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Over several billion years, cyanobacteria and plants have evolved
highly organized photosynthetic systems to shuttle both
electronic and chemical species for the efficient oxidation of
water1. In a similar manner to reaction centres in natural photo-
systems, molecular2 and metal oxide3 catalysts have been used
to photochemically oxidize water. However, the various
approaches involving the molecular design of ligands4, surface
modification5 and immobilization6,7 still have limitations in
terms of catalytic efficiency and sustainability. Here, we demon-
strate a biologically templated nanostructure for visible light-
driven water oxidation that uses a genetically engineered M13
virus scaffold to mediate the co-assembly of zinc porphyrins
(photosensitizer) and iridium oxide hydrosol clusters (catalyst).
Porous polymer microgels are used as an immobilization matrix
to improve the structural durability of the assembled nano-
structures and to allow the materials to be recycled. Our
results suggest that the biotemplated nanoscale assembly of
functional components is a promising route to significantly
improved photocatalytic water-splitting systems.

One of themost fascinating aspects of natural photosynthesis is the
sophisticated self-organization of light-harvesting complexes, elec-
tron-transfer mediators and oxygen-evolving complexes1. In such
photosystems, dozens of chlorophyll molecules within the light-
harvesting complex are responsible for the primary light absorption
event. This energy is efficiently transferred to the reaction centre,
where it is transformed into a pair of spatially separated charge
carriers. Sunlight-driven water splitting for hydrogen generation has
received increasing attention as a means of storing solar energy in
chemical bonds8,9. However, to evolve hydrogen efficiently in a sus-
tainable manner, it is necessary first to develop a stable and efficient
catalytic system for water oxidation, which is the more challenging
half reaction of photo-driven water splitting10–13. The many attempts
to model water-oxidation systems on photosynthesis have had limited
success; most catalysts based on Mn-oxo need oxygen-transfer oxi-
dants to catalyse oxygen formation14. Until now, the most promising
catalytic systems have been based onmetal oxide colloids, which drive
the photochemical oxidation of water with several different com-
ponents operating cooperatively: a photosensitizer absorbs visible
light and subsequently transfers an electron to an electron acceptor,
stimulating the transfer of a hole from the photosensitizer to the
catalyst15. Repeated cycles of light absorption lead to the accumulation
of four holes in the catalyst, and the holes drive the evolution of a
molecule of oxygen from water. As in photosynthesis, the distances
between the functional components are critically important in these

colloidal systems; non-optimal spacing between the photosensitizer,
electron acceptor and catalyst can kinetically promote corrosive
mechanisms, leading to the degradation of catalytic materials16.

Various approaches to develop efficient sustainable metal
oxide catalysts driven by visible light have been undertaken,
including the polyelectrolyte-mediated complexation of catalysts and
photosensitizers17, ligand design5 and the development of hetero-
geneous catalysts3,7. However, it is challenging to design multi-
component systems with controlled structural arrangement at the
molecular level. A lack of this precise arrangement can hinder the
appropriate trafficking of chemical and electron species between
individual active components5. Polymers are often used as intermedi-
ate binders to couple photosensitizers to the surface of metal oxide
catalysts7,17. These polymers, however, often undergo undesirable con-
formational variations during charge building and the subsequent
chemical reactions. These structural changes can affect the distances
between and relative orientations of catalysts and photosensitizers,
which in turn greatly affect charge transfer kinetics18. Therefore, to
formulate efficient, sustainable photochemical water-splitting
systems, structurally stable and controllable microenvironments that
can coordinate complicated electrochemical events are required.

Unique multiscale structures of natural photosystems, which have
evolved to efficiently handle complex photochemical processes, motiv-
ated us to investigate the use of biological scaffolds to spatially organize
multiple functionalmaterials for photochemicalwater splitting. Avirus
can serve as a versatile template for the assembly of various materials
through both genetically controllable biomineralization19–21 and
chemical linkage22. In this study, photosensitizers andmetal oxide cat-
alysts were co-assembled in close proximity on M13 virus scaffolds to
create a photocatalytic nanostructure. Iridium oxide (IrO2) was chosen
as awater-oxidation catalyst because of its well-known catalytic activity
and stability under oxidizing conditions3,5,16. M13 viruses carrying the
IrO2 binding peptide, AGETQQAM, on the major coat protein were
identified through biopanning against IrO2 using an M13 library dis-
playing random octameric peptides23. These engineered M13 viruses
were successfully used as templates for the self-assembly of IrO2 nano-
scale structures (Supplementary Fig. S7).

As a photosensitizer, Zn(II) deuteroporphyrin IX 2,4 bis-ethylene
glycol (ZnDPEG) was selected for its optical and electrochemical
properties as well as its functional groups (Supplementary Fig. S1).
ZnDPEG was chemically grafted to the M13 major coat pro-
teins via a carbodiimide reaction. M13 virus has !2,700 copies of
a-helical major coat proteins, which are highly ordered on the viral
DNA24. Every coat protein has two primary amines (N-terminus
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and lysine) exposed on the virus surface. Inductively coupled
plasma–atomic emission spectrometry (ICP–AES) analysis indi-
cated that the molar ratio of zinc to phosphorus was 0.39:1, which
corresponds to about 2,730 porphyrins per virus. The absorption
spectrum of ZnDPEG in water shows a strong Soret band at
406 nm and weak Q-bands at 538 and 574 nm (Fig. 1a). The conju-
gation of ZnDPEG to M13 viruses resulted in a significant broaden-
ing of the Soret band and a redshift of the Q-bands (Fig. 1a, inset).
Furthermore, the fluorescence of the conjugated ZnDPEG was dra-
matically suppressed compared to that of unconjugated ZnDPEG
(Supplementary Fig. S2)25. These spectral changes suggest that the
close proximity of neighbouring porphyrins on the virus induces
excitonic migration, as shown with ZnDPEG conjugated to the
wild-type M13 virus26,27.

To co-immobilize IrO2 and ZnDPEG on the virus, aqueous
sodium hexachloroiridate was hydrolysed with citrate as a ligand16

and self-assembled into IrO2–ZnDPEG core–shell nanowires by
incubation with the ZnDPEG-conjugated M13 viruses at room
temperature (Fig. 1b). As a control, IrO2 hydrosol clusters
were synthesized without the virus templates (Supplementary
Fig. S3). The IrO2–ZnDPEG core–shell nanowires were dark
green, but the ZnDPEG and IrO2 nanowires were red and blue,
respectively (Fig. 1c).

The IrO2 shell thickness of the IrO2–ZnDPEG nanowires was
controlled by varying the amount of hydrated IrO2 clusters while
fixing the number of ZnDPEG-conjugated viruses for mineraliz-
ation. The IrO2:ZnDPEG molar ratio, denoted by r, was determined
by ICP-AES quantification of iridium and zinc. Figure 2 shows the
transmission electron micrographs (TEM) of the ZnDPEG-conju-
gated M13 viruses (Fig. 2a) and the IrO2–ZnDPEG nanowires
with different IrO2 shell thicknesses, r¼ 15 (Fig. 2b) and r¼ 224
(Fig. 2c). The prepared IrO2 nanowires were hydrated such that
x≈ 2 in IrO2

. xH2O, as determined by X-ray photoelectron spec-
troscopy (see Supplementary Information).

IrO2 hydrosol clusters (32.7 mM) dispersed with unconjugated
ZnDPEG (8 mM) at pH 11 showed a turnover number (TON), the
total number of water molecules the catalyst splits, of !180 (four
times the amount of O2 evolved per iridium atom; Fig. 3a). Their
turnover rate (TOR), the number of water molecules the catalyst
splits per unit time per surface active site, was !0.27 s21. This
TOR was calculated from the steady-state oxygen evolution rate
with an assumption that 53% of the total iridium atoms were
exposed to the surface of the catalyst (see Supplementary
Information)28. These values are comparable with previously
reported data from IrO2 nanoparticles using different photosensiti-
zers7,28. However, IrO2 nanowires mixed with unconjugated
ZnDPEGs demonstrated TON≈ 76, only 44% that of the IrO2
hydrosol clusters. This reduced TON seems to be attributable to
the smaller surface area per mass (232 m2 g21) when compared
with IrO2 hydrosol clusters5. As expected, the TOR (!0.07 s21)
was similar to that of the IrO2 hydrosol clusters. Interestingly,
despite the small surface area, IrO2–ZnDPEG nanowires assembled
through the formation of an IrO2 shell on the ZnDPEG-conjugated
M13 core show dramatically higher water-splitting activities:
TOR≈ 0.85 s21 and TON≈ 790. This high activity seems to be a
synergistic result of excitonic migration between photosensitizers
and the close arrangement of the photosensitizers with IrO2. To
determine the effects of energy transfer on oxygen evolution, we
tested IrO2 hydrosol clusters with ZnDPEG-conjugated M13 not
expressing the IrO2 binding peptide, which resulted in TOR≈
0.35 s21 and TON≈ 310 (Fig. 3a). Both values were significantly
higher than those of IrO2 hydrosol clusters with unconjugated
ZnDPEG. Moreover, the IrO2 shell thickness turned out to be a
critically important parameter for water oxidation activity, as shown
in Fig. 3b. Both TON and TOR for IrO2 increased with decreasing
r with a highest TON of !1,100 and TOR of !1.68 s21 at r¼ 15.
To compare the water-oxidation rate relative to the decomposition
rate of the oxidized photosensitizer, TON was also calculated in
terms of the number of photosensitizers used. The value of TON
for ZnDPEG increased with increasing r from TON≈ 1.7× 104 at
r¼ 15 to TON≈ 9.7× 104 at r¼ 224, all significantly greater
than the value for free IrO2 nanoparticles mixed with free
ZnDPEG (TON≈ 7.4× 103). These results indicate that the use
of excess amount of catalyst can prolong the chemical stability of
the photosensitizers, presumably because the generated charges
can be more quickly transferred from the oxidized photosensitizer
to the adjacent catalysts. The quantum yield (F) was also measured
using monochromic radiation at 550 nm with a light intensity of
200 mW cm22. IrO2–ZnDPEG nanowires had F≈ 0.86 at r¼ 15
when a Rayleigh scattering approximation was assumed. This
value is significantly higher than that of IrO2 nanoparticles with
free ZnDPEG: F≈ 0.47. The higher F of the IrO2–ZnDPEG
nanowires clearly shows that the increased value of TON was
not due to the greater number of photons absorbed by the compo-
site nanowire system. Therefore, comparison of the systems in
terms of both F and TON has demonstrated that appropriate co-
assembly of catalysts with photosensitizers is an effective means
by which to increase light conversion into chemical potential for
water oxidation.
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Figure 1 | Synthesis of IrO2–porphyrin nanowires. a, Absorption spectra of
porphyrins (black) and ZnDPEG-conjugated viruses (red). The y axis denotes
the molar extinction coefficient 1. Inset: magnification of the Q-band region.
b, Schematic synthetic routes for IrO2–porphyrin nanowires. c, Digital
camera images of aqueous solutions of ZnDPEG (1), IrO2–ZnDPEG
nanowires (2) and IrO2 nanowires (3).
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Photochemical colloidal catalysts are prone to aggregation7, and
this structural instability limits their practical applications. For
instance, the IrO2–ZnDPEG nanowires showed spontaneous pre-
cipitation after an oxygen evolution experiment (Supplementary
Fig. S8). To eliminate nanowire aggregation, porous microgels
were used as an immobilization matrix, maintaining the structural
integrity of the IrO2–ZnDPEG nanostructures. Using a microfluidic
technique (Fig. 4a), monodisperse aqueous droplets incorporating
the viruses and acrylic monomers were generated and subsequently
converted to microgels (Fig. 4b) by initiating polymerization under
ultraviolet irradiation29. The encapsulated viruses were homoge-
neously distributed within the microgels without any phase segre-
gation, as confirmed by fluorescent labelling (Fig. 4b, inset).
Viruses encapsulated in microgels were subsequently used as tem-
plates for assembling IrO2 hydrosol clusters and photosensitizers.
ZnDPEG was covalently attached to viruses in the microgel by
pre-activating carboxylic acids groups of ZnDPEG with carbodi-
imides. After rigorous rinsing with water to remove loosely bound
ZnDPEG, IrO2 clusters were assembled on the viruses in situ by

diffusion of hydrated iridium precursors into the microgels followed
by chemical oxidation. Energy dispersive X-ray (EDX) analysis with
scanning electron microscopy indicated the homogeneous
distribution of iridium elements in the microgels (Fig. 4c,d). Two
different IrO2–ZnDPEG microgels were prepared with r¼ 35 and
109, as determined by ICP–AES analysis. As observed in the
IrO2–ZnDPEG nanowires, significantly more oxygen evolved from
microgels having a lower IrO2:ZnDPEG ratio, as shown in Fig. 4e.
To demonstrate the recycling capability of the microgel-based
system, oxygen evolution from the microgels was halted at 90 min
post-illumination. The microgels were then collected through cen-
trifugation and re-suspended in 0.2% hydrogen peroxide to re-
oxidize the catalyst. The regenerated microgels showed !94%
oxygen evolution compared to the TON in the first cycle, and the
value decreased to 56% in the fourth cycle (Fig. 4f). As a result, the
cumulative TON after four reaction cycles became !1.6 times
higher than the TON of the full single reaction. These data demon-
strate for the first time the recycling capability of a light-driven
water-splitting system. However, deterioration of the catalytic activity
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Figure 2 | Transmission electron micrographs of porphyrin and IrO2–porphyrin nanowires. a–c, TEM images showing ZnDPEG nanoantennas after negative
staining (a) and IrO2–ZnDPEG hybrid nanowires at IrO2:ZnDPEG molar ratios of r¼ 15 (b) and r¼ 224 (c). Scale bars, 200 nm. d–f, Each structure is
schematically drawn using Protein Data Bank structure 2C0W.
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Figure 3 | Oxygen evolution from IrO2–porphyrin nanowires. a, Time-course oxygen production profiles for IrO2 hydrosol clusters mixed with unconjugated
ZnDPEG (black), IrO2 hydrosol clusters mixed with ZnDPEG-conjugated viruses (green), virus-templated IrO2 nanowires mixed with unconjugated ZnDPEG (blue),
and IrO2–ZnDPEG hybrid nanowires (red). The concentrations of IrO2 and ZnDPEG were fixed at 32.7 mM and 0.8 mM, respectively. b, Time-course oxygen
production profiles for IrO2–ZnDPEG hybrid nanowires having different ratios of IrO2 to ZnDPEG: r¼ 15 (red), 41 (black), 74 (blue) and 224 (green). The numbers
above the curves indicate TON values.
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was consistently observed, presumably because of the photochemical
degradation of the photosensitizers attached to the virus30. To
improve the chemical stability of the system, our research is now
directed towards further optimizing both the material properties
and the reactor design. For instance, despite their high initial per-
formance, the sacrificial electron acceptors used in this study may
produce hydroxyl radicals, which seem to facilitate the degradation
of photosensitizers. Their replacement with appropriate non-sacri-
ficial materials or the coupling of the current system to a hydro-
gen-evolving catalyst may also reduce certain corrosive processes.
We expect that, for a broad range of catalysts, a nanoscale architec-
ture based on genetically modified biomaterials can offer a useful
platform for multi-component photochemical devices, enabling
the efficient, sustained production of clean fuels from sunlight.

Methods
To identify IrO2-binding peptide sequences, we constructed a library of 1× 1010

random octameric peptides displayed at the N-terminus of pVIII, the major coat
protein23. After three rounds of biopanning against Ir(IV)O2 powder (99.9%), M13
viruses carrying a dominant binding sequence, AGETQQAM, in each copy of pVIII
were isolated and identified.

To synthesize the IrO2 nanowires, aqueous sodium hexachloroiridate (Na2IrCl6)
was hydrolysed to iridium hydrosols with citrate16 and mixed with the viruses
carrying AGETQQAM. The resulting iridium hydrosols were oxidized using 0.2%
hydrogen peroxide. The solution was magnetically stirred while exposed to air at
room temperature for at least one day and purged with nitrogen for 4 h before
oxygen evolution measurement. Complete decomposition of residual hydrogen
peroxide was confirmed by a fluorescent scopoletin assay using horseradish
peroxidase (see Supplementary Information).

For the oxygen evolution studies, sodium borate was used as a proton acceptor
and sodium persulphate was used as a sacrificial electron acceptor. The pH of the
borate buffered solution was adjusted to pH 11 to optimize hole transfer from the
ZnDPEG radical cations to IrO2 catalyst

17. The catalyst solution was purged with
nitrogen as a carrier gas while illuminated with a 300 W xenon light source through
a long wavelength pass filter (.400 nm). Oxygen evolution was continuously
monitored using a ZrO2-based gas analyser (Supplementary Fig. S4).

To produce monodisperse microgels, we fabricated a flow focusing glass
capillary device consisting of a tapered cylindrical collection tube having an orifice
150 mm in diameter fitted in a square capillary29. Two immiscible fluids were infused
into the device from opposite sides of the square capillary. The outer fluid (white
mineral oil with 3 wt% Abilw EM90, Degussa) focuses the inner fluid (aqueous
mixture of acrylamides, bis-acrylamides, 2-hydroxyl-2-methyl-1-phenyl-1-
propanone and viruses) into the orifice of the collection tube and breaks the inner
fluid into monodisperse droplets. Collected emulsions are converted to microgels by
initiating polymerization using ultraviolet irradiation (365 nm, 3 W).
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