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which are as-recorded); this plot reveals a posi-
tive correlation between strength and stiffness.

The implication of the correlation between
strengths and stiffnesses is that although the fiber
sampleswe created have defects at random intervals
on themillimeter scale along the gauge length, these
flaws do not have the nature of a stress raiser in a
brittle fiber, which would be expected to reduce
strength but to have little or no effect on stiffness. It
is much more likely that these defects are asso-
ciated with local deficiencies in densification,
which would preclude successful stress transfer
by shear between some of the bundles of nano-
tubes. Consequently, in some sections of the fiber,
not all of the nanotube bundles carry an equal
share of the load, resulting in both lower fracture
strength and decreased stiffness. We believe that
these defects are associated with included carbo-
naceous particles (fig. S3), which induce failure in
interbundle stress transfer over much greater dis-
tances along the fiber than that occupied by the
particle alone. Such particles are seen microscop-
ically with a frequency that is consistent with their
distribution at millimeter-scale spacings along the
fiber. The strengths reported here represent a mea-
sure of success in reducing the level of such in-
cluded particles, and we expect further levels of
process refinement to enable the realization of
such high strengths over much longer fibers.

Figure 4A (and table S1) set the strength and
stiffnesses of our fibers in the context of a range
of mechanical data from commercially available
high-performance fibers, as well as reports of
properties of other carbon nanotube fibers in the
recent literature. The strains shown, and thus the
stiffness and energy absorbed up to fracture (table

S1), have been corrected for grip strain. Under
laboratory conditions, higher strengths than those
guaranteed in a commercial product are sometimes
seen. Two reported strengths from laboratory fiber
work, one for high-strength polyethylene (24) and
one for poly(p-phenylene-2,6-benzobisoxazole)
(PBO) (25), are plotted as horizontal lines in Fig.
4A. Table S1 also sets the measurements of energy
absorbed at fracture (toughness) in the context of
other fibers. In Fig. 4B, the performance of our fiber
is compared with values reported in the literature
for carbon nanotube fibers made by different
methods. As some laboratories have not recorded
the density of their fibers, we have made this
comparison in terms of strength and stiffness rather
than specific strength and specific stiffness. One
consequence of using these (nonspecific or direct)
units is that the estimated error of ourmeasurements
is slightly increased.
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Structural Rearrangements That
Govern Flow in Colloidal Glasses
Peter Schall,1,2* David A. Weitz,2,3 Frans Spaepen2

Structural rearrangements are an essential property of atomic and molecular glasses; they are
critical in controlling resistance to flow and are central to the evolution of many properties of
glasses, such as their heat capacity and dielectric constant. Despite their importance, these
rearrangements cannot directly be visualized in atomic glasses. We used a colloidal glass to obtain
direct three-dimensional images of thermally induced structural rearrangements in the presence
of an applied shear. We identified localized irreversible shear transformation zones and determined
their formation energy and topology. A transformation favored successive ones in its vicinity. Using
continuum models, we elucidated the interplay between applied strain and thermal fluctuations
that governs the formation of these zones in both colloidal and molecular glasses.

The hallmark of any glass is a very low
atomic or molecular mobility within a
disordered solid, many orders of magni-

tude smaller than that of a fluid. This mobility
is a result of thermally induced structural re-
arrangements, which typically occur at a very
low rate. Structural rearrangements must also
occur as a response of the glass to an externally

applied shear; this causes a directional bias in
the structural rearrangements that produces the
macroscopic strain (1). Because the glass
structure is so highly constrained, these struc-
tural rearrangements must entail reorganization
of the constituent molecular units over some
larger length scale (2). Nevertheless, in molec-
ular glasses, these length scales are still too

small and the time scales are too short for direct
observation. The only direct evidence for the
existence of local shear transformation zones
that produce macroscopic strain comes from
bubble raft experiments (3) and computer sim-
ulations of two-dimensional (4–6) and three-
dimensional (3D) glasses (7–10). Direct real-
space visualization of structural rearrange-
ments can be made in suspensions of colloidal
particles as they can be quenched into a glassy
state by rapid densification of the particles
from a fluid state (11, 12). These systems lose
ergodicity due to crowding at high particle
volume fraction, f, leading to a transition to a
glassy state at fg ≈ 0.58 (13). Experiments and
simulations suggest that when fg is approached
from the fluid phase, particle rearrangements
occur cooperatively on increasing length scales
(2, 14, 15). For f > fg, such rearrangements are
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highly constrained (15). Nevertheless, thermally
induced aging, often called “structural relaxa-
tion,” occurs (13, 16) and must entail some form
of cooperative motion.

We visualize structural rearrangements in
colloidal glasses in three dimensions and in real
time by following the microscopic strain distri-
bution under shear. We identify the shear trans-
formation zones and show that they have a spatial
extent of a few particle diameters and involve a
highly localized structural rearrangement that re-
sults in a strain of ~0.1 immediately in the
vicinity of the central particle. We determine
their activation energy, E* ~ 16 kBT, where kBT
is the thermal energy; thus, they can be induced
by thermal fluctuations. They also can be
induced through application of very small
shears. Moreover, the elasticity of the glass
results in coupling between the transformation
zones, which, upon increasing strain, leads to a
network of transformation zones that extends
across the sample.

We prepared a 42-mm-thick colloidal glass by
quenching silica spheres with a diameter of 1.5
mm and a polydispersity of 3.5% (17) from a
dilute suspension onto a coverslip by centrifuga-
tion to a volume fraction of roughly 0.61, well
into the colloidal glassy state. Because the den-
sity of the silica spheres is greater than that of the
solvent, f increases with sample depth. The
sample is sufficiently deep into the glassy state
that crystallization is not observed. Boundary-

induced crystallization is suppressed by a layer of
polydisperse spheres sintered onto the coverslip.
The silica particles are suspended in a mixture of
water and dimethylsulfoxide, which matches
their refractive index. We added a small amount
of fluorescein to the solvent so that under fluo-
rescent imaging, particles appear as dark spots on
a bright background. We carefully introduced a
fine metal grid (18) from above to fix the top of
the sediment, and we used a piezoelectric trans-
lation stage to move the coverslip to apply shear
at very small rates of ~10−5 s−1.We used confocal
microscopy to image individual particles in a 47
mm by 50 mm by 23 mm volume and determined
their positions in 3Dwith an accuracy of 0.03mm
in the horizontal and 0.05 mm in the vertical
direction (15). We tracked the motion of indi-
vidual particles for the 60-min duration of each
experiment by acquiring 3D image stacks every
150 s; each image stack took 60 s to acquire.

Structural rearrangements can be thermally
activated even in the absence of shear. We follow
particle trajectories in an unsheared glass for 20
min and identify the nearest neighbors of each
particle as those separated by less than r0, the first
minimum of the pair correlation function. To
calculate the time-dependent strain, we determine
the symmetric part of the best affine deformation
tensor that transforms the change of the nearest-
neighbor vectors over the time interval (6), and
we smooth the results by averaging over nearest
neighbors (19, 20). The x, y, and z directions are

chosen along the edges of the imaged volume
(Fig. 1A). We focus on the shear component eyz
of the strain tensor and illustrate its value for two
subsequent 2.5-min intervals in 3-mm-thick
sections at z = 13.5 mm in Fig. 1, B and C. Red
and blue spheres indicate regions with positive
and negative shear strain, respectively. Regions
of strain extending over many particles are evi-
dent (arrows). Furthermore, by comparing red
and blue regions, we find that localized regions
of large strain reverse their sign in subsequent
images as highlighted by the arrows in Fig. 1, B
and C. We interpret these strain oscillations as
thermal fluctuations. To check this hypothesis,
we calculate the elastic energies associated with
the shear strain distribution and determine the
relative frequency of the energies. We divide the
volume into cubes of size a = 3 mm, so that each
cell contains about nine particles, roughly equal
to the number of nearest neighbors. The magni-
tude of eyz calculated for cells centered at z = 13.5
mm and for the second time interval (Fig. 1C) is
plotted in Fig. 1D (21). We calculate the elastic
energy in each cell, E/m = (1/2)(2eyz

2)a3, where
we have normalized by the shear modulus, m.
The probability distribution of the normalized
energies is well described by an exponential as
expected for a thermally equilibrated system, as
shown in Fig. 1E. Because ln f (E) = −m(E/mkBT),
we obtain the shear modulus, m = 0.056 Pa, from
the fit, indicated by the straight line in Fig. 1E.
This value is consistent with m = 0.1 Pa,
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Fig. 1. Thermally induced strain fluctuations (A) Schematic showing the
colloidal glass (gray), and the bottom coverslip and top grid (blue) with respect
to the 47 mm by 50 mm by 23 mm section depicted in (B) to (D) and (F). (B to
F) Strain fluctuations in the unsheared glass. Color in (B) to (D) and (F)
indicates the value of the local shear strain, eyz (see color scale). (B and C) x-y
sections (3 mm thick) at z = 13.5 mm, showing the distribution of the
incremental shear strain during two consecutive 2.5-min intervals. Arrows
mark regions in which the strain changes sign from (B) to (C). (D) Array of 3
mm by 3 mm squares, showing values of the incremental shear strain in 3 mm
by 3 mm by 3 mm cells at z = 13.5 mm for the section shown in (C). Each cell
contains roughly nine particles. (E) Distribution of normalized strain energies,

E/mkbT, calculated from the strain values depicted in (D). Squares at E/mkbT =
23n Pa−1 with n = 0,1,2,... indicate the relative frequency of energy values in
intervals [23n, 23(n + 1)] Pa−1. Horizontal bars indicate the uncertainty in
energy associated with the uncertainty in strain due to the limited accuracy in
particle positioning. We assume that the measured particle coordinates have a
Gaussian distribution of width 0.03 mm in the x and y direction, and 0.05 mm
in the z direction, around the real positions. The red line has a slope of−0.056
Pa. (F) y-z section (8 mm thick) centered at x = 14 mm showing the cumulative
shear strain at t= 20min. Red and blue regions persist at even later times. (G)
Cumulative displacements, Dy, from t = 0 to t = 20 min of particles (+) at
height between z = 0 and z = 23 mm.
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measured for crystals of similar thickness and
made of the same particles (22). Similar oscil-
lations exist for all components of strain, both
shear and uniaxial. This supports our hypothesis
that the strain oscillations are indeed caused by
thermal fluctuations.

Thermal fluctuations can also induce irrever-
sible rearrangements. To probe these, we deter-
mine the cumulative strain that occurs during the
entire 20-min interval. We plot a reconstruction
of an 8-mm-thick section in the yz plane centered
at x = 14 mm in Fig. 1F. Localized regions with
strain amplitudes even larger than those of the
strain fluctuations have developed, and we
confirm that these regions persist at longer times.
These structural rearrangements do not, however,
lead to macroscopic strain as confirmed by the
plot of the z coordinates of the individual parti-
cles as a function of their cumulative displace-
ments in the y direction; no shear gradient is
observed, as shown in Fig. 1G.

To investigate these structural rearrangements
more closely, we study their behavior upon ap-
plication of shear. We apply positive shear strain
by displacing the bottom coverslip in the nega-
tive y direction while keeping the top plate at a
fixed position. We find that the mean Dy in-

creases almost linearly with z corresponding to a
nearly uniform shear strain, as shown by the plot
of the z coordinates of all particles as a function
of their y displacements in Fig. 2A. The slight
curvature of the data indicates a somewhat re-
duced shear strain at small z. We attribute this to
the higher density at the bottom of the sediment.
We determine the macroscopic shear strain, g,
from the difference of the mean of the Dy
distributions across the full sample height Dz =
23 mm (slope of the red line). We obtain g = 0.03
for the 50-min time interval, which corresponds
to an average strain rate of 10−5 s−1.

We can again identify localized regions of
structural rearrangements, but now induced by
the applied strain. We show the cumulative strain
eyz in a 7-mm-thick section at x = 10 mm in Fig.
2B. Red spheres indicate local shear strain in the
direction of the applied shear, whereas blue
spheres indicate shear strain opposite to the
applied strain. The shear strain is not distributed
homogeneously, but is instead localized as shown
by the zones of concentrated red spheres. These
regions are typically a few particle diameters
wide. We focus on an individual region (arrow)
and investigate the strain distribution when it is
first formed. A large portion of the strain occurs

in one time step, which allows us to identify its
formation. Reconstructions centered on this re-
gion with adjacent frames measured just before
and just after its formation are shown in Fig. 2, C
and D. The red spheres in Fig. 2D (arrow) indi-
cate high local shear strain associated with the
formation of the shear transformation zone. We
find that before the zone is formed, opposite
strain concentrates in the same region (blue
spheres in Fig. 2C). This suggests that the
formation of the zone is caused by a thermally
induced strain fluctuation. During the time step in
which the shear transformation zone is formed,
four zones of negative shear strain (−) surround
the center region shown by red in Fig. 2D. This
fourfold symmetric strain distribution is charac-
teristic of the distortion of an elastic matrix
around a volume that undergoes a shear trans-
formation (23). We determine the magnitude of
eyz as a function of distance, r, from the shear
transformation zone center, by plotting the strain
values of all particles in the lower left sector of a
cylinder centered at y = 25 mm and z = 15 mm as a
function of their distance from the cylinder axis
(Fig. 2E). Black dots show the averaged strain
values depicted in Fig. 2D, whereas the red
triangles represent values of eyz that have not
been averaged over nearest neighbors. The
averaged values are significantly smaller, which
we attribute to the truncation of the strain
magnitude that results from the averaging; we
use the nonaveraged strain values for further
calculations. The shear strain is constant at small
r, and decays as r−3 at larger r (dashed lines in
Fig. 2E), as expected for the strain field around a
volume that undergoes a shear transformation
(23). The crossover defines the radius of the core
of the shear transformation zone, rc = 2.3 mm,
which is roughly equal to three particle radii. To
explore the strain distribution in the third direc-
tion, we show a 5-mm-thick section along the xz
plane that contains the same shear transformation
zone in Fig. 2F. The core of the zone is elongated
along the x direction, bounded by regions of
slightly negative strain. To determine its extent in
x, we consider particles within 1.5 mm of the
dotted line, which goes through the center of the
zone, and plot their eyz as a function of x in Fig.
2G. We observe a maximum of e0 ≈ 0.08 cen-
tered between x = 10 mm and x = 15 mm with a
crossover to negative strain values on either side.
Thus, we take the width of the core of the shear
transformation zone to be Dxc = 5 mm.

We calculate the energy cost, Ef, and
activation volume, V* = kBTdln ġ/dt, where ġ
is the macroscopic shear rate and t the applied
stress, associated with the formation of the shear
transformation zone using a continuum-elastic
model. We first determine the strain field of an
elastic matrix around a spherical inclusion of
radius rc that undergoes a uniform shear
transformation of e0 (24). We calculate the total
elastic strain energy inside and outside the
inclusion by integrating the total energy density
w = (1/2)(2meij

2 + lekk
2) (25) over the volume.We

Fig. 2. Response of a
glass to shear strain (A)
Shear-induced displace-
ments, Dy, of particles
(+) at height between
z = 0 and z = 23 mm
after 50 min of shear.
(B to G) Strain distribu-
tion and shear trans-
formation zones in the
sheared glass. Particle
color indicates the value
of the local shear strain
eyz (see color scale). (B)
y-z section (7 mm thick)
centered at x = 10 mm,
showing the distribution
of the cumulative shear
strain after 50 min of
shear. Arrow indicates a
shear transformation zone,
the incremental strain dis-
tribution around which is
shown for two subsequent
time intervals in (C) and
(D). (C and D) y-z sections (15 mm by 15 mm by 7 mm) centered around the zone marked in (B). (C)
Incremental shear strain between t = 25 min and t = 27.5 min. Dashed circle indicates a region of
negative shear strain. (D) Incremental shear strain between t = 27.5 min and t = 30 min. Dashed circle
indicates a zone of high positive shear strain. Dashed straight lines delineate four regions of negative
shear strain that surround the high–shear strain zone in the center. (E) Shear strain values versus r,
the radial distance of particles from the shear transformation zone axis alongx through y= 25 mmand z =
15 mm. Black dots and red triangles show averaged and nonaveraged strain values, respectively. Dashed
lines with the slopes m = 0 and m = −3 are guides to the eye. (F) x-z section (5 mm thick) at y = 25 mm,
showing the incremental shear strain between t= 27.5min and t= 30min. The dashed ellipse indicates the
intersection of the boundary of the high–shear strain zone with the plane shown. Black dashed lines on both
sides of the ellipse delineate regions of slightly negative strain adjacent to the shear transformation zone. (G)
Shear strain values versus x for particles within 1.5 mm of the blue dashed line at z = 15 mm (arrow) in (F).
Dashed vertical lines indicate the extension of the shear transformation zone along x.
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approximate the Lamé constant l by 2nm/(1 − 2n)
using the Poisson ratio n = 1/3 and obtain Ef´ =
18.9 kBT. We calculate the activation volume by
integrating the distribution of the technical shear
strain g = 2eyz over the volume and obtain V*´ =
6.9 mm3. We correct Ef´ and V*´ for the ellip-
soidal shape of the shear transformation zone by
multiplying by Dxc/2rc and obtain Ef = 20.5 kBT
and V* = 7.5 mm3.We determine the volume of a
particle, V0 = 1.88 mm3, from the peak of the pair
correlation function at 1.53 mm; thus, the activa-
tion volume is roughly four particle volumes.
Interestingly, this value is of the same order as
those for metallic glasses determined from
measurements of the stress dependence of the
strain rate; for example, for a PdNiCuP alloy,
V* is about eight atomic volumes (26).

Because the rearrangements in the shear
transformation zones contribute to plastic flow,
they must be irreversible and persist after they
have been created. To check this, we reversed the
shear direction and confirmed that the shear
transformation zones that we investigated here do
not reverse but remain locked in their sheared
configurations (27). To elucidate this irrevers-
ibility, we investigated the structural rearrange-
ments on the single-particle level in the core of
the shear transformation zone. We show recon-
structions of the arrangement of particles in the
shear transformation zone core at t = 5, 30, and
50 min in Fig. 3, A to C. We highlight a particle
in the zone center (yellow sphere), which exhibits
a large displacement downward and thereby loses
some of its nearest neighbors (green spheres). To
quantify the particle displacements in this zone,
we determined the displacement of the particles
relative to the average displacement of particles
at the same height, Dr = [(Dx − 〈Dx〉)2 + (Dy −
〈Dy〉)2 + (Dz − 〈Dz〉)2]0.5. We plot the distribution
of Dr at t = 30 min in Fig. 3D. The magnitudes
of the displacements of particles in the shear
transformation zone (red bars) are significantly
larger than those of the particles outside the zone
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particle arrangements within the shear transformation zone of Fig. 2, B to G, at t = 5, 30, and 50
min. Arrows mark one yellow and four green particles, which are nearest neighbors at t = 5 min
and become separated at later times. (D) Histograms showing the normalized particle dis-
placements, D r/s, where s is the particle radius, at t = 30 min, for shear transformation zone
particles (red bars, right scale) and for all particles outside the shear transformation zone (blue
bars, left scale). Particles within the shear transformation zone exhibit many more large dis-
placements. (E and F) Reconstruction of a 10-mm-thick glass section centered at x = 7 mm shows
nearest-neighbor changes in the sheared glass at t = 30 min and t = 50 min. Large green, yellow,
and red spheres indicate particles that lose one, two, and three nearest neighbors, respectively. All
other particles are drawn as smaller spheres for clarity. Nearest-neighbor changes occur in high–
shear strain regions (compare to Fig. 2B). Arrows indicate the same particles as marked in (A) to
(C). The inset in (E) shows the radial distribution function, g(r), of the glass used for identifying
nearest neighbors at t = 0. Particles with distances smaller than r0 (left dashed line) are nearest
neighbors; all particles that move farther away than 1.3 r0 from their nearest neighbor (right
dashed line) are defined as having lost their neighbor.
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Table 1. Activation parameters of individual shear
transformation zones. Activation volumeV*, energy
of formation Ef, and activation energy E* = Ef − tV*
of shear transformations were determined from the
individual incremental strain distributions asso-
ciated with the formation of the transformations.
The shear stress t was taken to be t = g0m with g0 =
0.012, themacroscopic shear strain at formation of
the first shear transformation, and the shear
modulus m = 0.056 Pa (Fig. 1E). The particle
volume V0 is 1.88 mm3.

V*/V0 Ef (kBT) E*
(kBT)

4.0 20.5 19.2
4.6 19.3 17.8
3.6 13.9 12.7
3.7 16.5 15.3
3.4 16.5 15.4
3.8 19.6 18.4
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(blue bars). Two particles in the shear trans-
formation zone move almost as much as their
radius; one of these is the yellow sphere in Fig. 3,
A to C. Such large displacements of isolated
particles cause notable changes in their nearest-
neighbor configuration, as illustrated by the mo-
tion of the yellow sphere. This causes the
irreversibility of the shear transformation. To
characterize this irreversibility, we identify all
particles that lose one or more nearest neighbors,
where we define loss of a nearest neighbor to
occur when that particle moves farther away than
br0, where we arbitrarily choose b = 1.3, as
shown in the inset of Fig. 3E. We show these
particles in a 10-mm-thick slice in the yz plane at
two different times in Fig. 3, E and F; large green,
yellow, and red spheres illustrate particles that
have lost one, two, and three nearest neighbors,
respectively. These spheres concentrate in
regions, which grow with time and coincide with
the zones that exhibit high shear strain (Fig. 2B).
This supports our interpretation that shear trans-
formations are irreversible: The nearest-neighbor
changes lead to new particle configurations, sta-
bilizing the transformed zone.

The existence of these shear transformation
zones indicates that locally, the strain is highly
concentrated. The long-range strain field of a
shear transformationmay facilitate the nucleation
of another shear transformation zone in its
vicinity: The formation of new zones may be
spatially and temporally correlated. To explore
this possibility, we follow the evolution of the eyz
distribution over the entire duration of the exper-
iment. To smooth the thermally induced strain
fluctuations, we average the particle positions
over two adjacent frames and calculate the time-
averaged shear strain, eyz*. We show the evolu-
tion of the eyz* distribution in Fig. 4. A 5-mm-thick
section in the xy plane centered at z = 13.5 mm is
shown in Fig. 4, A to C. Three-dimensional
reconstructions of a thicker slice, 16 mm in height,
depicting only particles with eyz* > 0.025, are
shown in Fig. 4, D to F. The number of shear
transformation zones increases with strain; new
zones appear, while existing ones persist. The
images show that a shear transformation zone
induces new ones in its vicinity. For example, the
zone formed at the earliest time (arrows in Fig. 4,
A and D) induces the formation of three adjacent
zones (arrows in Fig. 4, B and E), each of which
again induces additional adjacent zones (Fig. 4, C
and F). That this coupling results from the long-
range strain fields is corroborated by the obser-
vation that branches of positive strain develop
between the individual shear transformation zones,
as shown by the more yellow-colored particles
between the zones. These branches connect the
individual shear transformation zones into a net-
work, which ultimately permeates the entire field
of view at 50 min (Fig. 4F).

Even though the applied strain helps induce
these shear transformation zones, they are
nevertheless still predominantly thermally acti-
vated. We can understand this by comparing the

energy induced by the applied shear with the
energy of formation of the shear transformation
zone. The external work due to the applied shear
stress t is tV*. We estimate the shear stress to be
constant once the sample has exceeded the mac-
roscopic yield strain, where the first shear trans-
formation occurs, g0 = 0.012; thus,we take t= g0m.
We calculate the activation volumes, V*i, from
the individual strain distributions of several shear
transformation zones and list them in Table 1.
Because the average activation volume is V*av =
3.8 V0, the typical work due to shear is ~1 kBT.
By comparison, we calculate the formation en-
ergy of the same shear transformation zones
(Table 1). Although there is some variation, their
typical value is Ef = 18 kBT, significantly larger
than the work done by the applied shear. Thus, the
shear transformation zones are thermally activated
with an activation energy of Ei* = Ef, i – tV*i, and
we also list these values in Table 1.

The average activation energy is E*av = 16.5
kBT; this should be compared with the measured
value of E* determined from the rate, J, at which
shear transformation zones are induced.We use J
= f0mexp(−E*/kBT), wherem = 3400 is the total
number of particles, and f0 = 100 s−1 is a
characteristic frequency of the particles deter-
mined by their diffusion time between nearest-
neighbor particles (20). We determine J = 3 ×
10−3 s−1 from the total number of shear trans-
formation zones observed during the 50-min
interval in the 5-mm-thick section; thus, E* =
18.5 kBT, in very good agreement with E*av
determined from the strain distributions.

These results highlight the role of the shear
transformation zone in the flow of glasses. The
structural rearrangements are thermally activated
and are highly localized. Although these results
are obtained on colloidal glasses, similar behavior
should occur in metallic and molecular glasses.
Application of the measured strain distribution
on the atomic scale to a metallic glass withm ~ 30
GPa (28) yields a shear-zone energy close to that
found for our colloidal glass. Although activation
energies determined from isoconfigurational vis-
cosity measurements onmetallic glasses at 600K
are roughly four times as large as this value (29),
the ratio of the activation energy to the thermal
energy is only a factor of 2 larger than in our
colloidal system. This reflects the 10 orders of
magnitude higher attempt frequency in metallic
glasses at equal nucleation rates. The ratio of the
external work tV* to the thermal energy is of the
same order as in typical deformation tests on me-
tallic glasses at the same strain rate (26), which
indicates that the effects of thermal fluctuations in
our experiment are similar to those in deformation
of metallic glasses. Our results also highlight the
coupling between shear transformation zones:
The long-range elastic stress field of each zone
induces new zones in its vicinity, and upon suf-
ficient external strain, these zones extend through-
out the volume. A similar coupling between shear
transformation zones is expected in atomic and
molecular glasses.
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