
pubs.acs.org/MacromoleculesPublished on Web 11/05/2009r 2009 American Chemical Society

Macromolecules 2009, 42, 9357–9365 9357

DOI: 10.1021/ma901362p

Swelling Kinetics of a Microgel Shell

Joshua Wahrmund,† Jin-Woong Kim,‡,§ Liang-Yin Chu,‡, ) Changjie Wang,^ Yong Li,#

Alberto Fernandez-Nieves,‡,3 David A. Weitz,*,‡ Arkadii Krokhin,*,† and Zhibing Hu*,†

†Department of Physics, University of North Texas, Denton, Texas 76203, ‡School of Engineering and Applied
Sciences, Department of Physics, Harvard University, Cambridge, Massachusetts 02138, §Amore-Pacific
R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-Do, 446-729 Korea, )School of Chemical
Engineering, Sichuan University, Chengdu, Sichuan 610065, China, ^Haynes and Boone, LLP, Richardson,
Texas 75082, #Kimberly-Clark Corporation, Neenah, Wisconsin 54957, and 3School of Physics,
Georgia Institute of Technology, Atlanta, Georgia 30332

Received June 25, 2009; Revised Manuscript Received September 17, 2009

ABSTRACT: Tanaka’s approach to swelling kinetics of a solid gel sphere is extended to a sphericalmicrogel
shell. The boundary condition at the inner surface is obtained from the minimization of shear elastic energy.
Temporal evolution of a shell is represented in a form of expansion over eigenfunctions of the corresponding
diffusion equation. The swelling of Tanaka’s solid spherical gel is recovered as a special case of our general
solution if the inner radius approaches zero. In another limiting case of a thin (balloon-like) shell, the set of
eigenfunctions is reduced to a single exponential term. In the general case, a solid sphere swells slightly faster
than the same sphere with an internal cavity. To test our theoretical model, we prepared monodisperse poly-
N-isopropylacrylamide (PNIPAM) hydrogel shells using a microfluidic device. The temporal dependence of
the inner and outer radii of the shell were measured, and the data were fitted to our theoretical model. As a
result, we obtained the collective diffusion constants for shrinking and for swelling processes. The obtained
values for microgel shells are in excellent agreement with the previous results obtained for submillimeter
PNIPAM solid spheres in the same temperature interval. Our model shows that the characteristic swelling
time of a gel shell should be proportional to the square of the outer radius not to the thickness of the shell,
agreeing with experimental observation.

1. Introduction

Polymer gels have been studied extensively because of their
ability to simulate biological tissues and to swell or collapse
reversibly in response to external stimuli.1-8 Swelling of polymer
gels is one of the classical problems in both macromolecular
science and technology.9-12 Flory and Rehner developed an
equilibrium swelling theory by considering the balance between
themixing of polymer chains with solvent and the elasticity of the
polymer chains.9 Ritger and Peppas presented mathematical
models for drugdiffusion fromhydrogels.10Tanaka andFillmore
have studied the swelling kinetics of spherical gels11 by using an
equation of motion of the gel network.12

The study of swelling kinetics has been further extended
to different geometries: long solid gel cylinders and thin solid
disks.13-15 In these cases, a theoretical analysis of the kinetics of
gel swelling and solvent motion is based on the solution of
coupled equations of motion for a network and solvent.16

Urayama et al. studied the kinetics of shrinking for polymer gels
induced by ultracentrifugal fields.17 The swelling dynamics of a
long solid cylindrical gel were analyzed by the stress diffusion
coupling model, where the swelling is caused by an elongation
force applied to the gel.18 A continuum mechanical model was
proposed for dynamical processes in swelling gels, in which
solvent permeation causes deformation.19 Furthermore, a model
for transient deformation of neutral hydrogels that accounts for
conservation of momentum, energy, and mass for the solid
polymer and fluid phase was derived.20

Most of these previous theoretical studies have focused on the
swelling kinetics for solid gel structures, that is, structureswithout
internal cavities. The theory of gel shells is still missing. At the
same time, experimental work on hollow polymer gels is making
rapid progress. For example, a positively thermosensitive drug-
release microcapsule was designed, and its preparation was
carried out by the use of an air suspension coating technique
for controlled drug release.21Mammalian cells were encapsulated
in cylindrical hydrogel microstructures or in cubic hydrogel
structures in microfluidic channels.22 Submicrometer hydrogel
cages have been prepared as drug carriers.23 Hollow capsules
composed of microgel particles have been synthesized with the
microgel particles assembling on the surfaces of water droplets
in oil.24

What actually motivates this work is the current synthesis of
monodisperse polymer gel shells by microfluidic devices.25,26

These gel shells have radii of ∼60 μm and have characteristic
swelling times that range around several tens of seconds. The
kinetics of these shells is easily measurable, but there is a lack of
theoretical description. The study of the swelling kinetics of gels
with shell structure will not only enhance our deep-seated under-
standing of swelling kinetics for polymer networks but may also
aid in the development of applications ranging from controlled
drug release to cell encapsulations.

Here we propose a theoretical model of swelling kinetics for a
polymer gel shell.

This work is an extension of Tanaka’s work on a solid gel to a
shell gel. Just as with Tanaka’s formulation for a solid gel, our
model for a gel shell is based on the motion of the gel network. In
each case, the motion of the gel network is determined by
considering the mechanical stress within the gel network. The
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solution for a solid sphere requires a single boundary condition at
the outer surface. Usually, this is a stress-free boundary condi-
tion. For a shell with an internal cavity, one has to formulate the
boundary condition at the inner surface as well. Assuming that
swelling is a slow process with instantaneous relaxation of any
mechanical fluctuations leading to the increase in shear elastic
energy, the principle of minimization of shear energy can be
formulated in a general form.15 The missing boundary condition
at the inner surface can be obtained from this principle.
Because this new boundary condition breaks the Hermiticity
of the eigenvalue problem for the diffusion equation, the solution
of this equation is expanded over a nonorthogonal set of
eigenfunctions. As a result, the Gram-Schmidt orthogonaliza-
tion procedure is a necessary step on the way to the final
solution. To test this solution, we have prepared thermally
responsive poly-N-isopropylacrylamide (PNIPAM) shells using
the microfluidic method. Experimental data fit well with the
proposed theoretical model and also lead to values of the
diffusion constant that are close to those known from the
previous experiments.

2. Theory

2a. Solid Sphere-Tanaka’s Model. In the Tanaka et al.
model11 for a solid gel sphere, the kinetics of swelling is
described by a vector u(r,t). This vector is defined as the
displacement of a point in the network from its equilibrium
location r after the gel is fully swollen. That is, u=0at tf¥.
Note that this concept is generalized as interchangeable
with respect to the cases of both shrinking and swelling
provided the conventions u > 0 (for shrinking) and u < 0
(for swelling), where u is one of the projections of the vector
u. Newton’s second law can be expressed as

F
D2u
Dt2

¼ r 3 ~σ -f
Du
Dt

ð1Þ

where F is the density of the medium, σ~ is the stress tensor
whose component σik gives the force along the xi direc-
tion on a unit plane perpendicular to the xk axis, and f is the
friction constant that reflects the drag force between a
liquid and a gel. For a sphere in the steady stage of swelling
when the acceleration is equal to zero, eq 1 reads

Du
Dt

¼ D̂u, ð0 < r < aÞ ð2Þ

where we have introduced D̂, the diffusion operator in
spherical coordinates

D̂ ¼ D0
d

dr

1

r2
d

dr
ðr2:::Þ

! "
ð3Þ

with D0 = (K þ 4/3μ)/f being the collective diffusion
constant of the gel network. K and μ are the bulk and shear
moduli of the gel network, respectively. For Tanaka’s gel
sphere, a free surface boundary condition at r = a is
imposed. That is, there is no normal stress at the outer
surface

σrr ¼ K

r2
D
Dr

ðr2uÞ
# $%%%%%

r¼a

¼ 0 ð4Þ

and at the origin the displacement is zero. The initial con-
dition at t = 0 requires a uniform radial stress throughout
the volume of the sphere. We can see from the left-hand side

of eq 4 that a constant radial stress is easily satisfied with a
linear deformation

uðr, t ¼ 0Þ ¼ -Δa
r

a
ð5Þ

where a is the final radius of the gel sphere in equilibrium
with the surrounding fluid, and Δa denotes the total in-
crease in the radius of the sphere in the entire process of
swelling, that is, a - Δa is the radius of the sphere before
swelling.

Using the initial and boundary conditions above, the
solution of eq 2 is obtained in the form of an eigenfunction
decomposition11

uðr, tÞ ¼ -6Δa
X¥

n¼1

ð-1Þn

λna
λnr cosðλnrÞ-sinðλnrÞ

ðλnrÞ2

" #
e-D0λ

2
nt

ð6Þ

where

λn ¼ nπ
a

ð7Þ

is the spectrum obtained from eq 4.
2b. Generalization of Tanaka’s Model to Shell Geometry.

Boundary Conditions.Herewe consider the swelling of a shell
with outer and inner radii a and b, respectively. For the outer
layer, there is the same stress-free boundary eq 4. The
boundary condition at the inner surface is obtained from
the minimization of shear elastic energy. The total elastic
energy of a gel can be separated into bulk and shear
components. The bulk elastic energy of the gel is related to
the volume change, which is controlled by the diffusion of the
network. The shear elastic energy can be minimized by
readjusting the shape of the gel without changing its volume.
Thismeans physically that although the shearmodulus of the
gel is much less than the bulk modulus and therefore can be
neglected in the dynamical equation, the shear modulus still
plays an important role preserving the shape of the gel.15 For
a shell, any change in diameter is coupled to a change in its
thickness. The shear elastic energy for a gel of arbitrary shape
is given by the following integral

Fsh ¼ μ
Z

v
uik -

1

3
δikull

! "2

dV ð8Þ

where we have adopted summation convention over the
repeated indices i, k, l. The minimum of this functional
is reached if the variation of the total shear elastic energy
in response to any small change in shape, which main-
tains constant volume elements within the gel, vanishes,
that is

δFsh ¼ 0 ð9Þ

For a spherical shell, u=(u,0,0) and the nonvanishing strain
tensor components are given by urr= ∂u/∂r, uθθ= ujj= u/r.
eq 8 then becomes

Fsh ¼ 4πμ
2

3

Z a

b
r2

Du
Dr

-
u

r

! "2

dr ð10Þ

This integral must beminimized. If the variations of the radii
are δa and δb, then the variation of the volume is δV =
4π(a2δa - b2δb). Because for shear deformations δV = 0,
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we have the following from combining eqs 9 and 10

δFsh ¼ 8

3
πμ

Z aþ δa

bþ δb
r2

Du
Dr

-
u

r

! "2

dr-
Z a

b
r2

Du
Dr

-
u

r

! "2

dr

" #

¼ 8

3
πμ

Du
Dr

-
u

r

! "2
%%%%%

%%%%%
r¼a

-
Du
Dr

-
u

r

! "2
%%%%%
r¼b

2

4

3

5a2 δa ¼ 0

ð11Þ

Becauseδa is an independent variation, the following bound-
ary condition must be imposed

uðb, tÞ
b

-
Duðr, tÞ

Dr

%%%%%
r¼b

¼ uða, tÞ
a

-
Duðr, tÞ

Dr

%%%%%
r¼a

ð12Þ

The solution of the diffusion eq 2 with the boundary condi-
tions eqs 4 and 12 and the initial condition eq 5 defines the
kinetics of swelling.

Solution of Diffusion Equation.A solution of the diffusion
eq 2 satisfying the boundary condition eq 4 is written as a
superposition of eigenfunctions

uðr, tÞ ¼
X¥

n¼1

AnZnðrÞe-λ2nD0t ð13Þ

ZnðrÞ ¼ cos½λnðr-aÞ&
λnr

-
sin½λnðr-aÞ&

ðλnrÞ2
ð14Þ

From the boundary condition at the inner surface (eq 12), we
obtain

ZnðbÞ
b

-Z
0

nðbÞ ¼ ZnðaÞ
a

-Z
0

nðaÞ ð15Þ

This relation gives the equation for the spectrum of the
eigenvalues λn

3 cos½λnða-bÞ&-ðb2λ2n -3Þ sin½λnða-bÞ&
λnb

¼ 3
b2

a2
ð16Þ

The unknown coefficients An are calculated using the initial
condition eq 5. For t = 0, we have from eqs 13 and 5

Δa
a

r ¼
X¥

n¼1

AnZnðrÞ ð17Þ

The coefficients An cannot be directly calculated from this
expansion because the eigenfunctions Zn(r) are not orthogo-
nal. This comes from the fact that the boundary condition at
r = b breaks the Hermiticity of the diffusion operator

D̂ ¼ D0
d

dr

1

r2
d

dr
ðr2:::Þ

! "
ð18Þ

It is easy to show that theHermiticity condition Æu,D̂væ= Æv,D̂uæ
is not satisfied because of the nonzero boundary condition eq 12

Æu, D̂νæ ¼ Æν, D̂uæþD0νðbÞ
d

dr
ðr2uÞ

%%%%%
r¼b

-D0uðbÞ
d

dr
ðr2νÞ

%%%%%
r¼b

ð19Þ

Although the eigenfunctions Zn(r) of the non-Hermitian eigen-
value problem are not orthogonal

ÆZn,Zmæ ¼
Z a

b
r2ZnðrÞZmðrÞ dr

¼ sin½λnða-bÞ& sin½λmða-bÞ&
bλ2mλ

2
n

þ 1

λmλnðλ2m -λ2nÞ
fλm sin½λmða-bÞ& cos½λnða-bÞ&

-λn sin½λnða-bÞ& cos½λmða-bÞ&g 6¼ 0 ð20Þ

theyare linearly independentbecause thecorrespondingWrons-
kian does not vanish

WðZnðrÞ,ZmðrÞÞ ¼

%%%%%
Z

0

nðrÞ,Z
0

mðrÞ
ZnðrÞ,ZmðrÞ

%%%%% ¼ ZmZ
0

n -ZnZ
0

m

¼ 1

r2
1

λn
cos½λnðr-aÞ& sin½λmðr-aÞ&

&

-
1

λm
cos½λmðr-aÞ sin½λnðr-aÞ&

'
6¼ 0: ð21Þ

Therefore, the functionsZn(r) form a nonorthogonal basis, and
the orthogonalization procedure is the necessary step.

Gram-Schmidt Orthogonalization Procedure. We apply
the Gram-Schmidt orthogonalization procedure to form an
orthonormal basis.27 The ith vector of the orthonormal basis
is calculated as follows

niðrÞ ¼ RifZiðrÞ-
Xi-1

j¼1

ÆZijnjænjg ð22Þ

ÆZijnjæ '
Z a

b
Zinjr

2 dr ð23Þ

Here the coefficients Ri are calculated from the normal-
ization condition

Z a

b
n2i ðrÞr

2 dr ¼ R2
i

Z a

b
r2fZiðxÞ-

Xi-1

j¼1

ÆZijnjænjg2 dr ¼ 1

ð24Þ

Therefore, each basis vector ni(r) is a linear combination of
the vectors Zi(r). For example, n1 = R1Z1(r), n2 = R2 {Z2(r)
- ÆZ2|n1æn1}= R2{Z2(r)- ÆZ2|n1æR1Z1(r)}. Here we give the
first three basis vectors

n1ðrÞ ¼ Z1ðrÞ
V1

, V2
n ¼

Z a

b
r2Z2

nðrÞ dr ð25Þ

n2ðrÞ ¼ 1

V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

1V
2
2 -γ212

q fV2
1Z2ðrÞ-γ12Z1ðrÞg ð26Þ

n3ðrÞ ¼ V2
1V

2
2Z3ðrÞ-V2

2γ13Z1ðrÞ-V2
1γ23Z2ðrÞ

V1V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

1V
2
2V

2
3 -V2

2γ
2
13 -V2

1γ
2
23

q ð27Þ

γmn ¼
Z a

b
r2ZmðrÞZnðrÞ dr, V2

n ¼
Z a

b
r2Z2

nðrÞ dr ð28Þ
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Once we have calculated the (infinite) number of ortho-
normal vectors ni(r), we can expand the left hand side of
eq 17 over the basis of ni(r)

uðr, 0Þ ¼ Δa
a

r ¼
X¥

i¼1

CiniðrÞ ð29Þ

Now, owing to the orthonormality of the unit vectors ni(r),
the coefficients Ci can be calculated in a standard form

Ci ¼
Δa
a

Z a

b
r3niðrÞ dr ð30Þ

Each ni(r) is a linear combination of eigenfunctions Zi(r).
(See eq 22.) Substituting these linear combinations in eq 29,
we can now calculate the unknown coefficients Ai by equat-
ing the coefficients of theZi(r) on both sides of the following
equation

X¥

i¼1

CiniðrÞ ¼
X¥

i¼1

AiZiðrÞ ð31Þ

Oncewe knowAi, we can substitute them into the solution eq
13. Because in practice one can keep only a finite number of
terms, the accuracy of the obtained solution increases with
time, whereas the terms with larger λi are dying off exponen-
tially.

Two Limiting Cases. Tanaka’s solution for a solid gel
becomes a special case of our shell model: as the inner radius

b f 0 (left panel in Figure 1), the general solution of a gel
shell is reduced to Tanaka’s solid sphere solution. This is
easily demonstrated by first considering the eigenvalue spec-
trum eq 16. In the limit where b approaches zero, this
equation reduces directly to the previous spectrum, eq 7.
The eigenfunctions from eq 14 are then simplified consider-
ably. Most importantly, the Hermiticity of the diffusion
operator eq 3 is no longer broken, and so the eigenfunctions
Zn(r) are orthogonal. They are given by the following for-
mula

ZnðrÞ ¼ ð-1Þn λnr cos λnr-sin λnr

ðλnrÞ2

" #

ð33Þ

With this set of eigenfunctions, the solution to Tanaka’s
sphere eq 6 is recovered by substitution of eq 33 into eq 13
with the implementation of the initial condition eq 5.

In the opposing limit, where the shell becomes very thin
(i.e., bf a, right panel in Figure 1), our solution reduces to a
thin shell solution. Again, beginning with the eigenvalue
spectrum from eq 16 and taking the limit where a- b, b, we
obtain

λ ¼ 3

a
ð34Þ

Therefore, the spectrum is reduced to a single eigenvalue. All
higher order contributions over (a- b)/b can be neglected in
this limit as the separation between neighboring eigenvalues
increases dramatically, that is, λ1 , λ2 , λ3 , ... With
exponential accuracy, one can leave only the first term in eq
13 to obtain the solution for a balloon

uðr, tÞ = Δae-9D0t=a2 ð35Þ

3. Experimental Section

3a. Synthesis of Microgel Shells. The microgel shells were
synthesized using a capillary-based microfluidic device25 that
was made of three separate capillary tubes, as shown in
Figure 2a. The two internal cylindrical tubes served as injection

Figure 1. Scheme of the present model for spherical shell geometries.
As the inner radius approaches zero, we retrieve Tanaka’s solution for a
solid sphere. In the opposing limitwhere the inner radius approaches the
outer radius, the model describes a thin film “balloon”.

Figure 2. (a) Scheme formakingpremicrogel double emulsions in a capillarymicrofluidic device. (b)Formationof premicrogel double emulsiondrops.
These drops were prepared under the following flow conditions: QIF = 100 μL 3 h

-1, QMF = 300 μL 3h
-1, and QOF = 2000 μL 3 h

-1. (c) Uniform
microgel shells formed after solidifying the emulsion by the redox reaction.
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and collection tubes and were coaxially aligned. In the region
near both tips, the outer fluid focused both the middle and inner
fluids through the collection tube to form a fluid thread that
then breaks into drops because of hydrodynamic instabilities.
When generating the microgel shell structure, we used silicone
oil (DC no. 550, density = 1.06 g 3mL-1)) with viscosity ηOF =
125 mPa 3 s as the inner fluid, which was immiscible with the
aqueous middle fluid. The inner fluid consisted of DC no. 550
and a reaction accelerator (N,N,N0,N0-tetramethylethylenedi-
amine, 2 vol %). The drops pinched-off to produce uniform
double emulsions, where each aqueous premicrogel drop con-
tained a single oil droplet. The outer fluid (OF) was DC no. 550.
The middle fluid (MF) for the batch 1 sample was an aqueous
monomer solution that contained the N-isopropylacrylamide
(NIPAm, 15.5% w/v), a cross-linker (N,N0-methylenebisacryl-
amide, BIS, 1.5% w/v), two comonomers (2-(methacryloyloxy)
ethyl trimethyl ammonium chloride (METAC, 2 vol %), ally-
lamine (1 vol%)), and an initiator (ammonium persulfate, APS,
3% w/v). The initiator was located in the middle fluid, whereas
the accelerator was dissolved in the inner oil. The molar ratio
ofMETAC toNIPAMwas 5.6%. Themiddle fluid (MF) for the
batch 2 sample was the same as that for batch 1 except that
it contained less cross-linker (0.64% w/v BIS) and did not
contain METAC, which provided positive charges to the gel
shell (batch 1).

Upon the formation of the double emulsion drops, the
acclerator diffused from the internal oil droplet into the sur-
rounding aqueous monomer solution layer, initiating the poly-
merization. We matched the density of the water phase to 1.05
g 3mL-1 by mixing glycerol (10 vol %) and deuterium oxide

(22 vol %). The flow rate (Q) conditions were QIF = 100
μL 3 h

-1,QIF= 300 μL 3 h
-1, andQIF= 2000 μL 3 h

-1. By tuning
the flow rates of the three fluid streams, we were able to produce
microgel particles at rates of ∼103 Hz. After we collected the
particles, they were washed repeatedly with large amounts of
isopropyl alcohol, which removed the silicon oil and were
transferred to deionized water. Swelling measurements were
carried out in water. Figure 2b shows the formation of pre-
microgel double emulsion drops. Uniform microgel shells were
obtained after solidifying the emulsion by the redox reaction
(Figure 2c). It is noted that when the inner and outer oils of the
shells in Figure 2b,c were removed and the shells were placed in

Figure 3. Temperature dependence of the inner (b) and outer (9) radii
of the ionic microgel shell (batch 1). All swelling measurements were
carried out in pure water.

Figure 4. Displacement vector u(r,t) is plotted as a function of r from b
to a at different values of the scaled time t/τ. For these curves, the
parameters are selected as a = 2, b = 1, and Δa = 2.

Figure 5. Radial stress tensor σrr(r,t) is plotted as a function of r for
different values of the scaled time t/τ. For this set of curves, we have set
a = 2, b = 1, and Δa = 2.

Figure 6. (a) Shrinking of the ionic gel shell (batch 1) was recorded
with a digital camera with a time lapse of 1 s. A typical microgel
shell was allowed to equilibrate at room temperature for 24 h. Then,
he temperature of the sample was quickly raised from room tempera-
ture to 60 !C. (b) Plots of the experimental data as outer (O) and
inner (4) radii, respectively. The solid curves are calculated using
eq 36.
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water, the sizes of the shells should approximately double
because of the hydrophilic nature of the polymer network.

3b. Observation of the Volume Phase Transition and Swelling
Kinetics. The volume phase transition of the microgel shells was
monitored by the use of a bright field microscope (Leica)
equipped with a digital camera (Hamamatsu, C4742-95) and
Simple PCI acquisition software (Compix). For this, we com-
pletely sealed the microgel shells in flat glass capillaries (inner
diameters ∼300 μm, VitroCom). Figure 3 shows temperature-
dependent inner (b) and outer (9) radii for sample batch 1 in
water. The sharp volume change at ∼44 !C is determined to be
the transition temperature. This temperature is >34 !C for
neutral PNIPAM gel because of the incorporation of ionic
groups from MATEC into the polymer network.

The PNIPAM microgel shells in pure water were put in a
transparent holder on a glass slide, which was placed on a
microscope-mounted heating and cooling stage (Physitemp
Instruments, TS-4ER) to examine the thermosensitive behavior.
Several microgel shells with the same structures were measured
to obtain data with better statistics for the thermoresponsive
characteristics. The temperature of the liquid inside the sample
holder was confirmed using an infrared thermometer (VWR).26

4. Results and Discussion

4a. Basic Theoretical Calculations. In Figure 4, we show an
arbitrary solution to the radial displacement vector u(r,t) at
various times as calculated by our model. The solution is
calculated up to the tenth order, and the parameters are
selected to be a=2, b=1, andΔa=2. Each of the curves is
plotted as a function of the radius in the interval b< r< a.
The times have been normalized to the first-order time
constant in eq 13, τ = 1/(D0λ1

2). At the initial time t/τ = 0,

the displacement u(r,t) is expressed as a nearly straight line as
a function of r. Thewiggles are caused by the finite number of
terms in the series in eq 13. As t/τ increases, the wiggles
disappear because the higher order terms are dying off
exponentially.

Figure 5 shows a set of curves for the radial component of
the stress tensor σrr(r,t), which is calculated by taking the
solution eq 13 and applying the differential operator de-
scribed by eq 4. Because differentiation emphasizes any
nonmonotonic features, the oscillations in Figure 5 are more
pronounced as comparedwith those in Figure 4.We used the
same values for a, b, andΔa as in Figure 4, andK=1 for the
bulk modulus. According to the initial condition eq 5,
swelling starts from uniform radial stress σrr(r,t = 0) =
(3KΔa)/a, whereas the eigenfunctionsZn(r) satisfy the stress-
free boundary condition eq 4. A transition from uniform
stress to zero stress occurs in the very initial stage of the
evolution when the acceleration term cannot be neglected in
eq 1. The length of this transient stage depends on the liquid
viscosity, and it is usually very short as compared with the
typical relaxation time, τ. Because we neglect the length of
the transient stage, the numerical curve t = 0 in Figure 5
obtained for a finite number of terms n = 10 tends to zero
near the inner surface r = b.

Li and Tanaka found the isotropic condition ur/r = uz/z
for a thin disk or a long cylinder gel, where ur/r and uz/z are
the relative swelling along the radial and longitudinal direc-
tions, respectively.15 By minimizing shear elastic energy, we
obtain the boundary condition, eq 12. At t/τf ¥, the radial
stress σrr f 0 at both r = a and r = b and the isotropic
condition u(a,¥)/a = u(b,¥)/b is satisfied, as expected.

Figure 7. (a) Progress of swelling for the neutral microgel shell (batch 2) as the temperature jumpwas taken from 47 to 23 !C. Scale bar= 100 μm. (b)
Graph shows the inner (4) and outer (O) radii of the gel shell radii versus elapsed time for a swelling process. The solid curves are calculated by our
model. (c) Temperature for the sample holder of this experiment versus time.
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4b. Comparison with Experimental Data. A typical series
of photos of shrinking kinetics for an ionic microgel shell
(batch 1) is shown in Figure 6a. The experimental data for
outer (O) and inner (4) radii are plotted in Figure 6b. Solid
lines represent the evolution obtained for the outer radius
R (r= a,t) = aþ u(a,t) and the inner radiusR (b,t) = u(b,t)
of the swelling (u<0) or shrinking (u>0) shell. To plot the
displacements u(a,t) and u(b,t), we keep only the first term (n
= 1) in eq 13, that is

R ðr, tÞ ¼ r(
X¥

n¼1

AnZnðrÞe-λ2nD0t = r(A1Z1ðrÞe-t=τ ð36Þ

This approximation is valid at t> τwhen the terms with n>
1 are exponentially small.

We present a further comparison of swelling and shrinking
results for a neutral microgel shell (batch 2) that appear in
Figures 7 and 8. Notice that some of the shells analyzed in
this study have a noticeable asymmetry. (See Figure 7a.)
Because there is a good agreement between the theory and
experiment, we may assume that this slight asymmetry does
not have much effect on the evolution of the gel shells.

For each of the fits performed here, we begin by identify-
ing the necessary parameters from the experiment: the
equilibrium shell radii (a and b) and the total change of the
outer radius, Δa. These parameters are then substituted into
eq 36. A nonlinear fit is employed to find the appropriate
value for the collective diffusion coefficient,D0. The starting
time for the solution is selected on the basis of the tempera-
ture measurements within the sample holder. We can see
from the temperature curves in Figures 7c and 8c that the

change of temperature within the sample holder occurs on a
time scale that is comparable to that of the swelling (or
shrinking) time scales. In the ideal situation, this comparison
is done such that the heating time for the sample holder is
much smaller than that of the swelling time. Because the
diffusion coefficient is temperature dependent, the start time
must be selected appropriately to ensure that the fit is done
within the time scale where the temperature gradient is
negligible. Start times are selected by inspection of the data
and are chosen by the point where the temperature stabilizes.

Using the data shown in Figure 6, we have found the
collective diffusion coefficient D0 = 5.7 ( 10-8 cm2

3 s
-1 for

the shrinking experiment for the ionic microgel shell (batch
1) at 60 !C in Figure 6. The shrinking kinetics for submilli-
meter ionic solid gel spheres have been previously studied
with three characteristic processes: initially the gel shrinks
and maintains its spherical shape, then the shrinking stops
(known as a plateau period), and finally bubbles appear on
the surface of the gel.28 As shown in Figure 6a, our shell
uniformly shrank from the beginning to the end without the
development of the transient surface pattern. This suggests
that for a very small gel such as amicrogel shell there appears
nomechanical instability due to a large volume change in the
shrinking process that can cause surface patterns.

For the neutral microgel shell (batch 2), we found that
D0= 2.0( 10-7 cm2

3 s
-1 for swelling at 23 !C (Figure 7) and

D0 = 1.1 ( 10-7 cm2
3 s
-1 for shrinking at 47 !C (Figure 8).

These values are in excellent agreement with the previous
measurements made for neutral PNIPAM submillimeter
solid gel spheres that did not have a transient surface pattern
during shrinking at each of the respective temperatures.

Figure 8. (a) Progress of shrinking for the neutralmicrogel shell (batch 2) as the temperature jumpwas taken from 23 to 47 !C. Scale bar=100 μm. (b)
Graph shows the inner (4) and outer (O) radii of the gel shell radii versus elapsed time for a shrinking process. The solid curves are calculated by our
model. (c) The temperature for the sample holder of this experiment versus time.
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These previous measurements showed that D0 = 2.0 (
10-7 cm2

3 s
-1 at 23 !C and D0 = 1.6 ( 10-7 cm2

3 s
-1 at

47 !C.29
4c. Comparison of a Solid Sphere with a Shell. For a

diffusion process, the time required for matter to diffuse
at some distance changes quadratically with the distance.
In particular, the solution obtained for a solid sphere
gives11

τ " a2=D0 ð37Þ

For a shell, one can expect that τshell" (a- b)2. However, our
results show that τshell" a2. That is, the characteristic time of
a gel shell should be proportional to the square of the outer
radius, not to the squared thickness of the shell. Indeed, for a
thin shell (balloon) when (a- b)f 0, the characteristic time
remains finite, and according to eq 35

τshell ¼
1

λ2D0

¼ a2

9D0
ð38Þ

For a solid sphere (b=0), the characteristic time is given by
the lowest eigenvalue in the spectrum eq 7, λ1 = π/a

τsolid ¼ 1

λ21D0

¼ a2

π2D0
ð39Þ

For the intermediate case, when 0 < a - b < a the lowest
eigenvalue λ1 obtained from eq 16 lies between 2.9/a and π/a,
as plotted in Figure 9. Because the relative variation of λ1
versus a- b does not exceed 4%, we may conclude that for a
shell the characteristic time is approximately proportional to
a2. We suggest that the relationship of τ" a2 is caused by the
constraint imposed at the inner boundary eq 12. In contrast
with the outer shell, which is always stress-free, there is a
large increase in the stress at the inner surface soon after the
shell starts to swell. This stress constrains the gel shell to swell
slower for the readjustment of shape necessary to minimize
the shear energy integral eq 10.

From the plot in Figure 9 and the relation τ" 1/λ1
2, one can

conclude that the solid sphere swells a bit faster than a shell.
However, the difference in the characteristic times is less than
0.01a2/D0. Such a small difference is hard to detect experi-
mentally.

To investigate the above results further, we have re-
examined the swelling and shrinking kinetics data that were
published in ref 26 and adapted in Figure 10. Here swelling
(Figure 10a) and shrinking kinetics (Figure 10b) between a
solid microgel (series A) and a gel shell (series B) are
compared. There is no discernible difference between the
solid sphere and a gel shell just by visual inspection.

A comparison of the relative displacements for the sphere
and the shell as a function of time are shown in Figure 11. As
an approximation, we have used the first time exponential
term e-t/τ to fit both curves.We find that the values of τ in the
shrinking process are 10.1( 1.2 and 12.2( 1.2 s for the solid
sphere and the shell, respectively, as shown in Figure 11a. In
the case of swelling (Figure 11b), the characteristic times are
calculated to be 52 ( 2 and 56 ( 4 s for the solid sphere and

Figure 9. First eigenvalue solution to eq 16 plotted as aλ1 versus the
ratio (b/a) of the inner radius (b) to the outer radius (a). The dashed lines
show two limiting cases: as b f 0 (a solid sphere), λ1 f π; as b f a (a
balloon), aλ1 f 3.

Figure 10. Comparison of swelling kinetics between a solid microgel
(A) and a microgel shell (B) upon (a) heating from 23 to 47 !C and (b)
cooling from 47 to 23 !C. Scale bar = 100 μm.

Figure 11. Comparison of the relative displacements for the solid
microgel sphere (4) and the microgel shell (O) as a function of time:
for the (a) shrinking and (b) swelling processes, respectively.
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shell, respectively. These characteristic times are very close to
one another. It may appear that the shell swells slower than
the solid sphere, but with the experimental error taken into
account, we cannot conclude any quantitative difference
between the two.

5. Conclusions

We have built a theoretical model for the swelling kinetics of a
polymer gel shell by considering the shell with outer and inner
radii a and b, respectively. For the outer layer, there is the same
free surface boundary condition as that for a solid gel sphere. The
boundary condition at the inner surface is obtained from the
minimization of shear elastic energy. We solved the diffusion
equation for the displacement vector u(r,t) with two boundary
conditions and with the initial condition of uniform stress at t=
0.Our results recover the solution to Tanaka andFillmore’s solid
sphere solution as bf 0. In the opposite limiting case, bf a, we
find that the swelling of a thin shell like a balloon is described
simply by a single exponential term.

To test our theoretical model, we have made monodisperse
PNIPAM polymer gel shells using a microfluidic device. These
gels typically have an inner radius of∼40 μm and an outer radius
of ∼60 μm. By switching temperatures, we have measured the
inner and outer radii of the shell as a function of time and have
found the collective diffusion coefficient for the shrinking experi-
ment for the ionic microgel shell (batch 1) at 60 !C to be D0 =
5.7 ( 10-8 cm2

3 s
-1. The shell uniformly shrank from the

beginning to the end without the development of the transient
surface pattern. For the neutral microgel shell (batch 2), the
diffusion coefficients are found to be D0 = 2.0 ( 10-7 cm2

3 s
-1

for swelling at 23 !C andD0 = 1.1( 10-7 cm2
3 s
-1 for shrinking

at 47 !C. These values are in agreement with the previous
measurements made for neutral PNIPAM submillimeter solid
gel spheres at each of the respective temperatures: D0 = 2.0 (
10-7 cm2

3 s
-1 at 23 !C andD0 = 1.6( 10-7 cm2

3 s
-1 at 47 !C.29

Our model shows that the characteristic time of a gel shell is
proportional to the square of the outer radius, not to the square of
the thickness of the shell. This is because both boundaries are
coupled via the boundary condition that originates from the
minimization of shear elastic energy. This conclusion is con-
firmed by experimental observation of swelling kinetics. Our
model further predicts that the solid sphere swells slightly faster
than the gel shell if they have the same outer radius. The
experiments nearly confirm this tendency, although the lack of

experimental accuracy does not allow for a reasonable quantita-
tive comparison.
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