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Synopsis

any common materials display significant nonlinear rheological properties. Characterizing these
roperties can be done with a variety of methods. One such method uses inertio-elastic oscillations,
hich occur naturally in rotational rheometry as a consequence of a material’s elasticity and the

nertia of the rheometer. These oscillations have primarily been used to characterize linear
iscoelastic properties. In addition to allowing for the imposition of stress-biased oscillations on
hort time scales, we demonstrate that extending this technique to nonlinear deformations provides
ccurate measurements of nonlinear material properties. Our experiments are performed on fibrin
etworks, which are well characterized and have dramatic nonlinear properties that are biologically
ignificant. We compare the tangent moduli measurements of inertio-elastic oscillations with three
tandard methods of nonlinear rheology: forced oscillations about a prestress, a geometric
nterpretation of large amplitude oscillatory shears, and an extension of the linear viscoelastic

oduli to the nonlinear regime. Inertio-elastic oscillations provide an accurate characterization of
brin’s nonlinear properties, and further, our measurements suggest that inertio-elastic oscillations
rovide the most straightforward method of distinguishing between nonlinear elasticity and
issipation at any given stress. In fact, we find that inertio-elastic oscillations provide the most
ccurate measurement of the subdominant loss component of our networks. © 2008 The Society of
heology. �DOI: 10.1122/1.2933171�

. INTRODUCTION

Rheological measurements are exceptionally important in characterizing a material’s
roperties. Measurements are typically performed in the linear regime, where an oscilla-
ory input will cause a single frequency material response whose amplitude is propor-
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1014 YAO, LARSEN, AND WEITZ
ional to that of the input. However, many materials also exhibit a nonlinear response that
s both relevant and important. This is especially true for many biopolymer networks
hich can exhibit dramatic nonlinear rheological behavior �Storm and Pastore et al.

2005��. The biological importance of this nonlinearity has inspired many in vitro studies
f a variety of biological gels ranging from actin to collagen. Many of these in vitro gels
how pronounced strain-stiffening behavior and accurately characterizing both energy
torage and dissipation in this nonlinear stiffening regime remains an important experi-
ental challenge.
There currently exist several methods to characterize a material’s nonlinear properties.

he most straightforward method is to extend the framework of the linear viscoelastic
oduli �G� ,G�� into the nonlinear regime. This method interprets large amplitude oscil-

atory shear data �LAOS� as though they were taken in the linear regime and fits the
aterial’s response to a single trigonometric function. Although the validity of G� ,G� in

he nonlinear regime is questionable, this method provides a simple way to capture the
nset of nonlinearity. In the nonlinear regime, an explicit sinusoidal driving force results
n a nonsinusoidal response that is not accurately governed by a single trigonometric
unction. This means that the linear viscoelastic moduli are no longer adequate for inter-
retations of LAOS data. When calculating G�, G�, there exist a variety of methods to fit
he material’s response to a single trigonometric function, ranging from a Fourier trans-
orm to simple regressions; this adds to the confusion of interpreting G�, G� in the
onlinear regime. Large amplitude oscillatory shear data have also been interpreted in
ther ways to quantify material nonlinearity.

A popular method for analyzing LAOS data is the Fourier-transform method, which
tilizes the relative intensities of higher harmonics as a measure of nonlinearity �Wilhelm
nd Maring et al. �1998�; Kallus and Willenbacher et al. �2001��. This method provides a
recise assessment of the onset of nonlinearity. By calculating the relative amplitudes of
he Fourier components, the deviation from linearity can be quantified with great accu-
acy. However, effectively incorporating higher harmonic information into calculations of
onlinear moduli remains a challenge, because during a single LAOS oscillation, the
aterial is deformed over the entire range of stresses being studied. This range includes

oth linear and nonlinear deformations. Deconvoluting this information to determine the
nergy storage and dissipation at each stress or strain is a significant technical challenge.
ne recent approach to solving this problem has focused on a geometrical interpretation,
hereby the nonlinear stress is broken into elastic and viscous components, leading to a
eneralized storage and loss modulus �Cho and Ahn et al. �2005��. This method utilizes
issajous plots of elastic stress vs. strain and viscous stress vs. strain rate to determine the
onlinear elasticity and dissipation of the material. Although this geometric method is
seful, it does not completely overcome the low-signal limitation inherent in LAOS
scillations; for any oscillation, nonlinear deformations only occur during a limited por-
ion of the cycle. A material’s response can be dominated by the linear regime, making
he ratio of nonlinear to linear signal quite small and thus requiring extremely precise

easurements to extract the nonlinear behavior.
Perturbative methods can overcome both the low signal limitation and the deconvo-

ution problem that exist in LAOS methods. Whereas a LAOS measurement deforms a
aterial through many stress states, perturbative measurements seek to directly measure

oth energy storage and dissipation at a single stress. One such perturbative method, the
ifferential measurement, uses forced oscillations about a steady prestress �0, which is
tilized to bring the material to a specified deformation. The material properties of this
tate are then probed by perturbing the material with small stress oscillations of ampli-

ude ��0��0. In this method, the entire response signal is determined by the properties
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1015PROBING NONLINEAR RHEOLOGY
f the specific state. Thus, probing a nonlinear state with this method can overcome the
ow signal limitation of LAOS measurements. For the differential measurement, the small
tress perturbation is accomplished by commanding the motor to superimpose an oscil-
atory stress above the prestress, so that the total stress is of the form ��t�=�0

���0 �sin��t�. The resulting strain from the small oscillatory stress then takes the form
��t�= ���0 �sin��t+��. As long as ���0 � ��0, the measured strain is a pure sinusoid and
hus directly proportional to the applied oscillatory stress �Gardel and Shin et al. �2004��.
hus, given that ��0 is sufficiently small, the deconvolution problem does not exist for

he differential measurement. This perturbative method, though common, is complicated
y the presence of irreversible flows in the material, which can severely complicate the
nterpretation of superposition data, even causing the moduli to be negative �Vermant and

alker et al. �1998��. Obtaining a pure sinusoidal response requires that the steady state
iscosity be sufficiently large, such that the irreversible flow is negligible on the time
cale of oscillations. Moreover, irreversible flows might be associated with irreversible
amage to the material’s microstructure during the measurement, thereby introducing
ime dependence into the measurements. The risk of irreversible flows may be greater for
perturbative test than for LAOS tests because the material must be subjected to a steady
onlinear prestress for the entire duration of the sampling.

Both the long-time permanent deformation problem and negative modulus limitation
an be overcome when the stress perturbation about the nonlinear state is supplied by the
otational inertia of a stress-controlled rheometer instead of the rheometer’s motor. Im-
ediately after the application of a steady shear stress, a sufficiently elastic sample will

aturally experience stress oscillations caused by coupling between the sample’s elastic-
ty and the rheometer inertia—which we take to represent the combined inertia of the
earing, spindle, and geometry. The frequency and damping of these oscillations can be
sed to measure the elasticity and damping of the sample �Baravian and Quemada
1998�; Ewoldt and McKinley �2007��. Since inertio-elastic measurements utilize tran-
ient stress oscillations, they can be performed in short times without subjecting the
aterial to long-time stresses that will significantly change the microstructure. Moreover,

nertio-elastic oscillations overcome issues of interpretation related to the differential
easurement because they are capable of distinguishing between dissipation resulting

rom irreversible flow and dissipation that is coupled with elastic deformations. Although
revious work has used inertio-elastic oscillations to measure nonlinear properties, this
ethod has yet to be used extensively, nor has it been compared to other current methods

or probing nonlinearity �Baravian and Quemada �1998��.
We perform nonlinear measurements on an in vitro biological gel and demonstrate the

sefulness and accuracy of inertio-elastic oscillations by comparing it with other nonlin-
ar rheological methods, including an extension of the linear viscoelastic framework
G� ,G��, a geometric interpretation of LAOS, and the differential measurement. We find
xcellent agreement between elasticity measurements using inertio-elastic oscillations
nd the other methods of measuring nonlinear tangent elasticity. Measures of nonlinear
issipation, however, were less reproducible between methods. Accurately measuring the
ubdominant component of a material’s response, in our case the dissipation, is difficult
ith any test involving an oscillatory measurement. For example, we find that the differ-

ntial loss modulus is extremely noisy and is even negative at certain points. However,
tilizing inertio-elastic oscillations provides a measurement of the subdominant nonlinear

issipation that is much less noisy than the differential loss modulus.
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1016 YAO, LARSEN, AND WEITZ
I. EXPERIMENTAL

A major focus of recent rheology research has been the nonlinear response of biopoly-
er networks. We utilize the biologically relevant and well-characterized material fibrin,
hich acts as the integral component of blood clots. Fibrin networks are an excellent
odel system with which to study the physics of biopolymer networks and are also an

mportant part of the homeostatic process. Both the linear and nonlinear rheology of
brin have been studied extensively in the past �Nelb and Gerth et al. �1976�; Janmey and
mis et al. �1983�; Spero and Smith et al. �2007��, making it a good starting point to test

he effectiveness of inertio-elastic oscillations as a nonlinear rheological method. Most
mportantly here, the elasticity of these networks is highly nonlinear and extremely re-
roducible. Upon the addition of the enzyme thrombin �0.5 U /ml�, the glycoprotein
brinogen �1 mg /ml� is polymerized to form in vitro fibrin networks �Weisel �2005�; Liu
nd Jawerth et al. �2006��. This solution is gently mixed and loaded within 10 seconds
nto the homemade steel bottom plate of a stress-controlled rheometer �AR-G2, TA
nstruments�. We utilize a steel bottom plate because the fibrin networks do not bind to
he chrome-plated copper bottom plate of the rheometer, resulting in slip during measure-
ents. All tests were performed with a two degree 20-mm-diameter cone plate tool and

he moment of inertia of the entire rotating system, including the bearing, spindle, and
eometry, is: I=1.98*10−5 Nm s2.

We characterize the sample’s polymerization, which lasts approximately 1 hour, by
ontinuously measuring the linear viscoelastic moduli at a single frequency. During po-
ymerization, we find that the linear viscoelastic moduli increase rapidly before reaching
plateau value. Upon full polymerization of the network, G� ,G� both remain steady; we

hen measure the frequency dependence of the elastic and loss moduli. To ensure a linear
esponse we maintain a maximum applied stress below 0.01 Pa and find that the linear
oduli are frequency independent such that for all tested frequencies �0.001–4.0 Hz�,
��20 Pa and G��2 Pa. Nonlinearity in the fibrin network’s response occurs above a

ritical strain �C�0.1 which corresponds to an applied stress amplitude of approximately
Pa.

II. RESULTS

If the steady shear stress were ramped up slowly enough, the process of deformation
ould be quasi-static. For a viscoelastic solid, when the steady stress reaches its final
alue, the strain will also reach its final equilibrium value. However, the sudden appli-
ation of a shear stress causes the material’s strain response to overshoot its final equi-
ibrium value, only to be pulled back by the sample’s elasticity. This overshooting is a
onsequence of the rheometer’s inertia and occurs as the rotational energy of the bearing
s transferred to strain energy. This type of inertio-elastic oscillation results in an under-
amped sinusoid, eventually reaching the equilibrium strain value, as shown in Fig. 1.
owever, it is important to note that not all materials exhibit under-damped oscillations

nd certain materials that do exhibit these oscillations may still experience too much
rreversible flow to utilize this method effectively; thus, the method of inertio-elastic
scillations applies most readily to a viscoelastic solid. To better understand the inertio-
lastic oscillations of these viscoelastic networks we model the networks as a set of
urely elastic springs and purely viscous dampers. We use a linear Kelvin–Voigt �KV�
odel, as seen in Fig. 2, which is represented as a purely viscous damper and a purely

lastic spring connected in parallel. The governing equations for the model are: �Total

�s=�d and �Total=�s+�d, where the s and the d subscripts denote the strain/stress of the

pring and damper, respectively. Thus, each component of the system feels the same
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1017PROBING NONLINEAR RHEOLOGY
train while the total stress of the system is a sum of each of the stresses. Inertio-elastic
scillations occur in the KV model: considering the inertial contribution from the instru-
ent in addition to the sudden application of a constant stress �C results in a deformation

pproaching the deformation for the pure elastic material �C /KC� �Baravian and Quemada
1998�; Demiray �1994��. Thus, the inertial contribution gives rise to a transient but does
ot affect the final steady state. To derive the elastic and loss modulus we begin by
onsidering the equation of motion governing the bearing of the instrument:
�F� /F���d2� /dt2�=�A−�S, where I is the moment of inertia of the rheometer, F� the
roportionality factor between stress and torque such that �A=F��, F� the proportionality
actor between strain and angular displacement such that �=F��, �A the applied stress,
nd �S the sample’s resistant stress �Baravian and Quemada �1998��. The solution to the
V model can be derived analytically by using the constitutive law, which is expressed

s: �S=E�+��d� /dt�. Coupling the equation of motion with the constitutive law yields
n expression for critical elasticity. Only for an elasticity above the critical value of

IG. 1. Inertio-elastic oscillations in the nonlinear regime, obtained at a shear stress of 20 Pa. Using regression,
he damping is fit to an exponential decay �solid line�.

IG. 2. The linear Kelvin Voigt model used in the derivation of the nonlinear moduli from inertio-elastic

scillations.
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1018 YAO, LARSEN, AND WEITZ
2 /4a will oscillations occur, where a= I�F� /F��. Solving the coupled differential equa-
ions under an applied step shear stress of �C yields analytical solutions

�S = �C�1 − e−	t�cos��t� −
	

�
sin��t�	
 �1�

nd

d�

d�
=

�C

a�
e−	t sin��t� , �2�

here 	=� /2a and �=�E / a −	2. To find �, we can simply integrate the second expres-
ion and impose the boundary condition that ��0�=0 to find that

� =
�C

E
�1 − e−	t�cos��t� +

	

�
sin��t�	
 �3�

Zolzer and Eicke �1993�; Baravian and Quemada �1998��. To use the above results, we
ubtract the equilibrium strain and model the peaks using an exponential regression
hereby finding the envelope of decay as shown in Fig. 1. We measure the oscillation
requency by averaging over the frequency of the first five cycles. Although the first few
scillation cycles may violate our assumptions of a linear KV model, we find that the
ariations in frequency are negligible in our case. In cases where the frequency variation
s not negligible, we can avoid violations of the linear KV model assumption by utilizing
ater oscillations. The observed oscillations in �S are less than ten percent of �C. This is
n important condition because it allows us to think of the oscillations as small, linear-
zable, perturbations about a nonlinear state, thereby justifying our use of a linear KV

odel. Solving for the complex dynamic modulus from Eqs. �1�–�3� yields that G*=E
i���� and thus the elastic modulus is given by Kc���C�=E=a��2+	2� and the loss
odulus by Kc���C�=��=2a�	. For inertio-elastic oscillations, the subdominant com-

onent is almost always the loss modulus because under-damped oscillations would be
ifficult to detect if the elasticity was subdominant. Although the simplest way to obtain
hese equations is with a KV model, similar equations for Kc�, and Kc� can also be obtained
y calculating approximations from a general relaxation function �Struick �1967�; Ferry
1980��. As seen in Fig. 3, applying our equations yields nonlinear viscous and elastic
ifferential moduli that increase with stress.

These calculations of inertio-elastic oscillations avoid the problems caused by the
scillatory measurements present in other nonlinear rheological methods. These problems
nclude a single frequency response for G�, G�, a noisy viscous-stress vs. strain-rate plot
or the geometrical interpretation, and negative values of K� in the nonlinear regime. In
ddition, another benefit of the inertio-elastic method is its ability to be applied when the
equired symmetry between strain and strain rate, which is required for the geometrical
nterpretation, cannot be guaranteed using a stress-controlled rheometer. However, since
he method is based on the coupling of inertia to elasticity, it typically probes a single
requency, although additional frequencies can be accessed with variations in geometry
actors and inertia �Baravian and Quemada �1998��.

We compare our results with other measurements of nonlinear viscoelasticity. The first
s G�, G� measured in the nonlinear regime of fibrin by sweeping through stress ampli-
udes ranging from 0.1 to 20 Pa at a frequency of 0.1 Hz. As shown in Fig. 4, both G�
nd G� remain unchanged in the linear regime and exhibit dramatic increases in the
onlinear regime. Repeated tests show that the stress sweeps are reversible and the same

oduli are obtained each time. Although the linear moduli are easily obtained with the
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1019PROBING NONLINEAR RHEOLOGY
heometer software, and qualitatively capture the nonlinear stiffening of fibrin, they are
ot measurements of tangent moduli. Measurements of linear viscoelastic moduli assume
ertain conditions that are not met in the nonlinear regime. For example, measurements
f G� ,G� assume that an oscillatory input stress will result in a measured strain that is a
ure sinusoid. This assumption is valid in the linear regime but is not valid in the
onlinear regime �Barnes et al. �1989�; Larson �1999�; Wilhelm �2002��.

The next method used to probe nonlinearity is the geometric interpretation of LAOS
ata. To apply the geometrical interpretation of LAOS, one requires perfect sinusoidal
train oscillations and therefore a rheometer with excellent strain control. This required
ymmetry between strain and strain rate will not necessarily exist for a stress-controlled
heometer in the nonlinear regime. The assumptions inherent to the linear viscoelastic
oduli are avoided by plotting a stress-strain curve. The raw data is collected at a rate of

000 points per second using a separate utility provided by TA Instruments. Lissajous

FIG. 3. Nonlinear differential moduli calculated from inertio-elastic oscillations.

IG. 4. The linear viscoelastic moduli, as calculated by the rheometer’s onboard software, of 1 mg /ml fibrin

btained from a stress amplitude sweep at a frequency of 0.1 Hz.
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1020 YAO, LARSEN, AND WEITZ
gures were obtained by plotting �S as a function of �, where �S was calculated by using
he equation of motion for the bearing, I�F� /F���d2� /dt2�=�A−�S. Values of d2� /dt2

ere calculated by taking forward derivatives of �; before the second derivative, a MAT-

AB cubic spline smoothing algorithm was applied. At low frequencies inertial stresses
ere insignificant and �S=�A; however, at higher frequencies the inertia correction be-

omes important. Nevertheless, as expected, the high frequency Lissajous plots were
dentical with the low frequency Lissajous plot, over a range of 0.001–4 Hz. This ability
o extract moduli at a variety of stresses utilizing a single Lissajous figure is a benefit of
he geometric interpretation. The shape of the Lissajous plot provides information about
he mechanical properties of the material, with a linear response being an ellipsoid. Any
eviation from a pure ellipsoid corresponds to a deviation from linearity. Further, the
nergy dissipated by the material can be obtained by integrating the area contained within
he Lissajous figure. For the fibrin gel, the Lissajous curve encloses very little area
ecause of the elastic nature of the network. Nonlinearity is evident in the Lissajous
gure as the loop deviates dramatically from a pure ellipse as shown in Fig. 5�a�. To find

he differential elastic modulus at a given stress, we plot the elastic stress vs. strain curve
n Fig. 5�b�. The elastic stress at a specific strain is given by the average of the two stress
alues on the Lissajous plot �Cho and Ahn et al. �2005��. Thus, using a single elastic
tress-strain curve, the modulus as a function of stress amplitude ��s� is Ks���s�
�d� /d���s

. To determine a loss modulus at each stress, we plot viscous stress as a
unction of strain rate, where the viscous stress is defined to be the absolute value of the
ifference between the elastic stress and the applied stress at a given strain �Cho and Ahn
t al. �2005��. However, because of the elastic nature of fibrin, the viscous component of
he stress is extremely small causing the viscous stress vs. strain-rate Lissajous to be
oisy and indeterminate. In addition, the measured strain is not a perfect sinusoid, which
s also requisite for accurate strain-rate plots. The importance of accurately characterizing
he subdominant component of a material’s response at all stresses requires a method

IG. 5. Lissajous plot obtained from raw data of the instrument utility. �a� Strain-stiffening behavior of fibrin
s shown by the nonellipsoidal shape. �b� Elastic stress vs. strain, from which Ks���s� is calculated.
hich quantifies both elasticity and dissipation.
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1021PROBING NONLINEAR RHEOLOGY
Finally, we examine forced oscillations about a prestress, which provide measure-
ents of both viscoelastic moduli in the nonlinear regime. This differential measurement

s similar to linear evaluations of G� and G�, but it is applied to a nonlinear state.
hereas G� and G� are calculated using a ratio between stress and strain, the differential
easurement probes the tangent moduli or the slope of the Lissajous curves. To calculate

he differential elastic moduli we superimpose a small oscillatory stress ��0�t�
���0 �sin��t� on a steady prestress �0. Thus the applied stress as a function of time is
�t�=�0+ ���0 �sin��t�. We measure the resultant oscillatory strain, ���t�
���0 �sin��t+��. We confirm that the strain response is indeed linear and that the wave-

orms are pure sinusoids for all �0 provided that ��0
�0 /10. The differential elastic
odulus is calculated by the rheometer and is given by K���0�= ���0 /��0�cos���, while

he differential viscous modulus is given by K���0�= ���0 /��0�sin��� �Gardel and Na-
amura et al. �2006��. The differential measurement provides a quantitative value for
oth moduli at each prestress. The elasticity exhibits similar trends when compared to the
lasticity obtained from the two previous measures of tangent moduli. However, K� is
xtremely noisy, even becoming negative at some prestresses, as shown in Fig. 6. It is
xpected that irreversible flows and permanent microstructure deformations will compli-
ate differential measurements. While these fibrin samples demonstrate very little flow,
he differential modulus is still extremely noisy since probing the loss modulus with an
mposed oscillation would require an ability to accurately separate effects of relaxation
rom those of flow. This inability to separate the various effects and the time-dependent
icrostructural changes cause large variations in the reported differential loss modulus.
hese large variations could in part be caused by a difficulty of accurately measuring the
hase angle. Although it is possible to improve the phase angle measurements by aver-
ging over an increased number of cycles, we find that for our networks, the improve-
ents are minor and the differential loss modulus is still negative at a variety of pre-

tresses.

V. DISCUSSION

To verify the accuracy of Kc� and Kc�, we begin in the linear regime, and find that both
iscous and elastic moduli from all four methods agree closely with one another. In the

FIG. 6. The differential moduli as a function of prestress at 0.1 Hz.
onlinear regime, all of measurements of tangent elastic moduli, K�, Ks�, Kc� also agree
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1022 YAO, LARSEN, AND WEITZ
losely with one another. By contrast, the extended linear elastic modulus does not agree
ith the other measurements because it is not a measure of the tangent modulus. G� is
uch lower than the other measures of elasticity as shown in Fig. 7; moreover, G�

eviates further from the others as the nonlinearity increases. This is expected as increas-
ng nonlinearity would result in additional departure from the linear viscoelastic assump-
ion that the response strain is directly proportional to the input stress.

The internal consistency found within measurements of nonlinear elasticity does not
xtend to measurements of dissipation. In the nonlinear regime, K� is dominated by noise,
s shown in Fig. 8; moreover, although G� and Kc� show similar increasing trends, their
agnitudes vary greatly. Of all methods used, only the inertio-elastic oscillations and the

inear viscoelastic moduli provide low-noise, consistent values for both an elastic and
oss modulus in the nonlinear regime. For both of these methods, the ratio of elasticity to
issipation remains constant such that at all stresses G��10G� and Kc��10Kc� as shown
n Fig. 9. This factor is consistent with the ratio found in the linear regime of the fibrin

IG. 8. A comparison of the various loss moduli obtained from different methods, plotted as a function of

IG. 7. A comparison of the storage moduli obtained from different methods, plotted as a function of maximum
scillatory stress amplitude for G�, of �s for Ks�, of �0 for K�, and of �C for KC� .
aximum oscillatory stress amplitude for G�, of �0 for K�, and of �C for KC� . The viscous stress vs. strain rate
issajous are too noisy for K� to be calculated.
s
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1023PROBING NONLINEAR RHEOLOGY
el where G��20 Pa and G��2 Pa. This suggests that both G� and Kc� correctly char-
cterize the qualitative trends of the dissipation as a function of stress. However, quan-
itatively both linear viscoelastic moduli suffer from the assumption of a single frequency
esponse, which is no longer valid in the nonlinear regime. Much of the information
tored in the higher harmonics of the nonlinear response is lost for both G� and G� since
igher harmonic amplitudes are disregarded. We expect that the true nonlinear dissipation
f the material is higher than the value suggested by G� because our values of Kc� are
ore than double those of G� in the nonlinear regime. The consistency of the ratio Kc� /Kc�

o G� /G� at all points in the nonlinear regime suggests that Kc� is an accurate character-
zation of nonlinear dissipation. In fact, although the ratio G� /G� and K� /K� are approxi-
ately constant, the trend for both is to first decrease from �=2−15 Pa and then to

ncrease slightly at �=20 Pa, as seen in Fig. 10. This indicates that we can accurately
haracterize both a storage and loss modulus at each stress using inertio-elastic oscilla-
ions. Further, the oscillations associated with this method occur quickly, so that mea-

IG. 10. The ratios G� /G� and KC� /KC� , plotted against stress, show excellent qualitative agreement, first

IG. 9. The extended linear viscoelastic moduli and the differential moduli obtained from inertio-elastic
scillations, plotted against stress, depict similar trends.
ecreasing and then increasing slightly.
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1024 YAO, LARSEN, AND WEITZ
urements can be made before significant irreversible microstructural changes occur to
he sample as a result of nonlinear stress application. The simplicity of picking out the
inging frequency and the decay constant makes this method an elegant way to charac-
erize the viscoelastic properties as a function of applied stress, in the nonlinear regime.

. CONCLUSION

We find that measurements of nonlinear material properties with inertio-elastic mea-
urements are consistent with standard methods of characterizing nonlinear elasticity.
nertio-elastic measurements were especially useful in measuring the subdominant re-
ponse, in our case the dissipation, and did not suffer from the noise that dominated in
oth the geometric interpretation and forced oscillations about a prestress. While conven-
ional methods for determining the elasticity and dissipation at each stress lack either
onsistency or accuracy, inertio-elastic oscillations provide both.
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