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ABSTRACT We describe a robust method for determining morphological properties of filamentous biopolymer networks, such
as collagen or other connective tissue matrices, from confocal microscopy image stacks. Morphological properties including pore
size distributions and percolation thresholds are important for transport processes, e.g., particle diffusion or cell migration through
the extracellular matrix. The method is applied to fluorescently labeled fiber networks prepared from rat-tail tendon and calf-skin
collagen, at concentrations of 1.2, 1.6, and 2.4 mg/ml. The collagen fibers form an entangled and branched network. The medial
axes, or skeletons, representing the collagen fibers are extracted from the image stack by threshold intensity segmentation and
distance-ordered homotopic thinning. The size of the fluid pores as defined by the radii of largest spheres that fit into the cavities
between the collagen fibers is derived from Euclidean distance maps and maximal covering radius transforms of the fluid phase.
The size of the largest sphere that can traverse the fluid phase between the collagen fibers across the entire probe, called the
percolation threshold, was computed for both horizontal and vertical directions. We demonstrate that by representing the fibers as
the medial axis the derived morphological network properties are both robust against changes of the value of the segmentation
threshold intensity and robust to problems associated with the point-spread function of the imaging system. We also provide
empirical support for a recent claim that the percolation threshold of a fiber network is close to the fiber diameter for which the
Euler index of the networks becomes zero.

INTRODUCTION

Most adherent cells within living organisms are surrounded

by a three-dimensional connective tissue matrix. Some fun-

damental cell functions such as the formation of adhesion

contacts, cell shape, migration, contraction, and differentia-

tion sensitively depend on the morphology, composition, and

mechanical properties of the surroundings (1–3). Yet for

convenience and reproducibility of the observations, cells are

traditionally cultured on two-dimensional hard plastic or

glass culture dishes. This often limits the physiological rel-

evance of the data.

To study cell behavior in a physiologically more relevant

three-dimensional environment, reconstituted connective

tissue gels are gaining widespread usage (3–5). To produce

them, animal tissue is harvested and dissolved, the proteins

are then purified and later repolymerized in a cell culture dish.

Recipes differ widely for each of these steps, as do the re-

sulting properties of the reconstituted gels.

Structural and morphological characteristics of these net-

works are important for their mechanical properties and bi-

ological functionality. The size of the pores of the fluid phase

between the fibers is an important factor for determining the

migration behavior of cells (such as cancer cells, neutrophils,

smooth muscle cells, or fibroblasts) through the gel (3,4,6,7).

The pore size of collagen foams has also been linked to he-

patocyte function (8). The relationship between fiber orien-

tation on the one hand and elastic properties on the other hand

is the subject of ongoing research (2,9).

In this work, we discuss a conceptually robust definition

for a pore or mesh size measure of the fluid phase in bio-

polymer networks and discuss algorithms to compute it for

experimental data sets. Despite the relevance of this quantity,

a generic definition and a robust method to extract pore sizes

from experimental three-dimensional microscopy data sets

have been lacking. Here we discuss the definition of two

generic pore size measures based on the so-called (maximal)

covering radius transform and on percolation analysis. Both

approaches have been successfully applied to the analysis of

pore sizes of porous materials, such as sandstones (10–12).

Previous pore-size estimates of biological fiber networks

were derived, for example, from observations of collagen

volume fraction and fiber radius under the assumption that

the network geometry is described by a specific model for

random fibers (7,13). Other approaches include Fourier

spectra analyses of three-dimensional confocal microscopy

images, e.g., of fibrin (14), or from statistical analysis of

nearest points on collagen fibers in sections of confocal mi-

croscopy image stacks (15), and the analysis of spheres dif-

fusing through the network (16). In contrast to those

approaches, our method is based on the analysis of the entire
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three-dimensional real-space network geometry and does not

rely on specific assumptions or network models.

We apply our method to confocal microscopy data sets of

collagen networks obtained after fluorescently labeling the

connective tissue proteins before polymerization. The colla-

gen fibers are represented as thinned skeletal center lines,

so-called medial axes, of the high-intensity phase of the bi-

narized data sets. Medial representations are well known in

analysis of porous media (17) and medical images (18) and

have also been used as representations of collagen networks

(19). Here we show that the covering radius transform and the

percolation analysis yield intuitive and fundamental mea-

sures of pore sizes that are robust if analyzed on the medial

axis representation of the collagen fibers.

Moreover, these measures are generic in the sense that they

apply to networks of arbitrary geometry and topology (en-

tangled, branched, cross-linked, straight, or curved edges,

connected or disconnected, isotropic or anisotropic, homo-

geneous or heterogeneous). The method is robust against

variations of the image analysis parameters, in particular the

segmentation threshold.

METHODS

Reconstituted collagen networks from calf-skin collagen and rat-tail tendon

were fluorescently labeled and imaged by confocal microscopy with x and y
pixel dimension of 0.1 mm and distance of 0.1 mm between consecutive

images. The resulting three-dimensional grayscale data sets were trans-

formed into binary data sets using standard threshold-segmentation after

smoothing by anisotropic diffusion (20). A line representing the collagen

fibers was extracted from the binary data sets as the medial axis of the col-

lagen phase. The pore size distributions and percolation thresholds of the

fluid phase were computed from the medial axis of the fluid phase, described

in detail in Morphological Image Analysis. Importantly, for these compu-

tations the fluid phase was not represented by the complement of the collagen

phase in the segmented data set but by the complement of the single-voxel

thick medial axis representing the collagen fibers. This approach takes into

account that the width of the collagen fibers is ;0.15 mm (7); a wider ap-

pearance of the fibers in the segmented data set is mostly due to the point-

spread function of the confocal microscopy imaging system.

Synthesis of labeled collagen networks

Acid-soluble calf-skin collagen at 4 mg/mL (Biochrom, Berlin, Germany) and

acid-dissolved rat-tail tendon collagen at 2 mg/mL (Biochrom) were each

fluorescently labeled with 5-(and 6)-carboxytetramethylrhodamine succini-

midyl ester (TAMRA SE, Invitrogen, Carlsbad, CA). We followed the pro-

tocol by Baici et al. (21) but used TAMRA SE instead of FITC and omitted the

final separation step. To reduce structural alterations due to changes in the

dynamics of the network self-assembly, the labeled collagen solutions were

each diluted with their unlabeled stock solutions at a volume ratio of 1:4.

Next, the components were mixed in the following order by pipetting:

350-mL labeled calf-skin collagen, 350-mL labeled rat-tail tendon collagen,

80-mL 103 Dulbecco’s modified Eagle’s medium (DMEM, Sigma, St.

Louis, MO), 80-mL 0.25 M sodium bicarbonate, and 13-mL 1 M sodium

hydroxide. Care was taken to avoid bubbles and all components were kept on

ice before mixing.

The resulting mixture had a collagen concentration of 2.4 mg/mL at a pH

of 10. For gels with lower collagen concentration (1.6 mg/mL and 1.2 mg/

mL), this mixture was diluted with 13 DMEM adjusted to pH 10. A quantity

of 200 mL of the mixture were immediately pipetted into 35-mm glass-

bottom culture dishes (MatTek, Ashland, MA) and incubated for 2 h at 37�C.

Before confocal imaging, the gels were thoroughly washed with warmed

13 phosphate buffered saline (PBS, Sigma, St. Louis, MO) to eliminate

unbound dye or nonpolymerized labeled collagen from the fluid phase.

Confocal microscopy

Optical sections of the three gel samples were obtained using a Leica SP5

confocal microscope (Leica, Wetzlar, Germany) with a HCX PL APO CS

633, NA 1.2 water immersion objective (Leica) in fluorescence mode. A 543

nm HeNe Laser (1 mW) was used to excite the specimen, and the emitted

light of wavelengths between 557 nm and 625 nm was collected. A stack of

consecutive image planes with vertical distance dz was taken for each sample.

The vertical spacing was adjusted to dz � dxy. The remaining differences

between dz and dx, dy were dealt with by linear interpolation to ensure exact

cubic voxel size in the three-dimensional data set. The 8-bit grayscale images

had 5122 pixels, with 408, 333, and 458 stacked images for Gel 1 (1.2 mg/mL),

2 (1.6 mg/mL), and 3 (2.4 mg/mL), respectively. The pixel width of the

confocal microscopy images, and consequently the voxel width, of the three-

dimensional data sets was 0.1 mm for Gel 3 (2.4 mg/mL) and 0.15 mm for the

others. Examples of confocal sections for each gel are shown in Fig. 1.

Most digital imaging systems use pixel sizes of ;100 nm for objectives

with a numerical aperture between 1.2 and 1.4 (22). This choice is considered

to be a good compromise between a maximum utilization of the optical

resolution (�0.25 mm in the lateral direction) and a minimum image file size.

For the lateral direction a pixel sizes of 100 nm is close to the Nyquist limit

but it can be shown that excessive oversampling, also called empty magni-

fication, would only give a marginal gain in resolution but would lead to

larger file sizes and longer computation times (22). Because of the reduced

optical resolution in the z direction (�0.5 mm), a vertical voxel size of 0.25

mm would be sufficient to fulfill the Nyquist criterion; however, our image

processing algorithms were optimized for cubic voxels.

Morphological image analysis

The confocal microscopy data sets were converted into binary data sets of the

same size by simple threshold segmentation. All voxels with intensity greater

than a chosen threshold value Ic were set to 1 (collagen) and all others to 0

(fluid). Before segmentation, a sequence of Gaussian (isotropic) smoothing

followed by anisotropic diffusion smoothing (20) was applied to the grayscale

data for noise removal. Fig. 2 a shows an example of the segmented data set.

FIGURE 1 Two-dimensional confocal microscopy images of the recon-

stituted collagen gels analyzed in this study.
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The segmented data set contains in general some noise defects, notably

isolated fluid voxels or small fluid clusters surrounded by collagen voxels and

narrow gaps between collagen fibers that appear to form part of the same fiber.

While the classification of these features as defects implies some inter-

pretation, we removed such defects by so-called morphological closing or

dilation-erosion (12). This involves dilation of the 1-phase (collagen) by a

width RDE (here RDE ¼ 1); all voxels of the fluid phase with Euclidean

distance less than RDE to the nearest collagen voxel are converted to 1. This is

followed by an erosion step in which all voxels of the dilated collagen phase

with Euclidean distance less than RDE to the fluid phase are converted to 0.

This implies that collagen domains with distance less than or equal to two

voxels are merged. The minimum resolved fiber spacing is hence two voxels.

In addition, we removed all clusters of the fluid phase that are fully sur-

rounded by the collagen phase.

The collagen phase of the data set obtained by this process overestimates

the true diameter of the collagen fibers of ;0.15 mm (7) due to the point-spread

function of confocal microscopy systems (23). This broadening is particularly

pronounced in the vertical z direction. Therefore, the collagen fibers are better

represented as thinned and centered subsets of the 1-phase, called medial axes.

The medial axis can be computed by distance-ordered homotopic thinning

(24–26). It traces the paths through the center of the collagen fibers and is one-

voxel thick. We note that the same algorithm is also well suited for the com-

putation of the medial axis of the fluid phase (see below). An alternative

skeletonization algorithm for biopolymer fibers based on tracing maximally

wide paths in the Euclidean distance map has been described by Wu et al. (19).

The medial axis is derived from the Euclidean distance map, EDM (27–

29), of the 1-phase. The EDM specifies for every voxel of the 1-phase the

distance from its center to the center of the nearest voxel of the fluid 0-phase.

The EDM is used to thin the collagen phase to its one-voxel-thick medial

axis. To do this, voxels of the 1-phase are incrementally converted to 0 in

order of their distance values, provided that this conversion does not change

the topology and connectivity of the 1-phase. (Note that the resulting medial

axis is a 26-connected set of voxels, i.e., the 33-neighborhood of each me-

dial axis voxel contains at least one other medial axis voxel, unless the

medial axis reduces to a single voxel.)

The medial axis is guaranteed to be homotopy-equivalent to the body

represented by the collagen phase and correctly represents its topology. It is

also as geometrically centered in the fibers as possible. There are in general

many caveats to skeletonization of arbitrary three-dimensional bodies. The

geometry of an arbitrary three-dimensional object, including labyrinthine

networklike structures (30), cannot in general be represented by a one-di-

mensional line skeleton (31). However, the geometry of a network structure

consisting of connected tubes of convex cross section, possibly with varying

but small diameters, is well represented by a one-dimensional medial axis.

This includes the collagen networks studied here. For such structures, the

medial axis computation is also not sensitive to details of the definition of the

skeletonization algorithm or to noise.

All following data are computed from a representation of the collagen

fibers as the medial axis of the 1-phase.

We apply two different measures to characterize the width of the pores of

the fluid phase between the collagen fibers, namely a pore size distribution

and a percolation threshold. Both are computed from the Euclidean distance

map of the fluid phase.

The pore size distribution is given by the distribution of values of the cov-

ering radius transform (10,11); see Fig. 3. The covering radius transform as-

signs a value Df to each voxel of the data set (with subscript f since we apply it to

the fluid phase). For a voxel p the positive value Df(p) is the radius of the largest

FIGURE 2 Illustration of the three-dimensional image data analysis on a

small (5 mm)3 subset of Gel 3 (2.4 mg/ml). (a) Binary data set; all voxels with

I(p) . Ic represent the collagen phase. The fiber thickness overestimates the

width of collagen fibers (0.15 mm), in particular in the vertical z direction. (b)

The medial axis of the collagen domain as a one-dimensional curve repre-

sentation of the fibers. (c) Medial axis of the fluid phase, i.e., the complement

of the collagen fibers, as a network of widest paths through the collagen

matrix. The color indicates the distance to the nearest collagen fiber, with

distance increasing from red to blue. (d) A single percolating path of the fluid

medial axis together with the bottleneck sphere at its point with minimal

distance.

FIGURE 3 Illustration for the maximal covering radius transform of the

fluid phase of the collagen network. (Top) The image shows a two-dimensional

schematic representation of a collagen gel (black). The gray-level of each fluid

phase pixel corresponds to the maximal covering radius transform value Df. It

represents the radius of the largest sphere fully contained in the fluid phase that

covers that pixel. For clarity, the outlines of a few of the maximal disks have

been highlighted. The colors in the histogram below provide a bar chart

mapping Df to color. (Bottom) The distribution of maximal covering radii (in

arbitrary units on the y axis). See Fig. 4 for the distributions of the real collagen

network data sets.
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EDM sphere centered anywhere in the fluid phase that covers the voxel p. An

EDM sphere is a sphere with a radius that corresponds to the Euclidean distance

map value at its center point. The distribution p(Df)DDf gives the volume that is

covered by all EDM spheres of radius R . Df minus the volume that is covered

by all EDM spheres with radius R . Df 1 DDf; see Fig. 4. DDf is the bin width

of the distribution. The definition of pore size as the average of the covering

radius transform corresponds to an incremental filling of the fluid phase by

overlapping EDM spheres of decreasing size, starting with the global EDM

maximum. (Note that for reasons of digital topology relating to the medial axis

computation—specifically to turn the collagen medial axis into a 6- rather than

26-connected object—it is necessary to compute the EDM of the fluid phase for

a dilated version of the collagen medial axis, i.e., a dilation of the medial axis by

one voxel as described above. This implies a reduction of the EDM values of the

fluid phase by one linear voxel size. The results for the pore size distribution of

the fluid phase (see Figs. 6 and 7 and the data in Tables 1 and 2) take this

additional thickness of the fibers into account and are reduced by one voxel.)

The covering radius pore-size distribution is normalized to the total vol-

ume Vf of the fluid phase, i.e.,
RN

r¼0
pðrÞdr ¼ Vf . Indeed the EDM spheres that

contribute to the distribution, i.e., exactly those that are not fully covered by

larger EDM spheres, are so-called maximal balls, in a computational geo-

metric sense. Their centers form the so-called medial surface (30,32–34). The

medial surface defines a backbone or skeleton representation of the fluid

phase that consists of surface patches rather than one-dimensional lines (30).

The medial surface—as opposed to the one-dimensional medial axes con-

sidered in this article—allows for the exact reconstruction of the original

fluid phase as a union of maximal spheres (34). The medial surface degen-

erates to a line if the cross section is circular.

A secondary pore size distribution is obtained by the analogous con-

struction but restricted to EDM spheres that are located on the medial axis of

the fluid phase, i.e., on the network of maximally wide paths between the

fibers (see Fig. 2, b and c). This distribution is not normalized to the total

volume of the fluid phase but instead to the volume of the union of medial

axis maximal spheres. We refer to the average of this distribution as ÆDf,MAæ.
This is a relevant measure because the union of maximal spheres centered

on the medial axis of the fluid phase represents to a first approximation the

possible flow pathways of an intruder particle through the network. This

distribution yields larger pore sizes than the full radius covering transform

distribution.

A third measure for the pore size of the fluid phase that is directly relevant

to the problem of a spherical intruder particle of given radius D is the medial

axis percolation threshold Dc evaluated with respect to a given reference

direction x, y, or z. The percolation threshold is defined as the radius of the

largest sphere that can traverse the fluid phase between the collagen fibers

from one side of the data set to the other in the given direction. For example,

the percolation threshold Dz
c is the radius of the largest sphere that can tra-

verse the data set from top to bottom.

Modern Euclidean distance map algorithms have linear computational

complexity in the number of voxels of the image (29) but with prefactors that

are morphology-dependent. The thinning operation for the computation of the

medial axis requires a number k of iterations, each proportional to the number

of interface voxels between phases 0 and 1. In the worst case, k is the maximal

value of the Euclidean distance map. The percolation thresholds are computed

by log(m) fast linear sweeps through the Euclidean distance transform image

where m is the maximal Euclidean distance map value divided by the desired

precision of the threshold. In a simple implementation, the maximal covering

radius transform is determined by l sweeps where l is the maximal Euclidean

distance value divided by the increment DDf in sphere sizes.

RESULTS

We analyze the average pore sizes, the percolation threshold,

and the specific length of collagen networks for three colla-

gen concentrations. In all cases, these data are found to be

approximately constant over a certain range of values of the

segmentation parameter and have modest spatial variations

throughout the samples.

FIGURE 4 Distribution p(Df) of three-dimensional covering radius trans-

form Df values of the fluid phase of the three investigated gels for a fixed

segmentation parameter of L ¼ 70%. The lines are normal distributions

ðsf

ffiffiffiffiffiffi
2p
p
Þ�1

expð�ðDf � ÆDf æÞ2=ð2s2
f Þ with variables sf and ÆDf æ from

Table 2. The error bars represent the standard deviation of each data point

when evaluated on eight subsets arranged on a 2 3 2 3 2 array.

TABLE 1 Morphological characteristics of collagen gels with

different concentrations c, together with estimates for the

systematic error due to changes of the segmentation parameter

Gel 1 Gel 2 Gel 3

(1.2 mg/ml) (1.6 mg/ml) (2.4 mg/ml)

LS 0.12 6 0.02 0.22 6 0.04 0.50 6 0.06

ÆDf,MAæ 3.2 6 0.2 2.3 6 0.1 1.5 6 0.1

ÆDfæ 3.0 6 0.1 1.9 6 0.1 1.3 6 0.1

Dc 2.8 6 0.3 1.8 6 0.2 1.2 6 0.1

Values for the specific fiber length LS, average pore sizes ÆDfæ and ÆDf,MAæ,
and percolation threshold Dc are averaged over all data points with seg-

mentation parameter L in the interval I ¼ [0.55, 0.8]. These averages cor-

respond to the horizontal lines in Figs. 6–9. The percolation threshold Dc is

the average Dc ¼ ðDx
c1Dy

c1Dz
cÞ=3: The error estimates Dg ¼ maxfjgi � gjg

for each of these quantities g are the maximal deviation of any of the m data

points gi in I from the average g ¼ +gi=m: See the text for specific details for

LS. All values are given in mm.

TABLE 2 Morphological characteristics of collagen gels with

different concentrations c together with estimates for the

statistical error due to the random nature of the media

Gel 1 Gel 2 Gel 3

(1.2 mg/ml) (1.6 mg/ml) (2.4 mg/ml)

LS 0.12 6 0.02 0.22 6 0.02 0.48 6 0.02

ÆDfæ 3.0 6 0.2 1.90 6 0.08 1.28 6 0.05

sf 0.8 6 0.1 0.54 6 0.05 0.34 6 0.02

Dx
c 2.7 6 0.3 1.7 6 0.1 1.2 6 0.1

Dy
c 2.6 6 0.4 1.7 6 0.1 1.1 6 0.1

Dz
c 2.5 6 0.3 1.7 6 0.1 1.1 6 0.1

Dx 2.3 6 0.3 1.6 6 0.1 1.2 6 0.1

These values for the specific fiber length LS, average pore sizes ÆDfæ, and

percolation threshold Dc are evaluated for a single segmentation parameter

L ¼ 0.7 for data sets of size 3003 voxels, i.e., (30 mm)3 for Gel 3 and (45

mm)3 for Gels 1 and 2. For the error estimates the sample was subdivided

into an array of 23 cubic subsets of size 1503 voxels and gi was computed

for each subset i. The errors are ð+8

i¼1
ðgi � gÞ2=7Þ1=2Þ with g ¼ +8

i¼1
gi=8:

All values are given in mm.
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We use the integrated intensity L of the fluid phase as the

segmentation parameter instead of the segmentation threshold

Ic (see Fig. 5). For a given segmentation threshold Ic, the in-

tegrated intensity of all voxels of the fluid phase is L ¼
ð+IðpÞÞ�1+�IðpÞ; where I(p) is the intensity of voxel p in the

original intensity data set,+ is the sum over all voxels of the data

set, and +� is the sum over all voxels of the fluid phase. Hence

L¼ 0 corresponds to the limit where all voxels are identified as

fluid voxels and L¼ 1 to the case where all voxels are identified

as collagen. For a given segmentation threshold Ic and the cor-

responding 0-phase (fluid) and 1-phase (collagen), L(Ic) is the

integrated intensity of the fluid phase. Since L increases

monotonically with Ic, L can be used as the relevant parameter

of the segmentation process. As an additional advantage, the use

of L conceals the irrelevant absolute range of the intensity

values, for example, 8- or 16-bit intensity resolution or different

use of the dynamic range. In practice, one performs the analysis

as function of Ic and presents the data as function of L.

The key idea—supported by the data presented below—is

that the essential large-scale features of the medial axis

skeleton of the segmented collagen phase, but not those of the

segmented collagen phase itself, are independent of the

segmentation parameter L over a certain range of L. In this

range, a change of L predominantly affects the apparent

width or thickness of the collagen fibers in the segmented

data set but not their location or existence.

It is instructive to consider the limits of large and small L

where this threshold independence breaks down: The average

pore size, shown in Figs. 6 and 7 as a function of L, increases

sharply for small and large values of L. The increase for large

L is due to loss of fibers with small fluorescence signal. The

increase for small values of L is due to merging of distinct

fibers as the fluid phase between them is erroneously iden-

tified as collagen. Nevertheless, there is an intermediate re-

gime where a change in the segmentation parameter affects

predominantly the thickness of the fibers but only marginally

their position or existence. This intermediate range was

0.55 # L , 0.8 for the collagen data sets but needs to be

assessed individually for each material.

The percolation threshold was also found to be approxi-

mately constant over the same range of L (Fig. 8). In addi-

tion, there was no statistically significant difference between

the horizontal (x,y) and the vertical direction (z) through the

sample. The same data presented in Fig. 8 with the collagen

fibers represented by the 1-phase of the segmented data set

instead of its medial axis show large L-dependent differences

between Dx
c and Dz

c (data not shown) that are certainly partly

due to anisotropic point-spread function of the imaging

system. The medial axis representation reduces the anisot-

ropy artificially introduced by the imaging system.

FIGURE 5 Intensity distribution f(I) of the confocal image stacks (bot-

tom) and cumulative sum LðIÞ ¼
R I

0
f ðI9ÞdI9 (top). The gray bar corresponds

to values of L, and according values for the segmentation threshold Ic, for

which the pore size characteristics are almost constant.

FIGURE 6 Average ÆDf,MAæ of the covering radius pore size distributions

of the fluid phase as function of the segmentation parameter L, restricted to

EDM spheres on the medial axis. For an intermediate range of L (shaded

region), ÆDf,MAæ is nearly constant. These data were evaluated on a subset of

approximate size (17 mm)3 for Gel 3 and (25 mm)3 for Gels 1 and 2.

FIGURE 7 Average ÆDfæ of the covering radius pore size distributions of

the fluid phase as function of the segmentation parameter L incorporating

the whole fluid phase as described in Fig. 3. These data are evaluated on a

subset of size 2803 voxels.
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Note that the average pore size ÆDfæ of the fluid phase and

the percolation threshold Dc are similar. This finding points

toward a spatial homogeneity of the collagen networks. The

width of the bottleneck along the single, maximally widest

path through the network is approximately equal to the in-

tegral quantity ÆDfæ.
Fig. 9 shows the specific length LS, i.e., total fiber length of

the network divided by the total volume of the data set as

function of L. In contrast to the pore size or percolation

thresholds, the length is sensitive to small-scale details of the

medial axis and its discretization and to additional image

processing steps, such as pruning of dangling dead-ends of the

medial axis. The error estimates for LS in Table 1 correspond to

variations of LS with L and to differences depending on the

level of smoothing applied to the piecewise linear represen-

tation of the medial axis before measuring its length. We

unexpectedly found LS to increase disproportionally with in-

creasing collagen concentration. It suggests that at higher

collagen concentrations the fiber diameter is smaller (a rather

unlikely scenario) or that the polymerization efficiency (the

fraction of polymerized to unpolymerized collagen) was

higher.

The computational effort necessary to compute all quan-

tities as function of the threshold parameter L is not pro-

hibitive. Nevertheless, for additional analyses, such as error

or homogeneity estimates or the analysis of sequences of

similar data sets, it may be useful to extract a value for an

optimal segmentation threshold. While there is no universal

system-independent value for an optimal threshold Lc, a

value approximately centered in the range of L where the

morphological measures only vary mildly is a sensible

choice. Specifically for the collagen data we choose Lc¼ 0.7.

The errors of the intrinsic morphological measures that

stem from the irregular or disordered nature of the media can

be determined by analyzing subsets of the data. These pro-

vide an indication of whether the sample size was sufficiently

large. The value ga of a morphological measure g is computed

for a cubic subset of the data chosen maximally large but suf-

ficiently smaller than the whole data set to exclude boundary

effects, (30 mm)3 for Gel 3 and (45 mm)3 for Gels 1 and 2.

This subset is then subdivided into a grid of n3 cubic subsets

(here n¼ 2), for each of which the value gi with i ¼ 1; . . . ; n3

of g is computed. For an intensive measure, ga equals g9a ¼
1=n3+n3

i
gi by definition and Dg¼

�
+n3

i¼1
ðgi�gaÞ2=ðn3�1ÞÞ is

an appropriate estimate for the error due to the statistical

nature of the system.

Table 2 shows the results of this analysis demonstrating

that the sizes of the collagen data sets were sufficient relative

to the inhomogeneity of the collagen network. This analysis

was carried out for a fixed segmentation parameter L ¼ 0.7.

The importance to quantify both this statistical error (Table 2)

and the systematic error due to changes of the segmentation

parameters (Table 1) is demonstrated by the specific length;

for LS the statistical error evaluated for a single L is small but

the systematic error associated with variations of L and other

process parameters is large.

In addition, Fig. 4 shows the distributions of ÆDfæ for L ¼
0.7. These data suggest that these distributions are approxi-

mately given by normal distributions ðsf

ffiffiffiffiffiffi
2p
p

Þ�1
expð�Df �

ÆDfæÞ2=ð2s2
f Þ with values of sf and ÆDfæ tabulated in Table 2.

We have also validated the robustness of our method

against noise for simple synthetic data sets. To this end we

have generated a synthetic confocal microscopy data set by

convoluting the medial axis representation of Gel 2 with an

approximation of a typical point-spread function and appli-

cation of Gaussian smoothing. Furthermore we have added

additive uncorrelated noise with a given amplitude r/DI to the

grayscale data set before computing the average pore size

ÆDfæ by the same process as described above. DI is the stan-

dard deviation of the distribution of intensities in the gray-

scale data set. The values for the average pore size ÆDfæ
obtained from the original network model and from the

grayscale data set by application of the methods described are

the same, as expected. Fig. 10 shows that ÆDfæ as a function of

FIGURE 8 The percolation threshold of the fluid phase as function of the

segmentation parameter L, for the vertical (Z) and for one of the horizontal

(x) directions. The straight lines are linear fits to the data points in the

interval 0.55 # L # 0.8 for the horizontal direction. The percolation

threshold for the y direction is up to statistical deviations the same as x (data

not shown).

FIGURE 9 Specific length, i.e., length/volume, of the collagen fiber

network as function of segmentation parameter L.
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L is indeed almost constant in the absence of noise and that

our method is robust against strong levels of uncorrelated

noise (e.g., r/DI ¼ 4).

Relation of the percolation threshold to the
Euler index

The percolation threshold, defined above, has thus far been

used as a collagen pore size measure. However, percolation

thresholds are of broader importance including applications

to transport in random media (35–37). We show that our data

are commensurate with a hypothesis linking the percolation

threshold Dc to the Euler index, a fundamental topological

quantity (38).

For the collagen networks the percolation threshold Dc

marks a critical size of a spherical intruder particle, in the

sense that smaller particles can migrate globally through the

whole fluid phase whereas larger particles are confined to

local domains of the medium. More generally, percolation

thresholds always mark the parameter value for a random

system where isolated clusters merge to form percolating

domains that extend through the whole available space.

(35,36). This implies the relevance of percolation thresholds

to global physical properties of heterogeneous media.

The Euler index x is a fundamental morphological de-

scriptor of the topology and connectivity of spatial structure.

The Euler index is defined by integral geometry (39,40). For

a three-dimensional solid body K 2 E3 it is given by x ¼ N –

R 1 C where N is the number of connected components of K,

R the number of handles, and C the number of hollow cavities

(holes) in K (39). It is hence a topological quantity (i.e., re-

mains constant if the body is deformed unless the deforma-

tion includes cutting or gluing). The computation of the Euler

index of the 1-phase of a voxelized data set is a fast local

linear-time procedure (40).

Note that the Gauss-Bonnet theorem (41) states that x is

also given by the integral of the Gaussian curvature G over

bounding surface S¼ @K, that is x ¼ ð4pÞ�1 R
S

GðpÞdp: It is

important to accurately state if one computes the Euler

characteristic x of the body K or the Euler characteristic xS of

its bounding surface S: ¼ @K. For a three-dimensional solid

body K the relation x ¼ xS/2 holds. This is derived by con-

sidering that x(Kc) ¼ –(�1)dx(K) for any d-dimensional

body K and its compactified complement Kc ¼ (E3 \ K) [
@(E3 \ K). Applying the additivity relation x(K1 [ K2) ¼
x(K1) 1 x(K2) – x(K1 \ K2) (that is valid for any K1 and K2)

to K1¼ K and K2¼ Kc yields with @K¼ K1 \ K2 and x(K1 [
K2 ¼ E3) ¼ 0 that the Euler characteristic of the bounding

surface is x(@K) ¼ x(K)/2 (39).

The Euler index has been shown to be a relevant descriptor

of global properties of spatial patterns for a variety of phys-

ical problems and relevant for percolation transitions (42).

Indeed it was conjectured that for a wide class of random

structure models the percolation thresholds are bounded

tightly from above by the zero of the mean Euler index (38).

Although not proven rigorously, numerical studies of various

different types of percolation models suggest that the analysis

of the Euler index provides an estimate of the percolation

threshold (43,44). The random homogeneous nature of the

material is essential for this conjecture as it is trivial to construct

counter-examples, for example by superposing a smaller-scale

porous structure on the solid phase, which greatly changes x

but does not affect the percolation threshold.

A dilation Kc(rp) of the collagen network with dilation

radius rp is the set of voxels that are closer to the medial axis

representing the collagen fibers than rp. The value of the

dilation radius for which the Euler index of the dilated col-

lagen network vanishes, x(Dx) ¼ 0, is denoted Dx. The

complement Kf(rp) of the dilated collagen network is the

space in which the centers of spheres of radius rp can move. If

Kf is (not) percolating for a given radius rp, then a sphere of

radius rp can (cannot) traverse the collagen network. Note

that the Euler characteristics of Kc and of its complement Kf

are the same except for effects due to the sample boundary.

Fig. 11 shows the Euler index x(rp) of dilations of the

collagen network as function of the dilation radius rp. These

data support the hypothesis that the zero of the Euler index at

Dx is close to the percolation threshold Dc, considering the

statistical errors. The values of Dx are smaller than Dc (see

Tables 1 and 2), consistent with the statement that Dx is an

upper bound for the percolation threshold of the fluid phase.

This finding lends additional experimental support to the

hypothesis that the percolation threshold of sufficiently ho-

mogeneous disordered materials is related to the topology of

the material.

CONCLUSION

We have presented a method for extracting morphological

measures of reconstituted collagen networks—in particular,

pore-size distributions and percolation thresholds—from

confocal microscopy image stacks. This method is robust

FIGURE 10 The Euler index of dilated versions of the collagen network

as a function of the dilation radius. The vertical lines mark the dilation radius

Dx for which x vanishes.

6078 Mickel et al.

Biophysical Journal 95(12) 6072–6080



against variations of the segmentation parameter L that is

used to segment the grayscale intensity images. The key idea

is to derive morphological measures from the medial axes of

the collagen phase or the fluid phase and to use the robust

average of the maximal covering radius transform as pore

size estimate. The measurements described here exploit the

three-dimensional nature of the confocal microscopy data set.

Our analysis of the concentration-dependence of the average

pore size is consistent with previously published data (13).

We also provide empirical support for the recent conjec-

ture that the percolation critical lengths Dc are well approx-

imated by the zeros as function of rp of the Euler index x of

the dilated collagen network body with dilation radius rp.

The presented method of pore size characterization is not

limited to collagen networks but can be applied to any fibrous

polymer network such as bundled F-actin, fibrin, cytoskeletal

filament networks, etc., as long as the individual fibers can be

resolved by the confocal imaging system. Fast confocal

scanning microscopy has become a widely used tool in cell

biology for live-cell imaging of cytoskeletal filaments in

three dimensions. Moreover, using video-rate confocal super

resolution (stimulated emission depletion) microscopy, the

three-dimensional live-cell imaging of cortical actin struc-

tures with their typical mesh size of ,200 nm should become

possible in the near future (45,46).

The average pore size and the percolation threshold of less

than 3 mm for all three collagen concentrations investigated

indicate that these collagen networks form a steric barrier

against the invasion of cells (3). The fact that many tumor

cells can easily migrate through these collagen networks (5)

suggest that they must employ mechanisms to overcome the

steric hindrance of the matrix, such as proteolytic collagen

degradation or the generation of protrusive forces that deform

and widen the network pores (3). For a quantitative under-

standing of cell migration through such three-dimensional

networks, a characterization of their morphological proper-

ties is therefore essential.

The fiber width of the analyzed collagen samples corre-

sponds approximately to the voxel size and is known to be

almost constant. This is the simplest situation for the methods

presented but not a requirement. The average ÆDfæ of the

maximal covering radius transform is a robust pore size

measure for any reliable voxelized representation of the fluid

phase. The representation of the fiber network as the medial

axis is immediately applicable to a network of circular fibers

with arbitrary constant fiber thickness; the medial axis is

simply dilated to the known radius of the fibers. If the fiber

cross section varies, a medial axis representation is still

possible—with dilation by spatially varying radii—but the

dependence of ÆDfæ of the segmentation parameter L is more

complex; thinner fibers have lower intensities and a change in

L does not only affect the fiber width but also the network

composition (relevant, for example, for biopolymer networks

in the presence of bundling proteins). For thick fiber net-

works, the medial axis representation is unnecessary as the

solid phase can be obtained by deconvolution with the point-

spread function.

In summary, the medial axis approach, combined with the

maximal covering radius transform as a pore-size measure,

facilitates the robust and quantitative analysis of the mor-

phology of three-dimensional filamentous networks from

diffraction-limited noisy confocal images. The approach

applies similarly to other robustly defined morphological

descriptors (such as integral measures of fiber orientation)

and can, in principle, be extended to noise-sensitive measures

such as branching ratios or branching angles.
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