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Biopolymer network geometries: Characterization, regeneration, and elastic properties
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We study the geometry of biopolymer networks and effects of the geometry on bulk mechanical properties.
It is shown numerically that the physical network geometry can be quantified statistically and regenerated from
its statistical description, so that the regenerated network exhibits the same network mechanics as the physical
network in the elastic regime. A collagen-I biopolymer network is used for validation. The method enables
parametric studies of the network geometry, whose parameters are often difficult to vary independently in

experiments.
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I. INTRODUCTION

Biopolymers are the building blocks of living tissues.
Within the cell, microtubules form stiff rods [1], while actin
and intermediate filaments assemble into flexible or semi-
flexible structures [1,2]. In the extracellular matrix, collagen
and fibrin self-assemble into stiff bundles, which are them-
selves part of a complex hierarchical structure [3,4]. These
diverse building blocks cross link into networks, which dis-
play a wide range of mechanical properties [5]. Particularly,
biopolymer networks exhibit strain stiffening and negative
normal stresses when subjected to simple shear. The bulk
mechanical properties of a biopolymer network depend on
the constitutive relations of filaments [6,7] and branch points
[8], as well as the network architecture [9,10].

In this paper, we are concerned with effects of the net-
work geometry on bulk mechanical properties. We show that
the architecture of collagen networks can be quantified using
at most five independent parameters, we present an algorithm
for generating network geometries from those parameters,
and we show that the regenerated network geometries are
mechanically equivalent to physical collagen network geom-
etries by comparing their response in simple shear using the
finite element method (FEM), in which each filament is rep-
resented by a three-node Timoshenko beam element. Finally,
we show an example of how the network generation algo-
rithm can be employed to study the effects of the network
geometry on bulk mechanical properties.

II. NETWORK CHARACTERIZATION

We use reconstituted collagen type I networks as a model
system in our study. Bovine collagen type I is labeled with
the fluorescent molecule tetramethylrhodamine isothiocyan-
ate (TRITC) using a protocol similar to that previously de-
scribed [11]. Networks are polymerized at a final collagen
concentration of 1.0 mg/ml [12]. A voxel-based representa-
tion of the network is obtained using confocal microscopy
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[Fig. 1(a)] and converted into a three-dimensional Euclidean
graph representation using the skeletonization package in
Amira (TGS, San Diego, CA). Each edge of the graph rep-
resents a filament and each node is a branch point [9,10,13].

What features of the geometry of a biopolymer network
govern its bulk mechanical properties? By visual inspection
of Fig. 1(a), we conclude that the network is essentially ho-
mogeneous at length scales much larger than the mesh size.
Wyart and co-workers [10] showed that the coordination
number Z, which is the average number of filaments incident
to each branch point, has an order of magnitude effect on
bulk stiffness in two dimensions. Heussinger and Frey [14]
reported that the number of branch points per fiber—fiber
means several connected filaments with a direction
correlation—significantly affects the low strain response in
shear. It is thus clear that the macroscale homogeneity, the
number of filaments at each branch point, and the direction
correlations of those filaments must be captured by the net-
work description, at the very least.

Guided by these arguments we propose a statistical net-
work description (see Fig. 2), which includes three probabil-
ity densities normalized to unity: (a) The filament length dis-
tribution P(/), which enforces macroscale homogeneity by
precluding too many short or long filaments. Here, [ denotes
filament length normalized by n~'3, where n is the node

FIG. 1. (Color online) (a) Confocal microscope image of
collagen-I, 1.0 mg/ml, with image width of 100 um and depth of
5 wm. (b) Euclidean graph representation of collagen obtained
from confocal microscopy data. (c) Realization of a statistical de-
scription of the geometry. Dangling ends are due to cropping of the
network for the purpose of visualization.
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FIG. 2. (Color online) Geometry statistics of 1.0 mg/ml collagen-I with each probability density normalized to unity. (a) Measured
normalized filament length distribution with a fitted logarithmic-normal distribution. (b) Measured valency distribution with a fitted geo-
metric distribution. (c) Measured direction cosine distribution with a fitted two-parameter power-series distribution.

density. In physical units, the average filament length is
L=2.0 um. (b) The valency distribution N(p), which en-
forces the correct topology; the valency p e[3,%) is the
number of incident edges to a node. (c) The direction cosine
distribution B(B), which is the probability density of cosines
B between edges incident to the same node and enforces
direction correlations within the network.

For our collagen-I networks, we observe that the filament
length distribution is logarithmic-normal:
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where p and s are the mean and standard deviation of In /.
The valencies follow a shifted geometric distribution,

N(p)=q(1-¢q)", (2)

where g=1/(Z-2) and the coordination number Z is the av-
erage valency. The distribution of direction cosines is well
represented by a truncated power series,

B(B) =2, by(1- B)*1. (3)
k=1

Choosing m=3 and normalizing B(f) to unity leave two pa-
rameters b; and b,. In total, five independent parameters u,
s, Z, by, and b, are used for the network description.

III. EUCLIDEAN GRAPH GENERATION

We propose a Euclidean graph generation (EGG) algo-
rithm for regenerating three-dimensional network geometries
on a periodic cubic domain ) of size A using simulated
annealing. Simulated annealing is a general heuristic method
for global optimization. Previously, simulated annealing
methods have been employed to generate voxel-based repre-
sentations of two-phase materials [15,16], for instance, rock
structures [17], glass bead assemblies [18], and fiber net-
works slightly deviating from a regular grid [19]. However,
there has been no previous attempt to generate collagen fiber
networks using simulated annealing.

An initial graph configuration 7, is generated by placing
nodes drawn from a randomly uniform distribution inside the

domain (). Then, each node is attributed a valency drawn
from N. Finally, pairs of randomly chosen nodes are con-
nected by edges, so that the assigned valency is not exceeded
for any node. Obviously, this initial configuration does not
follow the length distribution or direction cosine distribution.

We define a neighbor H' of a graph H as a graph ob-
tained by either (a) removing two edges from H and then
adding two edges without changing the valency of any node
or (b) moving the position of one node in H a random dis-
tance in the range [0,p] in a random direction (see Fig. 3).
Here, p is a parameter which may be tuned to enhance con-
vergence of the algorithm (in this work, p/A=5X1072).
Note that the node valency distribution is unchanged subject
to (a) or (b) modification. We define a non-negative “energy”
function to be E(H)=Ap(H)+Agz(H), where Ap and Ay are
the Cramér-von Mises test statistics for P and B, respectively
(see the Appendix). With this definition, E(H) has a global
minimum for graphs with the target length distribution and
direction cosine distribution. Simulated annealing minimizes
E(H), and thus finds the target structure, by iteratively at-
tempting to modify the current graph 7,, into a randomly
chosen neighboring graph H,,,;=H, . Type (a) and (b) tran-
sition attempts are equally probable. A transition is accepted
when E(H,)=<E(H,) or accepted with probability
exp{[E(H,,)—E(H,))]/T} when E(H,)>E(H,,). Here, the
“temperature” T is chosen to be an exponentially decreasing
function of the number of accepted transitions, ensuring pro-

FIG. 3. (Color online) Neighboring graph configurations (black
stripes) of the present configuration (white stripes). Two types of
elementary modifications are allowed: (a) shifting a pair of edges
while maintaining node valency and (b) change of one node
position.
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FIG. 4. (Color online) (a) Bulk shear modulus K’ as a function of applied shear strain y from experiments (circles) and from FEM
analyses of a graph representation of a collagen-I network (solid line) and regenerated network (dashed line) with standard deviation (shaded
region). (b) Normal stress oy as a function of applied shear strain vy, obtained from FEM analyses of a network graph representation (solid
line) and regenerated network (dashed line) with standard deviation (shaded region). (c) Low strain shear modulus K{ of regenerated
networks as a function of coordination number Z (circles), with a least-squares fitted exponential function (line).

gressive reduction in energy-increasing transitions. Its decay
rate may be modified to enhance convergence.

IV. EXPERIMENTS AND DISCUSSION

With the EGG algorithm, we generate artificial networks
which follow the description of the geometry {P,N,B}. It is
left to prove that these artificial networks have the same me-
chanical properties as the physical network geometries. Arti-
ficial networks of 5000 nodes are generated on a cubic do-
main whose side measures approximately 20 mesh sizes. A
physical network and its regenerated counterpart are com-
pared in Figs. 1(b) and 1(c).

The physical and artificial network geometries are ana-
lyzed in a shear cell geometry using FEM with affine defor-
mations prescribed to the boundaries. Collagen strands are
modeled by three-node quadratic Timoshenko beam ele-
ments, allowing for tensile deformation, bending, torsion,
and transverse shear. This element allows for linearly vary-
ing bending moments and takes large deformations and rota-
tions into account. The cross section of the beam is assumed
to vary with the axial stretch to maintain a constant volume.
The beam elements are coupled in all degrees of freedom at
the nodes, that is, the branch points are assumed to be rigid.
Material parameters are measured through analyses of the
thermal vibrational modes of the fibers [12]: the bending
stiffness of the fibers is EI=5X 10722 N m? and the trans-
verse shear stiffness is 6 X 107'" N. Assuming that fibers
have a circular cross section of diameter 1.0X 10~7 m, as
obtained from  transmission electron  microscopy
measurements [ 12], the elongational stiffness is computed to
EA=8X%107" N. There are thus no fitting parameters in the
constitutive model. Each numerical experiment is repeated
for five different network realizations.

The FEM simulations render shear stress 7 and normal
stress oy as functions of shear strain y. The bulk shear
moduli K'=d7/d7y of real and artificial networks are com-
pared in Fig. 4(a) over a range y € [0,0.4]. Within this range,
they are equal within =40%. Similarly, the development of
the normal stress oy is plotted in Fig. 4(b). The normal stress
is more challenging to predict, because it measures the

difference of stresses in the principal strain directions. At
large strains, artificial networks exhibit 50% greater normal
stress than physical networks.

We also polymerize collagen gels in a plate-plate geom-
etry of an AR-G2 stress-controlled rheometer (TA Instru-
ments, New Castle, DE). The measured development of K’
with y is compared with simulation results in Figs. 4(a). The
low strain behavior is predicted by simulations with one sig-
nificant digit. This level of accuracy is consistent with the
10-20 % error of each measured parameter. The observed
low strain shear modulus K;=24 Pa is on the order of the
modulus of networks of beams deforming in bending
EI/L*=30 Pa, while it is inconsistent with the low strain
modulus of entropic networks nkg7=300 uPa and networks
of beams loaded in tension EA/L?=200 kPa.

The onset of strain stiffening occurs at a lower strain in
experiments than in FEM simulations. At the same time, the
stiffening gradient of the experiment is smaller than that in
simulations. These discrepancies are seen at large strains for
both the physical and the artificial networks. Hence, they are
not due to failure of the EGG algorithm, but to neglected or
overseen effects in the finite element model. Since the simu-
lated physical and artificial network responses are in good
agreement, we can still conclude that the suggested statistical
representation of the networks is adequate. The difference
between experimental results and the numerical analysis at
large deformations remains to be explained. Neglected ef-
fects include the nonstraight shape of the filaments [Fig.
1(a)], contact interactions between filaments, the nonlinear
constitutive relation [20,21], and failure.

To show the predictive power of our approach, we pro-
ceed with a sample parametric study. The coordination num-
ber, which is Z=3.4 in the physical collagen network, is
varied in the range Z € (3.0,3.7], while the line density and
parameters u, s, by, and b, are kept constant. The generated
networks are analyzed for low strain shear modulus K, as
shown in Fig. 4(c). There is an exponential dependence of
the modulus on the coordination number: K =ke®#~3, where
k=9.4 Paand a=2.5 in the present case. This shows that the
mechanics of networks of different topologies, but with the
same line density, can differ significantly.
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There are many materials, and many material properties,
for which a Euclidean graph representation of the geometry
is suitable, for instance, conductivity or permeability of col-
loidal gels and granular or porous media. For each type of
heterogeneous material, and for each material property of
interest, a different characterization of the geometry may be
required. Since parameters describing the geometry of these
materials depend on complicated or even unknown forming
processes, it is often difficult to systematically vary these
parameters in experiments. The EGG algorithm may thus be
applicable to many materials with a hierarchical structure,
for parametric studies as well as for objectively determining
whether a given statistical description of the geometry is suf-
ficient to capture a given material property.

V. CONCLUSIONS

With this work, we have shown that the EGG algorithm, if
used with an appropriate statistical description of a physical
network geometry, generates artificial networks which cap-
ture the bulk mechanical properties of the corresponding
physical network, at least in the elastic regime. This frame-
work makes possible systematic studies of both effects of the
network geometry and effects of the constitutive relations of
the filaments on bulk mechanical properties. Important out-
standing questions concern the origin of strain stiffening, a
prediction of its onset, and the effects of plastic deformations
and relaxation of the filaments on network mechanics.
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APPENDIX: HISTOGRAM OF THE CRAMER-VON MISES
TEST

According to Anderson [22], the hypothesis that a set of
observed variables x| <x,<--- <x, originate from a random
process with distribution f can be rejected if
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exceeds some tabulated value. Here, F is the cumulative dis-
tribution function of f. Thus, of two different sets of data, the
set producing the smallest value of Ay is in a sense the better
fit to the distribution f.

The evaluation of Eq. (A1) takes O(n) operations and also
requires that one maintains a sorted set of variables. We can,
however, make an approximate evaluation by first computing
a histogram of p bins for the observed variables and reduce
summation complexity to O(p).

The histogram of a set X={x;,x,,...,x,}, which need
not be ordered, is defined as a set of integers
m=[{x;:x, el}|,j=1,2,....p, where |--1| denotes
cardinality and [ j=[y ;»Yj+1) are disjoint intervals whose
union covers at least the range of X. We make the estimate
AX)=ALX"), where X" is some set with the same histo-
gram m; as X. For simplicity, we choose X* so that it contains
exactly m; instances of the same value x; being the midpoint
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where M j=2i=lmk is the cumulative histogram and
Sj=Mj_1—nF(xj)—% for brevity.
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