed line in Fig. 4(b). The
characteristic radius Rs corresponds to a volume con-
taining about 3–4 particles, in excellent accord with the
direct measurements of the average size of the dynamic
clusters.

Our results suggest that a shear-melted glass exhibits
many similarities to a colloidal suspension that has been
fluidized by reduction of its volume fraction or a glass that
has been fluidized by increase of its temperature. We
observe the signatures of dynamic heterogeneities, but
only at small strains; at larger strains, these are averaged
out and the particle motion becomes effectively homoge-
neous. We find that particles move cooperatively involving
on average 3 particles. Remarkably, we can describe the
diffusion behavior observed at large strains in the shear-
melted glass with a modified Stokes-Einstein expression.
This intriguing result supports the possibility that shear can
be regarded as an ‘‘effective temperature’’ [19]. However,
whether a highly driven nonequilibrium system can be
described with concepts from equilibrium statistical me-
chanics needs further investigation.
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