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ten permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media LLC, 233
Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de-
veloped is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

9 8 7 6 5 4 3 2 1

www.birkhauser.com (LM/EB)



Preface

This edited volume contains a selection of chapters that are an outgrowth of the Eu-
ropean Conference on Mathematical and Theoretical Biology (ECMTB05, Dresden,
Germany, July 2005). The peer-reviewed contributions show that mathematical and
computational approaches are absolutely essential for solving central problems in the
life sciences, ranging from the organizational level of individual cells to the dynamics
of whole populations.

The contributions indicate that theoretical and mathematical biology is a diverse
and interdisciplinary field, ranging from experimental research linked to mathemati-
cal modeling to the development of more abstract mathematical frameworks in which
observations about the real world can be interpreted, and with which new hypotheses
for testing can be generated. Today, much attention is also paid to the development of
efficient algorithms for complex computation and visualisation, notably in molecular
biology and genetics. The field of theoretical and mathematical biology and medicine
has profound connections to many current problems of great relevance to society. The
medical, industrial, and social interests in its development are in fact indisputable.
Insights and predictions from mathematical modeling are used increasingly in deci-
sion support in medicine (e.g., immunology and spread of infectious diseases, can-
cer research, cardiovascular research, neurological research, optimisation of medical
treatments, imaging), environmental and nature management, climate problems, agri-
culture, and management of natural resources. Rapid developments in areas such as
biotechnology (e.g., genome projects, genetic modification, tissue engineering) con-
tinue to add new focal points of activity to the field. The contributions of this volume
capture some of these developments.

The volume is divided into five parts—cellular biophysics, regulatory networks,
development, biomedical applications, and data analysis and model validation.

Part I deals with cellular biophysics and contains six chapters.
Kovalenko and Riznichenko consider multiparticle simulations of photosynthetic

electron transport processes. In particular, a 3D model of cyclic electron transport is
developed and applied to a study of fast and slow components of the reaction center
of a photosystem 1 pigment-protein complex. It is demonstrated that the slow phase of
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this process is diffusion-controlled and determined by the diffusion of reduced plasto-
quinone and plastocyanin molecules from the granal to stromal areas of the thylakoid
membrane.

Knoke, et al. study the selective regulation of protein activity by complex Ca2+
oscillations. Calcium oscillations play an essential role in intracellular signal trans-
duction. A particular question is how two or more classes of proteins can be specifi-
cally regulated at the same time. The question is general and concerns the problem of
how one second messenger can transmit more than one signal simultaneously (bow-tie
structure of signalling). To investigate whether a complex Ca2+ signal like bursting,
a succession of low-peak and high-peak oscillatory phases, could selectively activate
different proteins, several bursting patterns with simplified square pulses were applied
in a theoretical model. The results indicate that bursting Ca2+ oscillations allow a dif-
ferential regulation of two different calcium-binding proteins, and hence, perform the
desired function.

Gamba, et al. focus on phase separation in eukaryotic directional sensing. Many
eukaryotic cell types share the ability to migrate directionally in response to external
chemoattractant gradients. The binding of chemoattractants to specific receptors leads
to a wide range of biochemical responses that become highly localized as cells polar-
ize and migrate by chemotaxis. This ability is central in the development of complex
organisms, and is the result of millions of years of evolution. Cells exposed to shallow
gradients in chemoattractant concentration respond with strongly asymmetric accu-
mulation of several factors, including the phosphoinositides PIP3 and PIP2, the PI 3-
kinase PI3K and phosphatase PTEN. An early symmetry-breaking stage is believed to
trigger effector pathways leading to cell movement. Although many signaling factors
implied in directional sensing have been recently discovered, the physical mechanism
of signal amplification is not yet well understood. The authors propose that directional
sensing is the consequence of a phase ordering process mediated by phosphoinositide
diffusion and driven by the distribution of chemotactic signals. By studying a realistic
reaction-diffusion lattice model that describes PI3K and PTEN enzymatic activity, re-
cruitment to the plasmamembrane, and diffusion of their phosphoinositide products,
it is shown that the effective enzyme-enzyme interaction induced by catalysis and
diffusion introduces an instability of the system towards phase separation for realis-
tic values of physical parameters. In this framework, large reversible amplification of
shallow chemotactic gradients, selective localization of chemical factors, macroscopic
response timescales, and spontaneous polarization arise naturally.

Brusch, et al. consider the formation of spatial protein domains of small guano-
sine triphosphatases (GTPases) on membranes. In particular, several mechanisms for
spatial domain formation of GTPases on cellular membranes are discussed. Further-
more, a kinetic model of the basic guanine-nucleotide cycle common to all GTPases is
developed and coupled along a one-dimensional axis by diffusion of inactive and acti-
vated GTPases. It is asked, whether a parameter set exists such that domain formation
is possible by Turing’s mechanism, i.e., purely by reactions and diffusion, and shown
that the Turing instability does not occur in this model for any parameter combination.
But as revealed by stability and bifurcation analysis, domain formation is reproduced
after augmenting the model with combinations of two spatial interaction mechanisms:
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(1) attraction; and (2) adhesion among active GTPases. These interactions can be me-
diated by effector proteins that bind active GTPases. The model predicts domains to
disintegrate if effector binding is inhibited.

Tracqui, et al. discuss in vitro tubulogenesis of endothelial cells. The formation of
new blood vessels in vivo is a multistep process in which sprouting endothelial cells
(ECs) form tubes with lumen, these tubes being additionally organized as capillary net-
works. In vitro models of tubulogenesis have been developed to investigate this highly
regulated multifactorial process, with special attention paid to the determinant role of
mechanical interactions between ECs and the extracellular matrix (ECM). In agree-
ment with experimental results obtained when culturing endothelial EAhy926 cells on
fibrin gels, the authors define theoretical thresholds between cellular traction and ac-
tive cell migration along ECM strain fields above which tubulogenesis is induced. In
addition, it is illustrated how mechanical factors may provide long-range positional
information signals leading to localized network formation. This provides an alterna-
tive view to the classical approach of morphogenesis based on gradients of diffusible
morphogens.

Time distributions in biocatalytic systems are considered by Kühl and Jobmann.
Formal kinetic methods to analyze biocatalytic systems are traditionally based on the
law of mass action. This law involves the assumption that each molecular state has
an exponentially distributed lifetime. The authors regard this assumption as unduly
restrictive and propose a more general, service theory-based approach (termed mass
service kinetics or briefly service kinetics). In service-theoretic terms, biocatalysts are
servers and their ligands are customers. The time intervals between arrivals of ligand
molecules at special service loci (active or binding sites) as well as the service periods
at these loci need not be exponentially distributed; rather, they may adopt any distri-
bution (e.g., Erlangian, hyperexponential, variomorphic). The authors exemplify the
impact of nonexponential time distributions on a performance measure of wide inter-
est: the steady-state throughput. Specifically, it is shown that nonexponential interar-
rival times convert hyperbolic mass action systems (whose characteristic is a hyper-
bolic velocity-concentration or dose-response curve) into nonhyperbolic mass service
systems, and that type and extent of their nonhyperbolicity are determined by type
and parameters of the interarrival time distribution. A major conclusion is that it is
a questionable practice to routinely and exclusively use mass action kinetics for the
interpretation and performance evaluation of biocatalytic systems.

Part II deals with regulatory networks and comprises five chapters.
Booth, et al. analyze a stochastic model of gene regulation using the chemical mas-

ter equation. This equation in combination with chemical rate equations is employed
as a tool to study Markovian models of genetic regulatory networks in prokaryotes.
States of the master equation represent the binding and unbinding of protein com-
plexes to DNA, resulting in a gene being expressed in a cell or not, while protein and
substrate concentrations are represented by continuum variables which evolve via dif-
ferential equations. The model is applied to a moderately complex biological system,
the switching mechanism of the bacteriophage λ driven by competition between pro-
duction of CI and Cro proteins. Numerical simulations of the model successfully move
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between lysogenic and lytic states as the host bacterium is stressed by the application
of ultraviolet light.

Ropers, et al. consider piecewise-linear models of genetic regulatory networks and
analyze the carbon starvation response in Escherichia coli. The growth adaptation of
Escherichia coli to the availability of the carbon source is controlled by a complex
genetic regulatory network whose functioning is still very little understood. Using a
qualitative method based on piecewise-linear differential equations, which is able to
overcome the current lack of quantitative data on kinetic parameters and molecular
concentrations, the authors model the carbon starvation response network and simulate
the response of E. coli cells to carbon deprivation. This allows one to identify essential
features of the transition between the exponential and the stationary phase and to make
new predictions on the qualitative system behavior, following a carbon upshift.

Elo and Aittokallio present an attempt to predict gene expression by combining
information from expression and promoter profiles. Gene expression microarrays have
become a popular high-throughput technique in functional genomics. By enabling the
monitoring of thousands of genes simultaneously, this technique holds enormous po-
tential to extend our understanding of various biological processes. The large amount
of data poses, however, a challenge when interpreting the results. Moreover, microar-
ray data often contain frequent missing values, which may drastically affect the per-
formance of different data analysis methods. Therefore, it is essential to effectively
exploit additional biological information when analyzing and interpreting the data.
In the present study, the authors investigate the relationship between gene expression
profile and promoter sequence profile in the context of missing value imputation. In
particular, it is demonstrated that the selection of predictive genes for expression value
estimation can be considerably improved by the incorporation of transcription factor
binding information.

Centler, et al. focus on chemical organization in the central sugar metabolism of Es-
cherichia coli. The theory of chemical organizations is employed as a novel method to
analyze biological network models. The method allows one to decompose a chemical
reaction network into subnetworks that are (algebraically) closed and self-maintaining.
Such subnetworks are termed organizations. Although only stoichiometry is consid-
ered to compute organizations, the analysis allows one to narrow down the potential
dynamic behavior of the network: organizations represent potential steady-state com-
positions of the system. When applied to a model of sugar metabolism in E. coli includ-
ing gene expression, signal transduction, and enzymatic activities, some organizations
are found to coincide with inducible biochemical pathways.

Noé and Smith present transition networks. A transition network (TN) is a graph-
theoretical concept describing the transitions between (meta)stable states of dynamical
systems. The authors review methods to generate and analyze TNs for molecular sys-
tems. The appropriate identification of states and transitions from the potential energy
surface of the molecule is discussed. Furthermore, a formalism transforming a TN on
a static energy surface into a time-dependent dynamic TN is described that yields the
population probabilities for each system state and the inter-state transition rates. Three
analysis methods that help in understanding the dynamics of the molecular system
based on the TN are discussed: (1) Disconnectivity graphs allow important features
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of the energy surface captured in a static TN to be visualized; (2) Graph-theoretical
methods enable the computation of the best transition paths between two predefined
states of the TN; and (3) Statistical methods from complex network analysis identify
important features of the TN topology.

Part III focuses on development and consists of five chapters.
Sekimura, et al. consider pigmentation pattern formation in butterfly wings, one of

the most spectacular and vivid examples of pattern formation in biology. The authors
devote their attention to the mechanisms for generating global patterns with a focus
on the relationship between pattern forming mechanisms for the fore- and hind-wing
patterns. Through mathematical modeling and computational analysis of Papilio dard-
anus and polytes, the results indicate that the patterns formed on the fore-wing need not
correlate to those of hind-wing patterns in the sense that the formation mechanism is
the same for both patterns. The independence of pattern formation mechanisms means
that the coordination of unified patterns of fore- and hind-wing is accidental. This is re-
markable, because owing to Oudemans’s principle, patterns appearing on the exposed
surface of fore- and hind-wing at the natural resting position are often integrated to
form a composite and unified adaptive pattern with their surrounding environment.

Christley, et al. introduce an agent-based model for developmental pattern forma-
tion with multiscale dynamics and varying cell geometry. Cells of the embryonic ver-
tebrate limb in high-density culture undergo chondrogenic pattern formation, which
results in the formation of regularly-spaced “islands” of cartilage analogous to the
cartilage primordia of the developing limb skeleton. The authors describe a discrete,
multiscale agent-based stochastic model, which is based on an extended cell represen-
tation coupled with biologically motivated reaction-diffusion processes and cell-matrix
adhesion, for studying the behavior of limb bud precartilage mesenchymal cells. The
model is calibrated using experimental data and the sensitivity of key parameters is
studied.

Starruß, et al. address bacterial swarming driven by rod shape. Swarming pattern
formation of self-propelled entities is a prominent example of collective behavior in
biology. The authors show that the rod shape of self-propelled individuals is able to
drive swarm formation without any kind of signaling. The proposed mechanism is
purely mechanical and is evidenced through two different mathematical approaches:
an on-lattice and an off-lattice individual-based model. The intensities of swarm for-
mation obtained in both approaches uncover that the length-width aspect ratio controls
swarm formation, and that there is an optimal aspect ratio that favors swarming.

King and Franks consider stability properties of some tissue-growth models. In
particular, free-boundary problems associated with biological tissue growing under
conditions of nutrient limitation are formulated. Analysis by linear-stability methods,
clarifying the models’ stability properties, is then described.

Madzvamuse introduces a modified first-order backward Euler finite difference
scheme to solve advection-reaction-diffusion systems on fixed and continuously de-
forming domains. This scheme is compared to the second-order semi-implicit back-
ward finite differentiation formula, and it is concluded that for the type of equations
considered, the first-order scheme has a larger region of stability for the time-step than
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that of the second-order scheme (at least by a factor of ten), and therefore the first-order
scheme becomes a natural choice when solving advection-reaction-diffusion systems
on growing domains.

Part IV deals with biomedical applications and consists of twelve chapters.
Iomin considers fractional transport of cancer cells due to self-entrapping by fis-

sion. In particular, a simple mathematical model is proposed to study the influence of
cell fission on transport. The model describes fractional tumor development, which is
a one-dimensional continuous-time random walk (CTRW). Furthermore, an answer to
the question of how malignant neoplasm cells can appear at an arbitrary distance from
the primary tumor is proposed. The model may provide a possible explanation for dif-
fusive cancers as well. In addition, a chemotherapy influence on the CTRW is studied
by an observation of stationary solutions.

Panovska, et al. address mathematical modeling of vascular tumor growth and im-
plications for therapy. The authors discuss the results of a mathematical model that
incorporates many processes associated with tumor growth. The deterministic model,
a system of coupled nonlinear partial differential equations, is a combination of two
previous models that describe the tumor-host interactions in the initial stages of growth
and the tumor angiogenic process. Numerical simulations show that the model captures
both the avascular and vascular growth phases. Furthermore, a number of characteris-
tic features of vascular tumor growth are recovered, such as the rate of tumor growth
and the invasion speed. It is also shown how the model can be used to investigate the
effects of different anti-cancer therapies.

Stein, et al. present a stochastic model of glioblastoma invasion. Glioblastoma is
the most malignant form of brain cancer. It is extremely invasive; the mechanisms that
govern invasion are not well understood. To better understand the process of invasion,
the authors conducted an in vitro experiment in which a 3D tumor spheroid is im-
planted into a collagen gel. The paths of individual invasive cells were tracked. These
cells were modeled as radially biased, persistent random walkers. The radial velocity
bias was found to be 19.6 µm/hr.

A model for the morphology of the tumor vasculature is introduced by Bartha and
Rieger. The model is based on the molecular interactions between a growing tumor and
a dynamically evolving blood vessel network, and describes the transformation of the
regular vasculature in normal tissues into a highly inhomogeneous tumor specific cap-
illary network. The emerging morphology, characterized by the compartmentalization
of the tumor into several regions differing in vessel density, diameter, and degree of
tumor necrosis, is in accordance with experimental data for human melanoma. Vessel
collapse, due to a combination of severely reduced blood flow and solid stress exerted
by the tumor, leads to a correlated percolation process that is driven towards criticality
by the mechanism of hydrodynamic vessel stabilization.

Clairambault, et al. present a mathematical model of the cell cycle and its circa-
dian control. The following question is addressed: Can one sustain, on the basis of
mathematical models, that for cancer cells, the loss of control by a circadian rhythm
favors a faster population growth? This question, which comes from the observation
that tumor growth in mice is enhanced by experimental disruption of the circadian
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rhythm, may be tackled by mathematical modeling of the cell cycle. For this purpose
an age-structured population model is considered with control of death (apoptosis)
rates and phase transitions, and two eigenvalues: one for periodic control coefficients
(via a variant of Floquet theory in infinite dimension) and one for constant coefficients
(taken as the time average of the periodic case). It is shown by a direct proof that,
surprisingly enough considering the above-mentioned observation, the periodic eigen-
value is always greater than the steady-state eigenvalue when the sole apoptosis rate
is considered. It is also demonstrated by numerical simulations when transition rates
between the phases of the cell cycle are taken into account, that, without further hy-
potheses, no natural hierarchy between the two eigenvalues exists. This at least shows
that, if such models are to take account the above-mentioned observation, control of
death rates inside phases is not sufficient, and that transition rates between phases are
a key target in proliferation control.

Moroz and Wimpenny consider a bone turnover cycle model with a torus-like
steady state. A quantitative understanding of the bone remodeling process is of consid-
erable biomedical and practical biotechnological interest to support the application of
layer manufacturing techniques to produce scaffolds for surgical applications. Osteo-
clasts and osteoblasts play a principal role in different models of the bone multicellular
unit operating in bone and display a rich spectrum of behaviors. The goal of the au-
thors is to show that it is possible to capture the cyclic dynamics of operating cells.
The central idea of the mathematical model is that the regulatory nature of osteocytes
is the basis of the cyclic behavior associated with the system (remodeling process)
as a whole. Simulations show that for a particular range of constants, the model ex-
hibits a torus-like quasi-steady state. Further investigation of these simulations indi-
cates the existence of a surface in the osteoclasts-osteoblasts-osteocytes-bone space,
which could be interpreted as a conservative value confirming the substrate-energy re-
generative capability of the bone remodeling system. It is suggested that the nature of
this recovering potential is directed against both mechanical and biochemical damage
to the bone.

Plank, et al. address the modeling of the early stages of atherosclerosis. Atheroscle-
rotic lesions are predominantly localised to arterial bifurcations and bends, and are
highly correlated with areas of low wall shear stress (WSS), but the underlying rea-
son for this localisation is not fully understood. A key role is played by endothelial
cells, which regulate the transport of materials from the bloodstream to the artery wall
and secrete vasoactive agents that modulate vascular tone. A mathematical model is
presented, exploring the link between arterial geometry, WSS, and factors related to
atherogenesis. The model simulates the cellular response to the fluid shear stress on
the cell membrane and the binding of ligands to cell surface receptors. This is used to
calculate the rate of production of nitric oxide (NO), which is a potent vasodilator and
anti-atherogenic factor. It is hypothesised that the section of endothelium adjacent to a
region of recirculating flow is most at risk of developing atherosclerotic plaque, due to
reduced bioavailability of NO.

Trenado and Strauss consider magnetic nanoparticles for in vivo applications. In
particular, in vivo applications of biocompatible magnetic nanoparticles in a carrier
liquid controlled by an external magnetic field from outside the body have recently
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been proposed for specific drug delivery, such as in locoregional cancer therapies or
occlusion aneurysms. Such particles can also be used as guided contrast agents in
myocardial imaging after myocardial infarction. However, the choice of the optimal
clinical setting still remains a challenge for each of the mentioned applications. The
authors introduce a numerical heterogeneous multiscale model that can be used for the
optimal a priori determination of the free parameters and might help to overcome this
problem.

Cherniha, et al. address fluid transport in peritoneal dialysis. In particular, a math-
ematical model incorporating water flow between the dialysis fluid in the peritoneal
cavity, blood flow through the capillary wall, and homogeneous interstitium driven by
high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is
based on nonlinear equations of reaction-diffusion-convection type. Numerical simu-
lations provide the distribution profiles for hydrostatic pressure, glucose concentration,
and water flux in the tissue for different times from the infusion of dialysis fluid into the
peritoneal cavity for different transport parameters that represent clinical treatments of
peritoneal dialysis.

Sibona, et al. discuss the relevance of intracellular replication to the evolution of
Chagas’ disease. In particular, a model is introduced for the interaction between the
parasite Trypanosoma cruzi and the immune system in Chagas’ disease by separately
describing the intracellular and extracellular parasite stages. The solution of the case
where two antibody species are active is worked out in detail, and a diagram showing
the differents outcomes of the model is presented. The predictions accurately repro-
duce experimental data on the infection evolution during the acute phase of the disease
and lead to an estimate of the damage generated by direct parasite action.

Gerisch and Geris introduce a finite-volume spatial discretisation scheme for taxis-
diffusion-reaction systems with axi-symmetry. In particular, the numerical simulation
of a time-dependent taxis-diffusion-reaction model of fracture healing in mice using
the method of lines is considered. The partial differential equation problem has an axi-
symmetric structure, and this is employed to properly reduce the model to an equivalent
problem in 2D space leading subsequently to an efficient spatial discretisation. Special
care is given to respect conservation of mass and the nonnegativity of the solution.
The numerical simulation results are contrasted to those obtained from a simplistic
reduction of the axi-symmetric model to 2D space (at the same computational cost).
Quantitative and qualitative differences are observed.

The information content of clinical time series is analyzed towards the develop-
ment of a neonatal disease severity score system by Menconi, et al. In particular, a
score is introduced to classify the severity of patients by analysing the information
content of clinical time series.

Part V focuses on data analysis and model validation and is comprised of four chap-
ters.

The statistical analysis and physical modeling of oligonucleotide microarrays is
introduced by Burden, et al. Inference of regulatory networks from microarray data
relies on expression measures to identify gene activity patterns. However, currently
existing expression measures are not the direct measurements of mRNA concentra-
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tion one would ideally need for an accurate determination of gene regulation. If the
development of expression measures is to advance to the point where absolute target
concentrations can be estimated, it is essential to have an understanding of physical
processes leading to observed microarray data. The authors survey here the perfor-
mance of existing expression measures for oligonucleotide microarrays and describe
recent progress in developing physical dynamic adsorption models relating measured
fluorescent dye intensities to underlying target mRNA concentration.

Bortfeldt, et al. discuss the validation of human alternative splice forms using the
EASED platform and multiple splice site discriminating features. The authors have
shown for a data set of computationally predicted alternative splice sites how inherent
information can be utilized to validate the predictions by applying statistics on different
features typical for splice sites. As a promising splice-site feature, the frequencies of
binding motifs in the context of exonic and intronic splice-site flanks and between
the alternative and reference splice sites have been investigated. It is shown that both
partitions of splice sites can statistically be separated, not only by their distance to the
splice signal consensus, but also via frequencies of splice regulatory proteins (SRp)
binding motifs in the splice-site environment.

Polańska, et al. consider the Gaussian mixture decomposition of time-course DNA
microarray data. Especially, the decomposition approach to the analysis of large gene
expression profile data sets is presented, and the problem of analysis of transient time-
course data of expression profiles is addressed. The assumption that co-expression of
genes can be related to their belonging to the same Gaussian component is accepted,
and it is assumed that parameters of Gaussian components, means and variances, can
differ between time instants. However, the gene composition of components is un-
changed between time instants. For such problem formulation the appropriate version
of the expectation maximization algorithm is derived as well as recursions for the esti-
mation of model parameters. The derived method is applied to the data on gene expres-
sion profiles of human K562 erythroleukemic cells, and the obtained gene clustering
is discussed.

Simek and Jarz cab discuss SVD analysis of gene expression data. The analysis of
gene expression profiles of cells and tissues, performed by DNA microarray technol-
ogy, strongly relies on proper bioinformatical methods of data analysis. Due to a large
number of analyzed variables (genes) and a usually low number of cases (arrays) in
one experiment, limited by high cost of the technology, the biological reasoning is
difficult without previous analysis, leading to the reduction of the problem’s dimen-
sionality. A wide variety of methods has been developed, with the most useful, from
the biological point of view, methods of supervised gene selection with estimation of
false discovery rate. However, supervised gene selection is not always satisfying for
the user of microarray technology, as the complexity of biological systems analyzed by
microarrays rarely can be explained by one variable. Among unsupervised methods of
analysis, hierarchical clustering and PCA have gained wide biological application. In
the authors’ opinion, Singular Value Decomposition (SVD) analysis, which is similar
to PCA, has additional advantages very essential for the interpretation of biological
data. The authors show how to apply the SVD to unsupervised analysis of transcrip-
tome data, obtained by oligonucleotide microarrays.
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Finally, the volume owes its existence to the support of many colleagues. First of
all, thanks go to the authors of the various contributions. We would also like to express
our gratitude to the members of the ECMTB05 scientific committee and to a signif-
icant number of other colleagues for providing reviews and suggestions. ECMTB05
and these peer-reviewed proceedings have only become possible thanks to the strong
institutional support provided by the Centre for Information Services and High Per-
formance Computing (Technical University of Dresden). Particular thanks go to Wolf-
gang E. Nagel, the head of this Centre, and many colleagues at the Centre, particularly
Niloy Ganguly, Christian Hoffmann, Samatha Kottha, Claudia Schmidt, Jörn Starruß,
and Sabine Vollheim. Finally, we would like to thank Tom Grasso from Birkhäuser for
making this project possible.

Dresden, January 2007
Andreas Deutsch (on behalf of the volume editors)
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Multiparticle Direct Simulation of
Photosynthetic Electron Transport Processes

Ilya B. Kovalenko and Galina Yu. Riznichenko

Department of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow,
119992, Russia; kovalenko78@mail.ru

Summary. In our previous study [3] we described the method for a direct three-dimensional
(3D) computer simulation of ferredoxin-dependent cyclic electron transport around the pho-
tosystem 1 pigment-protein complex. Simulations showed that the spatial organization of the
system plays a significant role in shaping the kinetics of the redox turnover of P700 (the reac-
tion center of a photosystem 1 pigment-protein complex). In this paper we develop the direct 3D
model of cyclic electron transport and apply it to study the nature of fast and slow components
of the P700+ dark reduction process. We demonstrate that the slow phase of this process is dif-
fusion controlled and is determined by the diffusion of reduced plastoquinone and plastocyanin
molecules from the granal to the stromal areas of the thylakoid membrane.

Key words: Photosynthesis, cyclic electron flow, Brownian diffusion.

1.1 Introduction

The photosynthetic electron transport chain of thylakoid in green plants and algae in-
volves the pigment-protein complexes photosystem 1 (PS1) and photosystem 2 (PS2).
The two photosystems are connected by a series of electron carriers that include plas-
toquinone (PQ), the cytochrome b6/ f complex (cyt b6/ f ) and plastocyanin (Pc). Plas-
toquinone molecules diffuse in the thylakoid membrane. Mobile electron carriers Pc
and ferredoxin (Fd) are small proteins that diffuse in the lumen (internal space between
thylakoid membranes) and stroma (surrounding fluid medium), respectively.

Under illumination PS1 catalyzes the process of plastocyanin oxidation on the lu-
minal side of the thylakoid membrane and ferredoxin reduction on its stromal side
(Fig. 1.1, [1]). These reactions are followed by oxidation of Fd and reduction of plas-
toquinone (PQ) pool. Since Fd molecules are localized within the stroma and PQ is a
hydrophobic carrier residing in the lipid layer of the membrane, these events are likely
to be mediated by a protein, exposed to the stroma with Fd-PQ-oxidoreductase (FQR)
activity. The subsequent oxidation of PQ involves the cytochrome b6/ f complex and
results in the reduction of Pc, which is localized in the lumen.

Experimentally [3, 10] the kinetics of a light-induced electron spin resonance
(ESR) I signal was studied in the time span 0.1–10 s. This ESR I signal represents
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Fig. 1.1. Organization of cyclic electron transport in chloroplasts. Shown are thylakoid mem-
brane and components of electron transport chain: complexes PS1, PS2, FQR, FNR and cy-
tochrome b6/ f complex and also mobile electron carriers plastocyanin (Pc), ferredoxin (Fd)
and plastoquinone (PQ). Question marks indicate where the mechanism of electron transfer is
still unclear [9].

redox changes of PS1 pigment P700. A typical example of the experimental kinetics
of the ESR I signal is shown in Fig. 1.2.

In our previous work [3] we formulated a kinetic model with 26 ordinary differen-
tial equations for studying the mechanisms of dark P700 reduction kinetics at different
concentrations of added ferredoxin. We were interested in the nature of the slow com-
ponent of the signal. We used a bi-exponential fit to represent the results of numerical
simulations. The numerical simulations showed that the fast component (characteristic

Fig. 1.2. Temporal evolution of the photoinduced ESR I signal from cation radical P700. Solid
line is a bi-exponential fit to the experimental curve: A(t) = A1 exp(−k1t) + A2 exp(−k2t),
where A1 and A2 are the amplitudes of the fast and slow components, respectively; k1 and k2
are their time constants.
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time is about 0.2 s) represents cyclic electron transport. The rate of this fast phase was
determined by the electron transfer rates of individual steps of cyclic electron transfer,
the slowest of which was the oxidation of the plastoquinol molecule by cytochrome
complex.

The nature of the slow phase (characteristic time is several seconds) was still un-
clear. As suggested by Scheller [6], the slow phase of P700 reduction reflects the abil-
ity of P700+ to extract electrons from surrounding molecules, because this reaction
was always present, even in the presence of oxygen. The slow phase of the reduction
process could be described in the model by incorporating a large nonspecific electron
pool, from which electrons required for the completion of P700+ reduction may be
taken.

As we will show below, the nature of the fast and slow components of the P700
reduction signal may be explained by means of 3D direct multiparticle simulation
of cyclic electron transport in heterogeneous membrane systems, without hypothe-
sis about the existence of the pool of nonspecific electron acceptors and donors. The
results of 3D simulation visually display the role of spatial organization of the system
in forming the kinetics of the P700 reduction signal.

1.2 Direct 3D Model

Recent data from electron and atomic-force microscopy reveal details of thylakoid
membrane organization. We know [1] about the molecular structure of the protein
complexes and mobile electron carriers as well as the architecture of the thylakoid
membrane. Despite the advances in the study of the structure and function of individual
components of the photosynthetic electron transport chain, there are still difficulties in
understanding the coupling mechanisms between separate processes and the regulation
of the entire system.

Experimental data on the spatial organization of the thylakoid membrane, kinetic
data about the rate constants of single reactions, and the hypothesis about the mecha-
nisms of regulation can be integrated in a direct 3D computer simulation model. The
building of such a model became possible recently due to affordable powerful com-
puter resources and the development of object-oriented programming methods and
visualization.

Recently similar simulation methods of biochemical reactions were developed by
S. Andrews and D. Bray [4] and J. Stiles and T. Bartol [5]. These methods allow sim-
ulation of biochemical reaction networks with spatial resolution and single molecule
detail. The method from [4] was applied to the simulation of signal transduction in
Escherichia coli chemotaxis [11], the method from [5] to the simulation of signaling
in neuromuscular junctions.

In our previous study [3] we described the method for the direct 3D computer sim-
ulation of photosynthetic electron transport processes. This method was used to build
a direct 3D model of ferredoxin-dependent cyclic electron transport around PS1. The
model represented a 3D scene consisting of three compartments (thylakoid membrane,
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Fig. 1.3. Visualization of the 3D scene of the multiparticle model of cyclic electron transport.
PS2 complexes are not shown, although they were simulated. One can see granal and stromal
parts of thylakoid membrane, luminal and stromal spaces.

luminal space, and stroma) with protein complexes (PS1, PS2, cyt b6 f , FQR) em-
bedded in the membrane and mobile electron carriers (Pc, Fd, PQ), each in its own
compartment.

In this study we further develop the direct 3D model of cyclic electron transport.
The model represents two areas of thylakoid membrane, the granal area and the stromal
area, so the model is spatially heterogenous (Fig. 1.3). Different types of complexes
are located in different areas. PS1 is mostly found in the stromal area and PS2 in the
granal area. Cyclic electron transport is likely to occur in stromal membrane areas [7].

In the direct 3D model movements of Pc, Fd, PQ in corresponding compartments
(lumen, stroma, membrane) are simulated by the mathematical formalism of Brown-
ian motion. We use the Langevin equation for the description of Brownian diffusion
processes:

ξ
dx
dt

= f (t), (1.1)

where ξ is the friction coefficient, and f (t) is a random force. The random force has
a normal distribution with mean 0 and variance 2kT ξ (where k is the Boltzmann con-
stant, and T is temperature).

The mechanism of electron transfer is the following. If a mobile carrier moving by
Brownian diffusion (chaotically) approaches a protein complex by a distance shorter
than the effective radius of their interaction, the carrier docks to the complex with
some probability. The probability and effective radius of interaction are parameters of
the model (different for different types of complexes and mobile carriers). We can use
kinetic data to estimate the effective radius of interaction and the probability.
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Fig. 1.4. A model trajectory of a PQ particle in a membrane with complexes PS1 and cyt b6/ f .

The concentrations and the sizes of protein complexes were taken from [2, 7]. The
PS1 particle density in a membrane was taken as 8.47 × 10−4 particles nm−2, that of
cyt b6 f was 3.5 × 10−4 particles nm−2, and PS2 2.2 × 10−4 particles nm−2 [7]. The
number of FQR complexes was assumed to be equal to the number of PS1 complexes.
The PS1 size in the lateral plane was taken as 13 nm (with LHCI), cyt b6 f was 9 nm,
and PS2 13 nm [2]. PS2 complexes are not shown in Fig. 1.5 although their presence
was taken into account in simulations.

In the native thylakoid membrane and in the luminal space, free diffusion of the
mobile carriers PQ and Pc is impossible because the membrane and the luminal space
are narrow and full of the protein complexes protruding through the membrane. We
compared the PQ diffusion coefficient in the membrane full of PS1 and cyt b6/ f com-
plexes and the diffusion coefficient in a membrane without complexes. It turned out
that if 1/3 of the membrane area is occupied with transmembrane complexes, then the
PQ diffusion coefficient is ten times lower than in a case of free diffusion, which is in
agreement with experiments [8]. The visualization of PQ diffusion trajectories shows
the formation of PQ diffusion domains in a thylakoid membrane (Fig. 1.4).

Pc and Fd diffusion coefficients were taken as 10−10 m2 s−1, although the actual
Pc diffusion coefficient was lower due to nonfree (restricted) diffusion in the lumen.
The PQ diffusion coefficient was taken as 10−11 m2 s−1.

For estimation of the direct 3D model parameters (docking probabilities) we have
simulated the processes of interaction of mobile carriers and complexes for particles in
a solution (for example, PS1 and Pc particles or cyt b6/ f and plastocyanin particles).

1.3 Results and Discussion

We used a direct 3D model for the numerical simulations of cyclic electron flow around
PS1. The time step was taken as 100 ns. At the initial moment of time all the P700 and
Pc were reduced. In simulation the light was turned on for 1.5 s (saturating illumi-
nation). Then the P700 redox turnover was observed. During the illumination the PQ
pool was partly reduced in the stromal part of the membrane. Reduced molecules of
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Fig. 1.5. Results of multiparticle simulation of dark P700+ reduction. Thick gray line is a P700+
reduction curve in the presence of the two areas of the thylakoid membrane (granal and stromal
areas). Dotted line represents homogenous distribution of all complexes in the single area. Solid
thin line is a bi-exponential fit to the experimental curve: A(t) = A1 exp(−k1t)+ A2 exp(−k2t),
where A1 and A2 are the amplitudes of the fast and slow components, respectively; k1 and k2
are their time constants.

PQ distributed evenly between the stromal and granal parts of the membrane. After
switching the light off PQ molecules reduced cytochrome b6/ f complex and plasto-
cyanin in both the granal and stromal areas of the membrane. Then Pc diffused to PS1
particles and reduced them. In the stromal part of the membrane this dark P700 re-
duction was fast (characteristic time 200 ms), because in the stromal area the average
distance between PS1 and cyt b6/ f is short (20 nm). This process corresponds to the
fast phase of the P700 reduction curve (Fig. 1.5).

Plastocyanin and plastoquinone molecules located in the granal areas diffused
longer distances to reach PS1 particles since PS1 particles are located only in the stro-
mal areas. This corresponds to the slow phase of the P700 reduction curve (Fig. 1.5).

The multiparticle simulations showed that the slow phase of the kinetics of pho-
tooxidized P700+ dark reduction at cyclic electron flow around PS1 is diffusion con-
trolled and is determined by diffusion of reduced PQ and Pc molecules from the granal
to stromal areas of the thylakoid membrane, whereas the fast component represents
cyclic Fd-mediated electron transport.

The kinetics of P700+ dark reduction is determined not only by the concentra-
tions and redox states of reagents, but also by the spatial distribution of the reacting
molecules, the geometry of the system and the rate of mobile carrier diffusion pro-
cesses.
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1.4 Conclusions

The simulation method presented here adequately describes the electron transfer pro-
cesses in a spatially heterogeneous membrane of a chloroplast thylakoid. This method
can be applied for the description of the functioning of a large number of macro-
molecules which interact in the heterogeneous interior of subcellular systems.
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Summary. Calcium oscillations play an important role in intracellular signal transduction. As
a second messenger, Ca2+ represents a link between several input signals and several target
processes in the cell. Whereas the frequency of simple Ca2+ oscillations enables a selective
activation of a specific protein and herewith a particular process, the question arises of how at
the same time two or more classes of proteins can be specifically regulated. The question is
general and concerns the problem of how one second messenger can transmit more than one
signal simultaneously (bow-tie structure of signalling). To investigate whether a complex Ca2+

signal like bursting, a succession of low-peak and high-peak oscillatory phases, could selectively
activate different proteins, several bursting patterns with simplified square pulses were applied
in a theoretical model. The results indicate that bursting Ca2+ oscillations allow a differential
regulation of two different calcium-binding proteins, and hence, perform the desired function.

Key words: Bow-tie structure of signalling, calcium oscillations, bursting, decoding.

2.1 Introduction

Calcium ions regulate a variety of cellular processes, like muscle contraction, fertil-
ization and liver metabolism [1, 2]. After stimulating a cell by an agonist the con-
centration of free cytosolic Ca2+ very often changes periodically in time. This phe-
nomenon is known as Ca2+ oscillation [1]. These oscillations have been the subject of
intense modelling studies [3, 4]. The information they transmit is mainly encoded in
frequency [5–8], but the amplitude and temporal pattern also play a role [9–11].

Usually, the oscillatory Ca2+ signal results in a stationary effect, for example,
fertilizing oocytes, generating an endocrine signal or enhancing the transcription of
a gene. A central role in the decoding of Ca2+ signals is played by calmodulin in
many cells, cf. [12]. By binding Ca2+, calmodulin can activate other proteins, e.g.,
Ca2+/calmodulin-dependent protein kinase type II (CaM kinase II, EC 2.7.1.123),
cf. [13] and myosin light-chain kinase (EC 2.7.1.117), cf. [14]. There are also proteins
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that are activated by Ca2+ without involvement of calmodulin, e.g., protein kinase C
(EC 2.7.1.37), cf. [15].

Besides simple spike-like, regular Ca2+ oscillations, experimental data on Ca2+

dynamics also show more complex oscillatory patterns [7, 16, 17]. A succession of
low-peak and high-peak oscillatory phases, known as bursting, is a common pattern.
Bursting has been investigated in modelling studies of transmembrane potential oscil-
lations in nerve cells [5, 18] and of Ca2+ oscillations [7, 19–22]. In electric bursting in
neurons, often both the active and the quiescent phases involve several spikes. In Ca2+

bursting, in contrast, the active phase consists of only one large spike.
Larsen and Kummer [23] and Rozi and Jia [24] were the first to simulate the de-

coding of complex Ca2+ oscillations, on the basis of the models proposed by Kummer
et al. [7] and Borghans et al. [19], respectively. Larsen and co-workers [23,25] showed
that information could be encoded in the shape and complexity of Ca2+ oscillations.
Considering cooperative, activatory binding of Ca2+ to two different effector enzymes,
it was demonstrated that cooperativity enables enzymes to decode different Ca2+ dy-
namics into different enzyme activity.

Many signal transduction systems as well as metabolic systems consist of a struc-
ture where several inputs can influence several targets via only one or a few intermedi-
ary components. This architecture is called the bow-tie structure [26,27]. The question
arises of how such an architecture can operate [25, 28], and if multiple signals can be
transmitted and decoded not only successively, but also simultaneously.

Here, we investigate how periodic bursting may transmit two independent signals
simultaneously, like the selective activation of two Ca2+-binding proteins. In particular
a separate activation by spikes and secondary peaks is of interest. To explore which
characteristics of the complex signal could be responsible for an independent regula-
tion of low-peak and spike-activated targets, we analyse frequency decoding by taking
into account that regular bursting oscillations are characterized by two inherent fre-
quencies of spikes and secondary peaks. To separate the questions of generating and
decoding of bursting Ca2+ oscillations, the oscillations were simulated by artificially
generated square-shaped patterns. Such square-shaped pulses have also been used in
experiments [6] and in simulations [29, 30]. In other studies, artificially generated si-
nusoidal patterns have been considered [31].

2.2 Model Description

In the model two Ca2+-binding proteins are taken into account. Both proteins are con-
sidered to be activated cooperatively. An example is provided by calmodulin, cf. [12].
Regarding that calmodulin is usually activated by 4 Ca2+ ions, we considered the first
protein being activated by four Ca2+ ions (y = 4). The second protein is assumed to
contain additional inhibitory Ca2+ binding sites, resulting in a bell-shaped activation
curve, inhibited at higher Ca2+ concentrations. A bell-shaped Ca2+ dependency is re-
ported, for example, for the interaction of Ca2+/calmodulin with the edema factor (EF)
factor (EC 4.6.1.1), an adenylate cyclase toxin secreted by Bacillus anthracis [32,33].
Whereas calmodulin with two bound Ca2+ ions activates EF, Ca2+ is also assumed to
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Fig. 2.1. Reaction scheme of Ca2+ binding to the protein with activatory and inhibitory Ca2+

binding sites (Prot2). For the other protein (Prot1) the inhibitory binding reactions are absent.
K2 and KI are the reaction-associated dissociation constants.

interfere directly with the binding of Mg2+ to the catalytic metal binding site of EF,
thereby inhibiting catalysis [32]. Therefore, we calculated with two activating and two
inhibiting Ca2+ ions for protein 2 (x = 2).

For our model, the reaction scheme of Ca2+ binding to the protein with activatory
and inhibitory Ca2+ binding sites (Prot2) is presented in Fig. 2.1. The binding scheme
for the other protein (Prot1) is the same, however, the inhibitory binding reactions are
lacking.

The inhibition type considered is noncompetitive, so the binding affinity of Ca2+ to
the inhibitory site is independent of whether or not the activatory site is occupied. The
two Ca2+-binding proteins are considered as signalling proteins, which are supposed to
have high rates of Ca2+ binding and dissociation [34, 35], occur in low concentrations
and not shape the Ca2+ signal. Therefore, we keep the total protein concentration so
small that at most 10% of Ca2+ can be bound to proteins, assuming that the seques-
tration of Ca2+ by the two proteins can be neglected in the Ca2+ balance. Thus, no
conservation relation for the amount of Ca2+ was included. However, a conservation
relation holds for each protein. For protein 2, it reads

Prot2T = Prot2 + Prot2Cax I + Prot2Cax + Prot2Cax Cax I , (2.1)

where Prot2T denotes the total concentration of protein 2. Considering the mass action
laws for the dissociation constants K2 and KI , the amount of active protein is given by
the following rapid-equilibrium approximation:

Prot2Cax = Prot2T × Cax

(K2 + Cax ) ×
(

1 + Cax

K I

) . (2.2)

For the solely Ca2+-activated protein, the inhibition factor drops out, resulting in
the well-known Hill equation for cooperative binding, cf. [36]:

Prot1Cay = Prot1T × Cay

K1 + Cay . (2.3)
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Fig. 2.2. Binding curves of the two proteins (Prot1, solid line; Prot2, dashed line). Protein ac-
tivation is calculated by rapid-equilibrium approximation at constant Ca2+ and the following
parameter values: K1 = 5.88 µMy, K2 = 6.25×10-2 µMx, KI = 2.2×10-2 µMx. Total protein
concentrations are Prot1T = 10-2 µM, Prot2T = 10-2 µM. All values remain the same in all
calculations.

Fig. 2.2 shows the binding curves for both classes of proteins according to Eqs.
(2.2) and (2.3).

The parameters concerning the Ca2+ association, dissociation, and inhibition of
Ca2+ binding to proteins have been chosen such that the maxima of the binding curves
(Fig. 2.2) are sufficiently separated.

In general, when the rapid-equilibrium conditions are not fulfilled, the protein ac-
tivation is calculated by differential equations. If we take square-shaped Ca2+ pulses,
where the Ca2+ concentration during each plateau is constant, the active protein con-
centrations can be calculated as follows:

d Prot2Cax

dt
= kon,2 × Prot2 × Cax − koff,2 × Prot2Cax

− kon,I × Prot2Cax × Cax + koff,I × Prot2Cax Cax I (2.4)
d Prot2Cax I

dt
= kon,I × Prot2 × Cax − koff,I × Prot2Cax I (2.5)

d Prot2Cax Cax I

dt
= kon,I × Prot2Cax × Cax − koff,I × Prot2Cax Cax I (2.6)

d Prot1Cay

dt
= kon,1 × Prot1 × Cay − koff,1 × Prot1Cay (2.7)

The bursting Ca2+ oscillation is simulated by a square pulse signal with spikes of
two different heights (Fig. 2.3).

The bursting signal is characterized by the baseline, h0, the height of the high and
low spikes, h1 and h2, respectively, the duration of peaks and interpeak intervals, and
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Fig. 2.3. Bursting Ca2+ oscillation used in all calculations. h0 = 0 µM, h1 = 1.0 µM, h2 = 0.2
µM. T1, tr , and n are varied.

the number of low peaks occurring between two high peaks, n. According to experi-
mental results [7,16,17], the number of high peaks per burst is set equal to one, and the
refractory period between the main patterns is taken into account (tr ). The frequency
(f 1) of high-peak oscillations is defined as the reciprocal value of the period (T1):

f1 = 1
T1

. (2.8)

For the low-peak oscillations, an averaged, effective frequency, f 2
*, is defined,

counting the number of low peaks per period:

f ∗
2 = n

T1
. (2.9)

2.3 Computational Information

The calculations for the rapid-equilibrium approximations were performed with the program
MS Excel. The differential equations were solved numerically by using the software Madonna
(University of Berkeley, CA) with the Rosenbrock (Stiff) integration method.

2.4 Results

Different bursting signals with varying parameter values are applied to the two model
proteins described above. The rapid-equilibrium approximation (Eqs. (2.2) and (2.3))
is used for the first series of simulations, and in the second series of simulations, dif-
ferential equations are used (Eqs. (2.4)–(2.7)). The binding curves for the two classes



16 B. Knoke, M. Marhl, and S. Schuster

Fig. 2.4. Activation of Prot1 (thick solid line) and Prot2 (thick dashed line) vs. frequency f 1 =
f 2

*. A bursting Ca2+ signal with n = 1 is used. The frequencies f 1 and f 2
* are varied by different

durations of the refractory period tr . Thin solid and dashed lines represent the activation of Prot1
and Prot2, respectively, by simple spiking oscillations with the amplitude 0.7 µM (see inset) vs.
the frequency. For all calculations the rapid-equilibrium approximation is used. Parameter values
are given in Fig. 2.2.

of proteins (Fig. 2.2) indicate that a selective regulation of proteins 1 and 2 is possible.
Sole activation of protein 1 can be achieved by a signal with an amplitude correspond-
ing to a high activation of protein 1 in a concentration range where protein 2 is already
inhibited (see binding curves in Fig. 2.2). As the Ca2+ level in the cytosol is limited
by about 1 µM (cf. [5]), we chose this value for the amplitude of the high peaks, h1.
On the contrary, only protein 2 has a substantially elevated activity at h2 = 0.2 µM. In
an oscillatory signal, the level of this activation can be regulated by changing the fre-
quency of the corresponding constituent of the oscillation (low peaks vs. high peaks).
For example, one protein can be gradually activated whereas the other protein remains
nearly inactive if only one of the two frequencies is increased, keeping the other one
constant and small. A gradual activation of protein 1, whereas protein 2 remains in a
nearly inactive state, can be achieved by increasing the frequency f 1 (by shortening
the period time T1) and taking n = 0, thereby keeping f 2

* constant. An independent
regulation of protein 2 is achieved by a bursting oscillation upon increasing the num-
ber of low peaks, n, at constant period T1, thus reducing more and more the refractory
time tr . Such a variation, which was observed experimentally [17], implies a variation
of the average frequency of low peaks, f 2

*, while keeping frequency f 1 constant. An
example of both effects of selective protein activation are depicted in [37].

To investigate whether one signal can gradually activate both proteins, we have
analysed a bursting pattern with n = 1 (i.e., a 1:1 ratio of high and low peaks) and
shortened the refractory period tr . Thereby both frequencies f 1 and f 2

* (which are
equal in this case) are concomitantly increased (Fig. 2.4, thick lines). A simultaneous
activation of both proteins is achieved. To compare the efficiency of the regulation
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Fig. 2.5. Opposite regulation of Prot1 (solid lines) and Prot2 (dashed lines) by varying the fre-
quency ratio, n = f 2

*/f 1, of the low and high peaks in the signal with variable period time T1
without refractory time. Each vertical line (serving for 3D visualisation) corresponds to one
value of n. The results were obtained by numerically integrating the differential equations (2.4)–
(2.7) (thick lines) and rapid-equilibrium approximation (thin lines). For the dynamic simula-
tions, the following kinetic constants are used: kon,1 = 3×10-3 s-1 µM-y, koff,1 = 0.01764 s-1,
kon,2 = 0.6 s-1 µM-x, koff,2 = 0.0375 s-1, kon,I = 0.4 s-1 µM-x, koff,I = 8.8×10-3 s-1.

by bursting oscillations with a regulation by simple spiking oscillations, in Fig. 2.4,
protein activation by an increasing frequency of spiking oscillations is also plotted (thin
lines). The amplitude of simple spiking oscillations was set to 0.7 µM, corresponding
to the intersection point of the two binding curves in Fig. 2.2. Note that the average
Ca2+ level is then even higher than the Ca2+ level in the bursting signal. A simultaneous
activation of both proteins is achieved more efficiently by bursting than by simple
oscillations. This is understandable, as the high and low peaks in a bursting pattern
correspond to the activation maxima of proteins 1 and 2, respectively. On the contrary,
the peaks in simple spiking oscillations of 0.7 µM cannot coincide to both maxima
simultaneously.

A simultaneous and selective up- and down-regulation of the two proteins can be
achieved by increasing the number of low peaks n, thus prolonging the period time T1
(tr = 0). Thereby, the frequency, f 1, of high spikes decreases, whereas the frequency
f 2

* increases, activating protein 2 and concomitantly deactivating protein 1 (see Fig.
2.5, thin lines). Moreover, as can be guessed from Fig. 2.5, the relationships between
the average active protein concentrations and f 1 and f 2

* are linear. For a derivation
see [37].

The experimental data show that for many Ca2+-binding proteins, the average resi-
dence time of Ca2+ bound to the protein can take values from several microseconds to
several seconds [34]. In the microseconds range, the kinetics is so fast that the rapid-
equilibrium approximation can be justified while it may not be in the seconds range,
depending on the oscillation period. For fast Ca2+-binding signalling proteins, a rapid-
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equilibrium approach was also considered in [35]. We now consider the case where
the rate constants of binding and dissociation are not high enough to justify this ap-
proximation. In that case, the differential equations (2.4)–(2.7) should be used. Then,
the time course of protein activity is on a nearly constant level after an initial tran-
sient. This is due to the slower dynamics of binding and dissociation in the differential
equations. In particular, exponential decay of protein activity in the interspike intervals
causes the smoothing effect. To see the effect of the dynamics, the protein activation
curves obtained by both methods of calculation are compared in Fig. 2.5. Especially
protein 2 is more efficiently activated by the slow kinetics than it would be activated
by a fast kinetics which could be simulated by the rapid-equilibrium approximation.

2.5 Discussion

A mathematical model for the decoding of regular bursting Ca2+ oscillations has been
proposed, based on the binding of cytosolic Ca2+ to two distinct proteins, both coop-
eratively binding Ca2+ at activatory sites with different binding constants and numbers
of Ca2+ ions bound. Extending the work by Larsen and Kummer [23, 25], we include
the assumption that one of the two proteins can cooperatively bind Ca2+, in addition, at
inhibitory sites. A biphasic regulation of protein activation at low Ca2+ levels and inhi-
bition at high levels is known for the IP3 receptor channel in the endoplasmic reticulum
membrane [38, 39]. Its activity curve has a bell shape and is, therefore, similar to the
curve shown in Fig. 2.2. The IP3 receptor is composed of four subunits, each contain-
ing one activatory and one inhibitory binding site for Ca2+ [19]. Although not likely
to function as a decoder of Ca2+ oscillations, our model is inspired by the IP3 receptor
properties of activatory and inhibitory Ca2+-binding. Shen et al. [32] showed for the
Ca2+/calmodulin-activated edema factor (EF) a bell-shaped Ca2+ dependency where
EF inhibition is presumably due to direct Ca2+ interference at its catalytic metal bind-
ing site. Both effects occur at physiological Ca2+ concentrations. As two Ca2+ ions
are sufficient for EF activation via calmodulin, EF is considerably activated before
maximum activation is attained for most endogenous cellular calmodulin targets [40].

A reciprocal activation and inhibition oftwo Ca2+-calmodulin-dependent target en-
zymes was shown by Cho et al. [41] and Lee et al. [42–44]. The enzymes nitric oxide
synthase (NOS, EC 1.14.13.39) and NAD kinase (EC 2.7.1.23) were differentially ac-
tivated by two soybean calmodulin isoforms SCaM-1 and SCaM-4: Plants contain sev-
eral, partly divergent, CaM isoforms, some of them having different capabilites to ac-
tivate target enzymes. While neuronal NOS (nNOS) is strongly activated by SCaM-4,
its activation by SCaM-1 is only weak. A competitive inhibition of SCaM-4-activated
NOS was observed by increasing the concentration of the weakly activating SCaM-1
isoform [41].

In contrast to the activation scheme of nNOS, plant NAD kinase is activated by
the highly conserved SCaM-1, but not by the divergent soybean CaM isoform, SCaM-
4 [42]. Furthermore, Lee et al. [43, 44] indicate SCaM-4 acting as a competitive an-
tagonist of NAD kinase. Therefore, SCaM-1 activates NAD kinase and competitively
inhibits NOS while SCaM-4 activates NOS and competitively inhibits CaN ( [41,44]).
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Although these experiments were conducted with neuronal NOS, both plant and neu-
ronal nitric oxide synthase are activated by Ca2+-dependent CaM [45,46]. Weissmann
et al. [47] indicate that four calcium ions have to be bound to CaM to activate neuronal
NOS. The activation of a plant-specific NOS enzyme by SCaM-1 and -4 has not yet
been studied to our knowledge.

Nitric oxide synthase catalyzes the production of nitric oxide (NO), an impor-
tant second messenger: In plants, pathogen infection induces a Ca2+-dependent ac-
tivation of NOS, resulting in NO-mediated defense gene expression and programmed
cell death [45, 46, 48, 49]. Cytosolic Ca2+ elevations are one of the earliest events in
pathogen-challenged cells [50,51]. NAD kinase catalyses the phosphorylation of NAD
to NADP [43], which may indirectly contribute to the production of reactive oxygen
species (ROS), involved in Ca2+-mediated plant disease response [50]. Whereas the ex-
pression of some defense-related genes can be mediated solely by NO [49], induction
of host cell death requires synergistic action of both NO and ROS [48, 52]. The find-
ings support a model for specific and concerted roles of Ca2+-activated CaM isoforms
in plant defense response against pathogens, in which some CaM isoforms mediate
ROS increases, whereas other CaM isoforms activate defense gene expression [53].

Elaborating on results by Larsen and Kummer [25], here we provide theoretical ev-
idence that bursting Ca2+ oscillations can perform the function of simultaneous trans-
mission of two signals, which enables differential regulation of two proteins, and hence
selective regulation of two cellular processes. We show that the selective activation of
proteins can be achieved by adjusting the two inherent frequencies of the investigated
bursting pattern, which are connected to the relative occurrence of the low and high
peaks. These frequencies can be regulated independently or in a correlated way, de-
pending on how the number of low peaks and/or period time are changed. So, the two
proteins can even be regulated in the opposite way.

Frequency encoding is considered to be more robust to noise than amplitude encod-
ing [5,54]. In the case of bursting, however, no sharp distinction can be made between
encoding by frequency and amplitude. A change in the frequency ratio of high and low
peaks might also be regarded as a change in the amplitudes.

In summary, the key result of this study is that a selective regulation of differ-
ent cellular processes is possible by bursting Ca2+ signals. This is in support of the
“bow-tie” concept of signalling [26]. Recently, also another possibility of a selective
regulation of cellular processes by Ca2+ signals has been demonstrated via protein cas-
cades or frequencies of time-limited oscillations: A bell-shaped and separate activation
of two Ca2+-binding proteins with distinct velocities of Ca2+-binding and dissocia-
tion is possible by applying different frequencies of the calcium signal, modelled by
differential equations. Essential for this phenomenon is a limited number of calcium
spikes [55, 56]. It is hoped that future experimental studies will allow us to check the
physiological relevance of these theoretical predictions.
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Summary. Many eukaryotic cell types share the ability to migrate directionally in response to
external chemoattractant gradients. The binding of chemoattractants to specific receptors leads
to a wide range of biochemical responses that become highly localized as cells polarize and
migrate by chemotaxis. This ability is central in the development of complex organisms, and
is the result of a billion years of evolution. Cells exposed to shallow gradients in chemoattrac-
tant concentration respond with strongly asymmetric accumulation of several factors, including
the phosphoinositides PIP3 and PIP2, the PI 3-kinase PI3K, and phosphatase PTEN. This early
symmetry-breaking stage is believed to trigger effector pathways leading to cell movement.
Although many signaling factors implied in directional sensing have been recently discovered
the physical mechanism of signal amplification is not yet well understood. We propose that
directional sensing is the consequence of a phase ordering process mediated by phosphoinosi-
tide diffusion and driven by the distribution of the chemotactic signal. By studying a realistic
reaction-diffusion lattice model that describes PI3K and PTEN enzymatic activity, recruitment
to the plasma membrane, and diffusion of their phosphoinositide products, we have shown that
the effective enzyme-enzyme interaction induced by catalysis and diffusion introduces an insta-
bility of the system towards phase separation for realistic values of physical parameters. In this
framework, large reversible amplification of shallow chemotactic gradients, selective localiza-
tion of chemical factors, macroscopic response timescales, and spontaneous polarization arise
naturally.

Key words: Directional sensing, first-order phase transitions.

3.1 Introduction

A wide variety of eukaryotic cells exhibit the capacity to respond and migrate direc-
tionally in response to external gradients. This behavior is essential for a variety of
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Fig. 3.1. Under slightly anisotropic chemoattractant stimulation a strong and sharp separation in
PIP2- and PIP3-rich phases is observed at the level of the cell plasma membrane [13], realizing
a powerful and efficient amplification of the external chemotactic signal.

processes including angiogenesis, nerve growth, wound healing, and embryogenesis.
Perhaps the most distinguished chemotactic response is exemplified by neutrophils as
they navigate to sites of inflammation. When exposed to an attractant gradient, these
cells quickly orient themselves and move using anterior pseudopod extension together
with posterior contraction and retraction. This highly regulated amoeboid motion can
be achieved in the presence of very shallow attractant gradients. The signaling fac-
tors responsible for this complex behavior are now beginning to emerge. The general
picture emerging from the analysis of chemotaxis in different eukaryotic cell types
indicates that, in the process of directional sensing, a shallow extracellular gradient
of chemoattractant is translated into an equally shallow gradient of receptor activa-
tion [13] that in turn induces the recruitment of the cytosolic enzyme phosphatidyli-
nositol 3-kinase (PI3K) to the plasma membrane, where it phosphorylates PIP2 into
PIP3.

However, phosphoinositide distribution does not simply mirror the receptor activa-
tion gradient, but rather a strong and sharp separation in PIP2- and PIP3-rich phases
arises [13], realizing a powerful and efficient amplification of the external chemotac-
tic signal (Fig. 3.1). PIP3 acts as a docking site for effector proteins that induce cell
polarization [3], and eventually cell motion [10] (Fig. 3.2). Cell polarization can be
decoupled from directional sensing by the use of inhibitors of actin polymerization so
that cells are immobilized, but respond with the same signal amplification of untreated
cells [8]. The action of PI3K is counteracted by the phosphatase PTEN that dephos-
phorylates PIP3 into PIP2 [13]. PTEN localization at the cell membrane depends upon
the binding to PIP2 of its first 16 N-terminal amino acids [7].
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Fig. 3.2. One of the basic features of cell movement is the treadmill-like effect realized by sys-
tems of actin polymers. Actin forms an extensive network of proteins at the leading edge of cells.
Actin polymerization allows the cell to move forward. PIP3 plasma membrane accumulation in-
duces actin polymerization in the cell anterior, while the actin cytoskeleton is depolymerized
in the posterior, thus inducing cell motion. PIP3 plasma membrane accumulation is induced by
anisotropies in the concentration of extracellular attractant factors as low as 2% from rear to
front.

3.2 A Phase Separation Process

In physical terms, the process of directional sensing shows the characteristic phe-
nomenology of phase separation [11]. However, it is not clear which mechanism could
be responsible for it. In known physical models, such as binary alloys, phase sep-
aration is the consequence of some kind of interaction among the constituents of
a system, which can favor their segregation in separated phases [12]. However, one
can show [5] that, even in the absence of direct enzyme-enzyme or phosphoinositide-
phosphoinositide interactions, catalysis and phosphoinositide diffusion mediate an ef-
fective interaction among enzymes, which is sufficient to drive the system towards
phase separation. To this aim, we have simulated the kinetics of the network of chem-
ical reactions that represents the ubiquitous biochemical backbone of the directional
sensing module. Since the chemical system is characterized by extremely low con-
centrations of chemical factors and evolution takes place out of equilibrium, we used
a stochastic approach [2, 6]. Indeed, rare, large fluctuations are likely to be relevant
for kinetics in the presence of unstable or metastable states. Simulated reactions and
diffusion processes taking place in the inner face of the cell plasma membrane are

1. PI3K(cytosol)+Rec(i) � PI3K·Rec(i)
2. PTEN(cytosol)+PIP2(i) � PTEN·PIP2(i)
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Fig. 3.3. Biochemical scheme of the simulated reaction network.

3. PI3K·Rec(i)+PIP2(i) → PI3K·Rec(i)+PIP3(i)
4. PTEN·PIP2(i)+PIP3(i) → PTEN·PIP2(i)+PIP2(i)
5. PIP2(i) → PIP2( j)
6. PIP3(i) → PIP3( j),

where index i represents a generic plasma membrane site and j one of its nearest
neighbors (see also Fig. 3.3). The probability of performing a simulated reaction on a
given site is proportional to realistic kinetic reaction rates and local reactant concen-
trations (Tables 3.1, 3.2).

The plasma membrane is represented as a spherical surface of radius R = 10
µm partitioned in Ns = 10242 computational sites. The cell cytosol is represented as
an unstructured reservoir containing a variable number of PI3K and PTEN enzymes,
which can bind and unbind to the cell membrane according to the rules described in
Table 3.1. Chemical factors localized in the cytosol are indicated in Table 3.1 with the
corresponding subscript, while factors attached to the membrane are indicated with
a subscript representing the membrane site where they are localized. PIP2 and PIP3
molecules are assumed to freely diffuse on the cell membrane with the diffusion coef-
ficient D specified in Table 3.2. The surface diffusivity of PI3K and PTEN molecules
bound to phosphoinositides is neglected, since it is expected to be much less than
the diffusivity of free phosphoinositides. The reaction-diffusion kinetics is simulated
according to Gillespie’s method [6], generalized to the case of an anisotropic environ-
ment.

A convenient order parameter measuring the degree of phase separation of the
phosphoinositide mixture is Binder’s cumulant [1]

g = 1
2

(
3 − 〈(ϕ − 〈ϕ〉)4〉

〈(ϕ − 〈ϕ〉)2〉2

)

where ϕ = ϕi = [PIP3]i − [PIP2]i is a difference of local concentrations on site i and
〈· · · 〉 denotes average over many different random realizations.
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Table 3.1. Probabilities of chemical reactions and diffusion processes. Let X·Y denote the bound
state of species X and Y, [X] the global concentration of species X in the whole cell, [X]cyto the
cytosolic concentration, and [X]i the local concentration on plasma membrane site i . The rate
for a given reaction on site i is denoted by fi , V is the cell volume,

∑′ denotes sum over nearest
neighbors, and (x)+ = x for positive x and 0 otherwise. Time is advanced as a Poisson process
of intensity equal to the reciprocal of the sum of the frequencies for all the processes. The
simulations were performed using the values for kinetic rates and Michaelis–Menten constants
given in Table 3.2.

Reaction fi

PI3K(cytosol)+Rec(i) → PI3K·Rec(i) V
Ns

kRec
ass [Rec]i [PI3K]cyto

PI3K(cytosol)+Rec(i) ← PI3K·Rec(i) 1
Ns

kRec
diss[Rec · PI3K]i

PTEN(cytosol)+PIP2(i) → PTEN·PIP2(i) V
Ns

kPIP2
ass [PIP2]i [PTEN]cyto

PTEN(cytosol)+PIP2(i) ← PTEN·PIP2(i) 1
Ns

kPIP2
diss [PIP2 · PTEN]i

PI3K·Rec(i)+PIP2(i) → PI3K·Rec(i)+PIP3(i) kPI3K
cat

[Rec·PI3K]i [PIP2]i
K PI3K

M +[PIP2]i

PTEN·PIP2(i)+PIP3(i) → PTEN·PIP2(i)+PIP2(i) kPTEN
cat

[Rec·PTEN]i [PIP3]i
K PTEN

M +[PIP3]i

PIP2(i)→PIP2(j) D√
3Ssite

∑′ ([PIP2]i − [PIP2] j
)
+

PIP3(i)→PIP3(j) D√
3Ssite

∑′ ([PIP3]i − [PIP3] j
)
+

Table 3.2. Physical and kinetic parameters used in the simulations

Parameter Value Parameter Value

R 10.00 µm kPI3K
cat 1.00 s−1

[Rec] 0.00–50.00 nM kPTEN
cat 0.50 s−1

[PI3K] 50.00 nM K PI3K
M 200.00 nM

[PTEN] 50.00 nM K PTEN
M 200.00 nM

[PIP2] 500.00 nM kRec
ass 50.00 (s µM)−1

D 0.10–1.00 µm2/s kPIP2
ass 50.00 (s µM)−1

kRec
diss 0.10 s−1 kPIP2

diss 0.10 s−1
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Phosphoinositide separation into distinct phosphoinositide clusters corresponds to
g of order 1. Spontaneous phase symmetry breaking leads to the formation of PIP2-,
PIP3-rich clusters of different size. Cluster sizes can be characterized by harmonic
analysis. For each realization, the fluctuations δϕ = ϕ − 〈ϕ〉 of the ϕ field can be
expanded in spherical harmonics. Let us consider the two-point correlation functions
〈δϕ(u)δϕ(u′)〉 = ∑+∞

l=1 Cl Pl(u·u′) where Pl are Legendre polynomials. When most of
the weight is concentrated on the lth harmonic component, average phosphoinositide
clusters extend over the characteristic length π R/2l.

3.3 Dynamic phase diagram

We have run many random realizations of the system for different (ρ, D) pairs, where
ρ is the surface concentration of activated receptors and D is phosphoinositide diffu-
sivity. For each random realization we started from a stationary homogeneous PTEN,
PIP2 distribution. At time t = 0 receptor activation was switched on; either activated
receptors were isotropically distributed or the isotropic distribution was perturbed with
a linear term producing a 5% difference in activated receptor density between the North
and the South poles. In the isotropic case, we found that in a wide region of parameter
space the chemical network presents an instability with respect to phase separation,
i.e., the homogeneous phosphoinositide mixture realized soon after receptor activation
is unstable and tends to decay into spatially separated PIP2- and PIP3-rich phases.

Characteristic times for phase separation vary from the order of a minute to that of
an hour, depending on receptor activation.

The dynamic behavior and stationary state of the system strongly depend on the
values of two key parameters: the concentration ρ of activated receptors and the diffu-
sivity D. In the case of anisotropic stimulation, orientation of PIP2 and PIP3 patches
clearly correlates with the signal anisotropy (see Fig. 3.4) In the anisotropic case, phase
separation takes place in a larger region of parameter space and in times that can be
shorter by one order of magnitude.

Average phase separation times as functions of receptor activation ρ = [Rec] and
diffusivity D are plotted for isotropic activation in Fig. 3.5a and for 5% anisotropic
activation in Fig 3.5c. Light areas correspond to non phase-separating systems. In the
dark areas phase separation takes place in less than 5 minutes of simulated time, while
close to the boundary of the broken symmetry region phase separation can take times
of the order of an hour.

Average cluster sizes at stationarity are plotted in Figs. 3.5b,d. In the light region,
cluster sizes are of the order of the size of the system, corresponding to the formation
of pairs of complementary PIP2 and PIP3 patches (Fig. 3.4).

For diffusivities smaller than 0.1 µm2/s the diffusion-mediated interaction is un-
able to establish correlations on lengths of the order of the size of the system and one
observes the formation of clusters of separated phases of size much smaller than the
size of the system.
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Fig. 3.4. Phase separation in the presence of 5% anisotropic receptor activation switched on as
described in the text. The 5% activation gradient pointed in the upward vertical direction. First
row: cell front view. Second row: concentrations measured along the cell perimeter and normal-
ized with their maximum value. Third row: time evolution of Binder’s parameter g. First column:
receptor activation. Second column: PIP2 concentration. Third column: PIP3 concentration.

For diffusivities larger than 2 µm2/s the tendency to phase separation is contrasted
by the disordering action of phosphoinositide diffusion. Average phase separation
times for the anisotropic case are plotted in Fig. 3.5c.

By comparing the isotropic and the anisotropic case it appears that there is a large
region of parameter space where phase separation is not observed with isotropic stim-
ulation, while a 5% anisotropic modulation of activated receptor density triggers a fast
phase separation process. Cluster sizes are on average larger in the anisotropic case
than in the isotropic case.

The transition from a phase-separating to a phase-mixing regime results from a
competition between the ordering effect of the interactions and the disordering effect
of molecular diffusivity. The frontier between these two regimes varies continuously
as a function of parameters. Importantly, we found that the overall phase separation
picture is robust with respect to parameter perturbations, since it persists even for
concentrations and reaction rates differing from those of Table 3.2 by one order of
magnitude.
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Fig. 3.5. Dynamic phase diagram. Average phase separation times and average cluster sizes are
shown using a grayscale as functions of receptor activation [Rec] and diffusivity D, for isotropic
and 5% anisotropic activation. In the isotropic case, panels show: (a) Average phase separation
time, (b) average cluster size as a function of [Rec] and D. In the anisotropic case, panels show:
(c) Average phase separation time, (d) average cluster size. For anisotropic activation phase
separation is faster, takes place in a larger region of parameter space, and is correlated with the
anisotropy direction.

It is also worth noticing that in both isotropic and anisotropic conditions signal am-
plification is completely reversible. Switching off receptor activation abolishes phase
separation, delocalizes PI3K from the plasma membrane to the cytosol, and brings the
system back to the quiescent state.

Physically, the mechanism leading to cluster formation can be understood as fol-
lows. Receptor activation shifts the chemical potential for PI3K, which is thus recruited
to the plasma membrane. PI3K catalytic activity produces PIP3 molecules from the ini-
tial PIP2 sea. Initially, the two phosphoinositide species are well mixed. Fluctuations in
PIP2 and PIP3 concentrations are however enhanced by preferential binding of PTEN
to its own diffusing phosphoinositide product, PIP2. Binding of a PTEN molecule to
a cell membrane site induces a localized transformation of PIP3 into PIP2, resulting
in a higher probability of binding other PTEN molecules at neighboring sites. This
positive feedback loop not only amplifies the inhibitory PTEN signal, but via phos-
phoinositide diffusion it also establishes spatio-temporal correlations that enhance the
probability of observing PTEN enzymes at neighboring sites as well. If strong enough,
this diffusion-induced interaction drives the system towards spontaneous phase sep-
aration. The time needed by the system to fall into the more stable, phase-separated
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phase can however be a long one if the symmetric, unbroken phase is metastable. In
that case, a small anisotropic perturbation in the pattern of receptor activation can be
enormously amplified by the system instability.

3.4 Conclusions

Our results provide a simple physical cue to the enigmatic behavior observed in eu-
karyotic cells. There is a large region of parameter space where the cell can be insensi-
tive to uniform stimulation over very long times, but responsive to slight anisotropies
in receptor activation in times of the order of minutes. Accordingly, simulating shal-
low gradients of chemoattractant we observed PIP3 patches accumulating with high
probability on the side of the plasma membrane with a higher concentration of acti-
vated receptors, thus resulting in a large amplification of the chemotactic signal. More-
over, we identified an intermediate region of parameters, where phase separation un-
der isotropic stimulation is observed on average in a long but finite time. In this case,
one would predict that on long timescales cells undergo spontaneous polarization in
random directions, and that the number of polarized cells grows with time. Intrigu-
ingly, this peculiar motile behavior is known as chemokinesis and is observed in cell
motility experiments when cells are exposed to chemoattractants in the absence of a
gradient [9].

In summary, the phase separation scenario provides a simple and unified frame-
work for different aspects of directed cell motility, such as large amplification of slight
signal anisotropies, insensitivity to uniform stimulation, appearance of isolated and
transient phosphoinositide patches, and stochastic cell polarization.

It provides a link between known microscopic and macroscopic timescales. Fi-
nally, it unifies apparently conflicting aspects which previous modeling efforts could
not satisfactorily reconcile [4], such as insensitivity to absolute stimulation values,
large amplification of shallow chemotactic gradients, reversibility of phase separa-
tion, robustness with respect to parameter perturbations, stochastic character of cell
response, and use of realistic biochemical parameters and space-time scales.
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Summary. We evaluate different mechanisms for spatial domain formation of guanosine triphos-
phatases (GTPases) on cellular membranes. A kinetic model of the basic guanine-nucleotide
cycle common to all GTPases is developed and coupled along a one-dimensional axis by diffu-
sion of inactive and activated GTPases. We ask whether a parameter set exists such that domain
formation is possible by Turing’s mechanism, i.e., purely by reactions and diffusion, and show
that the Turing instability does not occur in this model for any parameter combination. But, as
revealed by stability and bifurcation analysis, domain formation is reproduced after augmenting
the model with combinations of two spatial interaction mechanisms: 1. attraction and 2. adhe-
sion among active GTPases. These interactions can be mediated by effector proteins that bind
active GTPases, and the model therefore predicts domains to disintegrate if effector binding is
inhibited.

Key words: GTPase, membrane domain, Turing pattern, bifurcation analysis.

4.1 Introduction

Small GTPases are proteins of small mass (20–25 kDa) that regulate essential cell
functions, such as growth, movement, differentiation and intracellular vesicle trans-
port by switching between two conformations. In its On-state, a small GTPase is
bound to guanosine triphosphate (GTP) which can be hydrolyzed by the protein’s GT-
Pase activity and thereby switch the GTPase into its GDP-bound Off-state. Replacing
GDP for GTP requires a guanine-nucleotide exchange factor (GEF) and activates the
GTPase again. For mammalian cells, small GTPases are grouped into 5 subfamilies
based on similarities in sequence, structure and function: Ras, Rho, Rab, Arf, Ran. In
their active form, many GTPases are localized to the plasma membrane and/or inter-
nal membranes, respectively, where they coordinate and functionally utilize membrane
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domains [1]. In particular, about 50 members of the Rab subfamily organize individual
membrane domains on intracellular vesicles [2, 3].

Here we ask whether the guanine-nucleotide cycle of GTPases described above
together with lateral diffusion of the GTPases in the membrane are sufficient to account
for the ability of some GTPases, notably those of the Rab subfamily, to form spatial
patterns of alternating high and low GTPase densities. Moreover, given the similarities
among the GTPase superfamily, could the activity of regulators (like GEFs) of the
guanine-nucleotide cycle explain why some GTPases form domains and others don’t?

The formation of stationary spatial domains by means of reaction and diffusion had
been proposed in a seminal paper by Alan Turing [4]. He had shown by means of lin-
ear stability analysis that (bio-)chemical reactions among at least two species of which
at least one diffuses are sufficient to form domains given that the kinetic terms and
diffusion constants obey well-defined relations [4]. Gierer and Meinhardt developed a
closely related theory focusing on local activation and lateral inhibition [5]. Since then
many examples of Turing patterns have been studied in mathematical models with an
emphasis on morphogenesis in tissues [6,7]. Experimentally Turing’s mechanism was
first proven in a purely chemical medium, the CIMA reaction [8,9], and has been used
to explain domain formation at the scale of the plasma membrane of single cells, e.g.,
domains of proton pumps [10], filopodia in neurons [11] and bipolarity formation [12].
Moreover, biophysical mechanisms have been studied that can pattern the lipid com-
position of a membrane due to electrostatic interactions with GMC proteins [13, 14],
membrane curvature [15] or varying lipid composition [16].

We tackle the question for GTPase domain formation by means of linear stability
and bifurcation analysis of the derived coupled nonlinear partial differential equations
for the densities of inactive and active GTPases along a one-dimensional axis across
the membrane. We show that, given the developed reaction-diffusion model, Turing’s
mechanism is not responsible for GTPase domains and that the homogeneous distribu-
tion of GTPases always remains stable. We then propose and analyze active coupling
mechanisms as a necessary requirement for domain formation. Similar mechanisms
have been proposed to account for waves of MinD membrane density during center
finding for cell division in E.coli [17].

4.2 Derivation of the Model

We develop a model of the guanine-nucleotide cycle of GTPases with lateral diffusion
and spatial interactions among active GTPases. The model describes the density of
inactive GTPases on a line across the membrane by u(x, t) and the density of active
GTPases by v(x, t).

Here we consider an infinitely extended system x ∈ R. Fig. 4.1 (a) shows the
reaction cycle and Fig. 4.1 (b) depicts the spatial coupling mechanisms.

4.2.1 Kinetic Model of Guanine-Nucleotide Cycle

As depicted in Fig. 4.1 (a), we consider the following reactions common to most GT-
Pases: cytosolic GDP-bound GTPases are recruited onto the membrane with constant
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Fig. 4.1. Scheme of the modeled reaction cycle of GTPases (black circles) and their spatial in-
teractions. (a) The reaction cycle converts GDP-bound (inactive) and GTP-bound (active) forms
of the GTPase. First-order rate constants are assumed to describe the individual reactions except
for ke which denotes the maximum rate of the GEF-catalyzed exchange of GDP for GTP and a
GAP-catalyzed contribution kg to the hydrolysis of GTP. (b) In the discrete version of the model,
occupation numbers di ∈ {0, 1} on a discrete lattice of sites . . . , i − 1, i, i + 1, . . . are used to
describe the spatial distribution of GTPases. Inactive GTPases are assumed to diffuse randomly
regardless of the configuration in their neighborhood since they do not recruit effectors. For ac-
tive GTPases we introduce neighborhood-dependent offsets p (attraction) and p̄ (adhesion) to
the diffusion constant that mimic interactions mediated by bound effectors, e.g., the probability
for a move from site i − 1 to site i has three contributions, free diffusion and the two offsets
represented by the arcs.

flux k1 which assumes a large (therefore constant) cytosolic pool. For many GTPases
this process requires the unbinding from GDP dissociation inhibitors (GDIs) that ac-
company the GTPases in cytosol; hence this unbinding shall also be included in the
flux k1. Moreover, we include a maximum membrane occupation by modulating the
constant recruitment flux k1 with a limiting factor of the density of free membrane
sites k1(1 − u(x, t) − v(x, t)) implying that u and v are measured as fractions of the
maximum density which we scaled to 1.

GDP-bound GTPases may be extracted from the membrane at a rate k−1 by bind-
ing of GDI. These two processes regulate the amount of membrane-bound inactive
GTPases via the balance equation (4.1) for u(x, t).

On the membrane, GTPases can be activated by exchange of their GDP for GTP.
This process is modeled as an autocatalytic reaction with saturation (Michaelis–
Menten constant kM ). The amount of GTP in the cytosol is assumed to be constant
(usually 10 times larger than that of GDP) and is included in the maximum exchange
rate ke. The autocatalysis stems from the requirement for guanine-nucleotide exchange
factors (GEFs) that catalyze the exchange reaction and as in the case of Rab GTPases
are themselves recruited by the active form of the GTPase. The active GTPase may
be deactivated by hydrolysis of its GTP. The hydrolysis is modeled with a constant
intrinsic rate kh which may be increased up to kh(1 + kg) by the action of GTPase
activating proteins (GAPs) that can be recruited by the active form of some types of
GTPases. Effector recruitment is assumed to saturate with the same constant kM both
for GEFs and GAPs. For GTPases that do not themselves recruit GAPs we set kg = 0
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and include a constant GAP activity in kh . Hence, nucleotide exchange and hydroly-
sis convert the two membrane-bound forms of the GTPase and contribute inversely to
both balance equations via g(u, v).

The inactive form of the GTPase is assumed to freely diffuse on the membrane with
diffusion constant Du in the transport term Du(∂2u/∂x2), whereas for the active form
we need to derive a separate transport term −∂ J (u, v)/∂x that reduces to free diffusion
with constant Dv in the limit of vanishing strength of the spatial coupling. Hence,
the model is given by two coupled nonlinear partial differential equations (PDEs) for
x ∈ R, t ∈ R+, u, v ∈ [0, 1] and random initial conditions:

∂u
∂t

= f (u, v) + Du
∂2u
∂x2

∂v

∂t
= g(u, v) − ∂ J (u, v)

∂x
f (u, v) = k1(1 − u − v) − k−1u − g(u, v)

g(u, v) = ke
v

kM + v
u − kh

(
1 + kg

v

kM + v

)
v.

(4.1)

4.2.2 Model of Spatial Interactions

Here we model the lateral transport of active GTPases by a parameterized sum of
three contributions: 1. diffusion of, 2. attraction of and 3. adhesion between active
GTPases. These interactions are motivated by the ability of active GTPases in general
to recruit effector proteins that serve biological functions and that mediate interactions
between GTPase-effector complexes which are here collectively described by v(x, t).
Inactive GTPases that do not recruit effectors are assumed to diffuse freely without the
mentioned extensions.

In order to obtain an extended PDE for v(x, t) with spatial coupling terms that
depend only on a few parameters directly related to the microscopic mechanisms, we
first formulate a discrete microscopic model and then perform a continuum limit (these
calculations are shown in Appendix 4.4). Alternatively, the coupling terms in the PDE
could be derived from a macroscopic model of the free energy as outlined by Cahn and
Hilliard [18] and recently applied to protein-lipid interactions [13]. The strength of the
derivation presented here lies in the compatibility of the microscopic and macroscopic
descriptions which enables further studies of the microscopic mechanisms, e.g., by
means of cellular automata [22], at parameter values that are identical in the macro-
scopic description.

A single active GTPase without neighboring molecules performs a random walk
of steps � (of the size of a GTPase-effector complex) during time intervals �t with
probability Dv(�t/�2) as shown in Fig. 4.1 (b). If there are other GTPases in its
neighborhood then the considered active GTPase preferably jumps towards other active
GTPases with an enhanced probability Dv(1 + p)(�t/�2). If it has a direct neighbor
then it departs only with a decreased probability Dv(1 − p̄)(�t/�2). The parameter
p lumps all attractive (medium range) forces, whereas the parameter p̄ describes ad-
hesion forces upon contact. The attractive forces can also contribute to the adhesive
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interaction upon contact and the parameter choice for p̄ can thus include an offset
proportional to p.

This microscopic model has been introduced and analyzed by Kruse for the case
p̄ = 0 and was applied to model MinD oligomerization for center finding dynamics
in Escherichia coli [17]. Here we include nearest neighbor adhesion by extending the
model to p̄ > 0 and couple it to the guanine-nucleotide cycle of GTPases. The flux
term J (v) is calculated in Appendix 4.4.

4.2.3 Complete Model

We insert the spatial coupling term J (v) from (4.13) into (4.1) and in the following
first analyze the resulting complete model for the case of simple diffusive coupling
(p = p̄ = 0) and subsequently analyze with attractive (p �= 0) and adhesive ( p̄ �= 0)
interactions:

ut = k1(1 − u − v) −
(

k−1 + ke
v

kM + v

)
u + kh

(
1 + kg

v

kM + v

)
v + Duuxx

vt = ke
v

kM + v
u − kh

(
1 + kg

v

kM + v

)
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+ 4v

)
vxvxxx +

(
1
2

+ 3
2
v

)
v2

xx

}]

− Dv p̄
[
(4v − 3v2)vxx + (4 − 6v)v2

x

+ �2
{(

4
3
v − 5

4
v2

)
vxxxx +

(
10
3

− 4v

)
vxvxxx +

(
2 − 3

2
v

)
v2

xx

}]
.

(4.2)

4.3 Results

We perform a linear stability analysis around the homogeneous steady state and cor-
roborate these results by nonlinear bifurcation analysis to show that the basic reaction-
diffusion mechanism does not account for domain formation of GTPases whereas ad-
ditional spatial interactions do.

4.3.1 Homogeneous Steady State

Homogeneous steady states are solutions of constant densities u∗, v∗ independent of
space and time. Hence, the derivative terms in (4.1) vanish and u∗, v∗ are determined
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as the roots of the algebraic equations 0 = f (u∗, v∗), 0 = g(u∗, v∗). We restrict our
analysis of spatial domain formation to that part of the parameter space that accounts
for a finite positive density of active GTPases, i.e.,

ke

hh

k1

k1 + k−1
> kM . (4.3)

Hence, the ratio of gain to loss rates needs to exceed the saturation kM of the autocat-
alytic activation. In the considered parameter range exactly one homogeneous steady
state with finite positive u∗ and v∗ exists and reads

u∗ = k1
k1+k−1

[
1 − 1 − (k1+k−1)kh

k1ke kM

1 − (k1+k−1)kh
k1ke (1+kg)

]

v∗ = 1 − (k1+k−1)kh
k1ke kM

1 − (k1+k−1)kh
k1ke (1+kg)

.

(4.4)

4.3.2 GTPase Domain Formation Due To Turing’s Mechanism?

Here we ask whether in principle a combination of parameter values could be found
such that Turing’s mechanism (as outlined in the introduction) leads to domain for-
mation given only lateral diffusion (p = p̄ = 0) and our general assumptions about
the GTPase cycle. The formation of spatial domains of alternating high and low den-
sities of GTPases can occur when the homogeneous steady state is unstable against
spatially heterogeneous perturbations ũ(x, t), ṽ(x, t). For small perturbations this in-
stability can be tested in a linearization of (4.1) after expanding the nonlinearities
f (u, v), g(u, v) with u(x, t) = u∗ + ũ(x, t), v(x, t) = v∗ + ṽ(x, t) into a Taylor
series. The linear system of PDEs is solved with an expansion of the perturbations into
spatial Fourier modes ∼ eikx with wavenumbers k and an exponential time dependence
∼ eλ(k)t : (

u(x, t)
v(x, t)

)
=

(
u∗
v∗

)
+

∫
dk

∑
j=1,2

(
u j
v j

)
eλ j (k)t eikx . (4.5)

Inserting into (4.1) and evaluating the derivatives yields the eigenvalue problem

λ1,2(k)

(
u1,2
v1,2

)
=

[(
∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v

)∣∣∣∣∣
u∗,v∗

+
(−Duk2 0

0 −Dvk2

)] (
u1,2
v1,2

)
(4.6)

with two eigenvalues λ1,2(k), eigenvectors
(u1,2
v1,2

)
and the Jacobian matrix (first on the

right-hand side) to be evaluated at the steady state solution, see Appendix 4.4. In the
following, derivatives with respect to u or v always imply evaluation at (u∗, v∗) with-
out explicit mentioning. Moreover, we denote such derivatives by a corresponding in-
dex u or v, respectively.
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The eigenvalues can be determined from the characteristic polynomial

0 = λ1,2(k)2 + λ1,2(k)[− fu + k2 Du − gv + k2 Dv]

+ [( fu − k2 Du)(gv − k2 Dv) − fvgu] (4.7)

and the homogeneous steady state is found to be stable if the real parts of both λ1,2(k)

are negative for all k ∈ R; hence any perturbation decays like ∼ e�[λ(k)]t+i�[λ(k)]t .
First, we verify that the homogeneous steady state (4.4) is stable against spatially

homogeneous perturbations (k = 0) which requires fu +gv < 0 and fu gv − fvgu > 0.
In Appendix 4.4 we calculate the derivatives and find that both fu < 0 (4.17) and gv <

0 (4.18); hence the first inequality holds. Also the second condition fu gv − fvgu =
(−gu − k1 − k−1)gv − (−gv − k1)gu = (k1 + k−1)(−gv) + k1gu > 0 is fulfilled.

Now we search for λ1,2(k) with positive real part at k > 0 for which a necessary
condition is Dv fu+Du gv > 0, or else the functions �[λ1,2(k)] monotonously decrease
with k. As we calculate in Appendix 4.4, fu < 0 (4.17) and gv < 0 (4.18) for any
arbitrary combination of the parameter values. Hence, the condition Dv fu + Du gv > 0
is violated for any choice of the kinetic parameter values or the diffusion constants. We
repeated these calculations for arbitrary but monotonous kinetic terms and obtained
the same fu < 0, gv < 0 around the steady state with high values of u, v. On the
contrary, for all models that possess a Turing instability there is always one of the
derivatives fu and gv that has positive values whereas the other one has negative values
at the steady state solution. The closest Turing-like variant of our model is a substrate-
depletion system that possesses gv > 0. However, the appropriately adjusted kinetic
terms that can yield gv > 0 also yield an instability for homogeneous perturbations,
which would be biologically unrealistic. Maintaining the design of an activation(via
GEF)-inactivation(hydrolysis) cycle of the GTPases, the only possibility of obtaining
a Turing instability is then to increase the number of species but immediate candidates
for these additional species are lacking in our GTPase system. As an example for
such a strategy, a 4-variable model of similar activation-inactivation cycles was used
to describe the Min oscillations in E. coli [19] and this also constitutes an alternative
model to the spatial interactions assumed by Kruse [17].

For the general reaction cycle of a single GTPase with two membrane-bound
species and a constant cytoplasmic pool (4.1), we conclude that pure lateral diffusion
of GTPases with any combination of diffusion constants does not provide an explana-
tion for domain formation of GTPases on membranes as it is observed for instance for
members of the Rab subfamily. In the following we show that the proposed additional
coupling mechanisms (attraction and adhesion) readily cause a linear instability of the
homogeneous state and that stationary heterogeneous domain solutions exist.

4.3.3 Contribution of Spatial Interactions

First, we analyze the balance of diffusion and spatial interactions in the absence of
reactions, i.e., vt = −Jx with J from (4.13) and proceed as in the previous Sect. 4.3.2.
Any homogeneous v∗ with 0 ≤ v∗ ≤ 1 is now a steady state as the interactions are
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Fig. 4.2. Dependence of the eigenvalue λ on the wavenumber k of perturbations. The thick solid
curve shows the full result (4.8) for v∗ = 0.8, D = 1, p = 0.5, p̄ = 0.5, � = 0.1 whereas the
other curves denote only single terms of (4.8), see legend.

mass conserving. The stability property of v∗ is then given by a single real eigenvalue
per wavenumber:

λ(k) = −Dk2 + Dp
[
(2 − 3v∗)v∗k2 − �2

(
7
6

− 5
4
v∗

)
v∗k4

]

+D p̄
[
(4 − 3v∗)v∗k2 − �2

(
4
3

− 5
4
v∗

)
v∗k4

]
. (4.8)

Fig. 4.2 shows λ(k) from Eq. 4.8 and individual contributions thereof for a fixed choice
of the parameters. The homogeneous state v∗ is unstable if any k exists such that λ(k)

is positive. The diffusion equation alone (p = p̄ = 0) yields stability for any choice
of v∗, e.g., the thin solid curve. The attractive medium-range interactions alone (no
diffusion and p̄ = 0) cause an instability for v∗ < 2/3 as was found in [17].

The adhesive contact interactions alone (no diffusion and p = 0) cause instability
for any density v∗. However, for the choice of parameters in Fig. 4.2, the potential
instability due to adhesive interactions is overcompensated by the stabilizing contribu-
tions of the other two processes.

4.3.4 GTPase Domain Formation Due To Spatial Interactions

In this section the linear stability analysis is performed for the complete two-species
model of Eq. 4.2. Again using the ansatz (4.5) in the linearization of (4.2) and evalu-
ating the higher-order spatial derivatives yields an eigenvalue problem similar to (4.6)
but for the matrix


fu − Dk2 fv

gu
gv − Dk2 + Dp

[
(2 − 3v∗)v∗k2 − �2

(
7
6 − 5

4v∗
)

v∗k4
]

+ D p̄
[
(4 − 3v∗)v∗k2 − �2

(
4
3 − 5

4v∗
)

v∗k4
]


 . (4.9)
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Fig. 4.3. Dependence of the largest eigenvalue λ1(k) of perturbations with wavenumber k around
the homogeneous steady state (u∗, v∗) for different kh as denoted in the legend. Other parame-
ters are k1 = k−1 = ke = kM = kg = 10, D = 1, � = 0.1, p = 0.5, p̄ = 0.8.

The results of the linear stability analysis are shown in Fig. 4.3 for a chosen set of
kinetic parameters k1 = k−1 = ke = kM = kg = 10, D = 1, � = 0.1, p = 0.5, p̄ =
0.8 and three different values for kh . The choice p = 0.5 describes a situation where
out of 5 steps a free molecule of active GTPase will move 2 times away from a nearby
aggregate and move 3 times towards it, hence a directional bias of 20%. The parameter
p̄ = 0.8 denotes a scenario in which the probability for a single molecule to detach
from the edge of and move away from an aggregate is only 20% of the probability for
a movement of a free molecule.

In Fig. 4.3 each of the curves contains contributions from the spatial interaction
processes (4.13), from the diffusion of inactive GTPases and from the local kinetics
(4.1). The latter two processes are stabilizing for all conditions. Only for a limited
range of parameter values does there exist positive λ(k) which enables domain forma-
tion. For the present choice of parameters this window spans 0.092 < kh < 0.211.

4.3.5 GTPase Domain Solutions

So far, we have analyzed the linear dynamics of solutions close to the homogeneous
steady states. New coexisting solutions with a characteristic spatial profile emerge at
the detected instabilities of the homogeneous solutions. Here we compute these new
solutions from the full nonlinear model Eq. 4.2. The spatial profiles of the emerging
stationary solutions u∗(x), v∗(x) satisfy a system of 6 first-order ordinary differential
equations derived from (4.2) by setting time derivatives to zero and reordering the
two right-hand sides as equations for the highest-order spatial derivative (second and
fourth, respectively), then rewriting these as a first-order system. Such a transformed
system can be efficiently computed by means of continuation methods as implemented
in the software package AUTO [20]. Typical domain solutions are shown in Fig. 4.4.
The bifurcations where the domain solutions emerge (here, e.g., k = π ) correspond to
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Fig. 4.4. (a) Bifurcation diagram of the homogeneous state (thin curve) and maxima and minima
of the domain solutions (thick), (un-)stable solutions are denoted by full (dashed) curves. (b)
Two particular solutions of domains with spatial areas of low and high GTPase density. Pairs
of symbols in (a) denote the maximum and minimum amplitude of the two solutions in (b) that
correspond to two different values of kh as denoted by the pairs of symbols. Other parameters
are the same as in Fig. 4.3.

those parameters kh at which λ(k) = 0. Moreover, the bifurcations are supercritical,
i.e., domain solutions only exist where the homogeneous state is unstable.

4.4 Discussion

Many GTPases are recruited to membranes and domain formation is observed for some
of them, including Rab GTPases. We investigated the question of whether a general ki-
netic model of the guanine-nucleotide cycle of GTPases together with lateral diffusion
may account for domain formation on membranes. A linear stability analysis showed
that no domains form for any choice of parameters under these assumptions. The ex-
tension of the model by attractive and adhesive interactions among active GTPases
provided the possibility of domain formation as was shown by stability and bifurca-
tion analysis for selected examples.

This model considers a one-dimensional axis across a cellular membrane but the
results are readily extended to the two-dimensional plane if we can neglect fluctua-
tions in the angular direction. Previously, two-dimensional lattice-gas automata with
adhesive interactions have been shown to possess a reciprocal dependence of the crit-
ical adhesiveness versus density [21, 22] in agreement with our instability condition
p̄ > 1/[v∗(4 − 3v∗)] derived from (4.8) for p = 0. The same dependence is also
known from simpler continuum models with interactions.

Microscopically the recruitment of effector proteins by active GTPases could me-
diate the spatial interactions that are required for domain formation. Domain formation
could therefore be controlled by modifications of the biophysical properties of effector
proteins. Moreover, if effector binding is inhibited this model predicts the membrane
domains to disintegrate towards the homogeneous distribution. We suggest performing
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such experiments by using small inhibitory molecules or mutations of effector binding
domains.
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Appendix A: Mean-Field Approximation for Spatial Interactions

We formulate a discrete model (see Fig. 4.1 (b)) by collecting all events that change
the occupation number di ∈ {0, 1} of active GTPases at an arbitrarily chosen site i due
to jumps from or to neighboring sites:

�di

�t
= Dv

�2
[
1 + pdi+1 − p̄di−2

]
(1 − di )di−1 jump i−1 → i

+ Dv

�2
[
1 + pdi−1 − p̄di+2

]
(1 − di )di+1 jump i ← i+1

− Dv

�2
[
1 + pdi−2 − p̄di+1

]
(1 − di−1)di jump i−1 ← i

− Dv

�2
[
1 + pdi+2 − p̄di−1

]
(1 − di+1)di jump i → i+1,

(4.10)

which after rearrangement yields the discrete model

�di

�t
= Dv

�2
[
di−1 + di+1 − 2di

]
+ Dv p

�2
[
2di−1di+1 − di (di−2 + di+2) − 2di−1di di+1

+di (di−1di−2 + di+1di+2)
]

− Dv p̄
�2

[
di−1di−2 + di+1di+2 − di (di−1 + di+1) + 2di−1di di+1

−di (di−1di−2 + di+1di+2)
]
. (4.11)

Next the continuum limit is performed to derive a continuous model from the discrete
model. This continuous model is deterministic and facilitates effective linear stability
and bifurcation analyses. The occupation numbers di are replaced by the local density
v(x, t) and the left-hand side of Eq. 4.11 becomes the time derivative �di/�t →
(∂/∂t)v = vt . The linear terms approximate the second spatial derivative and can
be replaced by the diffusion operator (di−1 + di+1 − 2di )/�

2 → (∂2/∂x2)v = vxx .
Factors of the product terms need to be expanded in the Taylor series
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di+ j → v(x + j�, t) = v + ( j�)1

1!
vx + ( j�)2

2!
vxx + ( j�)3

3!
vxxx

+ ( j�)4

4!
vxxxx + . . . (4.12)

and terms up to second order in � are summed. Hence, the transport terms for v(x, t)
in the model are given by

J = −Dvvx + Dv p
d

dx

[
(1 − v)v2 + �2

{(
7
6

− 5
4
v

)
vvxx −

(
5
6

− 1
2
v

)
v2

x

}]

+ Dv p̄
d

dx

[
(2 − v)v2 + �2

{(
4
3

− 5
4
v

)
vvxx −

(
−1

3
− 1

2
v

)
v2

x

}]
. (4.13)

The linear part (p = p̄ = 0) represents the diffusion equation and the nonlinear terms
denote the coupling to the local neighborhood. The transport terms are compactly writ-
ten in terms of the flux J with vt = −Jx since the considered interaction processes
conserve the total amount of GTPases.

Appendix B: Signs of the Elements of the Jacobian Matrix

Here we analytically calculate the entries of the Jacobian matrix, i.e., derivatives of the
kinetic terms with respect to the variables, and evaluate the signs of these derivatives at
the stationary state (u∗, v∗). Our calculation is valid for arbitrary values of any param-
eter and does not depend on specific values, as long as they allow a finite membrane
density of GTPases (4.3). We consider the kinetic part of the model (4.1) with

f (u, v) = k1(1 − u − v) − k−1u − g(u, v) (4.14)

g(u, v) = ke
v

kM + v
u − kh

(
1 + kg

v

kM + v

)
v (4.15)

and note that fu = −k1 − k−1 − gu and fv = −k1 − gv . One finds

gu = ke
v∗

kM + v∗ > 0 (4.16)

and hence

fu < 0. (4.17)

The calculation of gv proceeds by means of logarithmic derivatives and using the ab-
breviation h(v) = v/(kM + v):

gv = ∂

∂v
[keh(v)u − khv − khkgh(v)v]

= keh(v∗)u∗
∂h(v)
∂v

h(v∗)
− kh − khkgh(v∗)v∗

(
∂h(v)
∂v

h(v∗)
+ 1

v∗

)
.
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We use the steady state condition g(u∗, v∗) = 0 to replace keh(v∗)u∗ in the first
term by khv∗ + khkgh(v∗)v∗ and cancel one term, then insert (∂h(v)/∂v)/h(v∗) =
1/v∗ − 1/(kM + v∗):

gv = khv∗
∂h(v)
∂v

h(v∗)
− kh − khkgh(v∗)

= khv∗
(

1
v∗ − 1

kM + v∗

)
− kh − khkg

v∗

kM + v∗

= −kh(1 + kg)
v∗

kM + v∗ < 0. (4.18)

For k1 > kh(1 + kg) we obtain

fv < 0, (4.19)

whereas for k1 < kh(1 + kg) the sign of fv may turn positive depending on the values
of the other parameters.
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Summary. The formation of new blood vessels in vivo is a multistep process in which sprout-
ing endothelial cells (ECs) form tubes with lumina, these tubes being additionally organized
as capillary networks. In vitro models of tubulogenesis have been developed to investigate this
highly regulated multifactorial process, with special attention paid to the determinant role of
mechanical interactions between ECs and the extracellular matrix (ECM). In agreement with
experimental results obtained when culturing endothelial EAhy926 cells on fibrin gels, we de-
fined theoretical thresholds between cellular traction and active cell migration along ECM strain
fields above which tubulogenesis is induced. We additionally illustrated how mechanical factors
may provide long-ranged positional information signals leading to localized network formation,
thus providing an alternative view to the classical approach of morphogenesis based on gradients
of diffusible morphogens.

Key words: Mechanical signalling, in vitro angiogenesis, extracellular matrix rheology, posi-
tional information, network morphogenesis.

5.1 Introduction

The formation of new capillaries from pre-existing vasculature, i.e., angiogenesis, is a
biological process of major importance in several physio-pathological contexts, includ-
ing wound healing and tumour invasion. Under physiological conditions, angiogenesis
is a highly regulated phenomenon controlled by different angiogenic stimulators and
inhibitors, which are not only soluble factors (various peptides and growth factors, like
vascular endothelial growth factor (VEGF) [9]), but also nondiffusible components
of the extracellular matrix (ECM) [10]. Interestingly, a large amount of experimental
data indicate that ECMs not only display adhesive ligands important for anchorage-
dependent cells, but also present a wide range of mechanical and structural properties
which influence many cell functions such as migration, proliferation, proteolytic ac-
tivity and signal transduction. For example, using extracellular substrates of different
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mechanical stiffness shows that cells organize their cytoskeleton and adhesive contacts
differently on soft and stiff surfaces [12, 17].

In the context of angiogenesis, significant insights into the molecular and cellu-
lar biology of this process have come from in vitro assays using cultured endothelial
cells on ECMs with different rigidities [24]. Indeed, these assays mimic quite well the
early morphogenesis of cellular networks, or tubulogenesis, a process during which
endothelial cells self-organise around a meshwork of growing areas devoid of ECMs,
the lacunae. Further mechanical distortion of these lacunae by cellular forces gives rise
to a network of cellular cords with a tubular morphology, i.e., capillary-like networks
(CLNs) [26], [22].

In order to design pro- or anti-angiogenic therapeutic strategies, it is essential to un-
derstand and to predict modifications of the tubulogenesis scenario which may occur
when cell micro-environment modifications are induced by both intrinsic ECM me-
chanical properties and ECM deformations induced by cellular traction forces. In this
paper, this analysis has been conducted by considering the amplitude of cell traction
forces as a bifurcation parameter.

5.2 Influence of Mechanical Factors on Tubulogenesis Regulation

In [22], [23] Vailhé et al. demonstrated that the promotion or inhibition of CLNs de-
pends on the fibrin gel concentrations, and thus on the fibrin gel rigidity. When fibrin
concentration increases from 0.5 mg/ml to 2 mg/ml, the initial number of lacunae
decrease and do not evolve to CLNs. The data points in Fig. 5.1 summarize these
experimental results, together with a fit of these data by a Hill function of the form

Ind(C) = Ind0 − αCn

(K n + Cn)
, (5.1)

where C is the fibrin gel concentration (mg/ml) and Ind(C) the ratio of the surface
occupied by the CLN with respect to the total biogel surface. Using a floating gel
technique [2], we were able to derive a phenomenological relationship for the Young’s
modulus E(C) of the fibrin biogel of the form E(C) = a · C P , with E in kPa and
a = 2.04 ± 0.27 kPa/(mg/ml)p, p = 0.97 ± 0.14 [3]. The x-axis in Fig. 5.1 has been
rescaled accordingly, giving a range of elasticity modulus from 1 kPa to 4 kPa. Thus,
Fig. 5.1 can be considered as a bifurcation diagram defining a switch-like threshold
of Young’s modulus values below which instabilities and CLN pattern formation will
occur. One goal of the modelling approach developed below is thus to provide an
integrated description and understanding of this phenomenon.

5.3 Model Formulation

5.3.1 Biomechanical Components of the Model

Even if it is known that ECMs and biogels exhibit complex rheological properties, we
only retained as a first approximation a linear viscoelastic stress/strain relationship to
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Fig. 5.1. Explicit description of the dependence of CLN formation with regard to fibrin gel
concentrations by the function Ind(C) given in the text (Ind0 = 0.835; a = 0.9; K = 1.06,
n = 4). Squares correspond to the experimental data points of [22] for C values between 0.5
mg/ml and 2.0 mg/ml. Error bars correspond to SD on the estimated Young’s modulus. CLN
pattern formation only occurs for sufficiently soft fibrin gels (E < 3 kPa).

model the biogel mechanical response to cell traction, where the viscous and elastic
stresses add linearly. However, since biogels are mostly a network of reticulated fibres,
we also consider that long-range elastic resistive stresses may be generated across the
biogel [7]. The viscoelastic stress σσσ EC M generated within the fibrin gel as the result
of the cell traction stress σσσ cell is thus expressed as the sum of the following elastic and
viscous tensor stresses:

σσσ elast = 2µ(εεε − β1∇2εεε) + (λ(θ − β2∇2θ)I) (5.2)

σσσ visq =
(

µ1
∂εεε

∂t
+ µ2

∂θ

∂t
I
)

, (5.3)

where the positive coefficients β1 and β2 are the long-range elasticity coefficients, λ

and µ are the Lamé coefficients, while µ1 and µ2 are the shear and bulk viscosities,
respectively. εεε is the strain tensor, θ the dilation and I the unit tensor. In the light of
experimental data, the active stress tensor σσσ cell is assumed (i) to be proportional to the
ligands or biogel density and to plateau at high cell density because of cell traction
inhibition, i.e.,

σσσ cell = τρn(N2 − n)I, (5.4)

where the parameter τ monitors the cellular traction amplitude, while the positive con-
stant N2 controls the inhibition of cell traction as cell density increases. These param-
eters can be identified by considering experimental cell traction curves obtained for a
given biogel stiffness (Fig. 5.2).

The biogel attachment to the dish has been modelled as an elastic force R that
decreases as the gel thickness increases. Introducing the restoring parameter s, we
assumed that
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Fig. 5.2. Experimental record of the cellular traction force progressively developed after spread-
ing by EAhy926 endothelial cells seeded at a density of 2 × 106 cells on a fibrin gel of concen-
tration 1 mg/ml.

R = su/ρ, (5.5)

where the displacement u(r, t) of the cell-biogel composite is given as the solution of
the force balance equation:

∇ · [σσσ EC M + σσσ cell] = R. (5.6)

5.3.2 Cellular and Biochemical Components of the Model

In addition to passive translocation and random cell motion by cellular diffusion, we
assumed an active cell migration up to a biogel density gradient, which includes both
haptotactic cell migration (monitored by an adhesivity gradient) and durotaxis (moni-
tored by a rigidity gradient). The evolution of the spatio-temporal cell density is thus
given by the conservation equation:

∂n
∂t

= −∇ · [Jn + Jd + Jh] (5.7)

Jd = −∇ · [D(εεε)n]; Jn = n
∂u
∂t

; Jh = hn∇ρ, (5.8)

where h is the active migration coefficient and Jn the flux of cells convected at velocity
∂u/∂t . The influence on cellular diffusion of the time-varying anisotropy of the biogel
due to the strain field [11] has been included by considering a strain-biased diffusion
tensor D(εεε) in the expression of the cellular diffusive flux Jd [6].

A similar conservation equation can be derived for the biogel density ρ(r, t). The
biogel proteolysis has been neglected due to the experimental protocol we considered
(inhibition of plasmin enzymatic action by aprotinin) and only biogel convection by
mechanical effects has been considered.
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After variable normalisation, the nonlinear partial differential system associated to
this mechanocellular model of tubulogenesis is given by [16]

∂n
∂t

+ ∇ ·
[
−∇ · (D(εεε)n) + hn∇ρ + n

∂u
∂t

]
= 0

∂ρ

∂t
+ ∇ ·

[
ρ

∂u
∂t

]
= 0 (5.9)

∇ ·
[ {

2µ
(
εεε − β1∇2εεε

)
+ λ(θ − β2∇2θ)I

}

+
{
µ1

∂εεε

∂t
+ µ2

∂θ

∂t
I
}

+ {τρn(N2 − n)I}
]

= su/ρ.

We assumed as initial spatial conditions a homogeneous normalised value ρ(x) =
1 of the ECM density. Initially, the ECM is in an unstressed state (εεε(x) = 0) and cells
are randomly seeded, within a range n0(x) = 1 ± 0.1. No-flux boundary conditions
were considered for the cells and the ECM at the boundaries of the two-dimensional
(2D) domain, together with zero displacement conditions. The corresponding non-
linear partial differential system was numerically solved on a 2D square by a finite-
element method (COMSOL Multiphysics software).

5.4 Results

5.4.1 Theoretical Basis for Understanding CLN Formation Process

Considering the cell traction force coefficient amplitude τ as a bifurcation parameter,
the linear stability analysis performed in a neighbourhood of the normalised homoge-
neous steady state establishes that non-homogeneous steady states of cell and biogel
density will emerge beyond a critical value τc of the cell traction amplitude given
by [16]

τc = (λ + 2µ) + 2
√

s(λβ2 + 2µβ1)
h

D0
(N2 − 2) + 0.5(3N2 − 4)

. (5.10)

This analytical expression highlights the antagonistic effects on one side, the sta-
bilizing influence of the biogel mechanical stiffness (Lamé coefficients λ and µ, long-
range elasticity parameters β1 and β2), on the other side, the heterogeneous cell ag-
gregation driven by the ratio h/D0 between active cell migration and passive cellular
diffusion. Thus, the coupling between cellular traction and active cell migration be-
haves as a nonlinear strain-induced strain increase (SISI) autocatalytic process.

5.4.2 Simulation of CLN Morphogenesis

According to EC type and fibrin concentration, significant differences in time scales
have been reported for the development of in vitro tubulogenesis [26], [23]. For
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Fig. 5.3. Simulated CLN formation within viscoelastic fibrin biogels. The 3D profile of the
biogel density, which correlates linearly with the biogel thickness, shows lacunae with different
sizes and shapes, separated by thin cords of extracellular material (Fig. 5.3A). The associated
upper view of the CLN pattern (Fig. 5.3B) corresponds very satisfactorily to the experimental
observations (Fig. 5.3C).

HUVEC cultured on fibrin gel, lacunae appear typically in less than 2 hours, while
CLN formation is achieved after 24 hours, with lacunae size ranging from 0.2 mm to
1.5 mm. On the basis of these experiments, we simulated and analysed the dynamical
behaviour of the mechanocellular model for different fibrin gel concentrations. Fig.
5.3 illustrates the morphogenesis of CLN for a cell traction amplitude τ1 above the
critical bifurcation value τc defined previously. The initially smooth gel density pro-
gressively deforms up to the formation of pronounced depressions within the biogel
(Fig. 5.3A), these lacunae being separated by more or less thin cords of extracellular
material, giving rise to a morphogenetic pattern which looks very much like the CLN
patterns observed during the early phases of the CLN morphogenesis process (Fig.
5.3B–5.3C).

When focusing more accurately on the time course of the CLN formation, we can
observe both an increase of the mean lacuna size and a decrease in the number of la-
cunae (Fig. 5.4A–5.4B). The simulated CLN morphogenesis reproduces these exper-
imental observations, as illustrated in Fig. 5.4C–5.4D: lacunae morphogenesis takes
place within twelve hours, and leads to successive network topologies very similar to
the experimental observations. The formation of CLN is associated with an intense
mechanical remodelling of the biogel, as illustrated by the 2D map of the stress field
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Fig. 5.4. Morphologies of CLN at two successive times. Mechanical stresses generated by cellu-
lar forces induce the enlargement of the lacunae (Fig. 5.4A–5.4B). The simulated morphogenesis
(Fig. 5.4C–5.4D) reproduces quite well the progressive modification of the CLN observed ex-
perimentally by phase-contrast videomicroscopy: cellular cords may break, thus decreasing the
number of lacunae.

which progressively develops within the gel. In Fig. 5.5, we computed the von Mises
stresses σV M :

σV M =
√

3
2

∑
i, j

s2
i j , (5.11)

where si j are the components of the deviatoric stress tensor. Assuming that the vertical
stress components are negligible (σ3i = σi3 = 0), we have

s11 = E
3(1 − ν2)

((2 − ν)ε11 + (2ν − 1)ε22) (5.12)

s22 = E
3(1 − ν2)

((2ν − 1)ε11 + (2 − ν)ε22) (5.13)

s12 = E
(1 + ν)

ε12. (5.14)

In Fig. 5.5, isolevels of cell densities have been superimposed on the von Mises stresses
and plotted at two successive times (left, t = 1.3 h, right, t = 9.1 h) during the tubu-
logenesis process. Regions of maximal stresses co-localize with cords of compressed
extracellular material and of cell aggregates and tubes. Stresses induced by stretching
in the bottom of the lacunae are also visible on these stress maps.



54 P. Tracqui, P. Namy, and J. Ohayon

Fig. 5.5. 2D von Mises stress maps associated with the simulated CLN morphologies shown in
Figs. 5.4C and 5.4D, respectively. Grey color code ranges from 0.6 (white areas) to 60 Pa (black
areas). Superimposing isolevels of cell density clearly shows cell aggregation along the lines of
maximal stresses.

5.4.3 Localized Formation of Cellular Networks: ECM as a Mechanical Support
for Positional Information

The concept of positional information is commonly used to explain how cell differen-
tiation during organism and organ development is controlled by the position of the cell.
Following Turing’s original proposition, such spatial information can result from gra-
dients of diffusible molecules, called morphogens, secreted from a spatially localized
source. Even if several morphogens have been identified, the formation, readability
and robustness of morphogen gradients is still poorly understood and a subject of re-
cent theoretical development [4], [5]. We illustrate here how the ECM geometrical and
mechanical properties may provide robust and long-ranged positional information for
the emergent cellular process by considering CLN formation over an ECM with vary-
ing thickness (Fig. 5.6A). According to our model formulation, this spatial variation
of ECM thickness modulates the elastic restoring body force RRR, whose amplitude de-
creases with increasing ECM thickness. The simulated cellular pattern is shown in Fig.
5.6B. One can observe a localized formation of CLNs in the central part of the biogel,
i.e., in a region where this substrate is thick enough. In other words, the gradient of the
biogel thickness provides a positional information which, combined with appropriate
force balance between cell traction forces and biogel stiffness, leads to the emergence
of CLNs only at specific locations. Such a theoretically predicted tubulogenesis is sup-
ported by experiments exhibiting the influence of gradients of ECM thickness on the
formation of cellular networks. Indeed, [25] reported that bovine aortic cells cultured
on a matrix with increasing thickness gradient self-organised as CLNs only in the
thickest region of this extracellular substrate.
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Fig. 5.6. Localised morphogenesis of CLN driven by an initial gradient of biogel thickness. The
bell shape variation of the biogel thickness (Fig. 5.6A) acts as a distributed source of positional
information which induces CLN formation only in the central part of the biogel.

5.5 Discussion

An increasing body of experimental data indicates that local changes in the cellular
force balance may mediate pattern formation during tissue morphogenesis, as espe-
cially well demonstrated by in vitro angiogenesis assays [10]. In this context, the pio-
neering theoretical framework developed by J.D. Murray and G. Oster starting in the
1980s [14], [15] appears clearly as a highly valuable and experimentally based ap-
proach to deal with the fundamental question of how self-organised cellular networks
emerge from collective mechanical cell-matrix interactions [13], [21], [20]. However,
other modelling approaches have been developed during recent years (reviewed in [1]),
based for example on the percolative transition concept [8]. This latter approach was
successfully used in the analysis of in vitro angiogenesis experiments conducted on
thin Matrigel film (thickness of 44 µm) [8]. In these experimental conditions, the ob-
served multicellular network morphogenesis is mainly driven by cell-cell adhesion and
chemotactic migration induced by the autocrine cell response to the gradient of VEGF.
In our experiments, different processes drive the network morphogenesis, since CLN
formation will not occur on thin fibrin gels, as observed experimentally and pointed
out theoretically in Section 5.4.3. On the contrary, our experimental protocol uses bio-
gel 1 mm thick on which the leading role of cellular forces may be observed, since
then they are able to significantly deform the fibrin gel.

In order to understand how the morphogenesis of vascular-like networks is con-
trolled by cellular force balance, we analysed the dynamical properties of a theoretical
model coupling cell motility behaviour to the mechanical status of the surrounding ex-
tracellular matrix. Changes of biogel stiffness act as a mechanical switch which trig-
gers CLN morphogenesis. In addition our model allows us to compute the mechanical
status of the ECM during CLN morphogenesis. Indeed, the tension lines created by



56 P. Tracqui, P. Namy, and J. Ohayon

the cells as well as the time-varying strain and stress maps cannot be obtained directly
in the time course of the experiments. Such information can only be obtained indi-
rectly, by solving displacement-force inverse problems using elastography methods.
However, these data on stress and strain evolution are crucial for our understanding
of both in vitro and in vivo angiogenesis since, as stated in the Introduction, mechan-
ical stresses and strains are increasingly recognised as effective regulators of a wide
spectrum of cell functions. Nevertheless, this argument also underlines the limitations
of our modelling approach in its present state. First, the CLN morphogenesis is anal-
ysed within a linearised formulation of the stress-strain relationships. Second, we do
not take into account the feedback of the biogel mechanical status on cell metabolic
activity, including proteolytic activity and secretion of diffusible chemoattractant fac-
tors. Since the experimental counterpart we considered is based on in vitro models
using fibrin gels prepared from purified fibrinogen, thus devoid of other angiogenic
factors, we did not take into account the cell response to soluble stimuli. But thanks
to the mechanochemical framework used here, this later aspect, considered in recent
theoretical models of in vitro angiogenesis [18], [19], may be introduced as an ad-
ditional modulator of the CLN formation process described here. On the other hand,
modelling how cells translate the variation of ECM rigidity into downstream responses
remains far less obvious. This pleads for the development of multiscaled models, which
should be able to integrate the effect of micro and nano stress- or strain-activated pro-
cesses, ranging from mechanical control of cell adhesion to the up or down regulation
of mechanosensitive gene expression.
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Summary. Formal kinetic methods to analyze biocatalytic systems are traditionally based on
the law of mass action. This law involves the assumption that each molecular state has an ex-
ponentially distributed lifetime. We regard this assumption as unduly restrictive and advocate a
more general, service theory based approach (termed mass service kinetics or, briefly, service
kinetics). In service-theoretic terms biocatalysts are servers and their ligands are customers. The
time intervals between arrivals of ligand molecules at special service loci (active or binding
sites) as well as the service periods at these loci need not be exponentially distributed; rather,
they may adopt any distribution (e.g., Erlangian, hyperexponential, variomorphic). We exem-
plify the impact of nonexponential time distributions on a performance measure of wide interest:
the steady-state throughput. For its computation we use matrix-analytic methods. Specifically,
we show that nonexponential interarrival times convert hyperbolic mass action systems (whose
characteristic is a hyperbolic velocity-concentration or dose-response curve) into nonhyperbolic
mass service systems and that the type and extent of their nonhyperbolicity are determined by
the type and parameters of the interarrival time distribution. Furthermore, we analyze the com-
bined effect of a non-Poissonian arrival process and a waiting site near the catalyst’s active site
on the throughput of the system. A major conclusion of our and other studies is that it is a ques-
tionable practice to routinely and exclusively use mass action kinetics for the interpretation and
performance evaluation of biocatalytic systems.

Key words: Nonhyperbolic velocity-concentration curves, queueing theory, interarrival time,
waiting space, steady-state throughput.

6.1 Introduction

The kinetic behaviour of biocatalytic systems (i.e., systems containing biological
macromolecules that catalyze chemical transformations or nutrient and metabolite
transport or signal transduction) is traditionally described by mass action kinetics.
The latter presupposes the validity of the law of mass action. Though usually formu-
lated nonstochastically (by ordinary differential equations or algebraic expressions),
the law of mass action clearly has stochastic roots and must be interpretable as the re-
sult of probabilistic phenomena at the molecular level by virtue of the fact that matter
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is not a continuum but consists of discrete units (atoms, molecules) with an intrin-
sically random behaviour. C. M. Goldberg (1836–1902) and P. Waage (1833–1900),
the originators of the law of mass action, were already aware of this, and since then
numerous authors, e.g., Rényi [1], have investigated both the kinetic and equilibrium
versions of the law of mass action in terms of probability and stochastic processes.
It is beyond the scope of this article to compile and review the pertinent literature.
We rather confine ourselves to mention two fundamental stochastic properties of the
law of mass action: (i) ergodicity (= equality of time and ensemble averages) and
(ii) Markovity (= lack of memory, complete forgetfulness). If a system is nonergodic
and/or non-Markovian, it is by definition not a mass action system. Deviations from
ergodicity, reported in experimental studies on conformational transitions in biological
macromolecules (e.g., [2, 3]), are not a topic of the present paper. We rather focus on
violation of the second above-mentioned property, the Markov property, by allowing
for nonexponential interevent times at the molecular level. How can one cope with
biocatalytic systems containing non-Markovian elements, and to what extent does the
performance of such systems differ from that of conventional mass action systems?
These are the main issues we address here.

6.2 The Service-Theoretic Approach

We propose to apply—instead of the traditional theory of mass action—the “theory
of mass service” (also known under the names queueing theory and service theory) to
biochemical kinetics for a number of conceptual and methodological reasons: (i) Bio-
catalysts are stochastic “servers” and their ligands are “customers” which are served at
special “service loci” (active or binding sites). Various modes of operation (waiting or
rejection, first come-first served, service interruptions, priority rules, etc.), being well
known in man-made service systems, may also be encountered in biocatalytic systems.
Furthermore, biocatalysts can build up chains and networks endowed with structural,
dynamic and regulatory properties that are largely analogous to those of production
lines or queueing networks of anthropic origin. (ii) For the quantitative analysis and
performance evaluation of service systems and queueing networks, probability theo-
rists have developed a rich repertoire of mathematical tools and methods. At least some
of these are also expected to be applicable and useful in the nanoworld of enzymes,
transporters and signal transducers. (iii) Nonexponential time distributions, being for-
eign to mass action systems, are quite common in mass service systems. It is primarily
for this reason that we advocate the application of the service-theoretic approach to
biocatalytic systems and the build-up of a more general type of kinetics, termed—
in contradistinction to mass action kinetics—mass service kinetics or briefly service
kinetics. Biokinetics is thus put on a broader fundament, gains in flexibility and ver-
satility and may lead to new interpretations of old phenomena. In the next section we
use a very simple enzymic model in order to give an idea of the potentialities of the
service-kinetic approach in a biochemical setting.
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6.3 The Van Slyke–Cullen Scheme Modelled as a Service-Kinetic
System

The simplest possible scheme of an enzymic reaction is

E + S → ES → E + P

where E, S, ES and P stand for enzyme, substrate, enzyme-substrate complex and
product, respectively. This scheme has been named after Van Slyke and Cullen [4]
(VC) since these authors ignored in their mathematical analysis the (commonly in-
cluded) reverse reaction ES → E + S. We, too, ignore this reaction since its inclusion
usually affects only the scale but not the shape of the v(S) curve (v = reaction veloc-
ity; S = substrate concentration). We use the VC scheme as the basic paradigm of a
biocatalytic system.

The mass-action kinetic analysis of the VC scheme leads to only one type of v(S)
curve: the rectangular hyperbola. An entirely different situation is encountered when
one subjects the VC scheme to a (mass-) service kinetic analysis: besides the familiar
hyperbolic v(S) curve a great variety of nonhyperbolic v(S) curves can be obtained.
This diversity is achieved by allowance for (i) nonexponential time distributions and/or
(ii) a waiting room for substrate molecules which sit and wait there for clearance of the
active site. In Figs. 6.1–6.3 some illustrative examples of nonhyperbolic v(S) curves
as consequences of (i) and/or (ii) are shown.

Let us have a closer look at the various situations giving rise to the v(S) curves of
Figs. 6.1–6.3.

Figure 6.1. When the interarrival times of the substrate molecules at the en-
zyme’s active centre are nonexponential, the resulting nonhyperbolic v(S) curves are—
compared with the classical hyperbola—either “lifted” or “depressed,” depending on
whether the coefficient of variation of the interarrival time distribution is smaller or
larger than 1 (see curves (a), (b), and (e), respectively). A special situation is repre-
sented by curve (d): here the stochastic arrival pattern varies with the arrival intensity
(i.e., with the substrate concentration); specifically, its coefficient of variation gradu-
ally decreases with increasing substrate concentration in such a way that a sigmoidal
v(S) curve is generated. We regard arrival patterns with an intensity-dependent coeffi-
cient of variation (called “variomorphic” in our earlier work [5]) not as an exotic rarity
but as the rule in biocatalytic systems whose ligand arrival process is nonexponential.
A more detailed description of nonexponential and variomorphic arrival processes and
the resulting v(S) or dose-response curves can be found in [5].

Figure 6.2. When there exist near the enzyme’s active centre waiting spaces from
which substrate molecules move to the active centre as soon as the latter is cleared,
one usually obtains lifted nonhyperbolic v(S) curves. The extent of lifting and non-
hyperbolic “deformation” depends on (i) the number of available waiting spaces, (ii)
the time needed for the substrate’s transit from the waiting space to the active centre,
and—except for the limiting case of an infinite number of waiting spaces—(iii) the
probability distributions of interarrival and service times. In Fig. 6.2 we assumed that
the mentioned transit time is negligibly small and both interarrival and service times
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Fig. 6.1. The effect of nonexponential interarrival time distributions on the throughput in a VC
system without waiting facilities. [S] and v stand for substrate concentration and reaction ve-
locity, respectively. [S] is given in units of the Michaelis constant Km and v as a fraction of the
maximal throughput. The lowercase letters attached to the curves indicate various interarrival
time distributions: (a) = deterministic, (b) = Erlangian of order 10, (c) = exponential, (d) = vari-
omorphic with a coefficient of variation decreasing nonlinearly from 14.1 at [S] = 0 to about 0.7
at [S] = 2.2 and (e) = hyperexponential of order 2 with a coefficient of variation of 4. The com-
putational techniques (based on matrix-analytic methods) used here as well as in Figs. 6.2 and
6.3 for generating the v(S) curves are described in [5]. For readers familiar with the symbolic
representation of service systems (explained in [5]) we add that curves (a), (b), (c), (d) and (e)
represent the throughputs in the service systems G/M/1/0 and Gvario/M/1/0 with (a) G = D,
(b) G = E10, (c) G = M , (d) Gvario = PHvario

4 and (e) G = H2, respectively.

are exponentially distributed. Under these conditions allowance for 1, 2, 3, 10, 100
or infinitely many waiting spaces yields the v(S) curves shown. The larger the num-
ber of waiting spaces, the more the v(S) curves approach the form of a ramp with
a sharp transition at [S] = Km, the Michaelis constant. The latter type of kinetics is
phenomenologically equivalent to the Blackman kinetics [6, 7] in biochemistry and
physiology and the Holling type 1 “functional response” [8,9] in ecology. The waiting
room effect on the throughput in a purely exponential enzyme system was reported
earlier by Trenkenshu [10, 11].

Figure 6.3. Here we illustrate the combined effect of two service-kinetic possi-
bilities: a nonexponential arrival process and a waiting room with space for just one
substrate molecule. Analogously to the purely exponential system of Fig. 6.2, in this
system allowance for one waiting space suffices to considerably increase the system’s
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Fig. 6.2. The effect of waiting spaces on the throughput in a purely exponential VC system.
The numbers attached to the curves indicate the number K of waiting spaces near the enzyme’s
active centre. [S] and v are normalized as in Fig. 6.1. For further details see the text. For readers
familiar with the symbolic representation of service systems (explained in [5]) we add that the
curves labelled 0 to 100 represent the throughputs in the service system M/M/1/K with K = 0,
1, 2, 3, 10, and 100, respectively. Note that K = 100 already approximates very well the case of
K = ∞.

throughput (see the v(S) curves in pairs (b), (d) and (e) of Fig. 6.3). However, this in-
crease is not equal for systems with exponential and nonexponential interarrival time
distributions—neither absolutely nor as percentage values, regardless of being mea-
sured at selected substrate concentrations, e.g., at [S] = Km, or when summed up over
the whole substrate concentration range (0, ∞).

The v(S) curves shown in Figs. 6.1–6.3 all originate from a VC scheme with an ex-
ponential service time distribution. What do v(S) curves look like when (case 1) solely
the service time or (case 2) both the service and interarrival times are nonexponentially
distributed? In answering this question we have to differentiate between VC systems
with waiting facilities and those without them.

Answer in case 1. In a VC system possessing no waiting room one always obtains
one and the same curve shape: the classical hyperbola. In other words, this system is
insensitive to the stochastic character of the service process (provided the system is at
steady state as we tacitly assume throughout this chapter). However, this insensitivity
is abolished when the enzyme molecule can offer a finite number of waiting spaces to
substrate molecules arriving at an occupied active centre. In this case the VC system’s
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Fig. 6.3. The effect of nonexponential interarrival time distributions and one waiting space on
the throughput in the VC system. [S] and v are normalized as in Fig. 6.1. In pairs (b), (d) and
(e) the interarrival time distributions are identical with those used in Fig. 6.1 for generating the
curves (b), (d) and (e), respectively. The upper (lower) curve in each pair of curves represents
the throughput in a VC system with one (no) waiting space. When expressed symbolically [5],
the upper and lower curves represent the throughputs in the service systems (b) E10/M/1/1 and
E10/M/1/0, (d) PHvario

4 /M/1/1 and PHvario
4 /M/1/0 and (e) H2/M/1/1 and H2/M/1/0.

throughput is better (i.e., the v(S) curves are more lifted), the smaller the coefficient of
variation of the service time (data not shown).

Answer in case 2. In a VC system devoid of waiting facilities the v(S) curves often
do not differ much when both the interarrival time and the service time are nonex-
ponential. However, special conditions—e.g., arrival and service processes being both
Erlangian of high order—can give rise to quite unusual (undulatory or sawtooth-like)
v(S) curves which markedly differ from those in systems with an identical nonexpo-
nential arrival process but an exponential server; for illustrative examples see [5]. Fi-
nally, when comparing the position and shape of v(S) curves obtainable in VC systems
equipped with a finite number of waiting spaces, one again finds differences between
doubly (arrival and service) and singly (arrival or service) nonexponential systems.
These differences become smaller with an increasing number of waiting spaces and
totally vanish when this number goes to infinity. In the latter case the v(S) curve adopts
the ramp shape shown in Fig. 6.2 and it is irrelevant whether the interarrival and/or ser-
vice time distributions are exponential or nonexponential (case of total insensitivity).
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6.4 General Conclusions and Open Questions

Using the VC scheme as the basic paradigm of a biocatalytic system, we showed in
the preceding section that a mass service theory inspired approach opens up prospects
and possibilities that are closed to the traditional mass action approach. In particular
we demonstrated that allowance for nonexponential time distributions and incorpo-
ration of waiting facilities for arriving substrate molecules yield a wide spectrum of
v(S) curves of which the classical hyperbola is merely a special case occurring under
special, quite restrictive conditions. The mass service approach is of course also ap-
plicable to reaction schemes more complex than the VC scheme treated above. If in
such schemes conventional mass action kinetics already leads to nonhyperbolic v(S)
or dose-response curves, the inclusion of mass-service specific elements may either
reinforce or attenuate the system’s deviations from the hyperbolic response. However
complicated a reaction scheme may be, it is clear that service-theoretic concepts and
methods are apt to augment our understanding of biocatalytic systems. Time-honoured
mass action kinetics should therefore be supplemented (if not replaced) by mass ser-
vice kinetics. Other authors [12–14], using concepts and methodological approaches
different from ours (e.g., a deterministic fractal approach [12] or Monte Carlo simula-
tion algorithms [13, 14]), have also emphasized that conventional mass action kinetics
is often inadequate to describe biocatalytic systems, especially under in vivo condi-
tions.

Finally, we would like to touch upon the question: What physical mechanisms
can be envisaged to give rise to nonexponential time distributions at the molecular
level? As far as the interarrival time distribution is concerned, we consider the fol-
lowing possibilities: (i) Substrate molecules are often products of a neighbouring en-
zyme in a metabolic chain. If these product molecules are released in a nonexponen-
tial manner and are—due to channelling—not (or not fully) thermally randomized,
their arrival pattern at the next enzyme is also nonexponential. (ii) Coherent spiking
of enzymic reactions in small volumes, as described by Mikhailov and Hess [15], may
more or less derandomize the stream of arriving ligand molecules. (iii) The intracellu-
lar milieu which is characterized by extensive compartmentalization, macromolecular
crowdedness, lacunarity and a non-Euclidian geometry may generate unusual, e.g.,
power-tailed, arrival patterns. (iv) The matrix process [16], i.e., the intramatrix migra-
tion of ligand molecules between the first (or last) contact point on the biocatalyst’s
surface and the active centre, may not only change the intensity with which ligand
streams arrive at the active centre but may also modify their stochastic pattern by vari-
ous derandomizing mechanisms (e.g., overflow, regularizing filtering, alternative gated
pathways). The direction and degree of “nonexponentialization” may often be depen-
dent on the ligand concentration (e.g., exponential at low [S] and increasingly hypo-
or hyperexponential at rising [S]) and thus give rise to what are called variomorphic
arrival patterns (see [5] and Sect. 6.3 above). Concerning the service time distribution,
we mention two further feasible mechanisms of nonexponentialization: (v) The bio-
catalyst has to undergo a number of sequential conformational transitions or has to
perform a number of sequential chemical or physical operations before the catalytic
act (formation or fission of a covalent bond, emission of a signal, transportation of a
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nutrient across a membrane, etc.) can occur. Sequential multistage processes of this
kind make the service time hypoexponential (Erlangian) though each individual stage
is exponentially distributed. (vi) The biocatalyst’s conformational state required for the
catalytic act may be reached by two or more parallel single- or multiple-step pathways
which leads to a service time with hyperexponential or hyper-Erlangian distribution.

The above-listed mechanisms of nonexponentialization in biocatalytic systems are
largely hypothetical, and direct experimental evidence supporting or invalidating them
is scarce so far. However, it is expected that the rapidly advancing experimental tech-
niques in single-molecule biochemistry (e.g., sophisticated optical techniques [17, 18]
with high time resolution) will provide unambiguous data concerning nonexponential
time distributions and enable open questions to be answered or reformulated.
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Summary. The chemical master equation in combination with chemical rate equations is used
as a tool to study Markovian models of genetic regulatory networks in prokaryotes. States of the
master equation represent the binding and unbinding of protein complexes to DNA, resulting in
a gene being expressed or not expressed in a cell, while protein and substrate concentrations are
represented by continuum variables which evolve via differential equations.

The model is applied to a moderately complex biological system, the switching mechanism
of the Bacteriophage λ driven by competition between production of CI and Cro proteins. Nu-
merical simulations of the model successfully move between lysogenic and lytic states as the
host bacterium is stressed by the application of ultraviolet light.

Key words: Gene regulation, chemical master equation, bacteriophage lambda.

7.1 Modelling Gene Regulatory Networks

One of the major challenges in bioinformatics is to determine how genes are regu-
lated and how their products interact within cellular networks. In a complex cell, gene
products and external factors regulate the genes that are expressed in that cell. Some
gene products promote or repress other genes, usually depending on the concentration
of the gene product. In some cases two genes compete for expression, resulting in a
population of cells distributed between the competing states. The expression levels of
other genes are affected by environmental parameters such as temperature or UV light,
sometimes via the degradation rate of the protein that regulates the gene expression,
e.g., the cI and cro genes of the Bacteriophage λ [1].

The challenge is to model the complex genetic componentry that enables a cell to
switch genes “on” and “off” as required [2, 3]. Small models have been developed to
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describe gene promotion and repression [4], and these components can be combined
into more complex models [5–7]. In some cases, artificial genetic machines based
upon well-understood genetic components have been constructed and their behaviour
has been analysed in a more controlled environment [8, 9]. Some biologically stable
states and bistable systems can be modelled using stochastic differential equations that
describe the protein levels as functions of the gene states [5, 10].

This chapter discusses the mathematical modelling of gene regulation in the Bac-
teriophage λ. Reflecting the stochastic nature of gene regulation, the chemical mas-
ter equation is used as a tool to study Markovian models of networks of gene states
between which probabilistic transitions occur. These states represent the binding or
unbinding of protein complexes to DNA, resulting in a gene being expressed or not
expressed in the cell. In Section 7.2 the stochastic master equation for an arbitrary net-
work is given. We also describe a generic hybrid model which combines deterministic
chemical rate equations with a stochastic model of gene switching.

In Section 7.3 our hybrid model is applied to a simplified version of the switching
mechanism of the phage λ as it moves stochastically between its alternate lifestyles
(lysis or lysogeny). A stochastic simulation in Section 7.4 shows the phage λ evolving
through a set of states. At each time step the virtual phage λ chooses a new state and,
depending upon that state, CI and Cro proteins are produced. These proteins compete
with each other to reach one of the two alternative lifestyles of the phage λ. The ap-
plication of UV light to the host bacterium is also simulated and its effect is shown on
the outcome of the competition between CI and Cro.

7.2 Stochastic Master Equation Model of Gene Regulation

The stochastic formulation of gene regulation is based on an assumption that the under-
lying chemical processes are Markovian. An efficient tool for dealing with Markovian
processes is the stochastic chemical master equation [11]. In this formalism, a regula-
tory network is typically represented in a state space, elements of which describe the
states or abundances of a finite number of chemical species which may be made up of
any combination of genes, RNA, proteins or substrates. The gene states, for example,
may be defined as gene on/off, i.e., the gene is/is not being expressed in the cell. Al-
ternatively, we may wish to specify that a protein or enzyme is attached/not attached
to a promoter or operator site, and also specify the absolute protein levels measured in
numbers of molecules or in concentrations.

Consider a system that can be in any one of a finite number of states s = 1, . . . , N ,
and capable of making transitions i = 1, . . . , NT between states. Since the system is
Markovian, the probability of making a transition at any given time depends only on
the state of the system at that time, and not on its history. We represent the system
by a directed graph with N vertices and NT edges. Associated with each transition
is a propensity αi > 0. If i is the transition from state s to state r , the probability of
making the transition i in the time interval [t, t + dt), conditional on being in state s
at time t , is αi dt . Given an initial probability distribution among the states of p(0) =
(p1(0), . . . , pN (0))T, with ps > 0 and

∑
s ps = 1, the system evolves in time to a
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distribution p(t) = (p1(t), . . . , pN (t))T via the stochastic master equation

dp
dt

= Ap(t), (7.1)

where the matrix A is given in terms of propensities. If αsr is the propensity associated
with the edge running from vertex s to vertex r , then

A =
∑
s,r

αsr�sr , (7.2)

where the matrices �sr are defined by

�sr =




0
. . .

−1
...

. . .

+1
. . .

0




, (7.3)

with −1 in the sth row and column to account for the flow of probability away from the
sth state, +1 in the r th row and the sth column to account for the flow of probability
into the r th state, and all other entries zero. Because each column of �sr sums to zero,
so does each column of A. One easily checks that this is equivalent to saying that total
probability is conserved: d

(∑
s ps(t)

)
/dt = 0. For a specified initial condition, and

with constant propensities, the solution to Eq. (7.1) is given formally by

p(t) = et Ap(0). (7.4)

For any realistic system, the dimensionality of the state space soon becomes pro-
hibitively large if the concentration of all chemical species (proteins and enzymes for
instance) and the binding of protein complexes to operator sites are to be described.
To see this, consider that every possible combination of concentrations and opera-
tor binding states is represented by a different basis vector of the space in which the
probability vector p(t) evolves. To reduce the problem to manageable proportions, we
propose here a hybrid stochastic/deterministic model in which the evolution of contin-
uum concentrations x(t) = (x1(t), x2(t), . . . , xn(t)) of chemical species is modelled
using deterministic chemical rate equations, and the switching between operator bind-
ing states s = 1, . . . , N is modelled using the stochastic master equation. In general,
the chemical rate equations will be differential equations of the form

dxi

dt
= fi (x, s), (7.5)

and the propensities αrs(x) will depend on chemical concentrations, since the proba-
bility that a given protein complex will bind to a particular operator site will depend
on the concentration of that protein complex.
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In principle, the system evolves over infinitesimal time steps dt along a path
(x(t), s(t)), where

xi (t + dt) = xi (t) + fi (x(t), s(t)) dt, (7.6)

and s(t +dt) is drawn from the probability distribution resulting from the action of the
matrix I + A(s)dt on the distribution concentrated at the state s(t).

In practice, our numerical simulations use small finite time steps �t over which
the protein concentrations and protein binding state are evolved. The choice of �t is
crucial to the success of the model. Gene regulatory systems in prokaryotes typically
have two intrinsic time scales: a slow scale set by chemical rate constants over which
protein and substrate concentrations change, and a fast time scale over which gene
switching driven by the binding of proteins to operators occurs. By choosing �t in-
termediate between these scales, the essential dynamics can be efficiently captured. In
the simulations that follow, protein concentrations are evolved using a Runge–Kutta
algorithm with the state s set to its value at the beginning of the time interval �t . At
the end of each time step, a new operator binding state s(t + �t) is chosen from a
distribution obtained by evolving Eq. (7.4) over the finite �t using propensities set to
their values at the beginning of the time step and a very accurate approximation to the
matrix exponential times the distribution pr (t) = δrs(t) concentrated at the state s(t).
We note that this model is not suitable for modelling regulation in eukaryotes, in which
transcription can be regulated over much slower time scales.

7.3 The Switching Mechanism of the Bacteriophage λλλ

An example of a genetically regulated biological switching system is the Bacterio-
phage λ. The phage λ invades a bacteria cell (E. coli), after which it can enter into
one of two alternative lifestyles called lysogeny and lysis [1]. The lysogeny stage is a
dormant stage in which the phage inserts its DNA into the host’s DNA and passively
reproduces with the host. When the host becomes stressed, the phage is more likely
to go into lysis, in which case it reproduces more phages, kills the host and spreads to
other bacteria cells. The decision between lysis and lysogeny can be thought of as a
switching mechanism. The stochastic switch is based upon a competition between two
genes in the phage’s DNA: cro and cI.6 If the production of Cro proteins dominates,
the system enters the lytic stage. If the production of CI proteins dominates, the system
remains in the lysogenic stage.

Fig. 7.1 shows the section of phage λ DNA containing the cro and cI genes. The
intervening region contains three operators OR1, OR2 and OR3 which control the pro-
moters PR and PRM . The gene products readily dimerise to form complexes Cro2 and
CI2 which can bind to any of the three intervening operator sites. CI2 dimers bind pref-
erentially to OR1 and OR2, but can also bind to OR3, with a lower probability. Cro2
dimers, on the other hand, bind preferentially to OR3, but can also bind to OR1 and

6 Capitalised names such as CI and Cro are used to represent proteins, while italicized names,
such as cI and cro are used to represent the genes which encode for them.
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Fig. 7.1. The switching mechanism of the Bacteriophage λ in which cI and cro genes compete
stochastically for expression.

OR2. If either OR1 or OR2 is occupied, RNA polymerase is prevented from binding
to the cro promoter PR , and production of Cro protein ceases. Likewise, if OR3 is
occupied, the promoter PRM is blocked and production of CI protein ceases. Thus, at
low concentrations both genes enhance their own production by inhibiting the produc-
tion of the competing protein, and at high concentrations repress their own production.
Also represented in Fig. 7.1 are decays of CI and Cro monomers.

The full story of the lysis/lysogeny decision mechanism is considerably more com-
plex than the simplified version given here. See [1] for a full biological description,
and [12] for a comprehensive stochastic model that includes the other proteins (CII,
CIII and N) involved in the process, as well as the production of mRNA, its translation
into proteins, the degradation rates of all chemical species and cell division.

The hybrid model we describe below differs from the previous model of Reinitz
and Vaisnys [13] in our use of the stochastic master equation to introduce noise into
the system via the switching between operator binding states. In contrast, Reinitz and
Vaisnys assume operator binding states to be in chemical equilibrium, from which they
estimate a time averaged protein synthesis rate. This leads to a deterministic set of cou-
pled differential equations. There exist models which include noise into the differential
equations by arbitrarily introducing additive or multiplicative stochastic terms to pro-
tein synthesis or decay rates [10,14]. However, we are unaware of any hybrid treatment
in which substrate concentrations are determined by chemical rate equations, but the
operator binding is determined using the stochastic master equation. The highly so-
phisticated model of Arkin et al. [5] is a simulation of the stochastic master equation
using the Gillespie algorithm [15] to model all aspects of protein and RNA synthe-
sis, including translation and transcription of genes, and decay in the phage λ system.
Such models are a valuable and necessary contribution but are unfortunately computa-
tionally expensive and not easily adaptable to more complex regulatory networks. The
model we propose here is designed to be computationally efficient and easily adapt-
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able while still retaining the important characteristics of a moderately complex genetic
system.

7.3.1 The Model

Following the conventions of Ref. [13], we indicate the operator binding states of the
system by a discrete variable s = {1, . . . , 40}. This variable represents the 40 ways in
which either CI2 or Cro2 dimers can bind to OR1, OR2 and OR3, and RNA polymerase
can bind to the promoters PR and PRM subject to the constraints that PR cannot be
occupied if either OR1 or OR2 is occupied and PRM cannot be occupied if OR3 is
occupied. RNA polymerase is bound to PR only for any of the states s ∈ {28, 29, 30},
to PRM only for s ∈ {31, . . . , 39}, and to both for the state s = 40. The protein and
dimer concentrations

x = [CI], y = [Cro], u = [CI2] and v = [Cro2] (7.7)

evolve via the chemical rate equations

dx
dt

= kx Ix (s(t)) − kdx x − 2kr
1x2 + 2kr

−1u,

dy
dt

= ky Iy(s(t)) − kdy y − 2kc
1 y2 + 2kc

−1v,

du
dt

= kr
1x2 − kr

−1u,

dv

dt
= kc

1 y2 − kc
−1v, (7.8)

where Ix (s) and Iy(s) are indicator functions equal to 1 if s ∈ Sx = {31, 32, . . . , 40}
or s ∈ Sy = {28, 29, 30, 40}) respectively, and 0 otherwise.7

The state s(t + �t) is drawn randomly from a distribution

p(t + �t) = eA(u(t),v(t))�t p(t), (7.9)

where A(u, v) is a dimer concentration dependent matrix of propensities taking the
form of Eq. (7.2) and pr (t) = δrs(t) is the probability distribution concentrated at the
state s(t).

7.3.2 Parameter Values: Chemical Rate Constants

In Table 7.1 are listed our values for the chemical rate constants occurring in Eqs. (7.8).
Protein monomer production is a complex process involving transcription of DNA to
mRNA which is then translated to proteins, which we model by effective rate con-
stants kx and ky . Our model is similar to the phage λ switch model of Reinitz and

7 This model can be further refined by replacing each indicator function by an improved esti-
mate of the expected occupancy fraction

∑
s∈Sx

∫ t+�t
t ps(τ )dτ/�τ , and similarly for y.
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Table 7.1. Chemical rate constants for the hybrid model of the phage λ switch.

Parameter Value Source

kx 1.1 nM s−1 Table 2 of Ref. [13]
ky 0.5 nM s−1 Adjusted
kdx 7.0 × 10−4 s−1 Table 3 of Ref. [5]
kdy 2.5 × 10−3 s−1 Table 3 of Ref. [5]
kr

1 9.0 × 10−2 nM−1 s−1 Table 2 of Ref. [16] and kr
−1

kr
−1 0.5 s−1 Table 3 of Ref. [5]

kc
1 1.5 × 10−3 nM−1 s−1 Table 1 of Ref. [17] and kr

−2

kc
−1 0.5 s−1 Table 3 of Ref. [5]

Vaisnys [13], and we use their value for the CI production rate kx . However, we find
that their value of 0.078 nM s−1 for the Cro monomer production does not produce
sufficient quantities of Cro proteins to establish a lytic phase within our simulations.
Instead, we have chosen a higher value of 0.5 nM s−1, which is of the same order as the
CI production rate. For the protein monomer decay rates we take values of the more
sophisticated stochastic simulation model of Arkin et al. [5].

Dimerisation equilibrium constants are well established for CI from the work of
Burz et al. [16], who give kr

1/kr
−1 = 1.8 × 108 M−1, and for Cro from the work of

Darling et al. [17], who give kc
1/kc

−1 = 3.07(±1.08) × 106 M−1. For the backward
reaction rates we use the Arkin [5] value of kr

−1 = ks
−1 = 0.5 s−1 and infer forward

rates from the equilibrium constants.

7.3.3 Parameter Values: Propensities

A series of papers by Ackers and co-workers beginning with Ref. [18] and culminat-
ing in Darling et al. [19] measure equilibrium binding free energies for the 40 states
representing the possible binding configurations of CI and Cro dimers to operators and
RNA polymerase to the promoters PR and PRM . As we explain below, these can give
us ratios of forward to backward reaction rates for binding, though not a complete
specification of the rates themselves.

Following Ref. [19], the equilibrium probablility of configuration s at temperature
T is given in terms of the dimensionless binding free energy �Gs/(RT ) by the Gibbs
distribution

fs = Cs exp(−�Gs/RT )ui(s)v j (s)[RNAP]k(s)∑40
r=1 Cr exp(−�Gr/RT )ui(r)v j (r)[RNAP]k(r)

, (7.10)

where u and v are the CI and Cro dimer concentrations, [RNAP] is the concentration
of RNA polymerase and i(s), j (s) and k(s) are the number of CI dimer, Cro dimer and
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RNAP molecules bound to the DNA in state s. For each state we have included a pre-
exponential factor Cs of dimension (concentration)−[i(s)+ j (s)+k(s)] to ensure that each
term in the sum in the denominator is of the same dimension. This factor is not present
in the papers of Ackers and co-workers, nor in the work of Refs. [13] and [10] who use
the same formula. Reading between the lines, it appears that all previous authors have
implicitly used Cs = (1 M)−[i(s)+ j (s)+k(s)], and we shall use the same assumption
here.

We are interested in estimating the propensities occurring in the discrete state mas-
ter equation (7.9). It is sufficient to include only transitions in which a single dimer
or polymerase attaches to or detaches from the DNA, as the probability of more than
one such event occurring in time dt is of O(dt2). Thus, every possible transition is
described by a process of the form

R + O
kf�
kb

RO, (7.11)

where R represents a dimer or polymerase and O the operator or promoter to which
it binds. In the case of the phage λ switch with its 40 binding states there are 82 such
possible processes. Consider two states r and s which differ only in that s is the state
r with one extra dimer or polymerase attached. If we denote the propensity for the
attachment transition r → s as αrs and that for the detachment transition s → r as
βsr , then in terms of the chemical reaction rates defined above we have

αrs = kf[R] = Cfe−Ef/(RT )[R],

βsr = kb = Cbe−Eb/(RT ), (7.12)

where [R] = u, v or [RNAP]. Here we have assumed the usual Arrhenius form for
chemical rate constants in terms of activation energies Ef and Eb. Note that both αrs
and βsr have the correct dimensions of (time)−1. Consistency with Eq. (7.10) in the
equilibrium distribution gives

αrs

βsr
= Ce−�Gsr /(RT )[R], (7.13)

where �Gsr = Ef − Eb = �Gs − �Gr , and C = Cf/Cb = Cs/Cr = 1 M−1.
Note that we do not know either αrs or βsr individually, so some estimate of

one or the other must be made. Aurell et al. [7] argue that, under the assumption
of diffusion-limited aggregation, the association time (i.e., the inverse of the forward
propensity) of a single molecule can be estimated from the Smoluchowski equation:
αrs

−1 = V/(4π DL). Assuming diffusion-limited aggregation into a region of length
L = 5 nm, a bacterial volume of V = 2 × 10−15 l and a diffusion coefficient of
D = 5 µm2s−1 give an aggregation time of ∼ 6 s at a concentration of 0.8 nM, or a
forward reaction rate of kf = αrs/[R] ≈ 0.5 nM−1s−1. This figure is slightly higher
than the diffusion-limited prediction of Berg et al. [20]. However, Berg et al. go on to
say that measured values of protein binding rates can exceed kf = 10 nM−1s−1, and
explain these higher values as the effect of a two-step process in which the protein first
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binds to a nearby non-specific site, and then either slides along the DNA or is directly
transferred from one segment of DNA to another. Using these values as a guide, for all
forward propensities we have used αrs = 1 nM−1s−1 × [R], where [R] is the concen-
tration of the aggregating molecule. Backward propensities βsr are then inferred from
Eq. (7.13) using binding energies �G from Table 4 of Ref. [19] and a temperature of
T = 37◦C, or RT = 0.616 kcal.

The RNA polymerase concentration is taken to be [RNAP] = 30 nM [5].

7.4 Numerical Simulation

Fig. 7.2 shows the results of our simulation of the phage λ switch. The top panel
shows the binding of RNA polymerase to the promoters PRM and PR and binding of
CI2 and Cro2 dimers to the three intervening operators. The bottom panel shows the
concentrations of the proteins and dimers.

For the period t = 0 to t = 1000 seconds, parameter values are those listed in the
previous section, and the algorithm described at the end of Section 7.2 evolves over
time steps of 0.2 s. Over this period CI2 is bound to OR1 and OR2 for most of the time
and Cro production is repressed. There is binding of Cro2 to OR3, but not enough to
prevent production of CI. In the lower panel we see steady concentrations of CI2 and
Cro2 dimers, with values typical of the lysogenic state [5].

Fig. 7.2. Simulation of the evolution of the phage λ switch. Top panel: The five bands represent
(from top to bottom) PRM , OR3, OR2, OR1 and PR sites with time in seconds running along the
horizontal axis. RNA polymerase (white) binds to promoters PRM and PR . CI2 (dark grey) and
Cro2 (light grey) dimers bind to operators OR3, OR2 and OR1. Unoccupied sites are shown in
black. Bottom panel: Concentration in nM of CI (dashed line) and Cro (dash-dot line) monomers
and CI2 (thick line) and Cro2 (thin line) dimers. The horizontal axis is the time in seconds. The
effect of UV light on CI monomers is simulated by increasing the degradation rate kdx to 1 s−1

between t = 1000 s and t = 2000 s.
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When phage λ infected bacteria are exposed to UV light, a protein called RecA is
activated. This protein has the effect of cleaving the CI2 dimers, rendering them unable
to bind to operators [1]. We have simulated this by increasing the CI degradation rate
kdx from its previous value of 7.0×10−4 s−1 to 1 s−1 over the period from t = 1000 s
to t = 2000 s. As the CI2 concentration drops, OR1 and OR2 are freed up. There
is some binding of Cro2 to these operators, but not enough to prevent an increase in
production of Cro, causing the system to move towards the lysis. As the UV light is
switched off at t = 2000 s the system begins to return to lysogeny.

7.5 Conclusion

The ultimate aim of mathematical models of regulatory networks is to be predictive
rather than descriptive. Analyses of stability, bistability and robustness may be possi-
ble once one has a sound model of the system, usually based upon stochastic processes
and differential equations. The stochastic master equation can be used to model the
evolving probability distribution of a system over the entire state space, or it can be
used to simulate typical trajectories of single cells through state space. The eventual
aim is to provide models that can lead back into experiment by predicting the pro-
portions of sub-populations which have followed particular paths, by predicting the
upper and lower limits of unknown pathway parameters and rates, by modelling the
behaviour of systems under perturbation or by providing the quantitative reasoning
behind existing biological systems.

In this chapter we have presented a step on the road to this eventual aim: a hybrid
model of gene regulation in which gene switching is dealt with probabilistically using
the stochastic master equation while protein and substrate concentrations are dealt
with deterministically using classical chemical rate equations. The model deals with
moderately complex biological systems economically by reducing the dimension of
the phase space to manageable proportions without losing the probabilistic nature of
the system.

We have applied the model to perhaps the best-known simple but realistic genetic
regulatory system: the switching mechanism between lysogeny and lysis of the Bacte-
riophage λ. We have tried to stick as closely as possible to empirically measured phys-
ical input parameters with minimal adjustment. The model moves between lysogeny
and lysis over realistic time scales as the host bacterium is stressed by the application
of ultraviolet light.

This model is not yet at the stage of being predictive. Further refinements of our
generic hybrid model are possible, and the next stage will be to implement them. Gene
transcription and translation is currently modelled as a single-step process with a single
rate parameter. We next intend to include mRNA as an intermediate step and introduce
a time delay to account for the transcription step.
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Summary. The adaptation of the growth of Escherichia coli to the availability of a carbon
source is controlled by a complex genetic regulatory network whose functioning is still little
understood. Using a qualitative method based on piecewise-linear differential equations, which
is able to overcome the current lack of quantitative data on kinetic parameters and molecular
concentrations, we model the carbon starvation response network and simulate the response of
E. coli cells to carbon deprivation. This allows us to identify essential features of the transition
between exponential and stationary phase and to make new predictions on the qualitative system
behavior, following a carbon upshift.

Key words: Qualitative modeling and simulation, piecewise-linear differential equations, ge-
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8.1 Introduction

In the case of nutritional stress, like the deprivation of an essential carbon source, an ex-
ponentially growing Escherichia coli population may enter a non-growth state, called
stationary phase. During the growth-phase transition, individual bacteria undergo nu-
merous physiological changes, concerning among other things their morphology and
metabolism, as well as gene expression [13]. On the molecular level, the growth-phase
transition is controlled by a large and complex genetic regulatory network integrat-
ing various environmental signals [31]. The backbone of the network is composed of
a class of pleiotropic transcription factors, called global regulators, and their interac-
tions. In a combinatorial fashion, they mediate the activation or repression of a large
number of genes in response to changes in environmental conditions.
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Understanding the molecular basis of the transition between the exponential and
stationary phase of E. coli cells has been the focus of extensive studies for decades [12].
However, most studies have focused on only one or a few components of the network,
and currently the functioning of the network as a whole remains little understood.
These circumstances have motivated the analysis of the network of global regulators
in order to understand how the switch between the growth phases of E. coli arises from
the interaction between these transcription factors. As a first step, we have decided to
focus on the particular part of the network responding to a well-studied stress, namely
carbon starvation.

Computer modeling and simulation tools may help to analyze the behavior of this
kind of complex system [21]. However, except for well-studied processes (i.e., the car-
bon uptake and metabolism [19]), numerical values for the parameters characterizing
the interactions and the molecular concentrations are most often absent. This makes
it difficult to apply traditional methods for the dynamical modeling of genetic regula-
tory networks. To overcome these constraints, we have used a qualitative modeling and
simulation method based on piecewise-linear (PL) differential equations, supported by
the publicly-available computer tool Genetic Network Analyzer (GNA) [3,16,23]. The
method allows a coarse-grained, qualitative analysis of the network dynamics to be
carried out. Instead of numerical values for the parameters, the method uses inequal-
ity constraints that can be inferred from the experimental literature. In addition, this
makes it possible to analyze the stability of the attractors of the system [4].

We have constructed a model including key proteins and their interactions involved
in the carbon starvation response. Using GNA and its recently added, new function-
alities [23], we simulated the response of E. coli cells to carbon source availability.
This has allowed us to identify essential features of the transition between exponential
and stationary phases, and to make new predictions on the qualitative system behavior
following a carbon upshift.

In the next section, we present the network controlling the carbon starvation re-
sponse of E. coli. The qualitative modeling and simulation approach that we have used
is summarized in Sect. 8.3, as well as its application to the carbon starvation response
network in Sect. 8.4. Some results of qualitative simulation are presented in Sect. 8.5,
followed by a discussion of their biological implications in the final section.

8.2 The Carbon Starvation Response Network

The aim of this chapter is to give a minimal representation of the adaptation of the
growth of E. coli to carbon source availability. To this end, a first, simple network
of the carbon starvation response has been built on the basis of literature data and
information available in public databases [17, 28]. It is composed of six genes that are
believed to play a key role in the process: crp, cya, fis, gyrAB, topA, and rrn (Fig. 8.1).
Notice that not all global regulators thought to be relevant have been included in the
analysis in this paper. Notably, ppGpp and RpoS have been excluded for the moment
(but see Sect. 8.6). The genes and their interactions in Fig. 8.1 make up four modules
with specific functions, whose interconnections control the propagation of the carbon



8 Analysis of the Carbon Starvation Response in E. coli 85

Fig. 8.1. Network of key genes, proteins, and regulatory interactions involved in the carbon star-
vation response network in E. coli. The contents of the boxes CRP activation and Supercoiling
are detailed in [26]. The graphical conventions [18] are explained in the legend.

starvation signal through the network, leading to the adaptation of the growth of E.
coli.

The first network module concerns the input of the system. A signal-transduction
pathway transmits to the network the information that an essential carbon source is
lacking, by activating the adenylate cyclase enzyme (Cya). This allows the enzyme
to efficiently produce a metabolite, cAMP [27]. The second network module is com-
posed of genes fis, crp, and cya. The global regulator CRP is the target of the signal-
transduction pathway: it is activated by its interaction with the cAMP molecule. The
cAMP·CRP complex is able to regulate the expression of a large set of genes directly
involved in the response to a lack of carbon source (i.e., synthesis of catabolic en-
zymes, changes of cellular morphology), as well as the expression of genes coding
for global regulators, in particular fis and crp. The protein Fis is an important regu-
lator of genes involved in the cellular metabolism [8] and in addition, it controls the
expression of crp, as well as its own expression. The third module, composed of the
genes gyrAB,5 topA, and fis, controls the DNA topology, another important modulator
of gene expression [6,11]. The level of DNA supercoiling is mainly the result of a bal-
ance between the activity of GyrAB, which supercoils the DNA structure, and TopA,
which relaxes the DNA. In E. coli cells, the DNA topology is tightly regulated, since
an increase of negative supercoiling upregulates topA expression and downregulates
gyrAB expression. Fis also participates in this homeostatic control, since it controls
the expression of gyrAB and topA, while the expression of its own gene is regulated by

5 GyrAB is considered here as the product of a single gene, because the gyrA and gyrB genes
are regulated in a similar manner.
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the DNA supercoiling level. Finally, the last module controls cellular growth and thus
represents the output of the system. It is composed of genes encoding Fis and stable
RNAs. In E. coli, these RNAs are produced from seven operons similarly organized,
each being composed of three genes for ribosomal RNAs and one gene for transfer
RNA. The level of stable RNAs is a reliable indicator of cellular growth. Indeed, expo-
nentially growing cells need large amounts of stable RNAs, whereas low amounts are
sufficient in stationary phase. The expression of the stable RNA genes is stimulated by
Fis [24].

The carbon starvation response network in Fig. 8.1 is composed of numerous in-
teractions between its components. In particular, the connections between different
modules involve a positive feedback loop—the mutual inhibition of fis and crp—and a
negative feedback loop—the homeostatic control of the DNA topology. This makes it
difficult to understand the dynamics of the system in an intuitive manner. Mathematical
modeling and computer simulation could be used to address questions on the dynam-
ics of the carbon starvation response network. Thus far, only parts of the network have
been the focus of modeling studies (for some examples, see [5, 20]). An analysis of
the dynamics of the entire carbon starvation response network has never been carried
out, and is also difficult to achieve as a consequence of the lack of quantitative data
on most of the network components. In order to deal with the current lack of data, we
have used a qualitative method, briefly outlined in the next section.

8.3 Qualitative Modeling and Simulation of Genetic Regulatory
Networks

The qualitative modeling and simulation method is fully described in [16]. In this sec-
tion, we illustrate the method through an example of a two-gene network, composed of
the genes crp and fis (Fig. 8.2(a)), which is a (simplified) part of the carbon starvation
response network in Fig. 8.1. The CRP protein inhibits fis expression above a certain
threshold concentration, while the Fis protein inhibits the expression of crp above one
threshold concentration, and inhibits its own expression above a second, higher thresh-
old concentration [2, 9, 22, 25]. The degradation of the proteins is not regulated.

Fig. 8.2. (a) Simple genetic regulatory network composed of the genes fis and crp. (b) Sketch
of the dynamics in each domain of the phase space for the two-gene network. Dots represent
the equilibrium points of the system. (c) State transition graph for the two-gene network. QS
denotes a qualitative state. The qualitative equilibrium states are circled.



8 Analysis of the Carbon Starvation Response in E. coli 87

The dynamics of such a genetic regulatory network can be modeled by a class of
piecewise-linear (PL) differential equations originally proposed by Glass and Kauff-
man [7]. The example network gives rise to the following model:

ẋfis = κfis s−(xcrp, θcrp) s−(xfis, θ
2
fis) − γfis xfis , (8.1)

ẋcrp = κcrp s−(xfis, θ
1
fis) − γcrp xcrp , (8.2)

where xfis and xcrp denote the concentrations of the proteins Fis and CRP, ẋfis and ẋcrp
their time derivatives, θ1

fis, θ2
fis, and θcrp threshold concentrations, κfis and κcrp (pos-

itive) synthesis parameters, and γfis and γcrp (positive) degradation parameters. The
step function s−(x, θ) evaluates to 1 if x < θ , and to 0 if x > θ . Step functions are
approximations of the sigmoidal, Hill functions often characterizing gene regulation,
preserving their non-linear, switch-like character.

Equations (8.1) and (8.2) describe the rate of change of protein concentrations. For
instance, (8.1) states that protein Fis is expressed at a rate κfis, if the concentration of
protein CRP is below the threshold θcrp and the concentration of protein Fis below the
threshold θ2

fis. The protein is degraded at a rate proportional to its own expression.
Mathematical analysis of the model reveals that, for each of the two variables, the

knowledge of the relative order of the threshold parameter(s), as well as the order of
the quotient of the synthesis and degradation parameters with respect to the thresholds,
is sufficient to sketch the solution trajectories in the phase space. This result has been
shown generalizable to the whole class of PL models considered here [16]. In the
example, we have specified the following constraints (Fig. 8.2(b)):

0 < θ1
fis < θ2

fis < maxfis , θ2
fis < κfis/γfis < maxfis , (8.3)

0 < θcrp < maxcrp , θcrp < κcrp/γcrp < maxcrp . (8.4)

In practice, the use of inequality constraints implies that we do not need numer-
ical values for the threshold and rate parameters in the differential equations, which
are generally not available. In contrast, the inequality constraints can be inferred from
the experimental literature. For instance, the constraints on the quotients κfis/γfis and
κcrp/γcrp define the strength of gene expression on the scale of ordered threshold con-
centrations.

The parameter inequalities divide the phase space into domains where the system
behaves in a qualitatively distinct way. Fig. 8.2(b) represents the phase space corre-
sponding to the two-gene network and the system dynamics in the phase space.6 The
system possesses three equilibrium points. Using the partition of the phase space into
domains and the qualitative characterization of the dynamics in each of the domains,
we can discretize the continuous dynamics. In the resulting abstract description, a qual-
itative state represents a domain in the phase space and its associated dynamical prop-
erties. The transition between two qualitative states corresponds to solutions leaving
one domain in the phase space and reaching another. The set of all qualitative states and

6 In this simple representation of the method, we omit the problems raised by the discontinu-
ities in the right-hand side of the differential equations, which are explained in [10, 16].
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their transitions define the state transition graph. The state transition graph correspond-
ing to the two-gene network is represented in Fig. 8.2(c). It contains three qualitative
equilibrium states, the stability of which can be determined by further analysis [4].

For many purposes, it is sufficient to know which qualitative states are reachable
from a given initial qualitative state, that is, which qualitative behaviors the system can
exhibit when it is initially in that state. Simple rules have been formulated for the sym-
bolic computation of the reachable part of a state transition graph from a qualitative
PL model and an initial domain [15]. They have been implemented in the publicly-
available computer tool, Genetic Network Analyzer (GNA). In order to analyze large
and complex state transition graphs in detail, GNA allows the simulation results to
be exported to model-checking tools [3]. Recently, additional rules have been imple-
mented in the software, allowing the search of attractors in the state transition graph
and the determination of their stability [23]. GNA has been used before to analyze
other bacterial genetic regulatory networks, e.g., controlling the initiation of sporula-
tion in Bacillus subtilis [14] and quorum sensing in Pseudomonas aeruginosa [30].

8.4 Modeling of the Carbon Starvation Response Network

The lack of quantitative data on the threshold and rate parameters has motivated the
modeling of the carbon starvation response network in E. coli by means of the method
summarized in the previous section. The graphical representation of the network pre-
sented in Fig. 8.1 has been translated into a PL differential equation model supple-
mented by qualitative constraints on the parameters. The resulting model consists of
seven variables, one protein/RNA concentration variable for each of the six genes
and one input variable representing the presence or absence of a carbon starvation
signal [26]. In addition, 17 threshold parameters and 17 rate parameters have been
defined, bounded by 48 threshold and parameter inequalities, the choice of which is
largely determined by the available biological data.

As an illustration, we briefly present how we have obtained the PL differential
equation and the parameter inequality constraints for the state variable xcrp. The state
equation for xcrp in the two-gene network example in Sect. 8.3 describes only part of
the regulatory logic for the gene crp. As can be seen in Fig. 8.1, the regulation of crp is
much more complex. The crp gene is expressed from two promoters, P1 and P2, that
are inhibited by protein Fis [27]. In addition, the cAMP·CRP complex is able to both
repress and activate the promoter P1 [27], through a regulatory mechanism that is still
unclear. In order to simplify, we omit the negative control of crp P1, because this mech-
anism only plays a role during the exponential growth phase, when the concentration
of CRP is low (see [26] for a more detailed discussion).

We denote by κ1
crp the background synthesis rate from promoter P1 during expo-

nential growth. In addition, κ2
crp denotes the synthesis rate induced by derepression of

this promoter, and κ3
crp the synthesis rate from promoter P2. With a degradation rate

equal to γcrp xcrp, we obtain the following state equation for xcrp:

ẋcrp = κ1
crp + κ2

crp s−(xfis, θ
2
fis) s+(xcrp, θ

1
crp) s+(xcya, θ

1
cya) s+(us, θs)
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+ κ3
crp s−(xfis, θ

1
fis) − γcrp xcrp . (8.5)

As shown in [26], the product of step functions (s+(xcrp, θ
1
crp) s+(xcya, θ

1
cya) s+(us, θs))

describes stimulation of crp expression by the cAMP·CRP complex, where us is an
input variable representing the carbon starvation signal. It is constant over the time
interval of interest (u̇s = 0). The cAMP·CRP-mediated activation of crp occurs in
the presence of a carbon starvation signal (us > θs , that is, s+(us, θs) = 1) and
sufficiently high concentrations of proteins CRP and Cya (s+(xcrp, θ

1
crp) = 1 and

s+(xcya, θ
1
cya) = 1). The thresholds in the step-function expressions for Fis-mediated

repression (s−(xfis, θ
1
fis) and s−(xfis, θ

2
fis)) reflect the fact that Fis has different affinities

for the two crp promoter regions [9].
Different concentration thresholds of CRP are required in cells to allow produc-

tion of different levels of the cAMP·CRP complex. Indeed, a low concentration of the
complex is sufficient to stimulate crp expression in the presence of the carbon star-
vation signal. Above a second, higher threshold concentration, the complex controls
the expression of a large set of genes involved in the adaptation of E. coli cells to the
entry into stationary phase. Finally, above its highest threshold concentration, the com-
plex inhibits its further accumulation, through repression of cya [27]. This gives the
following threshold: inequalities

0 < θ1
crp < θ2

crp < θ3
crp < maxcrp . (8.6)

The quotient of the synthesis and degradation rates derived from (8.5) can be or-
dered with respect to the threshold parameters. Because crp P1 is a house-keeping
promoter [9], we set κ1

crp/γcrp > θ1
crp and (κ1

crp + κ2
crp)/γcrp > θ1

crp. If this were
not the case, CRP would not be able to reach a basal concentration at which it can
stimulate its own expression when the carbon starvation signal is switched on. The
fact that crp P2 is a strong promoter [9] implies that (κ1

crp + κ3
crp)/γcrp > θ3

crp and
(κ1

crp + κ2
crp + κ3

crp)/γcrp > θ3
crp, because this activation of P2 is required for CRP

to reach a level at which regulation of cya occurs. We thus arrive at the following
equilibrium inequalities

θ1
crp <

κ1
crp

γcrp
< θ2

crp , θ1
crp <

κ1
crp + κ2

crp

γcrp
< θ2

crp , (8.7)

θ3
crp <

κ1
crp + κ3

crp

γcrp
< maxcrp , θ3

crp <
κ1

crp + κ2
crp + κ3

crp

γcrp
< maxcrp .

8.5 Simulation of Carbon Starvation Response

Using the PL model of the carbon starvation response network, we analyze the at-
tractors of the system and simulate the response of E. coli to the depletion or sudden
availability of an essential carbon source in the growth medium. The simulations lead
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to qualitative behavioral predictions that can be compared with experimental observa-
tions reported in the literature. All simulations and attractor analysis described below
have been carried out using the computer tool GNA.

The attractor analysis has allowed the identification of two stable, qualitative equi-
librium states in less than 1 s on a PC (2.4 GHz, 512 Mb). The first state, described in
(8.8), is characterized by the presence of a carbon starvation signal and a low level of
stable RNAs:

θ3
crp < xcrp ≤ maxcrp , xcya = θ3

cya ,

0 ≤ xfis < θ1
fis , xgyrAB = θ2

gyrAB , (8.8)

0 ≤ xtopA < θ1
topA , 0 ≤ xrrn < θrrn ,

θs < us < maxs .

The level of stable RNAs is a reliable indicator of cellular growth (Sect. 8.2). Since the
level of RNAs is low in the qualitative equilibrium state reached by the system in the
presence of a carbon starvation signal, we conclude that this state is representative for
a stationary-phase cell.

The second qualitative equilibrium state, described in (8.9), is characterized by
the absence of a carbon starvation signal and a high level of stable RNAs, which is
representative for an exponential-phase cell:

θ1
crp < xcrp < θ2

crp , θ3
cya < xcya ≤ maxcya ,

xfis = θ4
fis , xgyrAB = θ1

gyrAB , (8.9)

0 ≤ xtopA < θ1
topA , θrrn < xrrn ≤ maxrrn ,

0 ≤ us < θs .

We conclude from this analysis that, depending on the presence or absence of an es-
sential carbon source in the growth medium, E. coli cells enter exponential phase or
stationary phase, respectively. In order to understand how E. coli cells perform their
growth transition, we next simulate their response to the presence or absence of a car-
bon source.

Starting from the initial conditions representing exponential growth in (8.9), the
system is perturbated with a carbon starvation signal. This gives rise to a state transi-
tion graph of 65 states, including a single qualitative equilibrium state corresponding
to (8.8), computed in less than 1 s. Fig. 8.3 shows the temporal evolution of selected
protein concentrations during the transition from exponential to stationary phase in a
representative path in the state transition graph. The first event after receiving the car-
bon starvation signal is the decrease of the Fis concentration, followed by the decrease
of the stable RNA concentration. The next event concerns the increase of the level of
CRP. In parallel, the concentration of GyrAB increases, whereas the concentration of
TopA remains constant.

The process driving the cell’s growth arrest can be explained by relating the qualita-
tive behavior to the carbon starvation response network in Fig. 8.1. During exponential
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Fig. 8.3. Temporal evolution of selected protein concentrations in a typical qualitative behavior
in the state transition graph generated from the E. coli carbon starvation response network.
The behavior represents the molecular events accompanying the transition from exponential to
stationary phase.

phase, the adenylate cyclase is present, but inactive. When the carbon starvation sig-
nal is switched on, it activates the protein and thus enables it to produce the cAMP
metabolite. The small molecule binds to CRP, which is not yet abundant, thus giving
rise to a low concentration of the cAMP·CRP complex. The level of cAMP·CRP is
nevertheless high enough to start repressing the expression of fis. This stimulates fur-
ther accumulation of CRP, and thus further repression of Fis, through the derepression
of the Fis-controlled promoters of crp. The decrease of the Fis concentration causes
the downregulation of the expression of the rrn genes. As a consequence, the level
of the stable RNAs decreases and the cell enters stationary phase. We conclude from
our model that a positive feedback loop, the mutual inhibition of Fis and CRP, plays a
determining role in the transition from exponential to stationary phase.

The level of DNA supercoiling is determined by the relative concentration of the
enzymes GyrAB and TopA (Sect. 8.2). The predicted qualitative evolution of the con-
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centrations of the two proteins in Fig. 8.3 implies that the DNA supercoiling level
increases at the onset of stationary phase. However, this is not what has been observed
experimentally. On the contrary, the DNA supercoiling level has been shown to de-
crease when E. coli cells enter stationary phase [1]. This inconsistency suggests that
our picture of the carbon starvation response network is incomplete, in the sense that
the network in Fig. 8.1 may need to be extended with interactions not yet identified or
with regulators not yet considered.

In addition to simulating the transition from exponential to stationary phase, we
have also studied the reentry into exponential phase after a carbon upshift, that is, when
stationary-phase cells have been put into a fresh medium. We used the same model as
above, but started the simulation from the qualitative state characterizing stationary-
phase conditions in (8.8) (except for the adjustment of the GyrAB concentration so as
to satisfy the observed low level of DNA supercoiling), and with the carbon starva-
tion signal switched off [26]. Unexpectedly, the cells were predicted to resume growth
through damped oscillations in some of the protein concentrations. The negative feed-
back involving the homeostatic control of the DNA supercoiling level in the carbon
starvation response network has been shown to play a key role in the process [26].
However, no experimental data are currently available to confirm or disconfirm this
surprising prediction, which calls for experimental verification.

8.6 Discussion

We have presented a modeling and simulation of the genetic regulatory network con-
trolling the carbon starvation response in E. coli. We have first defined the carbon star-
vation response network by identifying key global regulators involved in the process
(Sect. 8.2). Since quantitative information on the parameters is lacking in most cases,
we have chosen a qualitative modeling and simulation method to analyze the network
(Sect. 8.3). The method is based on a class of PL differential equations that use step
functions in order to describe the regulatory mechanisms. Instead of giving numerical
values to the parameters and initial conditions, the PL model has been supplemented
with inequality constraints. By integrating the available experimental data on the reg-
ulatory mechanisms underlying the interactions, we have developed a model of six PL
differential equations describing the carbon starvation response network (Sect. 8.4). In-
stead of assigning numerical values to the kinetic parameters, about fifty constraints in
the form of algebraic inequalities have been obtained from the experimental literature.

Using this model, we have analyzed the attractors of the system and simulated the
carbon starvation response of E. coli cells using the computer tool GNA (Sect. 8.5).
The model predicted that a positive feedback mechanism, the mutual inhibition of fis
and crp, plays a key role in the transition between exponential phase and stationary
phase. This kind of control mechanism is known to play a key role in developmental
processes [29]. In the presence of a carbon starvation signal, it causes a switch from a
state with a high Fis concentration and a low CRP concentration to a state with a low
Fis concentration and a high CRP concentration. The positive feedback circuit thus
enables the cell to leave the exponential phase in the absence of a carbon source and
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enter stationary phase, while it also enables the cell to reenter exponential phase in
case of carbon recovery.

The model has also yielded the prediction that a negative feedback loop involving
the homeostatic control of the DNA supercoiling level is responsible for the occur-
rence of damped oscillations of certain protein concentrations after a carbon upshift.
These damped oscillations may speed up cellular response times, thus allowing a rapid
adaptation of the cell to the sudden availability of a carbon source [26]. These predic-
tions, as well as other model predictions on the expression of key network genes, have
never been observed experimentally. This has motivated us to start experiments aim-
ing to validate the model predictions. At present, we are working to obtain data on the
temporal evolution of the expression of key genes in the network by means of reporter
gene assays. Comparison of the observed and predicted expression profiles may lead
to a refinement of the model, which will initiate further experimental validation.

Certain predictions of the model are inconsistent with the biological observations,
as noted for the DNA supercoiling level in Sect. 8.5. The inconsistencies point to limits
of the present model of the carbon starvation response network and, more importantly,
suggest possible extensions. Indeed, the carbon starvation response network is part of
a larger genetic regulatory network comprising other global regulators such as RpoS,
ppGpp, IHF, FNR, Lrp, HNS, and ArcA, in addition to DNA supercoiling, cAMP·CRP,
and Fis [12]. This network senses and responds to a variety of stresses acting, often
simultaneously, on the bacteria. Our aim is to model the whole network of global
regulators to understand how it coordinates the different stress responses and allows E.
coli to adapt its lifestyle to a wide range of environmental conditions.
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Summary. Gene expression microarrays have become a popular high-throughput technique
in functional genomics. By enabling the monitoring of thousands of genes simultaneously, this
technique holds enormous potential to extend our understanding of various biological processes.
However, the large amount of data poses a challenge when interpreting the results. Moreover,
microarray data often contain frequent missing values, which may drastically affect the perfor-
mance of different data analysis methods. Therefore, it is essential to effectively exploit addi-
tional biological information when analyzing and interpreting the data. In the present study, we
investigate the relationship between gene expression profile and promoter sequence profile in
the context of missing value imputation. In particular, we demonstrate that the selection of pre-
dictive genes for expression value estimation can be considerably improved by the incorporation
of transcription factor binding information.

Key words: Microarrays, gene expression, promoter sequence, imputation.

9.1 Introduction

DNA microarrays provide a rapid means for monitoring the expression of several thou-
sands of genes in a given biological sample. Microarray experiments have been suc-
cessfully applied in many fields of biomedical research, especially in cancer diagnosis,
prognosis and treatment. Expression patterns observed across different phenotypes,
time points, or in response to environmental changes contribute to our understanding
of the cellular processes involved in the regulation of gene expression. While provid-
ing a promising opportunity, however, the large amount of data presents a challenge
when interpreting the microarray results. Therefore, instead of using the expression
measurements only, it is also essential to exploit other biological information, such as
DNA or protein sequences, published literature and functional taxonomies [2].

Studies on combining DNA sequence data with gene expression data are motivated
by the hypothesis that genes with similar expression profiles are likely to be regulated
via the same mechanisms and therefore might share common regulatory elements in



98 L.L. Elo, J. Tuikkala, O.S. Nevalainen, and T. Aittokallio

their upstream promoter sequences. Several authors have provided indirect evidence
of such co-regulation in yeast by showing that genes that cluster together based on
their expression profiles share common motifs in their promoter regions [5, 12, 13].
Recently, Allocco et al. [1] used data from a genome-wide in vivo binding analysis
of known yeast transcription factors (TFs) and demonstrated explicitly that genes with
strongly correlated expression profiles are more likely to have their promoter regions
bound by a common TF.

Additional biological information is traditionally employed subsequent to gene ex-
pression analysis only, e.g., by finding overrepresented sequence motifs or enriched
functional classes in gene clusters defined from the expression data [13]. Even the
more advanced data integration methods typically follow sequential or iterative proce-
dures [3, 10]. These types of analyses, however, have a limited capacity to overcome
the technical and biological noise originating from the individual data sources. There
are only a few methods that aim at using heterogeneous biological data in a fully inte-
grated manner [7, 8]. Hanisch et al. [8] cluster genes based on combined information
from expression profiles and biological networks, whereas Glenisson et al. [7] integrate
expression data with literature-extracted information to reveal biologically meaningful
gene clusters. However, neither of these studies explores the true contributions of the
individual data sources; instead their weights are selected rather arbitrarily before the
clustering.

In the present study, we investigate the link between co-expression and co-regulation
in the context of missing value imputation. We first introduce a combined distance
function which integrates TF binding information with expression profile distances.
We then use this new similarity measure when selecting the best genes for missing
value estimation. Instead of fixing the relative contributions of the data types before-
hand, we systematically investigate their effects on the imputation accuracy with a pro-
cedure that estimates their relative importance directly from the data. To evaluate the
benefits gained from using the combined distance, we compare the imputation accu-
racy of the TF-guided method to that obtained using expression data alone in different
situations.

9.2 Materials and Methods

9.2.1 Distance Measures

Gene expression data from a series of m microarray experiments (arrays) for n genes
can be represented as an expression matrix X = {xi j }n,m

i=1, j=1, where the entry xi j is
the log-transformed relative expression level of gene i in experiment j . Each row in
the matrix corresponds to the expression profile of a particular gene. We characterize
the expression distance between genes g and i with the Euclidean distance

dE (g, i) =
√√√√ m∑

j=1
(xgj − xi j )2. (9.1)
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The TF binding activity of a set of p distinct TFs with respect to the promoter
regions of the n genes is defined as a binary TF binding matrix Y = {yil}n,p

i=1,l=1,
where the entry yil indicates the binding (1) or non-binding (0) relationship of TF l to
gene i . Each row in the matrix represents the promoter profile of a particular gene. We
determine the promoter distance between genes g and i using the Jaccard distance

dP (g, i) = 1 −
∑p

l=1 min(ygl , yil)∑p
l=1 max(ygl , yil)

, (9.2)

where the numerator
∑

min(ygl , yil) is the number of common TFs (intersection) and
the denominator

∑
max(ygl , yil) is the total number of different TFs (union) in the two

promoters. If the two promoter profiles contain only zeros, it is reasonable to define
dP (g, i) = 0. In our application, however, we restricted to the genes that contained at
least one TF.

To obtain the overall similarity between the expression and promoter profiles of
genes g and i , we define the combined distance of the expression and promoter dis-
tances as

dC (g, i) = dE (g, i) + adP (g, i), (9.3)

where a is a non-negative weight factor that balances the relative contributions of the
two components. The larger the value of a, the larger the contribution of the promoter
distance.

9.2.2 Imputation Algorithms

We applied the weighted K nearest neighbor imputation (KNN) [14], which is perhaps
the most popular approach for missing value estimation in microarray data. Let Q =
{ j1, . . . , jq} denote the set of q experiments, in which the gene g has a missing value.
The KNN imputation starts by determining for each experiment j ∈ Q a separate
neighborhood set N (K )

j (g) of K genes that are closest to the target gene g and that
do not have a missing value in the experiment j . Missing values in other experiments
in the neighbors are allowed. In conventional KNN imputation, the neighboring genes
are selected according to the smallest expression distances dE , whereas in TF-guided
KNN imputation (referred to as TFKNN), the K nearest genes are identified using the
combined distance dC instead. In both cases, the expression distance dE is calculated
over the non-missing entries of X only. The missing value xgj is then estimated by the
weighted average

x̂g j =
∑

i∈N (K )
j (g)

xi j/d(g, i)∑
i∈N (K )

j (g)
1/d(g, i)

, (9.4)

where d is the given distance measure (dE in KNN and dC in TFKNN).
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9.2.3 Testing Procedure

The microarray expression matrices used for the evaluation of the imputation algo-
rithms were first pre-processed by removing all the rows (genes) containing at least
one missing value. New incomplete expression matrices were then generated from
these complete matrices by randomly setting 1, 5, 10, 15 and 20 percent of their values
as missing. The imputation accuracy was assessed by calculating the normalized root
mean squared error (NRMSE) between the original and imputed values of the missing
entries defined as √√√√∑

i, j (xi j − x̂i j )2∑
i, j x2

i j
, (9.5)

where the summations are calculated over the missing entries (i, j). The imputation
was repeated 50 times for each test data set with different missing value rates.

9.2.4 Selection of the Weight Factor aaa

To estimate the weight factor a automatically from the data, we followed the idea of
Kim et al. [9] suggested for the selection of the model parameter K . In an incomplete
data matrix to be imputed, we first selected a non-missing entry and marked it as miss-
ing. We then estimated this artificial missing value using different values of a. Finally,
we compared these estimates to the known true value. This procedure was repeated for
100 random non-missing entries from each experiment. In these estimations, no infor-
mation about the actual missing values to be imputed was utilized. The a-value that
produced the smallest overall NRMSE for the artificial missing values was selected for
the actual imputation.

The motivation of this procedure was that the a-value that shows good performance
in estimating an additional missing value is assumed to be close to the optimal a-value.
To assess the performance of the automatic a-value estimator, we also repeated the
actual imputation of the missing values used for testing the imputation accuracy with
different values of a and recorded these minima as lower bounds for the automatic
procedure. It should be noted that in practice one cannot optimize the weight factor
based on the actual missing values, whereas the automatic procedure proposed here is
also practicable in real situations, where the true values of missing data are not known.
However, as the estimation of the training and testing missing values may use common
genes, the overall result might be somewhat biased.

9.2.5 Test Material

We used three publicly available yeast cDNA microarray data sets. The first data set
(diauxic) was from a temporal gene expression study during the diauxic shift from
anaerobic to aerobic metabolism in yeast (m = 7) [5]. The second data set (alpha) was
from a time series study monitoring dynamic changes in gene expression during the
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alpha-factor synchronized yeast cell cycle (m = 18) [12]. The third data set (carbon)
was a non-time series subset of experiments from a study monitoring the response of
yeast cells to alternative carbon sources (m = 6) [6].

The TF binding matrix was constructed using the data from the genome-wide chro-
matin immunoprecipitation (ChIP) experiment of Lee et al. [11], which identified the
binding of p = 106 known yeast TFs to their respective target promoters. Following
Lee et al., we considered that a TF binds to the promoter region of a gene if the re-
ported binding p-value was less than 0.001. We restricted our analysis to those genes
that contained at least one TF according to the binding data and had no missing values
in their expression profiles. This resulted in n = 2104, 1645 and 2142 genes in the
diauxic, alpha and carbon data sets, respectively.

9.3 Experimental Results

In each test material, both the KNN and TFKNN imputation methods performed well
with 20 neighbors. This K -value is in line with the results of Troyanskaya et al. [14]
and was used in all the results below.

Fig. 9.1a illustrates the accuracy of the imputation methods at different missing
value percentages in the diauxic and carbon data. As expected, the imputation accu-
racy degraded as the proportion of missing values increased. In all cases, the TF-guided
KNN method was at least as accurate as the KNN method based on the expression
data only. The benefit from using the TF binding information was emphasized espe-
cially at large missing value percentages. In general, the automatic a-value estimator
(TFKNNe) yielded error values close to the minimum errors (TFKNNm), indicating a
good performance of the a priori weight selection procedure.

To assess how the number of arrays (experiments) affects the imputation accuracy,
we randomly sampled smaller subsets of sizes 4, 6, 8 and 10 from the alpha data with
10% and 20% missing value rates. Fig. 9.1b shows that the imputation accuracy de-
creased as the number of arrays in the data decreased. The benefit gained from the
TF-guided gene selection was largest when only a small number of arrays was avail-
able.

Fig. 9.2 supports these conclusions in terms of the estimated a-values in the three
data sets. The relative importance of the TF binding data increased when the percent-
age of missing values increased or the number of arrays decreased.

9.4 Conclusions

The imputation framework was selected in this study because it provides a direct way
to evaluate the performance of the different distance measures. Moreover, missing
value imputation remains a challenging practical problem in microarray analysis. It
has been observed that missing observations can drastically reduce the performance
of different data analysis methods such as clustering [4]. When the number of genes
with missing values is large, it is not possible to simply remove these genes; instead
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the missing values need to be imputed as accurately as possible before the actual data
analysis. The present results indicate that, in general, TF binding information enhances
the prediction of expression values, especially when the number of arrays is small or
the proportion of missing values is large.

A proper combination of the individual distance functions is crucial when design-
ing the integrated gene selection measure. We observed that the weight a was highly
dependent on the data set used. Hence, we propose a method to select a automatically
from the data instead of using a fixed a for all data sets. We have also tried other ways
to combine the information sources, including the weighted sum of the individual ranks
and a linear regression applied to a training data set, but these did not provide better
results than the simple linear combination of the expression and promoter distances.

Fig. 9.1. The average normalized root mean squared error (NRMSE) of the imputation methods
and their standard deviations (error bars). The results are shown (a) at different missing value
percentages in the diauxic and carbon data, and (b) at different numbers of arrays in the alpha
data with 10% and 20% missing value rates. KNN refers to the conventional K nearest neighbor
imputation and TFKNN to the TF-guided KNN imputation. TFKNNe corresponds to the auto-
matic selection of the weight factor a, whereas TFKNNm shows the minimum errors obtained
when a was selected on the basis of the true values of missing data.
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Fig. 9.2. The average values of the weight factor a and their standard deviations (error bars)
(a) at different missing value percentages in the diauxic and carbon data, and (b) at different
numbers of arrays in the alpha data with 10% and 20% missing value rates.

We have also tested alternative expression and promoter similarities, such as Pearson
correlation and Hamming distance, respectively.

In addition to the KNN-based imputation, we have investigated the effect of TF-
guided gene selection on the local least squares (LLS) imputation [9]. In general,
the more advanced LLS estimation outperformed the KNN estimation, but the ben-
efit gained from the TF binding information was less evident. This occurred mainly
because the LLS imputation performs best with relatively large K -values (typically
K > 100), reducing the importance of accurate gene selection. Moreover, the LLS
formulation for the neighboring genes is based on the expression data only. Our fu-
ture goal is to improve the accuracy of the LLS method by also using the promoter
information in weighing the estimation step, similarly to what was done in (9.4).

Instead of utilizing the different data sources sequentially, we incorporated the ad-
ditional biological knowledge into the combined distance function. With coherent in-
formation sources, this should lead to increased stability in the selection of similar
genes [8]. Although we applied the new distance measure in the context of imputation,
a similar approach could also be used when clustering genes. Moreover, the method
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provides a simple way to investigate the regulatory mechanisms of specific genes. The
general idea of data integration is not limited to TF binding data only; other exter-
nal information on the relations of genes could also be used. The eventual goal is to
integrate such complementary information on the complex networks that regulate bio-
logical processes at multiple levels.
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Summary. The theory of chemical organizations is employed as a novel method to analyze
and understand biological network models. The method allows us to decompose a chemical
reaction network into sub-networks that are (algebraically) closed and self-maintaining. Such
sub-networks are termed organizations. Although only stoichiometry is considered to compute
organizations, the analysis allows us to narrow down the potential dynamic behavior of the net-
work: organizations represent potential steady state compositions of the system. When applied
to a model of sugar metabolism in E. coli including gene expression, signal transduction, and
enzymatic activities, some organizations are found to coincide with inducible biochemical path-
ways.

Key words: Chemical organization theory, network analysis, stoichiometry, systems biology,
sugar metabolism, Escherichia coli.

10.1 Introduction

A living cell consists of a tremendous number of components that interact in com-
plicated ways sustaining the processes of life [7]. In order to understand cells, these
interactions are commonly portrayed as networks on different levels [2]. Gene reg-
ulatory networks describe how genes are regulated, metabolic networks detail how
substrates are transformed into products by proteins acting as enzymes, and signal
transduction networks focus on how external stimuli are sensed and transduced lead-
ing to a change in gene expression. With more and more detailed knowledge on the
various molecular interactions, the constructed networks modeling cellular processes
grow steadily in size and complexity. Novel methods have to be developed to analyze
and study them. For example, methods originating from graph theory have been suc-
cesfully applied to study cellular networks [1]. Other methods concentrate on feasible
steady state flux distributions in metabolic networks [10]. In this chapter, we employ
the theory of chemical organizations [3] as a novel tool to analyze intracellular reac-
tion networks. The network is decomposed into sub-networks that are (algebraically)
closed and self-maintaining, revealing the internal structure of the network. Applying
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the method to a well-established model of E. coli sugar metabolism reveals an orga-
nizational structure in accordance with biological knowledge. Although the analysis
does not lead to novel biological insights in this case, it highlights the potential and
the limits of this approach. This chapter exemplifies how organization theory can con-
tribute to a systems-level understanding of large-scale models of biological systems,
in turn contributing to the emerging field of systems biology.

The outline of the chapter is as follows. The theory of chemical organizations is in-
troduced in Sect. 10.2. The method is then applied to the sugar metabolism network of
E. coli, and the results are presented in Sect. 10.3. The discussion follows in Sect. 10.4,
and we conclude in Sect. 10.5.

10.2 Theory of Chemical Organizations

The theory of chemical organizations [3] extends ideas by Fontana and Buss [4].
It provides a new method to analyze complex general reaction networks. Since the
static part of the theory, which is used here, is based solely on network structure
and stoichiometric information, no kinetic data is required. The main objective is to
determine combinations of network species that are more likely to be present over
a long period of (simulation-) time than others. More precisely, the given reaction
network is decomposed into sets of molecular species that form algebraically closed
and self-maintaining sub-networks. Such species sets are called organizations. The
first property—closure—ensures that, given the molecular species of an organization,
there is no reaction within the reaction network that could create a species not yet
present in the organization from the organization species set. The second property—
self-maintenance—guarantees that every molecular species that is used up within an
organization can be reproduced by reactions among species of that organization: con-
sidering only the reaction network made up by the species contained in the organiza-
tion, a flux vector1 can be found, such that all species of the organization are produced
at nonnegative rates from within the organization, facilitating maintenance of the or-
ganization. Formal definitions of these concepts are given in Sect. 10.2.1. Using this
approach, the network is analyzed on a more abstract level than by investigating its
state space. In the classic systems approach, the concentrations of all system variables
determine the state of the system; however, here, the system state is characterized by a
set of species being present. The theory of chemical organizations delivers a set of or-
ganizations, representing all self-maintaining and closed sub-networks of the system.
It is shown by Dittrich and Speroni di Fenizio [3] that, assuming that the dynamics
is modeled using ordinary differential equations, all steady states of the system are
instances of organizations, i.e., the species with concentrations greater than zero in a
particular steady state are exactly the species contained in a corresponding organiza-
tion. But not all organizations harbor steady states. For example, an internal cycle not
depending on input can fulfill the properties of closure and self-maintenance, yet it

1 For a reaction system of n reactions, the flux vector v ∈ R
n+ assigns to each reaction a

nonnegative value that represents the reaction’s turnover rate.
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is thermodynamically infeasible. Furthermore, organizations can contain species with
positive production rates. Since organizations may share the same species, the set of
organizations together with the set inclusion ⊆ form a partially ordered set that can
be visualized in a Hasse diagram providing a hierarchical view on the network under
consideration (see Fig. 10.1 for examples). The organizations are vertically arranged
according to their size, with organizations containing few molecular species at the bot-
tom. Two organizations are connected by a line if the upper organization contains all
species of the lower organization and there exists no other organization between them.
The label of an organization in the Hasse diagram contains a list of species contained
in the organization. To keep the labels short, only those species are listed that are not
already contained in organizations to which a downlink exists. Hence to get the com-
plete list of molecular species of an organization, it is required to collect the molecular
species contained in organizations to which a downlink exists plus the species denoted
in the organization label.

10.2.1 Formal Definition of Central Concepts

Algebraic chemistry [3] Let M be a set of elements (called species, molecular
species, or just molecules). PM (M) denotes the set of all multisets with elements
from M. A multiset differs from a set in that it can contain the same element more
than once. Reactions occurring among the species M can then be defined by a re-
lation R ⊆ PM (M) × PM (M). We call the pair 〈M,R〉 an algebraic chemistry.

Closed set [4] A set of species S ⊆ M is closed, if for all reactions (A → B) ∈ R
with A ∈ PM (S), also B ∈ PM (S). In other words: if the educts of a reaction are
contained in S, then its products must also be in S. There is no reaction that could
create any new species not yet in S from species contained in S.

Self-maintaining set [3] Given an algebraic chemistry 〈M,R〉 with m = |M|
species and n = |R| reactions, its dynamics can be described by ċ = Mv with
concentration vector c ∈ R

m+, stoichiometric matrix M, and flux vector v ∈ R
n+. A

set of species S ⊆ M is called self-maintaining if a flux vector v exists, so that the
following three conditions are fulfilled:
(1) For every reaction (A → B) ∈ R with A ∈ PM (S), its corresponding flux is
vA→B > 0.
(2) For every reaction (A → B) ∈ R with A /∈ PM (S), its corresponding flux is
vA→B = 0.
(3) For every species i ∈ S, its concentration change is nonnegative: ċi ≥ 0.
In other words: if we consider only the sub-network made up by the species of S
and additionally the species that can be created from S (but are not in S) (con-
ditions (1) and (2)), we can find a positive flux vector, such that no species of S
decays (condition (3)). Note that the steady state condition with ċi = 0 for all
species i ∈ M is a special case of condition (3).

Organization [3, 4] A set of species S ⊆ M that is closed and self-maintaining is
called an organization.
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10.3 Application to a Model of Regulated Sugar Metabolism
in E. coli

In order to demonstrate the feasibility of organization theory as a tool to analyze in-
tracellular reaction networks, we apply it to a relatively small network model encom-
passing the well-studied sugar metabolism of E. coli. If several sugars are available in
the growth medium, E. coli first exclusively metabolizes its preferred carbon source,
glucose. Only after depletion of glucose will the bacterium begin to utilize other avail-
able sugars. This diauxic growth phenomenon has been extensively studied in experi-
ments and by mathematical modeling [6,11,12], leading to a good understanding of the
molecular mechanisms at work. The two main mechanisms facilitating the switch-like
behavior are inducer exclusion and catabolite repression. See the referenced literature
for details of these mechanisms. Extending models by Kremling et al. [6] and Wang
et al. [12], Puchalka and Kierzek constructed a reaction network modeling the sugar
metabolism of E. coli including gene expression, signal transduction, and transport and
enzymatic activities [9]. We take this network as an example to demonstrate how the
theory of organizations can be applied to intracellular networks. First, the network is
adapted as described in the next section. Then, organizations are analyzed for several
scenarios representing bacterial growth on different sugar sources.

10.3.1 Reaction Network

The original network by Puchalka and Kierzek consists of 92 substances reacting with
each other in 120 reactions. The model contains reactions modeling transcription and
translation of 21 genes. The uptake and utilization of external glucose, lactose, and
glycerol is included in the model as well as catabolic repression and inducer exclu-
sion, allowing the model to exhibit diauxic growth. Each reaction of the network con-
sists of (up to) three different types of species: educts, products, and modifiers. If a
reaction occurs, the educt species are transformed into the product species while the
modifiers are not affected. Modifier species only change the reaction rate. Two types
of modifiers are used in the model: enzymes, which are required for a reaction to take
place, and effectors, which increase the reaction rate acting as an activator, or decrease
the reaction rate acting as an inhibitor or repressor. Since algebraic chemistries do not
contain modifiers, we have to handle them separately for our analysis as follows. If a
reaction does not have modifiers, we take the reaction exactly as it is. In the presence
of modifiers, we inspect the reaction rate equation. If the modifier species concentra-
tion has to be greater than zero for the reaction rate to become greater than zero, we
add the modifier species on both educt and product side of the reaction. This is the
typical case for enzymes. Only in their presence can the reaction in question be per-
formed. If the reaction rate can be greater than zero even in the absence of the modifier
species, we simply ignore them, as they are not necessary for the reaction to take place.
They merely increase (or decrease) the reaction rate, acting as nonessential activators
(resp. repressors or inhibitors). It is important to note that all inhibitory or negative
interactions are ignored by this procedure.
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The handling of modifiers as described above cannot be applied to reactions model-
ing gene expression. Negative interactions can be ignored as before, but activators need
special treatment. The model contains five transcription reactions that have activating
and/or repressing effectors. With activator concentrations being zero, the transcription
reaction rates in the original model are computed to be positive. This corresponds to a
basal transcription rate of a gene: even if activators are not present, RNA polymerase
occasionally binds to the promoter and transcription is initiated, leading to a basal con-
centration of the respective protein. Applying the procedure as described above to these
reactions (i.e., ignoring all activators) would lead to an unconditional transcription of
all genes, giving rise to a basal concentration of the corresponding gene products. But
as shown below for the transcription of the lac genes, basal concentration of proteins
might not be sufficient to perform certain metabolic tasks. Consequently, a protein hav-
ing only basal concentration should be regarded as not being present in our analysis.
Only if activators are present, increasing the transcription rate so that protein concen-
trations reach levels that are significantly above basal level—effectively switching the
gene on—should the corresponding protein be regarded as being present. Activators
and inducers for gene transcription should therefore be modelled as necessary cata-
lysts in gene transcription reactions. The five transcription reactions having effectors
are discussed separately as follows.

Transcription of crp: effectors Crp, cAMP. Crp is activated by the binding of cAMP.
The activated Crp-cAMP complex negatively regulates the transcription of crp. It was
also shown that with further increasing concentration of Crp-cAMP this inhibition
is overcome and an upregulation occurs [5]. The inhibition is ignored and since the
activation only occurs at high concentrations, it is ignored as well (since the reaction
can take place in the absence of the effector species). Hence the effectors Crp and
cAMP are ignored for this reaction.

Transcription of cya: effectors Crp, cAMP. Crp-cAMP downregulates transcription
of cya. Being an inhibition, the effector species Crp and cAMP are ignored for this
reaction.

Transcription of lacZY, glpFK, and glpD: effectors Crp, cAMP, LacI/GlpR, and Allo/
G3P. These genes code for enzymes necessary for lactose and glycerol uptake and uti-
lization. The transcription regulation is similar for both. Two mechanisms are at work
for transcription regulation of lacZY (glpFK, glpD). First, repressor LacI (GlpR) re-
presses transcription. If inducer Allo (G3P) is present, it binds to LacI (GlpR) and by
this inactivates the repressor. Second, Crp-cAMP complex acts as an activator. Both
mechanisms are modeled in one reaction equation in the model. We ignore the inhibit-
ing effect of effector species LacI (GlpR). Instead, by adding the inducer Allo (G3P)
on both educt and product side of the reaction, we require the inducer to be present for
transcription. This is in accordance with biological knowledge: only in the presence of
the inducer are the corresponding gene products synthesized at above basal concentra-
tion levels. Mutants not being able to synthesize Crp or cAMP were found unable to
grow on several carbon sources [8]. Therefore, we conclude that the presence of Crp
and cAMP is also required to synthesize enzymes necessary for carbon uptake and
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utilization in sufficient concentrations. Accordingly, effectors Crp and cAMP are also
added on both educt and product side of the reactions.

The original model contains six reactions that are reversible. We add an explicit
back reaction for each of them in our model. Cell growth and cell division are ac-
counted for in the original model by dividing all species concentrations by two on cell
division, except for the DNA species. Hence, we add decay reactions for all non-DNA
species that do not already decay in the original model. The remaining species that do
not decay are: all 21 promoter species, RNAP, Tscription, Glcex, Lacex, and Glyex.
Several species are not produced from within the original network model. Among them
are all 21 promoter species, ATP, ADP, and AMP. We assume that they are present in
the cell at all times by providing them as external input. We add a reaction of the form
∅ → inputspecies for each of them. Additionally, RNAP is provided as input. Finally,
our network model consists of 92 species and 168 reactions. See the Appendices for
a complete list of species and reactions. Glucose, lactose, and glycerol in the growth
medium are represented by the species Glcex, Lacex, and Glyex. By adding additional
input reactions for these species, growth on different sugar sources can be modeled.

10.3.2 Hierarchies of Organizations

We compute the hierarchy of organizations of the network for five different scenarios.
The scenarios only differ in which external sugars are supplied as input, resembling
bacterial growth on different sugar sources. First, no external sugars are supplied at
all. Then, one of the three sugars glucose, lactose, or glycerol is consecutively sup-
plied as the exclusive carbon source. And finally, all three sugars are provided simulta-
neously. Supplying a sugar source is accomplished simply by adding an input reaction
of the form ∅ → externalsugar to the reaction network. Changing the reaction network
also changes the hierarchy of organizations. The resulting hierarchies are depicted in
Fig. 10.1. They all consist of four organizations. The labels within organizations refer
to sets of species as detailed in Table 10.1. The network model covers the transforma-
tion of external sugar into pyruvate, which is then fed into further metabolic processes
not considered by the model. These follow-up processes enabling cellular survival are
represented by pseudo species Metabolism. Species set Metabolites contains all rel-
evant species of this pathway, and its presence in an organization hence represents a
cell being able to maintain its metabolism and survive.

Starvation. No external sugars are supplied as input. The resulting hierarchy of or-
ganizations is depicted in Fig. 10.1(a). The smallest organization Org. 1 contains all
input species (21 promoter species, ATP, ADP, AMP, and RNAP). In the presence of
the promoters and RNA polymerase, all unregulated genes are transcribed and trans-
lated, so that all mRNA and protein species of all 18 unregulated genes are also con-
tained in the smallest organization (cf. Genes+Enzymes, Table 10.1). Organizations
Org. 2 and Org. 3 contain all species from Org. 1 and additionally Glyex and Lacex,
respectively. This seems surprising since these species are not supplied as input in this
scenario. But recall that an organization is a set of species that is algebraically closed
and self-maintaining. Although the species Glyex and Lacex are not supplied as input,
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Fig. 10.1. Hierarchies of organizations of the E. coli network for five scenarios differing in
supplied external sugars, resembling growth on different carbon sources. Organizations consist
of the species sets contained in their lower organization(s) plus the species set(s) denoted in
their label. Species set labels are detailed in Table 10.1. (a) starvation; (b) growth on glucose
only; (c) growth on lactose only; (d) growth on glycerol only; (e) growth on glucose, lactose,
and glycerol. See text for details.

they are still a regular part of the reaction network. Inspecting the networks making
up Org. 2 and Org. 3, we find that Glyex and Lacex do not participate in any reaction
there. They are isolated nodes in the reaction network. As such, they do not decay,
neither are they produced, fulfilling the requirements of closure and self-maintenance.
The two organizations represent a state in which a fixed amount of Glyex, respectively
Lacex, entered the system “by accident” and the uptake systems are not induced. In
this case, the concentration of the external sugars will not change. Only after the up-
take systems have been induced will the external sugars be used up completely and
the system falls back to Org. 1. The largest organization Org. 4 combines Org. 2 and
Org. 3. All species of the smallest organization and Glyex and Lacex are contained. In
this scenario, we find no organization containing the metabolites of the network. This
indicates that with no external sugar source, the network cannot sustain its metabolism,
i.e., the cell is starving.
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Table 10.1. Sets of species as used in Fig. 10.1.

Genes
+Enzymes := {PromCrp, PromCya, PromEIIA, PromEIIBC, PromEI,

PromFbp, PromFda, PromGap, Prom GlcT, PromGlk,
PromGlpD, PromGlpFK, PromGlpR, PromGpm, PromHPr,
PromLacI, PromLacZY, PromPfk, PromPgi, PromPyk,
PromTpi, RNAP, Tscription, CrpmRNA, CyamRNA,
EIIAmRNA, EIIBCmRNA, EImRNA, FbpmRNA, FdamRNA,
GapmRNA, GlcTmRNA, GlkmRNA, GlpRmRNA, GpmmRNA,
HPrmRNA, LacImRNA, PfkmRNA, PgimRNA, PykmRNA,
TpimRNA, Crp, Cya, EIIA, EIIBC, EI, Fbp, Fda, Gap, GlcT,
Glk, GlpR, Gpm, HPr, LacI, Pfk, Pgi, Pyk, Tpi, AMP, ATP,
ADP, cAMP}

Metabolites := {Glc, Glc6P, Fru6P, FBP, DHAP, T3P, 3PG, PEP, Pyr,
Metabolism, EIIAP, HPrP}

Metabolites∗ := Metabolites\{Glc}
Glcex := {Glcex}
Lacex := {Lacex}
Glyex := {Glyex}
LacSpecies := {Lac, Allo, LacZYmRNA, LacZYmRNA1, LacZ, LacY}
GlySpecies := {Gly, G3P, GlpDmRNA, GlpFKmRNA, GlpFKmRNA1, GlpD,

GlpF, GlpK}

Growth on glucose. After adding the reaction ∅ → Glcex, the hierarchy of organiza-
tions again contains four organizations as shown in Fig. 10.1(b). The smallest organi-
zation Org. 1 contains the same species as in the first scenario and additionally Glcex.
With Glcex present, all metabolites can be created and maintained. Consequently, all
these species are part of the smallest organization, too. With species set Metabolites
present in the smallest organization, the cell can maintain its metabolism when exter-
nal glucose is supplied. The remaining part of the organization hierarchy is equivalent
to the first scenario without any sugar input.

Growth on lactose. When lactose is supplied as the exclusive external sugar source,
the resulting hierarchy of organizations again contains four organizations as depicted
in Fig. 10.1(c). The smallest organization contains all unregulated genes and enzymes
and additionally Lacex. In Org. 2, only Glyex is added as in the previous cases. Or-
ganization Org. 3 contains the species of the smallest organization, all species nec-
essary for taking up and metabolizing external lactose, and the species belonging to
the metabolism. Being an organization, the network composed of all these species is
algebraically closed and self-maintaining, representing a cell that has switched its lac
genes on and utilizes external lactose. Fig. 10.2(a) details schematically how Org. 1
is expanded to form Org. 3. Once inducer allolactose is present, the lac genes are
switched on and LacY and LacZ are synthesized. LacY facilitates the uptake of exter-
nal lactose while LacZ transforms intracellular lactose and allolactose to glucose and
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Fig. 10.2. Induction of sugar uptake systems. When lactose or glycerol is the exclusive carbon
source, organization Org. 1 corresponds to the state in which the respective uptake systems are
not activated and the bacterium is starving (upper part). In organization Org. 3, the systems
are induced and the external sugar is utilized. A schematic sketch of the reaction network of
organization Org. 3 responsible for utilization of (a) external lactose and (b) external glycerol
is shown. Open arrows point from species acting as catalysts to the reactions that are catalyzed.
See text for details.

glucose-6-phosphate. Additionally, LacZ transforms lactose to allolactose, closing the
positive feedback loop. Glucose then enters the metabolic pathway leading to pyruvate
and further metabolic processes. Adding Glyex to Org. 3 results in the largest organi-
zation Org. 4. This scenario shows that bacterial growth is possible on lactose as the
only carbon source after induction of the lactose uptake system (in Org. 3 and 4).

Growth on glycerol. Now glycerol is provided as the exclusive carbon source. The re-
sulting hierarchy of organizations is visualized in Fig. 10.1(d). The result is equivalent
to the lactose scenario. The smallest organization Org. 1 contains the unconditionally
transcribed genes and resulting enzymes, and external glycerol. Organization Org. 3
additionally contains the molecular species necessary for utilizing external glycerol
and the metabolism species. Fig. 10.2(b) shows how this organization is formed by
expanding Org. 1. Once inducer G3P is present, the genes corresponding to glycerol
utilization are switched on and GlpF, GlpK, and GlpD are synthesized. GlpF then en-
ables uptake of external glycerol, GlpK transforms internal glycerol to G3P closing the
positive feedback loop, and GlpD transforms G3P to DHAP, which in turn fuels the
pathway ending in pyruvate and further metabolic processes. Adding Lacex to this or-
ganization leads to the largest organization Org. 4. Again we find that once the uptake
system for the external sugar is induced, the cell can maintain its metabolism in Org. 3
and 4.

Growth on all sugars. In the last scenario, all three external sugars are supplied as
input simultaneously. Figure 10.1(e) depicts the resulting hierarchy of organizations.
With external glucose being input, the smallest organization resembles the smallest
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organization of the glucose scenario, with external lactose und glycerol added. Glucose
alone is sufficient for growth, hence the smallest organization already represents a state
in which the cell grows (on glucose). The two organizations above the smallest one
contain the species necessary for utilizing lactose (Org. 2) and glycerol (Org. 3). They
represent states in which the cell metabolizes lactose, respectively glycerol, in addition
to glucose. The largest organization Org. 4 finally merges Org. 2 and 3, containing all
species of the model. Here, all three sugars are metabolized simultaneously. From a
biological point of view, only organization 1 is meaningful since the uptake of lactose
and glycerol is repressed in the presence of glucose. The existence of the remaining
organizations will be discussed in the next section.

10.4 Discussion

In all five analyzed scenarios the hierarchy of organizations consists of four organi-
zations, representing four potential steady state species compositions of the system.
Some organizations just contain a lower organization and a new species that does not
interact with the species of the lower organization (e.g., Org. 2 and 3 in the starva-
tion scenario and in the glucose scenario). In other cases, exactly those species per-
forming a specific cellular function make up the difference between an organization
and its lower neighbor (cf. Org. 2 and 3 in the scenario with all sugars supplied). In
these cases a modularity of the analyzed network model is uncovered by organization
theory. In this example, the uncovered modules correspond to the inducible uptake
systems for lactose and glycerol. Only those organizations that contain the metabolic
species correspond to system states facilitating bacterial growth. As expected, such an
organization is not found in the scenario without any supplied sugar. For glucose as
the exclusive carbon source, all organizations contain the metabolites. For lactose and
glycerol, only those organizations contain the metabolites that also contain the species
of the respective uptake systems. This result confirms that glucose can be uncondi-
tionally utilized, while lactose and glycerol can only be utilized after their respective
uptake systems have been induced. The diauxic growth behavior of E. coli is not re-
vealed by the hierarchy of organizations. In the scenario with three sugars supplied as
input, organizations are found that correspond to states where glucose and other sugars
are utilized simultaneously. First, this highlights the fact that organizations only rep-
resent potential steady states of the system. Further kinetic information is required to
determine whether an organization indeed contains steady states or not. And second,
inhibitory interactions play a crucial role in diauxic growth, but had to be ignored in
the conversion of the original network model. Since inhibitory interactions in the orig-
inal network only decrease reaction rates, they in principle cannot be captured by the
theory of organizations in which only the presence or absence of molecular species is
considered.
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10.5 Conclusion

We have demonstrated how the theory of chemical organizations can be employed
to uncover modularity in intracellular reaction network models. The theory operates
on a high level of abstraction, as only the presence or absence of species is consid-
ered compared to the continuous state space considered in classic approaches. Conse-
quently, concentration-dependent interactions (e.g., nonessential activation of enzymes
or inhibitory interactions) cannot be taken into account. Nevertheless, profound results
can be obtained. Organizations represent potential steady state species compositions
of the model. The hierarchy of organizations, reflecting the structure of the network
model, provides a new perspective on the system and its potential dynamic behavior.
The movement of the system through state space can be mapped to a movement in
the space of its organizations [3], leading to a reduction in dimensionality. Organi-
zations, being closed and self-maintaining sub-networks, can be separately analyzed
using classic methods. Especially for large networks, analyzing small sub-networks is
more feasible than studying the whole network at once. With species in organizations
typically having more interactions among each other than with outside species, orga-
nizations can also be used for network visualization. By grouping species belonging
to one organization closely together, a clearer graphical representation of the whole
network can be achieved. Since only stoichiometry is required for the analysis, the
method can be applied to a broad range of network models ranging from chemical and
biochemical networks to social networks. The results presented in this chapter suggest
that the theory of organizations will be a helpful tool for studying and understanding
large-scale intracellular network models.
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Appendix A: List of Species

Species Names Substances

ATP, ADP, AMP, cAMP ATP, ADP, AMP, and cyclic AMP
RNAP, Tscription RNA polymerase and RNAP bound to DNA
Crp, PromCrp, CrpmRNA catabolite repressor protein, gene, and mRNA
Cya, PromCya, CyamRNA adenylate cyclase, gene, and mRNA
EIIA, PromEIIA, EIIAmRNA PTS system enzyme IIAGlc, gene, and mRNA
EIIAP phosphorylated PTS system enzyme IIAGlc

EIIBC, PromEIIBC, PTS system enzyme IIBCGlc, gene, and mRNA
EIIBCmRNA

EI, PromEI, EImRNA PTS system enzyme I, gene, and mRNA
Fbp, PromFbp, FbpmRNA fructose bisphosphatase, gene, and mRNA
Fda, PromFda, FdamRNA fructose bisphosphate aldolase, gene, and mRNA
Gap, PromGap, GapmRNA glyceraldehyde-3-phosphate dehydrogenase, gene,

and mRNA
GlcT, PromGlcT, GlcTmRNA glucose transporter, gene, and mRNA
Glk, PromGlk, GlkmRNA glucokinase, gene, and mRNA
GlpD, PromGlpD, GlpDmRNA glycerol-3-phosphate dehydrogenase, gene, and

mRNA
GlpFKmRNA, GlpFKmRNA1 glpFK operon mRNA
GlpR, PromGlpR, GlpRmRNA glp regulon repressor, gene, and mRNA
Gpm, PromGpm, GpmmRNA phosphoglycerate mutase, gene, and mRNA
HPr, PromHPr, HPrmRNA PTS system HPr protein, gene, and mRNA
HPrP phosphorylated PTS system HPr protein
LacI, PromLacI, LacImRNA lac operon repressor, gene, and mRNA
LacZYmRNA, LacZYmRNA1 lac operon mRNA
Pfk, PromPfk, PfkmRNA phosphofructokinase, gene, and mRNA
Pgi, PromPgi, PgimRNA phosphoglucose isomerase, gene, and mRNA
Pyk, PromPyk, PykmRNA pyruvate kinase, gene, and mRNA
Tpi, PromTpi, TpimRNA triose phosphate isomerase, gene, and mRNA
PromGlpFK, GlpF, GlpK glpFK operon, glycerol faciliator, and kinase
PromLacZY, LacZ, LacY lac operon, β-galactosidase, and lactose permease
Glcex, Glyex, Lacex extracellular glucose, glycerol, and lactose
Glc, Gly, Lac intracellular glucose, glycerol, and lactose
Allo Allolactose
Glc6P glucose-6-phoshpate
G3P glycerol-3-phosphate
Fru6P fructose-6-phosphate
FBP fructose-1,6-bisphosphate
DHAP dihydroxyacetone phosphate
T3P glyceraldehyde-3-phosphate
3PG 3-phospho-glycerate
PEP phosphoenolopyruvate
Pyr pyruvate
Metabolism further metabolic processes
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Appendix B: Reaction Network

1. Synthesis and decay is identical for species Crp, Cya, EIIA, EIIBC, EI, Fbp, Fda,
Gap, GlcT, Glk, GlpR, Gpm, HPr, LacI, Pfk, Pgi, Pyk, and Tpi:

RNAP + PromSpecies → Tscription + PromSpecies + SpeciesmRNA
SpeciesmRNA → SpeciesmRNA + Species
SpeciesmRNA → ∅

Species → ∅
2. Synthesis and decay of inducible species LacZY, GlpFK, and GlpD:

RNAP + PromLacZY +
Allo + Crp + cAMP → Tscription + PromLacZY +

LacZYmRNA + Allo + Crp + cAMP
LacZYmRNA → LacZYmRNA1 + LacZ

LacZYmRNA1 → LacZYmRNA + LacY
LacZYmRNA → ∅

LacZYmRNA1 → ∅
LacZ → ∅
LacY → ∅

RNAP + PromGlpFK +
G3P + Crp + cAMP → Tscription + PromGlpFK +

GlpFKmRNA + G3P + Crp + cAMP
GlpFKmRNA → GlpFKmRNA1 + GlpF

GlpFKmRNA1 → GlpFKmRNA + GlpK
GlpFKmRNA → ∅

GlpFKmRNA1 → ∅
GlpF → ∅
GlpK → ∅

RNAP + PromGlpD +
G3P + Crp + cAMP → Tscription + PromGlpD +

GlpDmRNA + G3P + Crp + cAMP
GlpDmRNA → GlpDmRNA + GlpD
GlpDmRNA → ∅

GlpD → ∅
3. Unbinding of RNAP:

Tscription → RNAP

4. Signal transduction, transport, and metabolic reactions:
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ATP + Cya → cAMP + Cya
PEP + EI + HPr → Pyr + EI + HPrP
Pyr + EI + HPrP → PEP + EI + HPr

EIIA + HPrP → EIIAP + HPr
EIIAP + HPr → EIIA + HPrP

Glcex + EIIAP + EIIBC → Glc6P + EIIA + EIIBC
Glc + EIIAP + EIIBC → Glc6P + EIIA + EIIBC

Glcex + GlcT → Glc + GlcT
Lacex + LacY → Lac + LacY

Lac + LacZ → Allo + LacZ
Lac + LacZ → Glc + Glc6P + LacZ

Allo + LacZ → Glc + Glc6P + LacZ
Glc + Glk → Glc6P + Glk

Glc6P + Pgi → Fru6P + Pgi
Fru6P + Pgi → Glc6P + Pgi
Fru6P + Fbp → FBP + Fbp

FBP + Fbp → Fru6P + Fbp
Fru6P + Pfk → FBP + Pfk

FBP + Fda → T3P + DHAP + Fda
T3P + DHAP + Fda → FBP + Fda

Glyex + GlpF → Gly + GlpF
Gly + GlpF → Glyex + GlpF
Gly + GlpK → G3P + GlpK

G3P + GlpD → DHAP + GlpD
DHAP + Tpi → T3P + Tpi

T3P + Tpi → DHAP + Tpi
T3P + Gap → 3PG + Gap
3PG + Gap → T3P + Gap

3PG + Gpm → PEP + Gpm
PEP + Gpm → 3PG + Gpm

PEP + FBP + Pyk → Pyr + FBP + Pyk
Pyr → Metabolism

5. Decay reactions for species ATP, ADP, AMP, cAMP, EIIAP, HPrP, Glc, Gly, Lac,
Allo, Glc6P, G3P, Fru6P, FBP, DHAP, T3P, 3PG, PEP, Pyr, and Metabolism have the
form:

Species → ∅
6. Input reactions for ATP, ADP, AMP, RNAP, PromCrp, PromCya, PromEIIA,
PromEIIBC, PromEI, PromFbp, PromFda, PromGap, PromGlcT, PromGlk,
PromGlpD, PromGlpR, PromGpm, PromHPr, PromLacI, PromPfk, PromPgi,
PromPyk, PromTpi, PromGlpFK, and PromLacZY have the form:

∅ → Species
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Summary. A transition network (TN) is a graph-theoretical concept describing the transitions
between (meta)stable states of dynamical systems. Here, we review methods to generate and
analyze a TN for molecular systems. The appropriate identification of states and transitions from
the potential energy surface of the molecule is discussed. We describe a formalism transforming
a TN on a static energy surface into a time-dependent dynamic TN that yields the population
probabilities for each system state and the interstate transition rates. Three analysis methods
that help in understanding the dynamics of the molecular system based on the TN are discussed:
(1) Disconnectivity graphs allow important features of the energy surface captured in a static
TN to be visualized, (2) graph-theoretical methods enable the computation of the best transition
paths between two predefined states of the TN, and (3) statistical methods from complex network
analysis identify important features of the TN topology. A broad review of the literature is given,
and some open research directions are discussed.

Key words: AU: Please provide keywords.

11.1 Introduction

Complex dynamical systems with many degrees of freedom are ubiquitous. Exam-
ples include climate systems, stock markets and condensed-phase molecular systems,
among which biomolecules such as polypeptides, nucleic acids or proteins are of par-
ticular interest. The immense number of possible states and state transitions pose a
challenge to the simulation of these systems [1–3]. However, the qualitative and quan-
titative analysis of transitions between stable states is at the heart of understanding
their dynamics [4–7]. Here, we review some of the state-of-the-art methods related to
transition networks, which pursue exactly this goal. Transition networks (TNs) can in
principle be used to model the kinetic behavior of any dynamical system that can be
appropriately described by a (possibly large) number of states and interstate transition
rules. However, we will concentrate on molecular systems in this chapter.

Molecular dynamical systems are often modeled using a potential energy func-
tion Epot(x) : R

D → R, which depends on a system configuration, or state vector x
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(here: the atomic coordinates, D is the number of degrees of freedom of the system,
in general each atom has three degrees of freedom). Dynamical trajectories typically
reside most of the time within the energy basins of Epot(x) and occasionally jump
to neighboring basins [8]. The dynamics of the system can be simulated by numeri-
cally integrating the equations of motion involved. For stability, the integration time
step must not exceed a value that depends on the fastest motions in the system and
is often many orders of magnitude below the timescale during which the transitions
of interest occur [9]. Larger steps are possible in Monte Carlo simulations, but lead
to a considerable reduction of the acceptance ratio [10]. These difficulties often lead
to an insufficient number (if any) of occurrences of the transitions being investigated.
Despite considerable progress in enhancing sampling methods [9, 11], this sampling
problem is still the main obstacle to using direct simulation methods for the character-
ization of rare transitions.

An alternative approach to exploring Epot(x) directly is to “map” its interesting
features into a TN. Formally, a TN is a weighted graph, G, whose definition involves
a list of vertices, V , representing the stable, low-energy states of the molecule, and
a list of edges, E , specifying between which pairs of states direct sub-transitions are
considered. The construction of TNs is documented in a large number of studies [1,5–
7, 12–29].

Here, we distinguish between static and dynamic TNs. Static TNs describe features
of the potential energy surface Epot(x) and their network weights correspond to ener-
gies of stable states and transition states. Dynamic TNs are time dependent and give,
for each time t , the residence probabilities of the TN vertices and the transition rates
associated with the TN edges.

The general goal of molecular simulation is to compute some system properties
which are, in general, global (i.e., they arise from the collective interplay of the micro-
scopic interaction rules), such as the most dominant pathway for a transition between
two defined system states or the mean time required for this transition. Fig. 11.1 il-
lustrates how the present TN approach is related to other approaches of molecular
simulation. The common procedure for this is to compute the system dynamics (e.g.,
classical) based on the potential energy surface, giving rise to a time series (a trajectory
through configurational space) and distributions (e.g., a configurational state density).
Statistical mechanics is used to calculate the desired global system properties [30]. In
the approach described here, one samples the potential energy surface and represents
its features in a static TN. From this, a dynamic TN is generated using either equi-
librium statistical mechanics (equilibrium case) or a master-equation approach (non-
equilibrium case). Using graph theory paired with statistical mechanics allows global
system properties to be derived from the dynamic TN. A dynamic TN can also be
derived from time series obtained by computing the system dynamics [31, 32].

This chapter is organized as follows: Sect. 11.2 describes how static TN energies
can be obtained. How to obtain the residence probabilities and transition rates involved
in a dynamic TN is described in Sect. 11.3. Sect. 11.4 concentrates on the analysis of
either a static or dynamic TN.
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Fig. 11.1. Illustration of the relationship of the TN approach described in this chapter (solid
arrows) to other molecular simulation approaches (dashed arrows).

11.2 Static Transition Networks

A static TN is formally defined by the weighted graph G = (V, XS, ES, E, XT S, ET S).
V = (1, . . . , |V|) is the list of vertices, representing the stable system states. XS =
(xS

1 , . . . , xS
|V |) are the corresponding configuration vectors, and ES = (E S

1 , . . . , E S
|V |)

are corresponding state energies. The list of edges, E = ((u, v), . . . , (w, y)), specifies
between which pairs of vertices a direct transition is considered. XT S =(xT S

uv , . . . , xT S
wy )

are the configuration vectors of the corresponding transition states and ET S = (ET S
uv ,

. . . , ET S
wy ) are the associated transition state energies.

Each TN vertex, v, corresponds to a region Rv of the configurational space, con-
taining a group of geometrically similar molecular configurations. What is appropriate
as a definition of “group” depends on the application. For the present discussion, each
given vertex v corresponds to an attraction basin, i.e., the set of configurations that can
be mapped to the same local minimum xS

v by a direct minimization [1,4]. Each vertex,
v, is associated with a state energy E S

v .
Each given edge, (u, v), representing the sub-transitions between a pair of neigh-

boring vertices, is associated with the configuration of the transition state structure
xT S

uv . xT S
uv can, e.g., be taken as the rate-limiting first-order saddle point on the mini-

mum energy path (MEP) between xS
u and xS

v (see Sect. 11.2.1). The energy ET S
uv is the

transition state energy associated with the edge, so that �ET S
uv = ET S

uv − Eu yields the
energy barrier for the transition u → v.



124 F. Noé and J.C. Smith

Fig. 11.2. Static TN on a schematic two-dimensional energy surface. The network vertices
(white bullets) correspond to low-energy intermediates between the reactant and product end
states of the transition (black bullets). The network edges (white lines) correspond to sub-
transitions between the vertices and are associated with the rate-limiting barrier energies along
the sub-transitions (white numbers).

Fig. 11.2 shows a schematic representation of a static TN.
Ideally, E S

v corresponds to the free energy of region R, E S
v = �Gv = Gv − G0,

relative to some arbitrary reference energy G0. The edge energy ET S
uv should likewise

correspond to the relative free energy of the transition state ET S
uv = �Guv = Guv−G0.

According to the first law of thermodynamics, free energy differences can be expressed
as

�G = �Epot + �Ekin + �(pV ) − T �S, (11.1)

where Epot is the potential energy, Ekin is the kinetic energy, p is the pressure, V
is the volume, T is the temperature and S is the entropy. In liquid and solid systems
and at low pressure, the pressure-volume product is nearly constant (�(pV ) ≈ 0) [33].
Also, if the temperature and the number of particles are constant (canonical ensemble),
�Ekin = 0, on average. Thus,

�G ≈ �Epot − T �S. (11.2)

Accurate free energies are required for the static TN to derive reliable dynamic TN
weights from these. Given current methodological and computational shortcomings,
however, the calculation of reliable free energies is difficult, often even impossible.
We therefore need to consider several levels of approximation:

1. Constant-entropy approximation: Entropic changes are assumed to be negligible
(�S ≈ 0), and thus �G ≈ �Epot.

2. Harmonic approximation: A harmonic expansion around the minima and transi-
tion states is used to estimate free energy differences: �G ≈ �U − T �Sharm.

3. Free energy differences �G are computed.
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11.2.1 Constant-Entropy Approximation

In the constant-entropy approximation, we assume that the regions of configurational
space corresponding to the different vertices are of approximately similar size and
shape. We furthermore assume the transitions between them to lead through narrow
reaction channels such that the transition pathways are well defined. Following these
assumptions, energy differences are dominated by enthalpic contributions, while the
entropic contributions are comparatively small. Here, we set �S = 0 in Eq. 11.2,
which gives �G ≈ �Epot. The approximation is useful for systems with few degrees
of freedom, having well-defined structures separated by high energy barriers, or which
are studied at low temperatures. Biomolecules in physiological conditions (aqueous
solvent, T > 300 K) do not in general satisfy these conditions. For the dynamics of
biomolecules, this approximation disables any quantitative accuracy on the level of a
dynamic TN. The benefit of this approximation, however, is that the associated theory
is very mature and it is always feasible to obtain potential energy differences �Epot
even for very large and complex systems. Even if the constant-entropy approxima-
tion is used for the analyzed system (protein or peptide), the important free energy
contributions from the bulk solvent can be accounted for by incorporating continuum
solvent methods (such as Poisson–Boltzmann [34] or generalized Born [35–37]), so
that Epot(x) actually becomes a mixed potential/free energy function.

Determination of the vertex energies Eu is relatively easy as it simply requires a
local optimization of Epot(xu) starting from some initial point xu,0. The selection of
these initial points is sometimes not trivial, depending on the nature of the molecular
system and the process analyzed. Strategies to efficiently generate an ensemble of
initial points for complex rearrangements in proteins are given in Ref. [38].

The edge energy Euv is given the value of the rate-limiting saddle point of the
reaction channel connecting u and v. For this, we define a pathway of “least effort,” i.e.,
one that can be accessed with a minimum amount of energy. Such a minimum energy
path (MEP) is a continuous path z(λ) connecting xu and xv (z(0) = xu , z(1) = xv ,
λ ∈ [0, 1]), satisfying the following criteria:

1. ∇Epot(z(λ))|⊥ = 0 ∀ λ ∈ [0, 1], i.e., the gradient orthogonal to the path tangent is
zero everywhere along the path.

2. H(z(λ))|⊥ is positive definite ∀ λ ∈ [0, 1], i.e., the Hessian matrix at each path
point, formulated in the subspace orthogonal to the path tangent, has only positive
eigenvalues. Therefore, all path points have a minimum of potential energy in all
directions except the path tangent.

All local energy maxima along the MEP are first-order saddle points on Epot(x)

[39]. The highest-energy saddle point gives the transition state structure and the edge
energy Euv .

The MEP can be computed with the conjugate peak refinement (CPR) method [40].
In contrast to other MEP methods, such as self-penalty walk [41], nudged elastic band
(NEB) [42] or the string method [43], CPR automatically finds all saddle points along
the path to a desired accuracy. The algorithm does not evaluate second derivatives, but
uses only the energy (which must be continuous) and its gradient.



126 F. Noé and J.C. Smith

11.2.2 Harmonic Approximation

In the vicinity of the stationary points (minima and saddle points), the energy surface
can be approximated by a quadratic expansion. This assumes that the anharmonic por-
tions of the energy surface (if any) are not sampled. The assumption is reasonable for
local rearrangements in many solid state systems such as crystals, for most systems
in the gas phase and for temperatures below the dynamical transition temperature that
occurs in the range of 180 to 220 K [44]. For small peptides where all basins can
be mapped, it has been shown that free energies calculated from harmonic approx-
imations to the potential in each basin are able to reproduce some thermodynamic
properties [25,26] even at higher temperatures, but a detailed evaluation remains to be
performed. It is commonly accepted that proteins in aqueous solvent at physiological
temperatures exhibit highly anharmonic behavior (Sect. 11.2.1) [45].

The application of the harmonic approximation is straightforward. Given a station-
ary point (minimum or saddle point), the vibrational frequencies can be obtained as
the positive eigenvalues of a normal-mode analysis [46]. As the main contribution to
entropy is given by the lowest-frequency motions, a full diagonalization of the Hessian
matrix is often not necessary, so that a harmonic analysis can be conducted for very
large systems [47].

Given the vibrational frequencies, or eigenvalues of the mass-weighted Hessian, νi ,
corresponding to the eigenvector representing the vibrational motion i , the (classical)
vibrational entropy can be computed [33] as

Sharm ≈ kB ln
D∏

i=1

kB T
hνi

, (11.3)

where kB and h are the Boltzmann and Planck constants, respectively, and T is the
temperature. The vertex energies Eu , in the harmonic approximation are given by sub-
stituting Sharm into Eq. (11.2):

Eu = Epot(xu) − kB T ln
D∏

i=1

kB T
hνu,i

.

To obtain the edge energy we compute the harmonic expansion at the rate-limiting
saddle point of the MEP (see Sect. 11.2.1), where only the D − 1 positive eigenvalues
are considered. We obtain

Euv = Epot(xub) − kB T ln
D∏

i=2

kB T
hνuv,i

.

11.2.3 Free Energies

Both approximations given above are generally not quantitatively valid for biomole-
cules in aqueous solution at physiological temperature. The dynamics of these systems
often involves considerable changes in entropy and is not restricted to the harmonic
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regime near the energy minima. A rigorous treatment requires that the vertex energy
Eu is determined as the free energy of the vertex region Ru , and the edge energy Euv

as the free energy of the boundary region between Ru and Rv , Ruv .
Free energy calculation methods, such as free energy perturbation or thermody-

namic integration [30], attempt to compute free energy differences �Guv = Gv − Gu
between two thermodynamic states of the system by slowly changing one state into
the other. Free energy barriers of transitions �Guv = Guv − Gu can be obtained with
the umbrella sampling method [48, 49]. As any vertex u can serve as a reference point
with Gu = 0, the static TN energies can be determined from free energy differences.

Two practical problems exist with this approach. First, it must be assured that free
energy calculations are confined to the regions Ru, Rv and to the reaction channel
between them. Furthermore, free energy calculations on large systems such as proteins
typically face the problem that convergence of the entropic contribution to free energy
is very difficult to achieve. These problems are a major limitation in the applicability
of TN at present.

11.3 Dynamic Transition Networks

Dynamic TNs describe the thermodynamics and the kinetics of the system. For-
mally, a dynamic TN is a weighted graph with time-dependent weights Gdyn(t) =
(V, XS, p(t), E, XT S, K(t)). The vertex and edge list, V and E , and the state and tran-
sition state configurations, XS and XT S , have already been defined in Sect. 11.2. The
list of vertex weights, p(t) = (p0(t), . . . , p|V |(t)), is of size |V| and assigns to each
vertex a probability of finding the system in this state at time t . The list of edge weights,
K(t) = (Kuv(t), . . . , Kwy(t)) specifies a transition rate, or flux, i.e., the number of in-
dividual transitions per time unit, for each edge at time t .

Given that the individual sub-transitions are sufficiently simple (i.e., they are char-
acterized by a single dominant barrier) and the energy barrier is significantly higher
than the thermal energy, kB T (approximately 0.6 kcal/mol at T = 300 K), the rate
Kuv(t) can be expressed by a time-independent rate constant kuv and the probability
pu(t) [50]:

Kuv(t) = kuv pu(t). (11.4)

11.3.1 Rate Constants kuv Obtained with Transition State Theory

The rate constant, kuv , captures the kinetic properties of the transition u → v, such as
the height and the form of the energy barrier. Here we summarize the main results from
transition state theory (TST) which can be used to determine kuv . TST applies when the
energy barrier between states u and v is significantly higher than the thermal energy
kB T and the motions orthogonal to the direction of the reaction u → v equilibrate
much faster than the motion along this direction. A detailed treatment of TST is given
in [51]. Using what is called the phenomenological form of the TST rate constant law,
we obtain
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kuv = kB T
h

exp
(

− ET S
uv − E S

u
kB T

)
. (11.5)

11.3.2 Time Evolution of the Dynamic TN Gdyn(t)

When all rate constants kuv are given and an initial vertex probability distribution,
p(t = 0), is specified, the time evolution of the dynamic TN Gdyn(t) can be specified
for all times t by using a dynamic model which propagates the vertex probabilities
over time. A common way to do this is to employ the master equation [52]. The master
equation is a loss-gain equation which describes the time evolution for the probability
pu(t) of finding the system in state u:

dpu(t)
dt

=
∑

v

[kvu pv − kuv pu], (11.6)

where the sum runs over all vertices v which are connected with vertex u. By inte-
grating Eq. (11.6) for all vertices over time, one obtains the kinetics of relaxing the
vertex probabilities from the initial distribution towards the equilibrium distribution.
The master equation has been used to obtain the kinetics in various reaction and folding
studies [6, 13, 16, 19–23, 25, 26, 28, 29].

As illustrated in Fig. 11.1, the dynamic TN Gdyn(t) can also be obtained without
any static TN. In Ref. [32], long-time molecular dynamics trajectories of a 20-residue
peptide were mapped on a predefined lattice of backbone dihedral angle ranges. A
TN vertex, u, was defined for each lattice cell that was visited during the dynamics
and obtained a corresponding statistical weight, pu . A TN edge, (u, v), was defined if
the transition u → v or u → v occurred during the dynamical trajectories. Another
approach based on molecular dynamics trajectories is followed in Ref. [31], where a
hidden Markov model is generated from the trajectory. The model represents a dis-
crete set of metastable system states along with a transition matrix which yields the
pairwise transition probabilities between them. The route followed in both [31, 32]
has the advantage that an appropriate definition of system states and the connectivity
that is dynamically relevant can be identified from the dynamics. The difficulty with
this method is that an accurate TN can only be generated from a very long dynamical
trajectory, in which both the state probabilities and the transition probabilities have
converged. This is often difficult to obtain for large systems.

11.3.3 The Equilibrium Transition Network Geq
dyn

Of particular interest is the equilibrium dynamic TN, Geq
dyn = Gdyn(t → ∞), or the

stationary case. In equilibrium, both the vertex and edge weights are stable (they do
not change with time), and the edge weights are symmetric: Kuv = Kvu for all edges
(u, v). For this case, the dynamic TN weights, peq

u and K eq
uv , can be directly computed

from the static TN energies.
The equilibrium probability, peq

u , equals the fraction of the partition function asso-
ciated with u [33]:
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peq
u = Zu

Z
=

exp
(
− Eu

kB T

)
∑

v∈V exp
(
− Ev

kB T

) . (11.7)

The equilibrium rate, K eq
uv , can be computed by combining Eq. (11.5) with Eqs.

(11.7) and (11.4):

K eq
uv = kB T

h Z
exp

(−Eu

kB T

)
exp

(
− Euv − Eu

kB T

)
= kB T

h Z
exp

(
− Euv

kB T

)
. (11.8)

The quality of both peq
u and K eq

uv depends on which level of accuracy is used to compute
the static TN energies (Sect. 11.2).

11.4 Transition Network Analysis

11.4.1 Topographic Information via Disconnectivity Graphs

A TN contains information on the topography of the energy surface. A common way to
visualize this information is the disconnectivity graph [12, 16] or decoy tree [53]. Fig.
11.3 shows some archetypal energy landscapes with their corresponding disconnec-
tivity graphs. Each node in the graph represents a super-basin of the energy surface,
defined as the set of local minima connected by barriers not higher than the energy
level at which the node is situated. Thus, the single node at the top of the graph repre-
sents the full energy surface and gives the energy at which all its individual basins are
connected. At lower energy levels, the graph splits into more local basins. The lines
stretching downward from the nodes extend to the energy of individual conformations.
The horizontal dimension is not quantitative (it does not correspond to any conforma-
tional coordinate) and is chosen so as to yield a good visualization of the connectivity.

A system which rapidly and reliably relaxes into a well-defined minimum (such
as fast-folding peptides or proteins) is characterized by a steep and smooth funnel on

Fig. 11.3. Archetypal energy surfaces (gray) and the corresponding disconnectivity graphs
(black). The energy increases from below to above. (a) A steep folding funnel with a well-
defined energy minimum. (b) A less steep folding funnel with considerable roughness on the
energy surface, leading to slower folding times. (c) An energy surface with two major compet-
ing energy minima.
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the energy surface and a narrow and deep disconnectivity graph (Fig. 11.3a). A slow-
down of the relaxation can be caused by a widening of the funnel, which is shown by a
larger amount of side branches in the disconnectivity graph, or by an increased amount
of roughness on the energy surface, shown by deeper side branches (Fig. 11.3b). As
shown in Refs. [17, 20], peptides with conformational constraints like charged ter-
mini and cyclic closure of the backbone have energy surfaces with multiple competing
basins (Fig. 11.3c). Such a topography is also expected for energy surfaces of proteins
undergoing conformational change between metastable states, such as the quaternary
rearrangement of the hemoglobin tetramer upon oxygen binding [54], the lever-arm
motion in myosin during muscle contraction [55] and the molecular switch in Ras p21
that signals cell division [56–58].

In a disconnectivity graph, the lowest-energy node which connects a pair of confor-
mations gives an upper bound to the rate-limiting energy barriers of a transition path-
way between these conformations. The full information on the lowest-energy transition
pathways, however, can be obtained by a graph-theoretical analysis of the TN.

11.4.2 Best Transition Paths via Graph Theory

In order to employ graph-theoretical algorithms to compute best paths, we first need
edge costs which are additive. In contrast to energies or rates, the mean passage time
τ is an additive quantity. For a given transition, the mean passage time is simply the
inverse of the rate:

τ = K −1. (11.9)

Using the equilibrium rate law in the form of Eq. 11.8, and setting the constant
h Z/kB T to unity, we can define the edge costs cuv as being equal to the inverse Boltz-
mann weight of the edge energies:

cuv = exp
(

Euv

kB T

)
. (11.10)

The best path connecting vertices v1 = vR and vm = vP via a series of m vertices,
P = (v1, v2, . . . , vm), traveling over edges ((v1, v2), . . . , (vm−1, vm)), is defined here
as that which minimizes the cumulative edge costs

C(P) =
m−1∑
k=1

cvkvk+1 . (11.11)

This definition of a best path is similar to the notion of the path with the “maximum
flux” or “minimum resistance,” as given in Refs. [59, 60]. As for the exponential de-
pendence of the cost on the energy (see Eq. (11.10)), the best path tends to be one that
minimizes the highest energy barrier along it. To determine the best path in practice,
the edge energy vector ET S is transformed into a cost vector c using Eq. (11.10). c
has size |E | and assigns a cost cuv to each edge (u, v) in E . Subsequently, the Dijkstra
algorithm [61] is used to identify a best path between the two end states through the
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weighted network defined by (V, E, c). This path minimizes the path cost C(P) given
in Eq. 11.11.

This best path furnishes a preliminary understanding of the transition [58], and it
may be used as a guess for a reaction coordinate for free energy calculations [45], or
as a starting point for discrete path sampling [62]. However, it dominates the transition
only if the barriers of alternative pathways are considerably higher. To obtain an idea
of the multitude of accessible pathways, it is useful to determine the set of k different
pathways, (P1, P2, . . . , Pk), with the best (i.e., lowest) costs (C1 ≤ C2 ≤ · · · ≤ Ck)
[63]. Best transition pathways in this sense have been computed for transitions in n-
butane [64], for transitions between the αL , β and αR states in polyalanine [65] and
for the molecular switch in the Ras p21 protein [38].

11.4.3 Topological Properties via Complex Network Analysis

As a last point, we address the statistical analysis of the TN topology, i.e., the way
its conformational sub-states are connected. Although seemingly obvious, this kind of
information is of particular interest as it allows the TN to be put into the more general
context of the field of complex networks network analysis, in which there has been a
surge of interest during recent years [66].

Of particular interest here is the vertex degree ρ(u), i.e., the number of neighbors
for vertex u, as well as the degree distribution of the network, p(ρ) , which gives the
probability of finding a vertex with ρ neighbors. The degree distribution is interest-
ing because networks can be characterized by the functional form of this distribution.
While random networks [67] are characterized by a Poisson degree distribution, many
real-world networks have a scale-free degree distribution [66,68–71]. A distribution is
called scale-free if it follows a power law, i.e.,

p(ρ) ∝ ρ−γ ,

which decays much slower than the Poisson distribution (double exponential decay
beyond the maximum) and also slower than a single exponential decay. This means that
there is a relatively high chance to find several hubs, i.e., highly connected vertices in
the network. TNs for both atomic clusters [72] and a peptide [32] have been shown to
have a scale-free degree distribution. In both cases it turned out that the lowest-energy
structures tend to correspond to vertices with a high degree value. It may thus be a
general property of molecular energy surfaces that the low energy minima are densely
connected to neighboring conformational sub-states.

Another interesting network property which seems to be almost ubiquitous is the
small-world property [73]. This property is related to the average path length, i.e.,
the length of the shortest path between a pair of vertices, averaged over all pairs of
vertices in the network. Originally, small-world behavior was defined such that on
growing the network by adding new vertices to it, the average path length grows as
∝ ln(|V|) [74]. Since then, the term was used in a more qualitative sense, meaning
that even for a very large network, any pair of vertices can be connected by a small
number of elementary transitions. Both TNs for atomic clusters [72] and a peptide
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[32] have been shown to have the small-world property. Unlike the original model
of small-world networks [73], this property cannot be explained by the presence of
edges of arbitrary length, because in TNs, direct transitions can only occur between
conformations which are neighbors in conformational space. The small-world property
of TN may thus be a result of the high dimensionality of conformational space and the
presence of a few highly connected conformations which can be accessed from many
vertices in the network. However, a satisfactory answer to this question remains to be
given.

11.5 Applications

For small reaction systems it has long been common to compute TNs between minima
obtained from initial structures modeled through “chemical intuition.” Another class
of systems where TNs have been widely used is that of atom clusters, see, e.g., [14,
15, 27, 75, 76] and references therein. In clusters, the number of stationary points may
be immense, even for a relatively small number of particles. This is due to the lack of
constraints (e.g., covalent bonds) which would limit the ability to recombine and thus
limit combinatorial explosion. Nevertheless, clusters relax to their global minimum
at low temperatures relatively fast because this global minimum is well connected
with the rest of the network and can be reached from any other minimum by a short
sequence of barriers [72]. For the same reason, it is feasible to identify the global
minimum in simulations using a network-based search.

The generation of TNs for polypeptides is arguably more demanding because of
the heterogeneous structure of these systems. Consequently, the different applications
on biomolecules exhibit a wide spectrum of simulation techniques used to generate
the different conformations which serve as TN vertices. The first comprehensive TN
of a biomolecule, a tetraalanine, was presented in Ref. [12]. Here, minimum energy
paths were used to identify saddle points and intermediate minima between pairs of
already-available minima until no new minima could be identified. In later studies of
the same system [13, 16], its relaxation dynamics was studied using master equations,
and grouping of minima into fast-equilibrating clusters was considered. The effects of
conformational constraints on the energy landscape and folding kinetics of a peptide
were studied in detail [17, 21, 77]. There, the TN vertices were generated by minimiz-
ing structures from high-temperature molecular dynamics simulations. Refs. [19, 23]
present very large TNs of polyalanines which were generated by an iterative search
following the eigenvalues starting from a set of initially modeled minima (EV follow-
ing). These studies focused on a network-based minimization of the systems under
consideration and the topography of the energy surface depending on the solvent envi-
ronment.

Recent publications have reported on free energy TNs. In [26] discrete path sam-
pling (DPS) was used to identify minima and saddle points for Met-enkephalin and
their free energies were estimated using a harmonic expansion around the stationary
points. A similar study of the much larger GB1 hairpin system was reported in [28].
A similar-sized system, the second β-hairpin of protein G, was studied in Ref. [78]
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Table 11.1. Comparison of some landmark TN calculations.

System Atoms Sampling Enera |V|b |E |c Year Refs

IAN 26 Reaction paths pot 138 490 1986 [12, 13]
LJ cluster 19 MD pot 299 461 1995 [6]

Ala6 64 MD pot 280 ≈ 20000 1998 [17, 20, 21]
Model protein 46 EV-following pot 500 805 1999 [18]
Morse cluster 14 EV-following pot 12760 54439 1999 [75]

Ala16 ≈ 170 EV-following pot ≈ 10000 ≈ 15000 2002 [23]
MET-enkephalin ≈ 50 DPS free 4100 8186 2003 [26]

GB1 hairpin ≈ 250 DPS free n/a n/a 2004 [28]
Protein G β hairpin ≈ 250 MD free 35377 83331 2004 [78]

Ras p21 ≈ 1800 Conformational pot 6242 47404 2006 [38]

aType of energies given for the network vertices and edges (potential or free).
bNumber of vertices.
cNumber of edges.

by a free energy TN generated from microsecond MD simulations. A disconnectivity
graph of the TN helped to identify multiple non-native folding funnels which were not
visible in previous energy surface representations for the same system.

In [18], the first TN of a model protein was presented, using eigenvector following
to identify the stationary points. The study examined the topology of the energy surface
and identified possible sources of frustration in the folding funnel. The TN for the
largest system considered yet was computed for the Ras p21 protein [38]. This network
was used to identify the mechanism for the conformational switch of the protein.

Table 11.1 compares some major works involving TN calculations.

11.6 Conclusions and Outlook

The concept of transition networks (TNs), which has attracted considerable interest in
recent years, sheds new light on some traditional problems of molecular simulation.
One particularly attractive property of TNs is that they form a platform that establishes
a communication between physico-chemical theories on the thermodynamics and ki-
netics of molecules on one side and computational disciplines such as graph theory
and complex network theory on the other.

The TN methodology has the potential to be applied to complex structural changes
in many peptides and proteins whose functional timescale and complexity precludes
the use of direct simulation. Pioneering works in this direction are the folding of the
GB1 hairpin [28] and the TN for the molecular switch in Ras p21 [38].

At present, a major limitation for TNs of such large systems is that their analysis is
qualitative rather than quantitative in nature. This is because the static TN is based on
either potential energies or free energies obtained through a harmonic approximation
(which is likely to be poor if only a subset of the energy basins can be captured in
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the TN). The reliable computation of free energies for sub-states of complex systems
such as proteins is an open problem of great interest in the physical chemistry com-
munity [30]. Here, the combination of free-energy calculation methods from statistical
mechanics with the TN concept may help to obtain accurate free energies for a small
number of interesting sub-states that can be defined and selected with the help of the
TN.

Finally, TNs may shed new light on the particular physical properties underlying
the dynamics of complex systems such as peptides or proteins. A concept that has
received considerable attention is that of the essential subspace of a biomolecule [79].
The essential subspace is the part of state space that is accessible to the molecule at
a given temperature. Available knowledge on the form, size and connectivity of that
space has been obtained either indirectly from interpreting experimental data, such as
relaxation times [80], or by analysis of molecular dynamics simulations [81], the latter
being limited by the sampling problem. TN approaches have the potential to fully
explore the essential subspace, so the analysis of TN is promising to answer exciting
questions concerning the form, topology and kinetics of the essential subspace. These
answers will help us not only to understand the physics of proteins but also to enhance
our ability to model and predict complex system dynamics in general.
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Summary. Pigmentation patterns in butterfly wings are one of the most spectacular and vivid
examples of pattern formation in biology. In this chapter, we devote our attention to the mech-
anisms for generating global patterns. We focus on the relationship between pattern forming
mechanisms for the fore- and hindwing patterns. Through mathematical modeling and compu-
tational analysis of Papilio dardanus and polytes, our results indicate that the patterns formed on
the forewing need not correlate to those of the hindwing in the sense that the formation mecha-
nism is the same for both patterns. The independence of pattern formation mechanisms means
that the coordination of unified patterns of fore- and hindwings is accidental. This is remarkable,
because from Oudemans’s principle [10], patterns appearing on the exposed surface of fore- and
hindwing at the natural resting position are often integrated to form a composite and unified
adaptive pattern with their surrounding environment.

Key words: Color pattern formation, global patterns, butterfly wing, Papilio dardanus, Papilio
polytes, reaction-diffusion, Gierer–Meinhardt.

12.1 Introduction

One of the most striking phenomena about wing color patterns is the close match be-
tween patterns of fore- and hindwing when wings are held at their resting position.
This phenomenon is known as the Oudemans principle [10]. The overall unified pat-
tern of both wings is usually explained through their functional significance, i.e., the
adaptation to the environment [8]. We have investigated color pattern formation of but-
terfly wings from a mathematical modeling point of view [7,9,14]. In this paper, using
Papilio dardanus and polytes as examples, we discuss the close match between fore-
and hindwing patterns from a mathematical modeling point of view. In the follow-
ing sections, we discuss butterfly wing color patterns focusing on: (i) current research
activities on wing color patterns, (ii) ground plan of global patterns, (iii) global pat-
tern of fore- and hindwing, (iv) Papilio dardanus and polytes as model butterflies, and
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Fig. 12.1. Local and global patterns: local eyespot patterns of the forewing of Mycalesis gotama
(left) and global patterns of fore- and hindwings of Luehdorfia japonica (right).

(v) mathematical modeling and numerical simulations on geometrically accurate wing
shapes. In Section 12.5 we conclude with a comparison of the pattern on the hindwing
with the forewing pattern.

12.2 Global and Local Patterns

Butterfly wings are composed of two monolayers (upper and lower) of epidermal cells
which are separated by an extracellular space. After pupation, a fraction of the epider-
mal cells on each wing surface differentiates into scale cells, which then arrange their
positions to form parallel rows in the proximal-distal direction of the wing [12, 13].
The colors on wings are due to the colors of scale cells that cover the entire wing sur-
face. Currently, there exist two different research directions on color pattern formation
(Fig. 12.1). The first one is that of localized patterns such as eyespot patterns. The sec-
ond one is of global patterns which cover the whole dorsal or ventral wing monolayer.
The best-understood mechanism of color pattern formation is that of local eyespot pat-
terns in which the spatial patterns of expressions of the gene Distal-less and several
other genes have been detected and examined [1, 2, 4, 5]. Little is known about genes
for global patterns except for a few cases such as the butterfly Papilio dardanus [3].
Our mathematical model is a reaction-diffusion model for global pattern formation,
which is analyzed mathematically and simulated computationally. Our research inter-
est in this chapter is concerned with global patterns of the fore- and hindwing which
we discuss below.

12.2.1 Ground Plan of Global Pattern

Global pigmentation patterns of butterfly wings are very complicated in structure and
are sometimes used for identification of butterfly species. When looking at global wing
patterns it is difficult sometimes to understand the rules governing diverse wing pat-
terns. However, because of the pioneering work of Schwanwitsch [11] and Süffert [16]
on the nymphalid ground plan, the complicated patterns on the wing can be understood
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as a composite of a small number of pattern elements. The ground plan is not really
a pattern existing in nature, but a hypothetical one from which a large number of real
wing patterns on the Nymphalidae butterflies could be generated by some organizing
principles such as dislocation of pattern elements along the veins [8].

12.2.2 Global Patterns of Fore- and Hindwings

A close match between global patterns on fore- and hindwings when these are held at
rest occurs on the dorsal sides of many species. It is usually assumed that dorsal pat-
terns have evolved independently from ventral patterns in the vast majority of species
and are adapted for a wide variety of functions. Oudemans pointed out that when a
butterfly settles to assume its natural resting position, patterns appearing on the ex-
posed surface of the fore- and hindwings, head, thorax, abdomen, and even the legs
are very often integrated to form a composite but unified pattern. This phenomenon
is generally known as Oudemans’s principle [10]. The integrated pattern of both the
fore- and hindwing is often suggested as evidence of a unified adaptive pattern just like
we see in Kallima inachus [8]. However, at the same time we find a mismatch between
patterns of fore- and hindwing on the ventral wing surface. For example, the integrated
pattern of living Lepidoptera fitted to Oudemans’s principle seems to break this match
when insects feed [15]. We are thus faced with the dilemma of having to interpret the
adaptive significance of the consistency and diversity of these patterns.

12.3 Papilio dardanus and Papilio polytes

In this chapter, we choose the Papilionidae butterflies Papilio dardanus and Papilio
polytes as model butterflies for mathematical analysis and computer simulation. We
briefly describe these two butterflies in the following subsections.

12.3.1 Papilio dardanus

A species of Papilio dardanus is widely distributed across sub-Saharan Africa and
is well known for the spectacular phenotypic polymorphism in females. The females
have evolved more than a dozen different wing color patterns of which several mimic
different species of unpalatable danaids, other butterflies and moths (Fig. 12.2). The
males, on the other hand, are monomorphic and strikingly different from the females,
exhibiting a characteristic yellow and black color pattern and tailed hindwing. The
female wing patterns look very complicated in their appearance and at first glance it
seems difficult to find an underlying logical relationship between the patterns even in
the single species. However, Nijhout [8] proposed the idea that the black color pattern
elements in the wing constitute the principal pattern elements, even though the back-
ground color attracts our attention most. The elements differ in size depending on the
mimetic form and this can have dramatic effects on the overall appearance of the pat-
tern. For this reason, our problem then simplifies to presenting a mechanism that can
account for only the black pattern elements (see Fig. 12.3).
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Fig. 12.2. Polymorphism in mimetic females of Papilio dardanus: trophonius (top left), cenea
(top right), planemoides (bottom left), and hippocoonides (bottom right).

12.3.2 Papilio polytes

A species of Papilio polytes is widely distributed across India and Southeast Asia in-
cluding the southern islands of Japan. Papilio polytes has monomorphic males and sev-
eral female forms. The male-like female is nonmimetic and resembles the male. Other
female forms are mimetic and mimic different species of unpalatable Aristolochia-
feeding swallowtail butterflies.

The forewing pattern of the male has a white band along the distal wing margin in
the entire black-colored wing. The hindwing pattern has a white band passing through

Fig. 12.3. Ground plan and the black pattern elements in mimetic forms of Papilio dardanus
(reproduced with permission of Fred Nijhout, Duke University).
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Fig. 12.4. Male and two different female forms of Papilio polytes with a typical unpalatable
swallowtail Pachliopta aristolochiae: male-like female of P. polytes (top left), a mimetic form
of P. polytes (top right), a male of P. polytes (bottom left), and a model Pachliopta aristolochiae
(bottom right).

the middle of the wing in the anterior-posterior direction which appears to link con-
tinuously to the forewing white band when both wings are held at rest. On the other
hand, a mimetic form shown in Fig. 12.4 has a different and characteristic hindwing
pattern in which the white band is shortened in the central area of the wing and red-
colored spots appear along the wing margin just like the model butterfly Pachliopta
aristolochiae (see Fig. 12.4).

12.4 A Reaction-Diffusion Model and Numerical Results

The model is based on the idea that a system of reacting and diffusing chemicals
could evolve from an initially uniform spatial distribution to concentration profiles
that vary spatially by what is called the diffusion-driven instability [17]. We solve the
non-dimensionalised reaction-diffusion system with Gierer–Meinhardt [6] reaction
kinetics

ut = γ

(
a − b u + u2

v (1 + k u2)

)
+ ∇2u, vt = γ

(
u2 − v

)
+ d ∇2v

using the finite element method [14] on fixed two-dimensional wing domains. Here
u(x, t) and v(x, t) represent chemical (morphogen) concentrations at spatial position
x and time t . a, b, d , k, and γ are positive parameters.

In all simulations we fix the parameter values of a = 0.1, b = 1.0, d = 70.8473,
k = 0.5, and γ = 619.45 to isolate the specific (3,0) mode pattern. Initial conditions
are taken as small random perturbations around the uniform steady state and mixed
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Fig. 12.5. Numerical results illustrating global patterns for cenea, hippocoonides, planemoides,
and trophonius [14].

boundary conditions applied. Shading is according to a gradient threshold function of
the form of a plane α y + β x + c0 where α or β or both are non-zero and c0 is a
non-negative constant (see [14] for further details).

Figs. 12.5 and 12.6 illustrate computational results corresponding to global pat-
terns of Papilio dardanus and polytes, respectively. For Papilio dardanus these corre-
spond to observed patterns of the butterflies cenea, hippocoonides, planemoides, and
trophonious. In all our simulations small changes in the gradient threshold give rise to
a variety of different observed patterns. We have observed in simulations that wing ge-
ometry, model parameter values, gradient threshold, and boundary conditions are key
factors in obtaining the global patterns illustrated.

12.5 Conclusions and Discussion

We showed that a Turing model [17] could account for the global pigmentation pat-
terns on butterfly wings by solving the model equations on geometrically accurate
adult wing shapes of Papilio dardanus and polytes. Our results suggest that the global
wing coloration is essentially due to underlying stripe-like patterns of some pigment-
inducing morphogen [14]. Computations on the fore- and hindwing shapes were car-
ried out separately. Except for a small change in a parameter value of the threshold
function, we used the same parameter values to obtain both fore- and hindwing pat-
terns. This means that from a mathematical modeling point of view, global pigmen-
tation patterns of the fore- and hindwing are independent in the sense that they are

Fig. 12.6. Numerical solutions of the model equations computed on a geometrically accurate
fore- and hindwing of Papilio polytes. Parameter values for the gradient threshold are a0 =
−0.00111, b0 = −0.005, and c0 = 0.56 (forewing) and c0 = 0.645 (hindwing).
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produced or controlled independently by the same mechanism. This result suggests
that the close match between global pigmentation patterns on both wings is logically
reasonable and somewhat accidental, but need not be explained by an unknown adap-
tive or functional viewpoint. This might solve the dilemma noted in Section 12.2.2,
namely, that of the close match and mismatch between fore- and hindwing patterns.
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Summary. Cells of the embryonic vertebrate limb in high-density culture undergo chondro-
genic pattern formation, which results in the formation of regularly spaced “islands” of cartilage
analogous to the cartilage primordia of the developing limb skeleton. In this chapter a discrete,
multiscale agent-based stochastic model is described, which is based on an extended cell repre-
sentation coupled with biologically motivated reaction-diffusion processes and cell-matrix ad-
hesion, for studying the behavior of limb bud precartilage mesenchymal cells. The model is
calibrated using experimental data, and the sensitivity of key parameters is studied.

Key words: Stochastic system, Monte Carlo simulations, developmental biology, limb devel-
opment.

13.1 Introduction
Modeling pattern formation and morphogenesis are fundamental problems in develop-
mental biology. Models of developmental processes fall into two categories: continu-
ous models that use families of differential or integro-differential equations to describe
“fields” of interaction, and discrete models in which space, time, or state may be dis-
crete. Models may be deterministic or stochastic.

In biological applications, continuous models have been used to describe oceanic
microbial cycles [2], microbial growth dynamics [32], the spread of species through
an ecosystem [33], and biofilm formation [38]. Other examples can be found in Jones
and Sleeandhoopesman [17] and Murray [28].

Discrete models describe individual (autonomous) behaviors. They are often ap-
plied to microscale events where a small number of elements can have a large (and
stochastic) effect on a modeled system. For example, while many periodic growth
patterns can be modeled using continuous methods, such patterns which depend sen-
sitively on substrate concentration are best modeled with discrete methods. Discrete
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methods applied to biological systems include cellular automata [10], lattice-gas-based
cellular automata [6, 35], the cellular Potts model [3, 13], and agent-based model-
ing [37].

Developmental morphogenesis is the molding of living tissues during develop-
ment, regeneration, wound healing, and disease. It is a complex phenomenon involving
gene regulation, changes in cell shape, cell-cell interactions, and cell division, growth,
and migration. Representing cell shape realistically is an important problem in model-
ing morphogenesis.

In silico experiments are becoming an important option, in addition to in vivo and
in vitro experiments, for studying pattern formation in biological systems [16, 22]. In
this chapter we describe a discrete, multiscale agent-based stochastic model, based on
extended cell representation coupled with the biologically motivated reaction-diffusion
processes and cell-matrix adhesion, for studying the behavior of limb bud precartilage
mesenchymal cells. Those cells in micromass culture undergo chondrogenic pattern
formation, which results in the formation of regularly spaced “islands” of cartilage
analogous to the cartilage primordia of the developing limb skeleton.

In a previous study [18], we presented a biological lattice gas model that remains
the most successful computational model to date for pattern formation in the limb cell
micromass system. Nevertheless, that model diverged from biological reality in several
important respects:

• The physical representation of entities of such disparate scales as cells and mor-
phogens on a common grid is physically unrealistic.

• Cells move less than a cell diameter over the time period of condensation forma-
tion and thus should not accumulate in condensations by leaving the surrounding
regions devoid of cells.

• Cells should not halt within condensations, but rather should have a finite proba-
bility of moving out of a condensation.

These issues raise the question of whether the simulation of realistic pattern forma-
tion would still occur if the artifactual aspects of the earlier model were replaced with
more realistic assumptions. We therefore designed a more sophisticated model that
overcomes each of these deficiencies. The cells in the new model are extended, mul-
tipixel objects that can change shape and move; cells are separated by less than a cell
diameter, condense without denuding the regions surrounding condensation centers,
and are not trapped once entering a condensation. Moreover, two different grids of dif-
ferent mesh size are used for cell and molecular dynamics, while chemical reactions,
molecular diffusion, and cellular diffusion operate on different temporal scales.

13.2 Biological Background

Skeletal pattern formation in the developing vertebrate limb depends on interactions
of precartilage mesenchymal cells with factors that control the spatiotemporal differ-
entiation of cartilage. The most basic skeletogenic processes involve the spatial sepa-
ration of precartilage mesenchyme into chondrogenic and nonchondrogenic domains
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(a) (b)

Fig. 13.1. A (left panel) Progress of limb skeletal development in chicken forelimb (wing) be-
tween 3 and 7 days of embryogenesis. Gray represents precartilage condensation and black
represents definitive cartilage. The developing limb, or limb bud, is paddle-shaped, being flatter
in the back-to-front (dorsoventral) dimension than in the thumb-to-little finger (anteroposterior)
dimension, or the shoulder-to-finger tips (proximodistal) direction in which it mainly grows. The
cartlilages that prefigure the bones first arise as stripe-like (e.g., long bones, digits) or spot-like
(e.g., wrist bones shown here, or ankle bones in the hindlimb) mesenchymal condensations. The
apical zone of the 5-day chicken wing bud (indicated by the arrowheads) or leg bud provide a
source of not-yet-condensed mesenchymal cells that when grown in high-density “micromass”
culture will form precartilage condensations. B (right panel) Discrete spot-like precartilage con-
densations that have formed after 72 hours in a micromass culture of 5-day leg bud apical zone
limb mesenchymal cells, visualized by Hoffman Modulation Contrast optics. The cells in these
cultures are initially plated as a densely packed monolayer and rearrange over short distances
in the 2D plane of the culture during the indicated period. Those that enter into condensations,
however, round up into the third dimension. This quasi-3D aspect of the culture system is incor-
porated into our model (see text). Actual size of the microscopic field is 1 × 1.4 mm, and each
condensation contains approximately 100 cells. The spatial scale of the spot-like condensations
in the developing limb and in the micromass cultures are comparable. Panel A is adapted, with
changes, from [11].

(Fig. 13.1). In vitro as well as in vivo (see reviews [14,31]), morphogens of the TGF-β
family induce precartilage condensation by a process that involves the upregulation
of the adhesive extracellular glycoprotein fibronectin [20]. Mesenchymal cells accu-
mulate in regions of increased cell-matrix adhesive interactions [7, 8, 12] and then
acquire epithelioid properties by upregulation of cell-cell adhesion molecules such as
N-CAM [39] or cadherin-11 [21]. Cartilage differentiation or chondrogenesis follows
at the sites of condensation in vitro and in vivo.

We have suggested [29, 30] that interactions between diffusible activators and in-
hibitors of chondrogenesis can explain the approximately periodic patterns of chon-
drogenesis in the developing limb and in micromass cultures. Results of Miura et
al. [23–25] provide strong evidence for such a reaction-diffusion mechanism in vitro.
In particular, TGF-β2 acts as an activator by positively regulating its own production,
as well as precartilage condensation [23]. In addition, Moftah et al. [27] found that
activation of fibroblast growth factor receptor 2 (FGFR2), which appears on cells at
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sites of incipient condensation, suppresses condensation in surrounding mesenchyme
by eliciting production of an inhibitor of chondrogenesis. While the molecular iden-
tity of the inhibitor is unknown, it acts laterally, spreading by an unknown mechanism
from its sites of production [27]. Finally, a recent analysis of the limb skeleton of the
Doublefoot mouse mutant [26] demonstrated that the unusual shape of the digits could
be accounted for by the assumption that chondrogenic patterning in vivo is governed
by a reaction-diffusion system on a growing domain.

13.3 Computational Model

The spatial environment that cells and molecules occupy is modeled on a two-
dimensional plane. The implementation provides support for multiple superimposed
discrete grids of various spatial scales. In our current model, we utilize two scales, one
for the cellular level and another finer resolution scale for the molecular level. The
coarsest resolution spatial scale is considered to be the base spatial scale, which is the
cellular level for our model, and all other grids are an integer ratio size of that base
grid. The base spatial grid can be defined as a square or rectangular grid of any height
and width, and all of the grids overlay one another and cover the same physical area.
Our model supports both periodic and no-flux boundary conditions.

13.3.1 Cell Representation

Each cell is a discrete agent represented as a set of seven contiguous pixels operating
on the base spatial grid as shown in Fig. 13.2(a). We chose the simplest multipixel rep-
resentation of limb mesenchymal cells subject to the following biological constraints:
(i) these cells have essentially isotropic geometry, that is they do not elongate in the
direction of migration but rather probe their environment by extending short randomly
placed projections; (ii) the cell nucleus is also isotropic but is relatively unchanging
in shape and comprises more than half the cell volume; (iii) cells in fibronectin-rich,
condensing areas of the micromass round up such that their cross section in the plane
of the culture is significantly reduced by 20–30 percent [5]. We maintain four pixels
in a two-by-two square (kernel) configuration that represents the portion of the cell
that contains the nucleus and allow the remaining pixels to occupy the border region
around the nucleus. Cells that round up shrink their spatial area to five pixels as shown
in Fig. 13.2(c).

Cell diffusion is implemented as a random walk. If the cell moves, then all of its
seven (or five) pixels move one pixel in the appropriate direction. Cells can also fluc-
tuate in shape, yet such fluctuations maintain a structural representation of the central
region containing the nucleus by preserving intact a two-by-two square block of pixels.
Therefore, shape fluctuations are restricted to the motion of the three (or one) border
pixels around the nucleus which either move to new border pixels or displace nucleus
pixels; Fig. 13.2(b) gives an example of both types of fluctuations for a cell changing
shape. The rate and probability that cells move and change shape is parameterized sep-
arately from molecules so that they can be calibrated to the scale of actual biological
cells.
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Analysis of cell movement and shape within precartilage condensations [5] indi-
cates that cells have a smaller contact area with substratum close to the condensation
center and that the rate of movement of those cells increases. We model this behavior
by shrinking the area of cells associated with levels of fibronectin above a threshold
value from seven pixels to five pixels; and we increase the rate at which those cells
can move and change shape. Likewise, once a cell ventures onto fibronectin it has the
tendency to remain there with a low probability of leaving the condensation.

13.3.2 Molecular Model and Reaction-Diffusion Mechanism

The reaction-diffusion mechanism introduced by Turing [36] is based upon interac-
tions of slow diffusing, positive feedback activator molecules and fast diffusing, nega-
tive feedback inhibitor molecules. This continuum mechanism was shown to be capa-
ble of self-organizing spatiotemporal patterns of chemical concentration. In our cellu-
lar automaton representation of the Turing mechanism, a discrete number of activator
and inhibitor molecules occupies each pixel on the grid and each molecule is consid-
ered to have a spatial representation of just one pixel.

We model the reaction dynamics of the activator and inhibitor molecules at each
pixel as follows: let Ut and Vt be the concentration of the activator and inhibitor, re-
spectively, at time t and let φt be an indicator function for the existence of a cell at
time t ,

�Ut = min{M AXU , (k1U (t) + BU )φt + k2Vt } (13.1)
�Vt = min{M AXV , k3Utφt + k4Vt }. (13.2)

(a) (b)

(c)

Fig. 13.2. (a) Three cells on the spatial grid each occupying seven pixels. (b) Cell changes shape.
The region of the cell that contains the nucleus, indicated by the four gray pixels, is structurally
maintained; two border pixels move to new locations, and one border pixel (upper right) dis-
places a nucleus pixel which gets shifted to the right. (c) Cell rounding up on fibronectin. The
surface area with fibronectin is reduced with two border pixels moving into a quasi third dimen-
sion above the cell.
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Equation (13.1) shows the change over time for each pixel on the grid of the activa-
tor morphogen concentration based upon a proportion (as defined by chemical reaction
rates) of the current activator and inhibitor concentrations. Equation (13.2) shows the
corresponding change over time for each pixel on the grid of the inhibitor morphogen.
The activator morphogen is considered a positive self-regulating molecule and a pos-
itive regulator of the inhibitor; thus, chemical rate parameters k1 and k3 both have
positive values. The inhibitor morphogen is considered a negative regulator of activa-
tor that decays over time; thus, chemical rate parameters k2 and k4 are both negative
values.

In our model, production of the activator and inhibitor molecules, as represented by
the parameters k1 and k3, can only occur in the presence of a cell; however, the decay
of activator and inhibitor, as represented by the parameters k2 and k4, is considered to
occur independently of cell presence. Cells are initially randomly distributed on the
grid and secrete a small basal amount (BU ) of activator morphogen which provides the
initial concentration of activator; cells continue this basal production throughout the
simulation, and the inhibitor concentration starts at zero.

We consider the chemical rate parameters to be averages of discrete cell behavior of
the underlying stochastic gene expression for the two morphogens, so they can assume
real number values. We consider cells to respond to small amounts of morphogens,
so molecules are represented as discrete entities instead of averages, which provides
a more accurate representation of the biology. Therefore, the morphogen concentra-
tions (Ut , Vt ) are whole numbers, and changes in the concentrations at a time step are
rounded to the nearest integer and prevented from going negative.

In any physicochemical reaction there is a limitation on how much reagent a single
cell can realistically produce during any period of time. For this reason, our model
provides separate parameters (M AXU , M AXV ) for the maximum amount of activator
and inhibitor that can be produced during a single reaction step. The maximums are
imposed on individual pixels of the molecular grid rather than across the entire cell
to represent polarization of limb mesenchymal cells [15]; this allows for small mor-
phogen gradients to be present across the spatial extent of an individual cell through
spatially polarized secretion of morphogens. The peaks of activator concentration pro-
duced by the reaction-diffusion dynamics define a large prepattern equal in spatial
area to the fibronectin patches, containing around one hundred cells within a single
patch. Thus, polarization plays a role for the cells on the border region of the patch,
while cells in the patch interior perceive a relatively constant morphogen concentration
across their entire spatial extent.

Molecular diffusion from any pixel can occur randomly toward any of the four
neighboring pixels (up, down, left, right). The diffusion rate D is scaled into a prob-
ability factor 0 < p < 1 and a time step n such that D = pn. The probability deter-
mines the chance that a molecule will diffuse, and the time step indicates how many
opportunities a molecule has to diffuse for a single simulation iteration; if the molecule
diffuses then one of the four neighboring pixels is picked with equal probability. The
chemical reaction operates at a much slower rate than molecular diffusion, so the time
scales are separated with diffusion calculated at a small time step and the reaction cal-
culated at a longer time step. Algorithm 1 shows how the diffusion is performed at a
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Algorithm 1 calculateReactionDiffusion
for each simulation iteration do

Calculate chemical reaction for each pixel on grid.
for i = 1 to n do

Calculate activator and inhibitor diffusion for each pixel on grid.
end for

end for

finer time scale.

13.3.3 Fibronectin Production

Fibronectin is a nondiffusing, extracellular matrix molecule that forms the template
for precartilage condensations. As the concentration levels of the activator morphogen
increases in the presence of a cell, that cell produces fibronectin mRNA which can then
be translated into actual fibronectin protein molecules. We support a simple threshold
level such that once the sum of activator concentration across the entire spatial area of
a cell exceeds that threshold value, the cell differentiates into a fibronectin-producing
cell. Because we do not directly describe the level of fibronectin mRNA within the cell,
the trigger for cell differentiation is separated from the actual production of fibronectin,
and a model parameter defines the delay between cell differentiation and secretion of
fibronectin.

When a cell produces fibronectin, a single multimolecular unit is secreted with
random probability for each of the pixels on the molecular grid in the cell’s spatial ex-
tent, and each molecule is allowed to perform an initial small diffusion of at most one
pixel [1]. Production of fibronectin molecules continues until a maximum concentra-
tion level is reached at a pixel, although cells may still continue to produce fibronectin
on pixels that have not yet reached the maximum. The production rate of fibronectin,
the duration of such production, and the maximum amount of fibronectin allowed per
pixel can be adjusted with model parameters.

13.4 Model Calibration

In attempting to calibrate our model parameters with known empirical parameters we
desire to correlate the spatial and temporal patterns produced by computer simulation
results with in vivo and in vitro experiments. For spatial patterns, we consider the size,
shape, and distribution of the fibronectin-rich spatial domains; for temporal patterns,
we consider the reaction rates of activator and inhibitor production, the diffusion rates
of both cells and molecules, the onset of fibronectin production, the production rate of
fibronectin, and the shape and movement fluctuations of cells on fibronectin. The actual
values for the set of key parameters used in the simulation and their corresponding
physical measurements, if known, are shown in Table 13.1.
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Table 13.1. Calibrated simulation parameters to known physical values.

Parameter Physical Value Simulation Value

Cell diameter/area 10 µm / 79 µm2 7 pixels

Cell spatial grid 240 × 240 pixels

Molecular spatial grid 480 × 480 pixels

Spatial ratio cells : molecules 10000 : 1 28 pixels : 1 pixel

Reaction temporal scale 70.9 msec 1 reaction

Diffusion temporal scale (n = 200) 0.3544 msec 1 diffusion step

Basal activator production (BU ) unknown 28

Activator self-regulation (k1) unknown 0.3356

Activator regulation of inhibitor (k2) unknown 0.16

Inhibitor regulation of activator (k3) unknown −1.1

Inhibitor decay (k4) unknown −0.4615

Maximum activator produced (M AXU ) unknown 8000

Maximum inhibitor produced (M AXV ) unknown 8000

Activator diffusion rate (DU ) 10 µm2/sec 50 pixels/iteration

Inhibitor diffusion rate (DV ) unknown 196 pixels/iteration

Cell diffusion rate 0.42 µm2/min 1 pixel/60 iterations

Cell diffusion rate on fibronectin 0.62 µm2/min 1 pixel/40 iterations

13.4.1 Diffusion Rates

Diffusion rates for the activator and inhibitor play a vital role in defining the wave-
length of the Turing patterns produced by the reaction-diffusion dynamics that ulti-
mately determine the size and distribution of the fibronectin-rich patches. Lander et
al. [19] calculate the effective diffusion coefficient for a molecule the size and shape
of Dpp to be 10 µm2 s−1. TGF-β which we assume to be our activator morphogen,
based upon cell-culture experiments [20, 25], is a morphogen of the same molecular
class as Dpp; therefore, we take the diffusion coefficient of Dpp to be our activator
diffusion rate. The inhibitor morphogen, whose identity is unknown but is induced
at sites of incipient condensation by ectodermally produced fibroblast growth factors
(FGFs) [27], must diffuse at a faster rate than the activator morphogen for patterns to
be produced. We found that an inhibitor diffusion rate approximately four times faster
than the activator diffusion rate is sufficient to produce stable patterns.

The diffusion rate for cells is considerably slower than for the activator and in-
hibitor molecules. Cui [5] used phase-constrast microscopy and video-based cell track-
ing to measure the movements of cells during developing chicken-limb precartilage
mesenchyme over the time period of condensation formation. He calculated an av-
erage diffusion coefficient of 0.5058 µm2/min, and his data is consistent with cells



13 Agent-Based Model for Developmental Pattern Formation 157

moving slightly faster in condensations (see also [9]). We qualitatively support this by
making cells associated with fibronectin diffuse faster than cells not associated with
fibronectin (see Table 13.1).

13.4.2 Reaction Rates

The key requirement is that the parameters for the reaction rates fall within the mor-
phogenetic region in order for Turing-type patterns to be produced. Within this mor-
phogenetic region, two types of behavior can be observed for the morphogen con-
centrations: steady-state equilibrium with stable patterns and oscillatory behavior with
transient patterns. The oscillatory behavior is induced by the maximums on production;
otherwise a steady state would be attained but at an unrealistic concentration level. As
these reaction rates are unknown, we take the approach of picking parameters that
correspond to our understanding of qualitative cell-culture behavior.

13.4.3 Onset and Rate of Fibronectin Production

It was previously shown that transient exposure of precartilage mesenchymal cells in
vitro to TGF-β for 3–6 hours a day after cultures are established is sufficient to induce
the production of precocious condensations by those cells: the onset of precartilage
condensations begins about 32 hours after plating and condensations reach their fi-
nal size at 72 hours [20]. In this study cells responded very quickly to exposure to
TGF-β by producing fibronectin mRNA even though synthesis of the fibronectin pro-
tein molecule does not occur until later. Furthermore, production of FGFR2 protein
(the mediator of FGF induction of the inhibitor at condensation sites) is no longer
detectable after 48 hours in similar cultures [27]. These results suggest that a reaction-
diffusion mechanism does not have to maintain stable peaks throughout the period of
complete formation of precartilage condensation, but may in fact only require transient
peaks that induce transcription of fibronectin mRNA. This could provide a prepattern
for condensations occurring later in time.

Based upon these experimental observations, we pick reaction parameters giving
oscillatory behavior as a model for the transient nature of the activator and inhibitor
morphogens. As experimental results do not give conclusive evidence for how long the
morphogens are active in the system and the various morphogens may have other roles
beyond induction of fibronectin production, we do not attempt to match the total time
length of activity of the morphogens in our simulation. Instead we calibrate with the
primary knowledge that cells respond quickly to TGF-β, so we trigger cell differenti-
ation early in our simulation when the sum of activator concentration across the entire
cell reaches a threshold value of 5,000 molecules.

13.5 Results

Fig. 13.3(a) shows the typical output of the fibronectin patches that are produced for
a simulation run; visual inspection of the patterns matches well with the cell culture
experiments as typified by Fig. 13.1.
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(a) (b)

Fig. 13.3. A (left panel) Fibronectin-rich patches produced by simulation using parameter values
in Table 13.1. B (right panel) Average peak interval versus average island size for 13 experimen-
tal (•) and 5 simulation (�) points using parameter values in Table 13.1 with different random
initial conditions. Simulation points for variations in some of the key parameters are shown:
+5% (♦) and −5% (�) for activator self-regulation (k1), +5% (�) and −5% (�) for activator
regulation of inhibitor (k3), +5% (�) and −5% (�) for inhibitor regulation of activator (k2). All
simulations were run for 3000 iterations with periodic boundary conditions.

We measured the average peak interval using the peak length method of [23] and
the average island size for the fibronectin patches for a set of simulations. We then
compared those results against measurements for a set of experimental images like
Fig. 13.1. Fig. 13.3(b) shows a comparison between the experimental and simulation
measurements. We explored the robustness of the parameter set by varying key param-
eters independently (±5%). Minor variation of the inhibitor strength on activator (k2)
produced little change in the resulting fibronectin patches, while variations of activator
self-regulation (k1) and regulation of inhibitor (k3) produced results at the extremes of
the experimental data.

13.6 Conclusion

Development of a discrete, stochastic model that incorporates aspects of agent-based
modeling and multiple physical and temporal scales has provided us with the ability
to focus on specific biological phenomena while abstracting away biological details
that may not be central to the process. The agent-based representation of mesenchy-
mal cells allows for a simple implementation of more biologically realistic cells as
extended, multipixel objects with variable cell geometry, while facilitating a compu-
tationally efficient simulation. Also, the agent-based representation of cells provides
fine control over the specification of how cells perceive morphogen concentrations es-
pecially as a trigger for differentiation, how cells produce and secrete morphogens and
fibronectin, and how cells behave on fibronectin including the shrinking of area and
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tendency to remain confined with the corresponding domains. The multiscale nature
of our model incorporated additional biological realism through the separation of phys-
ical scales by modeling cells and morphogens on grids of differing resolution and the
separation of time scales for chemical reactions, morphogen diffusion, cell diffusion,
and the production of fibronectin.

We have shown that our more sophisticated model produces fibronectin-rich patches
consistent in size, shape, and distribution to condensations in micromass culture ex-
periments while overcoming the deficiencies of our earlier model. Specifically, cells
maintained a space-filling, nonoverlapping, high-density culture throughout the spa-
tial domain. Likewise, cells maintained movement within condensations without being
trapped once entering a condensation, and variations of key chemical rates indicate the
robustness of the parameter values for the reaction-diffusion dynamics. Model calibra-
tion is important to keep the mechanics of the model closely tied to known experimen-
tal values. The fact that our use of biologically motivated values for activator and cell
diffusion, variable cell geometry, and authentic details of molecular production and
cell behavior gave rise to realistic patterns is a strong indication of the validity of our
model. Once tied to experimental values, other parameters in the simulation provide
hypotheses for biological rates that can be experimentally tested.

The reaction-diffusion dynamics is unconventional in that molecules are repre-
sented as discrete entities rather than as continuous concentrations. The two regimes
of behavior that we have uncovered, steady-state and oscillatory, for the temporal dy-
namics of the pattern-forming morphogen concentrations, are explored further in [4],
as are transitions between spot-like and stripe-like patterns in this system.
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Summary. Swarming pattern formation of self-propelled entities is a prominent example of
collective behavior in biology. Here we focus on bacterial swarming and show that the rod shape
of self-propelled individuals is able to drive swarm formation without any kind of signaling.

The underlying mechanism we propose is purely mechanical and is evidenced through two
different mathematical approaches: an on-lattice and an off-lattice individual-based model. The
intensities of swarm formation we obtain in both approaches uncover that the length-width as-
pect ratio controls swarm formation. Moreover we show that there is an optimal aspect ratio that
favors swarming.

Key words: Swarming, rod-shaped bacteria, cellular Potts model, cellular automaton, individual-
based modelsmotion.

14.1 Introduction
Pattern formation in densely packed biological populations is an ubiquitous phe-
nomenon based on the interaction of the constituent entities. Here we focus on swarm-
ing patterns which arise on the microscopic scale of gliding bacteria. Intuitively, one
associates some kind of communication or rather signaling between the entities that
align their direction of motion and move in coherent swarms. However, inspired by
cell swarms in rod-shaped gliding bacteria like myxobacteria, we study a new mecha-
nism for swarm formation in which no communication mechanism is involved.

Myxobacteria are model organisms for self-organized pattern formation; they can
organize their movement without using diffusive chemical signals. The morphogenesis
of complex cell patterns in the life cycle of myxobacteria (e.g., ripples, fruiting bodies)
has attracted remarkable interest in developmental biology [5,9]. Within the myxobac-
terial life cycle swarms evolve in various phases: in the growth phase flares leave the
colony to reach out for new nutrients, and during the early fruiting body formation cell
clusters move collectively into aggregation centers. A “swarm” here describes aligned
individuals tight-knit in a cluster, moving collectively into the same direction.

We want to find out which mechanism can drive swarm formation in the absence of
diffusive signaling. Which general conditions are required for this mechanism to work?
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Though the formation of swarms can be induced by a variety of local rules [1, 2], the
swarming pattern itself cannot elucidate the mechanisms responsible for its formation.
For this, the underlying mechanisms of agent interaction have to be analyzed.

Experimentalists as well as modelers have suggested various mechanisms respon-
sible for swarm formation in myxobacteria. One very early suggestion was based on
the slime secreted by myxobacteria while gliding on solid surfaces. Other cells are
reported to follow such slime trails. Those cells were supposed to increase the attrac-
tion of the slime trail by enlarging it [10]. The stochastic cellular automaton model
designed by Stevens tests whether this mechanism can explain swarm formation [18].
Although small cell tracks arise in this model, larger stable patterns like aggregates are
possible solely by introducing an additional diffusing chemoattractant.

Jelsbak and Søgaard-Andersen discussed a chain formation mechanism, where two
cells can attach “head” to “tail,” causing swarm-like patterns [8]. The adhesive effect
of extracellular appendages (i.e., pili and fibrils) is known, but the mechanism has not
been tested with a model so far.

Here we introduce a new hypothesis, how rod-shaped entities (e.g., cells) can form
swarms simply by mechanical interaction. Explicitly we exclude any intercellular dif-
fusive signaling and we consider interaction among cells due only to volume exclusion.
We propose that swarm formation arises from the collision of the individuals, which
induces local alignment. Contrary to the alignment in liquid crystals, active asymmet-
ric particles align their orientations and their directions of motion; consequently, they
are able to move together.

We tested this hypothesis through simulations of on-lattice and off-lattice models,
assuming flexible or rigid rods, respectively. Recently a model for myxobacteria deal-
ing with similar assumptions was proposed [7]. However, in this approach physical
cell interaction is represented by a local ad hoc averaging of cell orientation. In con-
trast, we model interaction based on first principles, i.e., volume exclusion. With our
models we studied agent interaction and analyzed the impact of the anisotropy of the
individuals on the swarm formation competence.

This chapter is organized as follows: In Section 14.2 the models are defined. The
results of model simulations are discussed in Section 14.3, and the conclusions are
presented in Section 14.4.

14.2 Model Definitions

14.2.1 On-Lattice Model

Contrary to cellular automata, models dealing with point-like objects, the cellular Potts
model (CPM) allows the explicit consideration of different object shapes [3]. Our
first model is based on the cellular Potts model which has been previously used for
modeling differential adhesion-driven morphogenesis and fruiting body formation in
Dictyostelium discoideum, among others [6, 13]. In order to mimic a rod-shaped cell,
including its stiffness, we introduce the concept of a segmented cell. Cell segments
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are formed out of lattice nodes, like the cells in the CPM. A chain of such cell seg-
ments represents the elongated cell. Using the mechanism of differential adhesion [6]
we favor a connected cell by reducing the interaction energy between neighboring cell
segments, resulting in a sorting of the segments in a row. Depending on other en-
ergetic model parameters, such a cell can remain permanently connected. Energetic
constraints penalize the deviation of the model cell from the rod shape (by means of
curvature and segment distance).

The state σ of each node i ∈ L of the model space L ⊂ Z
2 is defined as

σ(i) = (µ, ν) ∈ S = {(0, 0), (k, l), k ∈ {1, . . . , n}, l ∈ {1, . . . , s}}, (14.1)

where n is the number of cells and s the number of segments per cell. In this sense
σ1 = (µ1, ν1) belongs to segment number ν1 of cell µ1 except for µ1 = ν1 = 0
where σ1 is part of the medium. An orientation of the cell was introduced by denoting
segments with ν = 1 “head,” the first in moving direction; consequently, segments
with ν = s are denoted “tail.” A center of mass Sµ,ν can be defined for each cell
segment by averaging the positions of the nodes occupied by the segment.

We extended the Hamiltonian of the CPM by constraints for the cell deformation
on the basis of the segments’ centers of mass S (third and fourth terms in (14.2), also
see Fig. 14.1):

H =
∑

〈i,j〉 neighbors

1
2

Jσ(i),σ (j) + λ

n∑
µ=1

s∑
ν=1

(
aµ,ν − AS

)2

+ ζ

n∑
µ=1

s−1∑
ν=1

(∣∣Sµ,ν − Sµ,ν+1
∣∣ − DS

)2

+ ξ

n∑
µ=1

s−2∑
ν=1

(
1/Rcurve

(
Sµ,ν, Sµ,ν+1, Sµ,ν+2

) )2
. (14.2)

Fig. 14.1. Scheme of calculating cell deformation (Rcurve, D) based on the segments’ centers of
mass Sµ,ν .
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The definition of the Hamiltonian (14.2), i.e., the system’s free energy, includes an
interaction energy Jσ(i),σ (j) between neighboring nodes4 (i, j), depending on the state
of the nodes σ . The energy between identical states is zero by default. Low energies
between the states of different cells, i.e., lower than between cell and medium, cause
the cells to adhere as has been shown by Graner and Glazier [6]. Here, a thin film
of medium between myxobacterial cells was modeled through a short-range repulsion
between model cells. For this, the interaction energy between cells was chosen 1.5
times as high as the cell-medium interaction energy.

The parameters λ, ξ, ζ represent the sensitivity of the three energetic constraints.
The second term of (14.2) defines the area constraint for the cell segment area aµ,ν

(AS target area). The third term penalizes the deviation of the distance of neighboring
cell segments from an optimal distance DS . The last term defines a curvature energy
based on the curvature radius Rcurve of three consecutive cell segments. For details see
Starruß et al. [17].

Active motion of the rods is modeled by an energetic advance ∆d of updates shift-
ing the cell into its moving direction θ̃ , which is defined by the cell orientation. We
assume an update to shift the center of mass of the two involved states5 into a di-
rection c, which is identical to the copy direction. The energetic advance ∆d com-
pares both moving directions to c via a scalar product and weights the sum of both
products with a propulsion parameter. Numerical simulations of the model were per-
formed on a periodic hexagonal lattice using the Metropolis kinetics [14] as follows:
the state of a randomly selected node is copied to one of its first neighbors (randomly
selected); then the total change in free energy including the energy for motion is cal-
culated (�H′ = �H + �d); the copy operation is accepted with probability p (14.3)
and refused otherwise. The time scale is defined as a Monte Carlo step (MCS) and
includes a certain number of such updates depending on the lattice dimensions. Model
parameters were determined using experimental data of single cell experiments [16].

p(�H′) =
{

1 if �H′ < 0
e−�H′/kT if �H′ ≥ 0

. (14.3)

14.2.2 Off-Lattice IPS Model

In this subsection we introduce an interacting particle system model that could be
thought of as a further abstraction of the previous model. From now on we refer to
cells as particles. By comparing both models, we will be able to analyze the possible
universality of the observed phenomena.

There are significant differences from the previous model: (i) the shape of par-
ticles is fixed, i.e., they cannot bend, (ii) particles are soft objects, i.e., they can be
compressed but they cannot be deformed, (iii) particles move off-lattice, and (iv) we

4 The neighborhood we used includes first- and second-nearest neighbors on a hexagonal lat-
tice.

5 An update is a copy operation involving two states. One state is copied from node i to i′,
while the initial state of i′ is substituted.



14 Bacterial Swarming Driven by Rod Shape 167

distinguish a completely deterministic and, by turning on noise terms, a stochastic
model version. However, contrary to the on-lattice model, the off-lattice model is not
intrinsically stochastic.

We start with a brief description of the model. We consider rod-like particles mov-
ing on a plane. Each particle is equipped with a self-propelling force acting along the
long particle axis. We also assume that particles are submerged in a viscous medium.
Therefore, velocity and angular velocity are assumed to be always proportional to the
force and torque correspondingly. The anisotropy of the particles requires the use of
three different friction coefficients [4, 11, 12] which correspond to the resistance ex-
erted by the medium when particles move either along their long or short axis, or even
when they rotate.6 The state of a particle is determined exclusively by the position of
its center of mass and the orientation of its long axis. This is due to the fact that we as-
sume that bacteria are objects driven by Newtonian forces, and that the viscosity of the
medium is such that we are able to neglect inertial terms.7 In consequence, the evolu-
tion of a particle is simply given by the equations for the velocity of the center of mass
and the angular velocity of the long axis. The equations of motion can be expressed in
the following form:

(v‖, v⊥) =
(

1
ζ‖

(F − ∂U
∂x‖

), − 1
ζ⊥

∂U
∂x⊥

)
(14.4)

dθ

dt
= − 1

ζθ

∂U
∂θ

, (14.5)

where v‖, v⊥ refer to the velocities along the long axis and short axis of the particle,
respectively, ζi indicates the corresponding friction coefficients (ζθ is related to the
friction torque), U refers to the interaction potential, and F is the magnitude of the
self-propelling force. Note that equation (14.4) is written in the coordinate system
of the particle, which is specified by the orientation of the long axis of the particle
(indicated by ‖-symbol) whose dynamics is given by equation (14.5). So, equations
(14.4) and (14.5) are coupled. Also, observe that F acts only along the long axis, and
that ζ‖ < ζ⊥ for elongated objects.

Finally, particle interaction is modeled by a potential which penalizes particle over-
lapping in the following way (see Fig. 14.2):

U (x, θ, x ′, θ ′) = C
(

1
(γ − a(x, θ, x ′, θ ′))β

− 1
γ β

)
, (14.6)

where a(x, θ, x ′, θ ′) is the overlapping area, γ is a parameter that can be associated to
the maximum compressibility, β controls the stiffness of the particle up to the maxi-
mum compressibility, and C is an arbitrary constant.

We can also test the robustness of the model against fluctuations by adding noise
terms R⊥(t), R‖(t) in (14.4) and Rθ (t) in (14.5).

6 Assuming hydrodynamical interactions with the medium, we can make use of an explicit
expression for the friction coefficients that are functions of particle length, width, and medium
viscosity [4, 11, 12].

7 In the over-damped case, second derivatives are assumed to vanish.
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Fig. 14.2. The scheme illustrates that the potential (bottom figures) as well as the force and
torque depend on how particles are colliding (top figures). Arrows (top figures) indicate the
tentative movement of one of the particles while the other one, at the origin of the coordinate
system, is considered to stay at rest. Bottom figures show how the potential responds depending
on the collision configuration.

Simulations are performed placing N particles at random inside a box of surface
V with periodic boundary conditions. For more details about this model see Peruani et
al. [15].

14.3 Results

Starting from a random initial condition and provided bacteria are sufficiently elon-
gated, the system evolves, in both models, towards a steady state in which the microor-
ganisms move in swarms. The length-to-width aspect ratio of bacteria κ turns out to be
a key parameter that controls the level of clustering in the system for a given density of
cells.8 In what follows we discuss in more detail how the “microscopic” rules in both
models lead to the emergent “macroscopic” patterns observed in the simulations.

Fig. 14.3 illustrates how in both models the local interaction between two individ-
uals can cause local alignment. The active directed movement of the two cells plus
volume exclusion force bacteria to become locally aligned and to point in the same
direction. This local arrangement of cells lasts for some characteristic time which de-
pends mainly on the magnitude of the active force and the length of the particles.
During this period a two-bacteria cluster can eventually incorporate a third bacterium
upon a similar collision process. By repetition of this process an initially small cluster
can evolve into a big swarm. We stress that in contrast to Brownian particles, i.e., par-
ticles moving passively in a stochastic manner, the center of mass of the swarms also
moves at roughly the same characteristic speed of the particles. The aligned orienta-
tion of the particles inside swarms implicitly results in aligned moving directions too.
Fig. 14.4 demonstrates that these simple interactions cause self-organized migration of
bacteria in swarms. Fig. 14.5 shows that particles cannot form moving clusters at low
density and short aspect ratio.

To characterize these emergent patterns we measure the level of clustering in the
system by use of the normalized mean maximum cluster size ψ . The choice of ψ to
quantify clustering effects is arbitrary and other quantities could have been chosen as
well. However, since ψ allows us to characterize the clustering tendency, as well as to
compare both models, it constitutes a reasonable option. For a more detailed analysis

8 κ is defined as κ = L/W , where L is the length and W the width of the bacterium.
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t t ′ t ′′
(a) Alignment in the on-lattice model (b) Alignment in the off-lattice model

Fig. 14.3. Mechanical collision scheme. Interaction between two entities can lead to alignment
in both models, while the resulting moving direction can be different in the models.

of the clustering dynamics and characterization, we refer the reader to [15]. ψ = 1
indicates that all cells in the system form a huge cluster which contains all particles in

(a) initial and final state in off-lattice model

(b) initial and final state in on-lattice model

Fig. 14.4. Snapshots of collective movement in both models at low density. Starting from a ran-
dom initial condition, in both models swarms evolve after a short time of simulation. Particles’
length-to-width aspect ratio κ ≈ 10. “Heads” are marked with black dots.
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Fig. 14.5. No swarm formation is observed for aspect ratios κ lower than 3 (off-lattice model,
κ = 2). “Heads” of particles are marked with black dots.

the system, while ψ −→ 0 indicates “no clustering” in the system,9 i.e., all particles
are isolated. ψ is calculated in the following way. For each time step we identify all
clusters in the system, and we determine the size of the biggest one. Then we simply
average these quantities to obtain ψ , i.e., we perform a time average. Therefore, the
key point in the calculation of ψ is the identification of clusters.

In the off-lattice model we consider that two individuals are neighbors, and that
consequently they also belong to the same cluster, if they are in physical contact. We
refer to the mean maximum cluster size ψ calculated in this way as �. On the other
hand, for the on-lattice model we consider two bacteria as neighbors if they fulfill the
following condition:

Dmax > min
{|Sα,1 − Sβ,1|, |Sα,1 − Sβ,2|, . . . ,

|Sα,1 − Sβ,s |, |Sα,2 − Sβ,1|, . . . , |Sα,s − Sβ,s |
} − W (14.7)

ϕmax > �
(
θ̃α,1, θ̃β,1

)
, (14.8)

where Dmax and ϕmax are arbitrary constants which are related to the maximum dis-
tance and the maximum relative angle of the moving directions between two cells
considered as neighbors (see Section 14.2.1). The reason for this condition is twofold.
On one hand, we have to deal with the discreteness of the space, the lattice, and on the
other hand, in the on-lattice model there are always nodes representing the medium
between any two cells. The condition on θ̃ , the direction of motion of the bacterium,
allows us to determine whether the distance between the cells might be shortened in the
next integration step. When both conditions, (14.7) and (14.8), are fulfilled at the same
time we say that the two particles are neighbors. We call the directed mean maximum
cluster size calculated in this way, �.

9 To be more specific, ψ −→ 1/N , which means that only for N −→ ∞ does this quantity go
to 0.
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Fig. 14.6. The temporal mean of the size of the largest cluster, measured by � in a) and by � in
b), is shown in dependence of the particle’s length-to-width aspect ratio κ . A transition of non-
swarming to swarming behavior can be seen for κ ≈ 4, while the intensity of swarm formation
saturates with higher κ . This saturation is counterintuitive, since longer cells could be expected
to have a higher chance to collide and align. Error bars indicate the standard deviation of 12
simulations per data point.

Through � and � we observe that in both models the mean maximum cluster size
exhibits qualitatively the same behavior with respect to the aspect ratio κ .10 Fig. 14.6
shows that ψ has two regimes: a fast increase for low values of κ followed by a “satu-
ration” regime for large values of κ . Notice that the saturation is not due to the simple
fact that ψ assumes its maximum possible value, but to a nontrivial relation between
κ and the clustering effects. For a given cell density11 and a fixed “noise amplitude”12

and for each value of κ an equilibrium between creation and disintegration of clusters
is reached. This equilibrium, as is shown in Fig. 14.6, is strongly influenced by κ .

All this indicates, on one hand, that κ regulates clustering effects. On the other
hand, it shows that there is a minimum κ for which the maximum level of clustering is
reached (see also Fig. 14.5).

14.4 Conclusions

In the first model, the on-lattice model, we have assumed that the entities representing
bacteria have a preferred volume, length, and width, and like to stay unbent. Interac-
tions between different bacteria are based on volume exclusion, i.e., a node belonging
to a particular bacterium cannot be occupied by any other bacterium. The resulting pat-
terns resemble those of real bacteria [8], and swarm formation is obtained for a set of
parameters. For instance, it is observed that the bacterial clustering tendency increases
10 We stress that when κ was varied, the relation between the area covered by cells and the total

area of the box in which cells move was kept constant.
11 The relevant quantity in fact is the area covered by cells with respect to the total surface,

which is proportional to the number of particles.
12 In the on-lattice model the noise amplitude is intrinsic and can be affected by all parameters.
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Fig. 14.7. Vortex pattern formation in the on-lattice model. The collision of swarms can result
in the formation of such a “recursively bound” swarm.

with the length, but only up to a certain critical length, after which the clustering sat-
urates or even decreases.13 This was particularly evidenced through the response of
the mean maximum cluster size to the length-to-width aspect ratio. But which model
ingredients are responsible for such behavior? To which extent does this depend on
particle shape? Is this an artifact of the discrete cellular Potts model?

To answer this question we have introduced the second model. We have repre-
sented bacteria by particles which have a certain shape with a well-defined aspect
ratio. Particles are equipped with a self-propelling force, move off-lattice, and interact
when overlapping, i.e., volume exclusion is also present. Surprisingly, we observed
that particle clustering is governed by particle shape in a very similar way to what
we observed in the cellular Potts model. The mean maximum cluster size exhibits the
two regimes which were also reported in the on-lattice model (See Figs. 14.6 a and
b). This means that by replacing the elastic active objects used in the on-lattice model
with non-deformable self-propelled objects which move off-lattice, and with replacing
the energy-based interactions with simple Newtonian force balance laws, we obtain
basically the same behavior. We can go even further in the abstraction and show that
the main characteristics of the clustering process can be captured by a mean field ap-
proach (introduced in [15]), which indicates that the onset of swarming is determined
by a κc which depends on the relation between the area covered by bacteria and the
total surface of the box in which bacteria move. Conclusion: Neither the bending prop-
erty of particles nor the particular choice of the automaton Hamiltonian is responsible
for swarm formation, but instead the simple concept of volume exclusion in a system
of asymmetric active objects.

From the intensities of swarm formation measured in simulations of the two mod-
els, we conclude that, regardless of the model, the asymmetric shape of self-propelled
individuals interacting by volume exclusion can lead to swarm formation. These find-
13 This was tested by fixing the value of parameters in the swarming range and varying only the

length of particles, but keeping the fraction of nodes occupied by particles and total nodes of
the system constant.
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ings are particularly relevant for gliding bacteria where the bacterial shape may play a
fundamental role in the pattern formation. For instance, myxobacteria are able to move
in swarms, though they have a cell-to-cell signaling mechanism which only controls
the speed and reversal frequency of the motion direction of the cells. Inside swarms
myxobacteria are aligned in arrangements that resemble those shown in Fig. 14.4.
Moreover, Myxococcus xanthus cells exhibit an aspect ratio around 5, corresponding
to the value where the plateau in Fig. 14.6 is reached.

All this suggests that in collective movement of myxobacteria the shape of the cells
may play a fundamental role. To test this idea, experiments with myxobacteria mutants,
which exhibit a much simpler behavior than the wild-type myxobacteria, and closer to
our hypothesis, could be performed. For instance, there are ongoing experiments with
mutants which have no adhesion and no cell reversal.

Beyond these considerations, the models described here exhibit a richer repertoire
of patterns which includes streams and vortex formation (Fig. 14.7). However, the
characterization of those patterns is the subject of future research.
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Summary. Free boundary problems associated with biological tissue growing under conditions
of nutrient limitation are formulated. Analysis by linear-stability methods, clarifying the models’
stability properties, is then described.
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15.1 Introduction

We are concerned here with the stability properties (particularly those associated with
the interplay between nutrient transport and growth-induced stresses) in some simple
models of tissue growth. We shall launch straight into the dimensionless model formu-
lation, referring to Franks and King [3] and King and Franks [5] (see also Franks [2])
for background and physical meaning of the parameters and references, deferring dis-
cussion of the associated phenomena until they arise.

We define n to be the volume fraction of the growing tissue, and ρ that of the
surroundings, with c being the concentration of a generic nutrient (required for cell
division in particular) and v being the internal velocity field generated by growth. We
then set

∂n
∂t

+ ∇ · (nv) = K̂ (c)n,
∂ρ

∂t
+ ∇ · (ρv) = 0,

∇2c = k̂(c)n, n + ρ = 1, (15.1)

where nutrient transport can be taken to be quasi-steady and we shall for simplicity
take the mitotic rate K̂ (c) and the nutrient consumption rate k̂(c) to be linear, i.e.,
henceforth

K̂ (c) = K c, k̂(c) = kc (15.2)

for constants K and k. It is worth noting that equation (15.1) can be rewritten as
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∂n
∂t

+ v · ∇n = K (c)n(1 − n),

where the saturating (logistic, “Fisher-like”) nonlinearity on the right-hand side is an
immediate consequence of the way the internal velocity field incorporates the con-
straints on volume, without needing any additional terms to limit growth and to prevent
unphysical interpenetration of different tissue types. It is noteworthy that the additional
−n2 term should thus not be included to mimic space limitations; moreover, it is not an
appropriate representation of nutrient limitations (pertinent modelling being described
in Ward and King [6]).

In one dimension (or with radial symmetry) the system (15.1) represents four
equations in four unknowns, n, ρ, |v| and c. However, in the multidimensional cases
with which we are concerned here, additional equations (constitutive assumptions and
sometimes momentum equations) are needed to determine the vector v. We shall con-
cern ourselves exclusively with the sharp interface limit in which either n = 1 or
ρ = 1, these two regions being separated by an interface x = s(y, t) (for brevity we
confine ourselves here to the two-dimensional case). Then

∇ · v = K c, ∇ · v = 0,

∇2c = kc, ∇2c = 0, (15.3)

where the left-hand column holds in the growing tissue (x < s(y, t)) and the right-
hand one in the surroundings (x > s(y, t)).

We shall pursue three constitutive assumptions, the first being an artificial one
which establishes a benchmark against which the others can be assessed. We shall con-
sider perturbations to one-dimensional growth, whereby (setting v = (u, v) in (x, y)

coordinates) the conditions

at x = 0 u = 0,
∂c
∂x

= 0 (15.4)

at x = s [c]+− =
[

∂c
∂x

]+

−
= 0,

∂s
∂t

=
(

u − v
∂s
∂y

)∣∣∣∣+ =
(

u − v
∂s
∂y

)∣∣∣∣− (15.5)

will hold in all cases where continuity of nutrient concentration, flux of nutrient and
normal velocity on the boundary are assumed. The base solution is

c = c0(x, t), v = (u0(x, t), 0), s = s0(t) (15.6)

so that

c0 = α0(t)
cosh (

√
kx)

cosh (
√

ks0)
, x < s0,

c0 = α0(t) +
√

kα0(t)(x − s0) tanh (
√

ks0), x > s0 (15.7)

and

u0 = K
k

∂c0

∂x
,

ds0

dt
= K√

k
α0(t) tanh (

√
ks0). (15.8)
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The quantity α0 is determined by the far-field condition on c, representative examples
including

c = cL at x = L

(in which case the problem formulation can make sense only while s0 < L and we need
to scale cL ∝ L to get a meaningful problem for L → ∞) and the flux prescription

∂c
∂x

→ 1 as x → +∞.

By keeping α0 (= c0|x=s0 ) free we shall be able to address simultaneously a range
of infinite domain problems, thus providing an economy of calculation that can be
beneficial in a wide variety of linear stability problems.

Our three constitutive assumptions are as follows.

1. One-dimensional growth, v = 0.
2. Darcy flow, applicable to growth within a porous scaffold. Here

v = −κ(n)∇ p

and we set κ = κ− for n = 1 and κ = κ+ for n = 0 (κ is inversely proportional
to the viscosity of the material), and we append to (15.5) the pressure continuity
condition

at x = s [p]+− = 0. (15.9)

3. Stokes flow, relevant to growth unconstrained by a matrix. In deriving these equa-
tions we have assumed Navier–Stokes equations for an incompressible fluid (note
that new material is being produced due to cell division, though) with negligible
inertia and no body forces; we note that the creation of new material leads to a
term of bulk-viscosity type, no such term being present in conventional incom-
pressible flow. It is most convenient for what follows to set this up in terms of the
Airy stress function A, whereby

∂2 A
∂y2 = −

(
p − 2

3
µ(n)∇ · v

)
+ 2µ(n)

∂u
∂x

,

− ∂2 A
∂x∂y

= µ(n)

(
∂u
∂y

+ ∂v

∂x

)
,

∂2 A
∂x2 = −

(
p − 2

3
µ(n)∇ · v

)
+ 2µ(n)

∂v

∂y
, (15.10)

wherein we set µ = µ− for n = 1 and µ = µ+ for n = 0. It is also convenient to
define a stream function ψ via

u = ∂ψ

∂y
+ K

k
∂c
∂x

, v = −∂ψ

∂x
+ K

k
∂c
∂y

. (15.11)
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The higher order of this formulation requires that we append more additional con-
ditions to (15.4) and (15.5), namely (assuming symmetry about x = 0)

at x = 0
∂v

∂x
= 0,

at x = s [A]+− =
[
∂ A
∂x

]+

−
= [ψ]+− =

[
∂ψ

∂x

]+

−
= 0, (15.12)

the simplicity of the interface stress-continuity conditions here (cf. King [4]) pro-
viding a strong motivation for formulating the problem in terms of A.

We are now in a position to describe the stability properties of each of these cases in
turn. Setting (as we shall do throughout) c ∼ c0 + C , s ∼ s0 + S and

C(x, y, t) =




α−(t)
cosh (

√
k + λ2x)

cosh (
√

k + λ2s0)
cos (λy) for x < s0,

α+(t)e−λ(x−s0) cos (λy) for x > s0,

(15.13)

S(y, t) = �(t) cos (λy), (15.14)

where λ > 0 is the wavenumber of the perturbation and we are imposing on C as
x → +∞ only that there be no exponential growth (we can of course without loss of
generality consider only the cosine Fourier components).

15.2 One-Dimensional Growth

Here

u = K
∫ x

0
c(x ′, y, t) dx ′ for x < s,

∂s
∂t

= K
∫ s

0
c dx . (15.15)

Omitting the algebra, we then ultimately find

d�

dt
= Kα0

(
1 − k

k + λ2 + λ
√

k + λ2 coth (
√

k + λ2s0)

)
�. (15.16)

Given that α0 > 0, the stability properties can be readily inferred from (15.16). In
particular, for k = 0, c ≡ 1, say, we have

d�

dt
= Kα0�, (15.17)

which is a growth-driven instability (cf. [3]) whereby regions in which s is largest grow
fastest due to their having more tissue dividing behind x < s. Nutrient consumption k
mitigates this effect (leading to the second term on the right-hand side of (15.16) being
negative) since this competitive advantage is lost when the cells that lie significantly
behind the interface do not have access to the nutrient; this is in sharp contrast to the
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classical diffusion-limited fingering instability to which we shall return. In particular,
as s0 → ∞ we have

d�

dt
∼ Kα0

λ(λ + √
k + λ2)

k + λ2 + λ
√

k + λ2
�, (15.18)

so that perturbations grow for any λ > 0, but typically more slowly than the tissue
itself; perturbations grow fastest in the limit in which the wavenumber λ → ∞, since
cells in a short-wavelength protuberance have access to relatively more nutrient than
those in a long-wavelength one.

15.3 Darcy Flow

In view of space constraints we simply summarise the final result in the remaining
cases. We find for Darcy flow that

d�

dt
= Kλκ+α0

κ− tanh (λs0) + κ+

(
1 + tanh (λs0)

λ + √
k + λ2 tanh (

√
k + λ2s0)

+
(

1
κ+

− 1
κ−

)
κ− tanh (λs0) tanh (

√
ks0)√

k

)
�.

(15.19)

Equation (15.19) requires considerable unravelling. First, in the nutrient-rich case k =
0, c ≡ 1 we have

d�

dt
∼ Kκ+

κ− + κ+

((
1
κ+

− 1
κ−

)
λκ−s0 + 1

)
� (15.20)

as s0 → ∞. Hence if κ+ < κ−, meaning the growing tissue is less viscous than the sur-
roundings, perturbations grow faster than exponentially; this corresponds to the well-
known Saffman–Taylor instability mechanism whereby the expanding tissue tends to
follow the path of least resistance, namely through any existing tissue excrescence
(thereby enhancing the latter). Moreover, the shorter the wavelength (i.e., the larger
the value of λ), the more rapidly the instability grows. In contrast, if κ− < κ+, pertur-
bations are strongly suppressed for large s0. As k → ∞ we instead have (for any s0,
κ+, κ−) the significant simplification

d�

dt
∼ Kλα0√

k
�. (15.21)

For s0 → ∞ with k = O(1) we have

d�

dt
∼ Kλκ+α0

κ− + κ+

(
2

λ + √
k + λ2

+
(

1
κ+

− 1
κ−

)
κ−√

k

)
�. (15.22)
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The first term in brackets on the right-hand side of (15.22) is necessarily positive and
corresponds to the nutrient-limited instability mechanism whereby a protruding finger
of tissue gains access to more nutrient than the tissue behind it and hence grows yet
faster (this mechanism is unmasked most explicitly in (15.21)). The second (viscosity-
contrast) term has a similar interpretation to that described above for K = 0 and
dominates for large λ. An interesting case arises when κ− < κ+ since there is then
a competition between the stabilizing effects of the second term and the destabilizing
ones of the first; the relative (but not absolute) effects of the latter are most pronounced
in the long-wavelength limit λ → 0 when the bracketed term becomes (κ− + κ+)/κ+,
implying that there is always a range of unstable wavenumbers. This limit is of course
closely related to (15.21).

15.4 Stokes Flow

For Stokes flow we find after considerable algebra that perturbations satisfy

d�

dt
= 2Kλµ−α0e2λs0((µ+ + µ−)e2λs0 + (µ+ − µ−))

(λ + √
k + λ2 tanh (

√
k + λ2s0)) 

�, (15.23)

where  = (µ+ + µ−)2e4λs0 − 4(µ2+ − µ2−)λs0e2λs0 − (µ+ − µ−)2.
The linear-stability result (15.23) also warrants a certain amount of disentangling.

In the limit s0 → +∞ we have

d�

dt
∼ 2Kλµ−α0

(µ+ + µ−)(λ + √
k + λ2)

�, (15.24)

implying that a planar front is unstable, whatever the viscosity contrast. The exception
is µ− = 0 when it is neutrally stable—in this case the velocity in x > s is uniform
and one dimensional (v = 0, with u(t) determined by the total rate of cell division
in x < s), so the nonlinear case is tractable. This universal instability is in marked
contrast to the Darcy case: in the absence of a scaffold (which in some sense shields
the two fluids from one another), the “path-of-least-resistance” argument is irrelevant,
with a finger of the growing material being able to advance only by pushing aside the
surroundings (and with this resistance becoming more significant as µ− decreases).

In the nutrient-rich case, k = 0, α0 = 1, the expression (15.24) implies

d�

dt
∼ Kµ−

µ+ + µ−
� (15.25)

and, on comparison with (15.17), we see that the growth-driven instability is mitigated
somewhat by the multidimensional flow pattern, except in the limit case µ+ = 0
(when for k = 0 the velocity field in x < s becomes one dimensional in the limit
s0 → ∞, corresponding exactly to the assumptions that led to (15.17)). As k → +∞,
the asymptotic limit of (15.24) reads

d�

dt
∼ 2Kλµ−α0

(µ+ + µ−)
√

k
�, (15.26)
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which should be compared with (15.21); the correspondence is exact when µ+ = µ−
and this can be viewed as expressing the nutrient-limitation mechanism of instability
in its cleanest form. The instability is enhanced when µ− > µ+, the extreme case
being µ+ = 0 when

d�

dt
∼ 2Kλα0√

k
�. (15.27)

In the multiplicative factor (1+(µ−−µ+)/(µ−+µ+)) that converts (15.21) to (15.26),
the second term can be interpreted as being associated with a buckling instability in
which the compressive stresses generated by cell division in the thin proliferating rim
cause it to buckle (cf. [1]); an analysis of this phenomenon in the framework of the
nonlinear model will be given elsewhere. In contrast, if µ− < µ+, then the more
viscous surrounding material seeks to straighten out the advancing interface, with the
result that (15.26) implies less rapid growth of perturbations than (15.21).

15.5 Discussion

We have presented what we believe to be by some margin the most comprehensive
linear-stability analysis to date of this class of tissue-growth model. In summary, the
following distinct instability mechanisms have been identified.

1. Growth-driven (cf. [3]), whereby thicker tissue grows faster because there is more
dividing tissue behind it.

2. Diffusion-limited, associated in this classical mechanism by a faster-growing re-
gion gaining access to more nutrient.

3. Viscosity-contrast-driven (Darcy), which occurs when the growing tissue is less
viscous than its surroundings and growth tends to follow the path of least resis-
tance.

4. Buckling due to growth-induced compressive stresses (Stokes), which is most pro-
nounced when the growing tissue is more viscous than the surroundings.

We have concerned ourselves here with linear-stability properties. The dependence
of growth rates on the wavenumber λ provides some clues regarding nonlinear be-
haviour, and the strongly nonlinear behaviour is amenable to thin-film modelling ap-
proaches (cf. [3]). It is worth mentioning that in some contexts (e.g., 1) nonlinear ef-
fects can enhance the growth rate of perturbations, whereas in others (e.g., 3, in which
the growth within (the linearly favoured) narrow fingers tends to thicken them) they
reduce them. Finally we note that, in the framework of Stokes-flow moving-boundary
problems, the buckling instability can be equated with negative surface tension and
raises intriguing issues of well-posedness, regularisation and finger selection akin to
those which arise in the Hele–Shaw problem without surface tension. Thus, the area
raises a considerable number of open problems, both mathematical and biological.

Insight may be gained from in vitro studies, for instance, monolayer cultures or
multicell spheroids, in which avacular tumours are grown in nutrient-rich media. In
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vivo studies might include examination of ductal carcinoma in situ in which the tumour
is confined within a membrane that is impenetrable to blood vessels but permeable
to vital nutrients. Such studies directed at determination of the associated parameter
values would be invaluable in allowing such models to be applied in a quantitative and
predictive fashion.

Acknowledgments

S.J.F. acknowledges the support of the EPSRC and AEA Technology in the form of
a CASE studentship while much of this work was being performed. J.R.K. gratefully
acknowledges funding from the EPSRC Integrative Biology Pilot Project.

References

1. Drasdo, D.: Buckling instabilities of one-layered growing tissues. Phys. Rev. Lett., 84,
4244–4247 (2000).

2. Franks, S.J.: Mathematical modelling of tumour growth and stability. Ph.D. Thesis, Univer-
sity of Nottingham (2001).

3. Franks, S.J., King, J.R.: Interactions between a uniformly proliferating tumour and its sur-
roundings: uniform material properties. Math. Med. Biol., 20, 47–89 (2003).

4. King, J.R.: Mathematical aspects of semiconductor process modelling. Ph.D. Thesis, Uni-
versity of Oxford (1986).

5. King, J.R., Franks, S.J.: Mathematical analysis of some multi-dimensional tissue growth
models. Euro. J. Appl. Math. 15, 273–295 (2004).

6. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth. J. Math. Appl.
Med. Biol. 14, 39–69 (1997).



16

A Modified Backward Euler Scheme for
Advection-Reaction-Diffusion Systems
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Summary. We present a modified first-order backward Euler finite difference scheme to solve
advection-reaction-diffusion systems on fixed and continuously deforming domains. We com-
pare our scheme to the second-order semi-implicit backward finite differentiation formula and
conclude that for the type of equations considered, the first-order scheme has a larger region
of stability for the time step than that of the second-order scheme (at least by a factor of ten)
and therefore the first-order scheme becomes a natural choice when solving advection-reaction-
diffusion systems on growing domains.

Key words: Advection-reaction-diffusion, moving grid finite elements, finite difference, pat-
tern formation, Schnakenberg model.

16.1 Introduction

A number of models used in biology, ecology and biochemistry comprise reaction
of “species” in the presence of diffusion: hence reaction-diffusion systems arise [14].
In biology and bio-medicine reaction-diffusion systems are used frequently to model
the emergence of pattern formation, wound healing, cancer and angiogenesis. Most
of these equations comprise nonlinear reaction terms which makes it difficult to find
solutions in closed form, and therefore numerical solutions are sought. A variety of
time-stepping methods have been used to approximate reaction-diffusion models on
fixed domains. These include explicit, semi-implicit, and implicit-explicit (IMEX)
schemes [4, 11]. It has been shown that first-order time-stepping schemes impose se-
vere restrictions on the time step and that other schemes are not recommended because
they give weak damping to high frequency spatial modes [4, 11]. The second-order
semi-implicit backward finite differentiation formula (2-SBDF) scheme was found to
be the most appropriate and therefore recommended when solving reaction-diffusion
systems since the scheme strongly damps high frequency errors [11]. We take this
method as the benchmark and compare results to those obtained by using the modi-
fied first-order backward Euler finite difference scheme (1-SBEM). The novelty and
key difference of our method from other first-order schemes is that we use an implicit
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scheme to approximate the linear reaction kinetics, growth and diffusion terms and a
semi-implicit scheme for the nonlinear terms, as shown in Section 16.2.1.

16.2 Model Equations

In this chapter we focus on the nondimensionalised advection-reaction-diffusion sys-
tem on a continuously deforming domain !(t) with Schnakenberg [13] reaction kinet-
ics given by

ut + ∇.(a u) = γ
(

0.1 − u + u2 v
)

+ ∇2u, (16.1)

vt + ∇.(a v) = γ
(

0.9 − u2 v
)

+ 10 ∇2v. (16.2)

Here !(t) is a time-dependent domain, and u(x(t), y(t), t) and v(x(t), y(t), t) are
the two chemical concentrations under investigation. The term a represents the field
flow velocity. γ is a scaling parameter [10]. In all our simulations zero-flux (homo-
geneous Neumann) boundary conditions are used. These are appropriate for the case
of an impermeable growing membrane, for example, or where we wish to explore
self-organising processes on moving boundaries. Other types of boundary conditions
can be used [4]. Initial conditions are prescribed as small random perturbations about
the uniform steady state of the corresponding reaction system. It must be noted that
complex dynamics such as periodic motion, quasi-periodicity or chaos are not exam-
ined here. Equations (16.1) and (16.2) are more difficult to integrate than the standard
reaction-diffusion systems because of the advection terms.

16.2.1 A Modified Backward Euler Finite Difference Scheme

Following [4,5] we integrate in time using a modified backward Euler finite difference
scheme by approximating implicitly the growth, linear and diffusion terms in equations
(16.1) and (16.2) and semi-implicitly the nonlinear reaction terms as follows:

um+1 − um

�t
+ ∇ · (aum+1) = γ

(
0.1 − um+1 + umum+1vm

)
+ Du∇2um+1,

vm+1 − vm

�t
+ ∇ · (a vm+1) = γ

(
0.9 − um um vm+1

)
+ Dv ∇2vm+1. (16.3)

For simplicity we assume that domain growth is uniform and isotropic and that it takes
place slowly. For example, on fixed domains the term u2 can be approximated by
um um+1 where we assume that two successive approximate solutions um and um+1 at
successive time steps become closer and closer with time. On continuously deforming
domains, domain growth takes place slowly and therefore this assumption still holds.
This is the key novelty of our scheme. Observe that we exploit as much as we can the
full implicitness of the scheme (see [4, 5] for further details).
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16.2.2 The Moving Grid Finite Element Method

We formulate the moving grid finite element method (MGFEM) (space integration)
applied to equations (16.3). Following [4, 6] let w ∈ H1(!(t)) be a test function.
Multiplying equations (16.3) by w leads to finding u, v ∈ H1(!(t)) such that(

um+1 − um

�t
, w

)
+

(
ẋ um+1

x + ẏ um+1
y , w

)
+

(
∇.a um+1

h , w
)

= (γ 0.1, w) −
(
γ um+1, w

)
+

(
γ um um+1 vm, w

)
− Du

(
∇um+1, ∇w

)
,(

vm+1 − vm

�t
, w

)
+

(
ẋ vm+1

x + ẏ vm+1
y , w

)
+

(
∇.a vm+1

h , w
)

= (γ 0.9, w) −
(
γ um um vm+1, w

)
− Dv

(
∇vm+1, ∇w

)
, (16.4)

for all w ∈ H1(!(t)) where (u, w) = ∫ ∫
!(t) u w dx is the L2-inner product. Note

that we have assumed zero-flux (homogeneous Neumann) boundary conditions and
applied Green’s theorem. Observe that a = (ẋ, ẏ)T represents the grid velocity and
the terms ∇ · (a um+1) and ∇ · (a vm+1) have been expanded appropriately as shown
above. Let um

h (or similarly vm
h ) be an MGFEM approximation to u (or v) defined

by um
h = ∑n

j=1 U m
j (t) φ j (x, ξ(t)), where U m

j (t) are the solution values at the nodal
positions, φ j (x, ξ(t)) are the basis functions with compact support and ξ(t) represents
the finite element moving grid. The time derivative of u (similarly v) in equation (16.1)
(similarly (16.2)) can be expressed in two dimensions [1, 3] as

∂um
h

∂t
=

n∑
j=1

(
dU m

j

dt
− ẋ j um

hx
− ẏ j um

hy

)
φ j (x, ξ(t))

and therefore the time discretisation needs to be readjusted to take into account the
extra terms from the MGFEM. Without loss of generality, taking the test function to
be w = φi , i = 1, . . . , n, integrating over the whole domain gives rise to the following
system of linear algebraic equations in compact form (see [4,5,7] for specific details):

M
Um+1 − Um

�t
− (P + Q) Um+1 + (

Ūx + Ūy
)

Um+1 + ∇ · a M Um+1

= γ
[
0.1 F − M Um+1 + C(Um, Vm)Um+1

]
− Du K Um+1, (16.5)

M
Vm+1 − Vm

�t
− (P + Q) Vm+1 + (

V̄x + V̄y
)

Vm+1 + ∇ · a M Vm+1

= γ
[
0.9 F − C(Um, Um) Vm+1

]
− Dv K Vm+1, (16.6)

where U and V represent the vectors of the solutions at the nodal grid points. M is
the mass matrix, K is the stiffness matrix, F is the force vector, P , Q, Ūx , Ūy , V̄x ,
V̄y are resultant matrices from domain growth and C(U, V) is the linearised matrix
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corresponding to the term u2 v [4]. In all our simulations ∇ · a is calculated from
plausible growth functions or those derived from biological experiments and therefore
is a known quantity [7]. We can write in matrix form

Au(Um, Vm) Um+1 = bu(Um) and Av(Um, Vm) Vm+1 = bv(Vm),

where the matrices Au(Um, Vm) and Av(Um, Vm) are functions of Um and Vm and
the right-hand side vectors are given by

bu(Um) = M Um + γ a �t F and bv(Vm) = M Vm + γ b �t F.

The matrices Au and Av are symmetric and positive definite [4]. In one dimension,
these are tri-diagonal matrices which are solved efficiently and fast by using the
Thomas algorithm [9]. In two dimensions we use a preconditioned generalised mini-
mum residual method [12].

16.3 Numerical Simulations

We illustrate the stability regions for the 1-SBEM scheme on one-dimensional domains
only and compare our results to those obtained by use of the 2-SBDF scheme [4,
11]. Two-dimensional results can be found in [4]. The criterion for convergence to
the spatially inhomogeneous steady state and hence a stopping criterion (for the U
component solution, for example) is given by

√∑ |Um+1 − Um |2/∑ |Um+1|2 ≤ ε.
We call this the relative error or accuracy.

Example 1 Fixed domains: Let us compute solutions on a fixed interval [0, 1] with ho-
mogeneous Neumann (zero-flux) boundary conditions at both ends. We fix the scaling
parameter γ = 1000 and vary the time step of both the 1-SBEM and 2-SBDF schemes
until they fail to converge. Table 16.3 shows the regions of stability and accuracy for
the two schemes. The 1-SBEM scheme is stable and converges to a meaningful result
for time-step sizes given by approximately �t < 6.2×10−4 while the 2-SBDF scheme
has a region of stability given by approximately �t < 5.71 × 10−5. The 1-SBEM
scheme allows for larger time steps (by a factor of at least ten) as compared to those
required for the 2-SBDF scheme. This is true for all the computations that we have
carried out [4]. However, it must be observed that the 2-SBDF scheme outperforms
the 1-SBEM scheme in terms of precision as shown: the 2-SBDF scheme is second-
order accurate in time while the 1-SBEM is first-order accurate. Although the 1-SBEM
scheme has a larger region of stability, in terms of precision it cannot outperform the
secord-order scheme as expected. Ruuth [11] demonstrated theoretically and computa-
tionally that first-order explicit methods require finer time steps than those required by
the 2-SBDF or other higher-order semi-implicit methods. However, this is not the case
with our first-order scheme. On growing domains, the fact that the 2-SBDF scheme
has a restrictive region of stability makes it computationally prohibitive and expensive
for carrying out realistic simulations [4]. Therefore, the 1-SBEM becomes a natural
choice.
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Table 16.1. The regions of stability and accuracy for the 1-SBEM and 2-SBDF schemes. Com-
putations were carried out to final time tF = 2.5.

1-SBEM 2-SBDF
Time-step �t Accuracy Time-step �t Accuracy
5 × 10−6 1.575 × 10−16 5 × 10−6 1.5 × 10−18

5 × 10−5 2.1281 × 10−15 5 × 10−5 1.506 × 10−17

5 × 10−4 8.185 × 10−14 5.5 × 10−5 3.3415 × 10−17

6 × 10−4 4.073 × 10−13 5.6 × 10−5 3.7562 × 10−17

6.1 × 10−4 4.5952 × 10−13 5.7 × 10−5 2.8 × 10−17

6.2 × 10−4 1.2464 × 10−12 5.71 × 10−5 5.72 × 10−17

6.3 × 10−4 0.231741 5.8 × 10−5 0.183827

Example 2 Growing domains: For illustrative purposes we solve the model equations
on an exponentially growing interval x(t) = X (0) eρ t —with homogeneous Neu-
mann (zero-flux) boundary conditions—until the interval reaches twice its original
size, where the initial interval is X (0) = [−1, 1] and ρ = 10−3 is the growth rate.
Note that the domain speed is given by ẋ(t) = ρ X (0) eρ t . The 1-SBEM scheme con-
verges for �t = 5 × 10−3 while the 2-SBDF scheme requires �t = 5 × 10−4. The
1-SBEM and 2-SBDF schemes produce qualitatively similar results even though the
two schemes use different time steps, as shown in Fig. 16.1 for γ = 10, 29 and 1000.
Observe that the transient solutions are different for the two schemes (because of the
different time steps), however, the solutions on the final interval are identical and this
is due to the moving boundaries.

16.4 Conclusion

We have carried out numerous numerical computations in two dimensions comparing
the two schemes and have found out that, even in two dimensions, the region of sta-
bility of the time step for the 1-SBEM scheme is at least ten times larger than that of
the 2-SBDF scheme [4]. This is true on both fixed and continuously deforming two-
dimensional domains. The 2-SBDF scheme applied to advection-reaction-diffusion
systems on continuously deforming two-dimensional domains requires �t to be in
the order of 10−6, which is extremely restrictive in terms of numerical simulations. In
this case the number of time steps required to grow a unit square domain, for exam-
ple, to say twice its original size is 500 times more than that required by the 1-SBEM
scheme [4]. The fact that our scheme allows for larger time steps makes it more suit-
able when solving advection-reaction-diffusion problems on continuously deforming
domains. In this scenario, the number of time steps required by the 2-SBDF scheme
is at least ten times more than that required by the 1-SBEM scheme. In most biologi-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 16.1. Moving grid finite element results computed by the 1-SBEM and 2-SBDF schemes
for γ = 10 ((a)–(c)), γ = 29 ((d)–(f)) and γ = 1000 ((g)–(i)). Solutions (c), (f) and (i) are plots
of the u values when the interval reaches domain length [−2, 2].

cal problems, domain growth takes place on a very slow time scale, hence the growth
rate is very small. In multiple dimensions it becomes computationally prohibitive and
too expensive to use the 2-SBDF scheme since it requires time steps of the order of
millions when domain growth is involved [4]. However, in the case of highly oscilla-
tory solutions, first-order schemes have been shown [4,11] to fail to resolve the highest
growing mode and our scheme is no different. In this case, the 2-SBDF outperforms the
first-order scheme as expected [4, 11]. On fixed domains, the choice of which scheme
to use depends on the nature of the problem: if stationary solutions are sought, then the
1-SBEM scheme is recommended. However, in cases of highly oscillatory solutions,
the 2-SBDF scheme must be used, since the 1-SBEM fails to damp the high frequency
errors associated with highly oscillatory solutions [11]. We only plotted results for the
u solution; those of v are 180 degrees out of phase to those of u. We have applied the
1-SBEM scheme to other advection-reaction-diffusion systems with different reaction
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kinetics [2,5,6]. The end product of this research has culminated in the development of
a package for MGFEM applied to generalised advection-reaction-diffusion systems on
fixed and continuously deforming domains. This package is freely available and down-
loadable from the website: http://www.maths.sussex.ac.uk/∼anotida/software.php.
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Summary. A simple mathematical model is proposed to study the influence of cell fission on
transport. The model describes fractional tumor development, which is a one-dimensional con-
tinuous time random walk (CTRW). An answer to the question of how the malignant neoplasm
cells appear at an arbitrary distance from the primary tumor is proposed. The model is a possible
consideration for diffusive cancers as well. A chemotherapy influence on the CTRW is studied
by an observation of stationary solutions.

Key words: Tumor, fractional transport, cell fission, self-entrapment, comb model.

17.1 Introduction

Cancer is a complex disease which leads to the uncontrolled growth of abnormal cells,
destruction of normal tissues, and invasion of vital organs. The malignant neoplasm
cells spread through vascular or lymphatic vessels which disseminates the disease
with further lesion of vital organs. Mathematical modeling of tumor development is
mainly aimed at diagnostics and treatments of cancers, since it may lead to the re-
duction of expensive experiments in vivo. Recent reviews describe different aspects of
the modeling of tumors including solid tumors [14, 20] interacting with the immune
system [3], diffusive models related, e.g., to brain tumors [21], the process of tumor-
induced vascularization [11, 14, 15] and lymphangiogenesis [11], the fractal geometry
of the pathological architecture of tumors [1, 5], and chemotherapy strategies [3, 21].

There are different stages of tumor development with varying duration, starting
from genetic changes on the cell level and finishing with detachment of metastasis and
invasion. The transport of tumor cells and their proliferation are the main contributors
to the malignant neoplasm dissemination (see, e.g., [3, 21]). Interplay between these
two main processes of cell proliferation and transport leads to an essential complica-
tion in the mathematical modeling of the tumor growth [3, 15]. This evolution related
to the collective or macroscopic behavior of cells is described (in many cases) by ki-
netic cellular theory [18] (see also, e.g., [3,21]). For example, different aspects of solid
tumor development including kinetic cellular theory have been described in [3]. It is
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worth mentioning that at a certain stage of tumor development the processes of an-
giogenesis and lymphangiogenesis are the most important biological factors for the
transport and invasion of cancer cells and metastasis [11, 14, 15]. In this connection,
the fractional transport can be an important consequence of these biological phenom-
ena. The most relevant approach for the present consideration is a phenomenological
approach to diffusive cancer which is exemplified by glioma modeling [21]. In this ap-
proach, the macroscopic behavior of tumor cells is described by the diffusion equation

∂ P
∂t

+ ∇ · j = CP − G(t)P , (17.1)

where P ≡ P(x, t) is the tumor cell density or probability distribution function (PDF)
at the space-time location (x, t), and C is a net proliferation rate, while G(t) is the loss
of tumor cells due to chemotherapy. The divergence term ∇ · j = ∇ · [D(x)∇ P(x)] im-
plies inhomogeneous diffusion with the diffusion coefficient D = D(x), which is de-
termined by the inhomogeneous properties of tissues. The initial condition P(x, t = 0)

defines the initial spatial distribution. The Dirichlet boundary condition P = 0 is im-
posed, indicating the absence of cancer cells outside the brain. Since the divergence
term is a particular case of a continuous time random walk (CTRW), some generaliza-
tion of cell transport can be performed as well [7, 8].

In this chapter, we focus primarily on the influence of cell fission on the transport
properties of cells. We propose a simple mathematical model of a CTRW by virtue
of two time scales of tumor development [7, 8]. We consider a collective behavior of
cells, paying particular attention to the influence of tumor cell fission on transport. This
leads to an essential decrease in cell motility during fission time or self-entrapment
that is determined by the interaction of cells with their environment. The simplest
realization of the model is a modification of the comb structure [7, 22]. It was shown,
for this model, that tumor development corresponds to fractional transport. We note
that the mathematical apparatus of the fractional CTRW is well established for many
applications in physics (see, e.g., [6, 16]). Using this simplified approach of fractional
transport, a possible answer to the question of how the neoplasm cells appear arbitrarily
far from the main (primary) tumor in the case of a solid tumor was proposed. The
model can be considered as a possible approach to diffusive cancers as well.

17.2 Fractional Mechanism of Tumor Development: The CTRW
Equation

We consider a simplified scheme of cell dissemination through the vessel network in
the following two steps. The first step is a biological process of cell fission. The du-
ration of this stage is T f . The second process is cell transport itself with duration Tt .
Therefore, the cell dissemination is approximately characterized by the fission time T f
and the transport time Tt . During the time scale T f the cells interact strongly and motil-
ity of the cells is small, and we suppose that there is no transport (approximately). The
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duration of T f could be arbitrarily large. During the second time Tt interaction be-
tween the cells is weak and motility of the cells is determined by the velocity V of
either vascular or lymphatic flow through the vessel network. It is convenient to intro-
duce a “jump” length Xt as a distance which a cell travels during the time Tt Xt = VTt .
Hence, the cells form an initial packet of free spreading particles, and the contribution
of cell dissemination to the tumor development process consists of the following time
consequences: T f (1)Tt (2)T f (3) . . . . There are different realizations of this chain of
times, due to different durations of T f (i) and Tt (i), where i = 1, 2, . . . . Therefore,
one concludes that transport is characterized by random values T (i) which are waiting
(or self–entrapping) times between any two successive jumps of random length X (i).
This phenomenon is known as a continuous time random walk (CTRW) [17]. It arises
as a result of a sequence of independent identically distributed random waiting times
T (i), each having the same PDF w(t), t > 0 with a mean characteristic time T and a
sequence of independent identically distributed random jumps, x = X (i), each having
the same PDF λ(x) with the jump length variance σ 2. It is worth mentioning that a
cell carries its own trap, by which it is set apart from transport. This process of self-
entrapment is the main difference between this and the standard CTRW, where traps
are external with respect to the transporting particles.

Now we introduce the PDF P(x, t) of the particle at the space-time location (x, t).
Suppose that P(x, t), w(t), λ(x) are well-behaved functions, such that the Fourier–
Laplace (F̂ L̂) transforms can be applied w̃(s) = L̂[w(t)]; λ̃(k) = F̂[λ(x)]; P̃(k, s) =
F̂ L̂[P(x, t)]. Then, due to the probabilistic description that defines an appropriate
relation between these three PDFs, P(x, t), w(t), λ(x) in the Fourier–Laplace space
(see, e.g., [4, 16]), one obtains the Montroll–Weiss equation [4, 16]:

P̃(k, s) = 1 − w̃(s)
s

· 1
1 − w̃(s)λ̃(k)

, (17.2)

where the initial condition P(x, 0) = δ(x) was used as well. This result, described
by Eq. (17.2), establishes a link between the tumor development and the CTRW pro-
cess. There are different realizations of w(t) and λ(x) as a result of different relations
between T f and Tt . For example, when T f ∼ Tt , and both T and σ 2 are finite, the
solution of Eq. (17.2) is P̃(k, s) = 1/(s + Dk2), which corresponds to normal diffu-
sion with diffusion coefficient D = σ 2/T . In this case, the relevant description of the
CTRW is in the framework of Eq. (17.1). Here we consider another relation between
T f and Tt : namely, T f  Tt . This case corresponds to the CTRW with subdiffusion.
It differs essentially from Eq. (17.1) and will be considered in this chapter.

We consider a situation when σ 2 is finite, while T diverges and is described by
a long-tailed waiting time PDF with the asymptotic behavior w(t) ∼ Aα(T/t)1+α ,
0 < α < 1. The asymptotic behavior of the Laplace transform is w̃(s) ∼ 1 − (sT )α

[12]. Therefore, Eq. (17.2) reads

P̃(k, s) = 1/(p + Kαs1−αk2) , (17.3)

where the generalized diffusion constant is now Kα = σ 2/T α . The mean squared
displacement (MSD) is calculated from (17.3) via the following relation (see, e.g.,
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[16]):

〈x2(t)〉 = L̂−1 lim
k→0

[−(d2/dk2)P̃(k, s)] ,

where L̂−1 denotes the Laplace inversion. It results in the subdiffusive MSD

〈x2(t)〉 = 2Kαtα/�(1 + α) , (17.4)

where �(z) is a gamma function [9] and 0 < α < 1.
To obtain the fractional or CTRW equation which produces subdiffusion solution

(17.3), we use here the Riemann–Liouville fractional derivatives (see, for example,
[13, 16] and Appendix) [

∂α

∂tα
f (t)

]
RL

≡ Dα
RL f (t).

Employing the Laplace transform for fractional integrals [16, 19]

L̂
[
D−α

RL f (t)
] = s−α f̃ (p) , (17.5)

we present the CTRW equation (17.3) in the following form:

∂ P
∂t

+ D1−α
RL L̂F P (x)P = 0 , (17.6)

where the Fokker–Planck operator is diffusion Kα(∂2/∂x2). In what follows we extend
our consideration to a more general form of inhomogeneous diffusion,

L̂F P (x) = − ∂

∂x
D̃(x)

∂

∂x
. (17.7)

For α = 1/2 the analysis is simplified, and traps can be modeled by normal diffusion
in the additional y direction. In this case the fractional equation (17.6) corresponds to
a comb model [2, 22].

17.3 Comb-Like Model with Proliferation

Fractional transport of cells, namely subdiffusion, can be described in the framework
of the comb model (or CTRW structure) [22]. The comb model is an example of sub-
diffusive one-dimensional (1D) media where CTRW takes place along the x structure
axis. Diffusion in the y direction plays the role of traps with the PDF of delay times of
the form w(t) ∼ 1/(1+ t/T )3/2. A special behavior of diffusion on the comb structure
is that the displacement in the x direction is possible only along the structure axis (x
axis at y = 0). Therefore, cell motility is highly inhomogeneous in the x direction,
while the diffusion coefficient in the transversal y direction is a constant Dyy = D0.
A random walk on the comb structure, which is relevant to Eqs. (17.6) and (17.7), is
described by the distribution function P1 = P1(x, y, t) and the current
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j =
(

−δ(y)D(x)
∂ P1

∂x
, −D0

∂ P1

∂y

)
,

where

P(x, t) =
∫ ∞

−∞
P1(x, y, t)dy . (17.8)

The Liouville equation

∂ P1

∂t
+ ∇ · j = C(P1) (17.9)

yields the following Fokker–Planck equation:

∂ P1

∂t
+ δ(y)LF P (x)P1 − D0

∂2 P1

∂y2 = C(P1) , (17.10)

with the initial conditions P1(x, y, 0) = δ(x)δ(y) and the boundary conditions on
the infinities P1(t) = P ′

1(t) = 0. The primes denote spatial derivatives. The rela-
tion between Kα in (17.3), (17.4) and D, D0 can be found from MSD calculation;
for example, when LF P (x) = D(∂2/∂x2), then Kα = D/2

√
D0, and for D = Kα ,

D0 = 1/4.
In the rest of this section we consider a possible mechanism of tumor cell prolif-

eration. The term C(P1) in Eqs. (17.9) and (17.10) determines the change in the total
number of transporting cells due to proliferation at rate C. According to the CTRW
model, the transporting cells along the x axis do not proliferate. It means that cells
proliferate only if they have a non-zero y coordinate. We introduce the proliferation
rate as a change in the total number of cells with time,

d N (t)/dt = C
∫ ∞

−∞

∫ ∞

−∞
dydx [P1(x, y, t) − δ(y)P1(x, y, t)] . (17.11)

Therefore, C(P1) = C(1 − δ(y))P1.
The first term in the right-hand side of Eq. (17.10) is eliminated by substitution

P1 = eCt F1. Carrying out the Laplace transform F̃1(s, x, y) = L̂[F1(x, y, t)] and
looking for the solution in the form F̃1 = e−√

s/D0|y| f (x, s), it is straightforward to
see that

F1(x, y, t) = L̂−1
[

f (x, s) exp(−
√

s/D0|y|)
]

. (17.12)

Integrating Eq. (17.10) with respect to the variable y (see Eq. (17.8)), one obtains the
following equation for F in the Laplace space F̃(s) = L̂[F(t)]:

s F̃ + L̂F P f = δ(x) − C f . (17.13)

Integrating Eq. (17.12) over y, we obtain a relation between the PDFs of the total
number of cells F and transporting number of cells f in the Laplace space when
C = 0:



198 A. Iomin

f ≡ F̃1(x, y = 0, s) = (1/2)
√

s/D0 F̃(x, s) .

Substitution of this relation in Eq. (17.13) yields, after the Laplace inversion, the
Fokker–Planck equation for the distribution F = e−Ct P . To this end, Eq. (17.13)
is multiplied by

√
s and then by Eq. (17.27) the inverse Laplace transform yields the

following equation for P = eCt F :

eCt D1/2
C e−Ct P + L̂F P P = −CP , (17.14)

where we used a fractional derivative in the Caputo form [13, 19] (see Appendix)

I 1−α[∂ F(t)/∂t] = Dα
C F(t)

with the following property of the Laplace transform:

L̂
[
Dα

C F(t)
] = sα F̃(s) − δ(x)sα−1

and Dα
C [1] = 0. The condition D0 = 1/4 is used as well. This equation describes

fractional transport of cells with fission. As shown here, the cell fission is a source of
the fractional time derivatives. This equation can be extended for an arbitrary fractional
exponent 0 < α < 1, when fission time is determined by a waiting time PDF w(t) ∼
1/(1 + t/T )1+α .

17.4 Stationary Solutions Due to Chemotherapy

Application of chemotherapy changes the tumor development. As seen from Eqs.
(17.10) and (17.1), when G(t) = C, chemotherapy leads to a decrease in the number
of tumor cells and, correspondingly, eliminates tumor development. In reality, a cancer
cell is unstable and can mutate, developing a clone which resists the chemotherapeu-
tical influence (see, e.g., Ref. [21] and references therein). Therefore, mathematical
modeling of chemotherapy optimization is an important problem of cancer model-
ing [3, 21]. In the framework of the simple model of Eq. (17.14), we show that the
chemotherapy term can be present in the form of Eq. (17.1), namely: G1(x, t) =
G(t)P . We find a condition when chemotherapy compensates cell proliferation and
leads to a stationary solution which describes time independent localization of cancer
development.

In the general case, tumor development is a non-equilibrium process of fractional
cell diffusion with fission and chemotherapy, which is described by the following gen-
eralization of Eq. (17.14):

eCt Dα
C e−Ct P + L̂F P (x)P = −CP − G1(x, t) , (17.15)

where G1(x, t) is a chemotherapy term. Let the chemotherapy influence lead to the
compensation of tumor development including cell fission due to the following condi-
tion:
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eCt Dα
C e−Ct P = −G1(x, t) . (17.16)

Thus, Eqs. (17.15) and (17.16) describe a stationary process, where Pst = Pst (x) is a
time independent function

eCt Dα
C e−Ct Pst = −CPst eCt Dα−1e−Ct = −G(t)Pst , (17.17)

where eCt Dα−1e−Ct Pst = −G(t) and Dα−1 ≡ I 1−α . Thus, G1(x, t) = G(t)Pst (x).
One should bear in mind that G(t) is a known function of an external control, which
determines, together with C, the finite relaxation. Taking this into account, we obtain
the following equation for the stationary distribution:

L̂F P (x)Pst = −CPst . (17.18)

When the Fokker–Planck operator describes normal diffusion, namely

L̂F P (x) = −D
∂2

∂x2 ,

the stationary solution corresponds to the exponentially localized tumor cell dissem-
ination Pst (x) = e−x/X L with an effective localization length X L = √

D/C. This
is in agreement with earlier works on glioma development (see [21] and references
therein). When C  D the PDF corresponds to a solid tumor with a well-defined
boundary. Conversely, when C � D this solution corresponds to a larger range of
cancer invasion with exponentially localized distribution.

When the tumor development is described by inhomogeneous diffusion with
D̃(x) = Dx2, the solution of Eq. (17.18) corresponds to the power law distribu-
tion Pst = A|x |l , where l = l± = −1/2 ± √

1/4 + C/D. For |x | < 1, l = l+
and for |x | > 1, l = l−. This distribution corresponds to the long-range invasion of
the diffusion cancer and metastasis. In this case the chemotherapy term of the form
G1(x, t) = G(t)Pst (x) is not sufficient to localize tumor development.

Nevertheless, this unrestricted tumor spreading can be localized due to the control
the chemotherapy action has on the tumor development. To obtain localization of a
stationary distribution, additional chemotherapy action can be applied. For instance, if
G1(x, t) = G(t)Pst (x) + gx2 Pst (x), the equation for the stationary distribution is

D
∂

∂x
x2 ∂

∂x
Pst − (C + gx2)Pst = 0 . (17.19)

This equation is a standard equation for the Bessel functions [9]. Taking into account
the boundary conditions Pst (±∞) = 0, we obtain the solution in the form of the
modified Bessel functions of the third kind Iν(z) and Kν(z) [9], where Kν(z) decays
exponentially for |z|  1. Thus, we have the following solution:

Pst (x) = x−1/2 Zν

(
i

g
D

x
)

, (17.20)

where ν = √
1 + 4C/D and Zν(z) = Iν(z) for |z| < 1, while for |z| > 1 Zν(z) =

Kν(z). The asymptotic behavior of the modified Bessel function

Kν

( g
D

x
)

∼ exp[−
√

g/D|x |] (17.21)

ensures exponential localization of the stationary solution of the tumor development.
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17.5 Conclusion

The present study is mainly focused on the influence of cell proliferation on transport
properties through vessel networks (either vascular or lymphatic). Two main stages
have been taken into account: cell fission with the self-entrapping time T f between
cell transport with durations Tt , correspondingly. Using these two time scales, we were
able to reduce a description of tumor development to a CTRW process. A simple math-
ematical model, which is a toy model of cancer development, is constructed, using
heuristic arguments on the relation between tumor development and the CTRW. In this
case a fractional tumor development becomes a well-defined problem since a mathe-
matical apparatus of CTRW is well established (see, e.g., [4,6,16,19]. The constructed
model is a modification of a comb structure [2, 22]. Using this simplified approach to
the fractional transport of tumor cells, we can answer the question of how the malig-
nant neoplasm cells spread for both solid tumors and diffusive cancers. We presented
analytical solutions of the problem. To this end, 1D transport was considered. A gener-
alization of the analytical consideration of the 3D case is straightforward, when either
an interaction between the degrees of freedom is absent or the problem has the prop-
erty of spherical symmetry and is independent of space angles, and transport is only
considered along the radius. This problem is important for solid tumor formation [20].

An important feature of this consideration of cell transport in the framework of the
CTRW model is an essential enhancement of anomalous transport due to proliferation.
Moreover, it is a dominant process which could be eliminated by chemotherapy. In the
present analysis we obtained stationary solutions for the transporting cells, which cor-
responds to the localization of metastasis due to chemotherapy. A specific property of
the stationary solutions is that they appear as a result of complicated interplay between
fractional cell transport and time dependent chemotherapy action.

We admit that the present consideration in the framework of the toy model does
not take cell size into account. Therefore, cells are considered as point-like particles,
whereas for practical applications, this approach needs cell-size corrections. It is worth
mentioning that the fractional transport does not contradict the processes of angiogene-
sis or lymphangiogenesis which are the most important factors of cancer cell transport
and invasion [11, 14, 15] at a certain stage of tumor development. Moreover, these
factors can be important for the fractional cell transport as well. Nevertheless, in the
framework of the 1D toy model presented here, these biological phenomena cannot
be considered. This question on the influence of, e.g., vascularization on the fractional
cell transport needs separate consideration and will be studied in the future.

17.6 Appendix: Fractional Integro-Differentiation

A basic introduction to the fractional calculus can be found, e.g., in Ref. [19]. Frac-
tional integration of the order of α is defined by the operator

I α
a f (t) = 1

�(α)

∫ t

a
f (τ )(t − τ)α−1dτ, (α > 0) . (17.22)
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There is no constraint on the limit a. In our consideration, a = 0 since this is a natural
limit for the time. The fractional derivative is defined as an inverse operator to I α ≡ I α

0 :

dα

dtα
= I −α = Dα, I α = d−α

dt−α
= D−α .

Its explicit form is convolution

Dα = 1
�(−α)

∫ t

0

f (τ )

(t − τ)α+1 dτ . (17.23)

For arbitrary α > 0 this integral is, in general, divergent. As a regularization of the
divergent integral, the following two alternative definitions for Dα exist [13]:

Dα
RL f (t) = Dn I n−α f (t) = 1

�(n − α)

dn

dtn

∫ t

0

f (τ )

(t − τ)α+1−n dτ , (17.24)

Dα
C f (t) = I n−α Dn f (t) = 1

�(n − α)

∫ t

0

f (n)(τ )

(t − τ)α+1−n dτ , (17.25)

where n − 1 < α < n, n = 1, 2, . . . . Eq. (17.24) is the Riemann–Liouville derivative,
while Eq. (17.25) is the fractional derivative in the Caputo form [13, 19]. Performing
integration by parts in Eq. (17.24) and then applying Leibniz’s rule for the derivative
of an integral and repeating this procedure n times, we obtain

Dα
RL f (t) = Dα

C f (t) +
n−1∑
k=0

f (k)(0+)
tk−α

�(k − α + 1)
. (17.26)

The Laplace transform can be obtained for Eq. (17.25). If L̂ f (t) = f̃ (s), then

L̂[Dα
C f (t)] = sα f̃ (s) −

n−1∑
k=0

f (k)(0+)sα−1−k . (17.27)

We also note that

Dα
RL [1] = t−α

�(1 − α)
, Dα

C [1] = 0 . (17.28)

The following fractional derivatives are helpful for the present analysis:

Dα
RL tβ = tβ−α�(β + 1)

�(β + 1 − α)
, (17.29)

where β > −1 and α > 0. The fractional derivative from an exponential function can
be simply calculated as well by virtue of the Mittag–Leffler function (see, e.g., [19]):

Eγ,δ(z) =
∞∑

k=0

zk

�(γ k + δ)
. (17.30)
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Therefore, we have the following expression:

Dα
RLeλt = tα E1,1−α(λt) . (17.31)

In our consideration α < 1 (and n = 1), and it follows from (17.26) and (17.30) that

Dα
C eλt = Dα

RLeλt − t−α

�(1 − α)
. (17.32)

This yields an explicit expression for the chemotherapy term in Eq. (17.17).
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9. Janke, E., Emde, F., Lösh, F.: Tables of Higher Functions. McGraw-Hill, New York, (1960).

10. Kamke, E.: Differentialgleichungen: Lösungsmethoden und Lösungen. Leipzig, (1959).
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Summary. In this chapter we briefly discuss the results of a mathematical model formulated
in [22] that incorporates many processes associated with tumour growth. The deterministic
model, a system of coupled non-linear partial differential equations, is a combination of two
previous models that describe the tumour-host interactions in the initial stages of growth [11]
and the tumour angiogenic process [6]. Combining these models enables us to investigate com-
bination therapies that target different aspects of tumour growth. Numerical simulations show
that the model captures both the avascular and vascular growth phases. Furthermore, we recover
a number of characteristic features of vascular tumour growth such as the rate of growth of the
tumour and invasion speed. We also show how our model can be used to investigate the effect
of different anti-cancer therapies.
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18.1 Introduction

Tumour growth is a complex process that involves a sequence of well-orchestrated
events. These characterise the initial avascular phase of growth, the angiogenesis that
enables the tumour to become vascularised and the vascular phase of growth. During
the early stages of growth, oxygen is delivered to the tumour cells via diffusion from
nearby blood vessels and the tumour cells proliferate rapidly and consume more oxy-
gen than the host cells [7]. Due to the diffusion-limited supply of oxygen such growth
is limited in size [31]. To grow larger the tumour must undergo a cascade of processes
that include the secretion of tumour angiogenic factors, such as vascular endothelial
growth factor (VEGF). VEGF stimulates the formation of a tumour-specific vascu-
lar network from the host vessels. Upon successful vascularisation oxygen is rapidly
supplied to the tumour and it can grow larger.
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Within the last three decades a number of mathematical models for tumour growth
have been developed as part of the quest to understand tumour growth dynamics.
Most of these models focus on one particular aspect, for example, avascular growth
(e.g., [27, 32]), tissue-tissue interactions (e.g., [11, 28]), angiogenesis (e.g., [1, 6, 21])
or vascular tumour growth (e.g., [4, 5, 14, 18]). However, if we wish to compare and
contrast the effectiveness of different treatment protocols via mathematical modelling,
we need a model that integrates several key processes that occur during tumour growth.
A first attempt at deriving such a model was made by de Angelis and Preziosi [8]. They
developed a model to describe the evolution of tumour growth from the avascular stage
to the vascular stage through the angiogenic process. The model was able to predict the
formation of necrotic regions, the control of mitosis by the presence of an inhibitory
factor, the angiogenesis process with proliferation of capillaries just outside the tumour
surface and the regression of the tumour and the angiogenic capillaries when angio-
genesis was controlled or inhibited. Here we briefly describe an extended model to the
one in [8] by including the density of the healthy host cells in the system, and we also
model two distinct components of the vasculature, distinguishing between capillary
tips and blood vessels. We refer the reader to [22] for full details. In Section 18.2, we
present the model equations. In Section 18.3 we illustrate the types of behaviour that
the model yields when formulated on a one-dimensional spatial domain. The potential
use of our model for testing anti-tumour drug protocols is illustrated in Section 18.4.
We present our conclusions and comment on future research directions in Section 18.5.

18.2 Model Formulation

The model we develop comprises a system of non-linear partial differential equations
and aims to reproduce the animal chamber experiments of Gimbrone et al. [12] and
Muthukkaruppan et al. [17]. Thus we consider a small solid tumour implanted in the
cornea of a test animal close to the limbal vessels. Angiogenesis is quick (14–21 days)
and tumour growth evolves continuously from the avascular phase, through angiogen-
esis to the vascular phase.

A novel feature of our model, compared to previous models, is that tumour-host
interactions are active in the region while the new capillary network is forming during
angiogenesis. This enables us to investigate how the coupling of tumour-host dynam-
ics and angiogenesis influences tumour growth. To our knowledge this has not been
considered in existing models, which have tended to focus on a single specific aspect
of tumour development.

Tumour growth, via invasion of the surrounding host cells, and angiogenesis are
multidimensional processes. By averaging the dependent variables in a plane perpen-
dicular to the direction of motion of the vascular front it is possible to restrict attention
to one spatial dimension. This direction is chosen to be parallel to the line connecting
the limbus, situated at x = 0 and where the nearest host blood vessels are found, to the
tumour centre at x = 1 (in dimensionless terms). We introduce independent variables
t and x representing, respectively, time and spatial position in a direction parallel to
that of tip growth.
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Within our modelling framework we consider two types of dependent variables:
those that contribute to the tumour volume and those of negligible volume. In the for-
mer category we include the healthy (host) cell density n1(x, t), the tumour cell den-
sity n2(x, t) and two components for the vasculature, namely the capillary tip density
n3(x, t) and the density of the blood vessels b(x, t). The nutrient, which in our case
is oxygen, concentration a(x, t) and TAF, which in our model is VEGF, concentration
c(x, t) are assumed to be of negligible volume. To formulate the model equations we
combine models by Byrne and Chaplain [6] and Gatenby and Gawlinski [11]. Follow-
ing [6], the deterministic modelling of the vasculature-TAF interactions is based on the
fungal growth model of [9], the two processes sharing many common features, includ-
ing branching, anastomosis and migration [12, 17]. Based on experimental results by
Sholley et al. [29], we assume that migration of the capillary tips up the gradient of
VEGF concentration is the key mechanism during angiogenesis and that proliferation
of the cells at the capillary tip stimulated by VEGF is secondary, and as a result, less
significant. This makes our model assumptions biologically different from the mod-
elling assumptions from [6].

Following [11] we model the tumour-host interactions via non-linear reaction-
diffusion equations for the cell density. However, we assume that the normal tissue
is immobile and neglect its random motion coefficient. As in [11] we assume that
the tumour is unable to spread unless the surrounding healthy tissue has been dimin-
ished from its carrying capacity by, for example, increased acidity leading to death
of normal cells. Thus we consider the expansion of the tumour into the adjacent tis-
sue to depend on its composition and we model the random motion coefficient for the
tumour cell density to be dependent on the density of the surrounding normal cells.
Unlike [11] the equations we use for the tumour and the host cell density are coupled
via the oxygen equation, rather than hydrogen ion density H+ as a measure of the pH
and acidity of the region. Oxygen is blood-borne and it controls cell proliferation and
oxygen-deprived (hypoxic) death. These assumptions are based on experimental ob-
servations of tumour-host interactions in the presence and absence of oxygen [7]. The
novel aspect of our model is the coupling of the equations for the cell densities and
oxygen concentration with equations for the vasculature-TAF interactions. We explore
the fact that when oxygen concentration in the region lowers, tumour cells (and to a
lesser extent normal cells) secrete VEGF [13]. We incorporate this by assuming that
VEGF is produced by the tumour and the normal cells under hypoxia. This coupling
distinguishes our model from [11], from [6] and from previous models such as [8].

Combining the above ideas we arrive at the following non-dimensionalised system
of equations (see [22] for details):

∂n1

∂t
= r1ρ1a

1 + ρ1a
n1︸ ︷︷ ︸

proliferation

− r1n2
1︸︷︷︸

crowding

− R1n1

1 + ρ1a︸ ︷︷ ︸
hypoxic death

− c1n1n2︸ ︷︷ ︸
competition

(18.1)
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∂n2

∂t
= ∂

∂x

(
dn2(1 − n1)

∂n2

∂x

)
︸ ︷︷ ︸

random motion

+ r2ρ2a
1 + ρ2a

n2︸ ︷︷ ︸
proliferation

− r2n2
2︸︷︷︸

crowding

− R2n2

1 + ρ2a︸ ︷︷ ︸
hypoxic death

− c2n1n2︸ ︷︷ ︸
competition

(18.2)
∂a
∂t

= da
∂2a
∂x2︸ ︷︷ ︸

diffusion

+ hb(1 − a)︸ ︷︷ ︸
delivery by

blood vessels

− λ1r1an1

1 + ρ1a︸ ︷︷ ︸
consumption by

host cells

− λ2r2an2

1 + ρ2a︸ ︷︷ ︸
consumption

by tumour cells

(18.3)

∂c
∂t

= dc
∂2c
∂x2︸ ︷︷ ︸

diffusion

+ r3

1 + ρ1a
n1︸ ︷︷ ︸

secretion by
host cells

+ r4

1 + ρ2a
n2︸ ︷︷ ︸

secretion by
tumour cells

− p1bc︸︷︷︸
removal by

vessels

− γ c︸︷︷︸
natural

loss

(18.4)

∂n3

∂t
= dn3

∂2n3

∂x2︸ ︷︷ ︸
random
motion

− ∂

∂x

(
ψc

1 + ηc
n3

∂c
∂x

)
︸ ︷︷ ︸

chemotaxis

+ p2bc︸︷︷︸
branching

− β1n3b︸ ︷︷ ︸
anastomosis

(18.5)

∂b
∂t

= dn3
∂n3

∂x︸ ︷︷ ︸
random
motion

− ψc
1 + ηc

n3
∂c
∂x︸ ︷︷ ︸

snail-trail
production

+ s1b(1 − b)︸ ︷︷ ︸
vessel

remodelling

− δb︸︷︷︸
natural

loss

. (18.6)

The corresponding initial and boundary conditions are

∂n2
∂x

(0, t) = 0,
∂a
∂x

(0, t) = −hb(1 − a),
∂c
∂x

(0, t) = p3bc, n3(0, t) = e−kt , (18.7)

∂n2
∂x

(1, t) = 0,
∂a
∂x

(1, t) = 0,
∂c
∂x

(1, t) = 0,
∂n3
∂x

(1, t) = 0, (18.8)

n1(x, 0) = 1 − n2(x, 0), n2(x, 0) = 1
1 + exp (−ε2(x − a2))

, a(x, 0) = 1, (18.9)

c(x, 0) = 0, b(x, 0) = 1
1 + exp (ε4(x − a4))

, n3(x, 0) = 1
1 + exp (ε3(x − a3))

. (18.10)

We make the simple modelling assumption that captures the effect of a one-off
formation of capillary tips at the limbus as the condition n3(0, t) = e−kt , where k
represents the rate of tip decrease at the limbus. The blood vessels at the limbus supply
the region with oxygen and also remove the excess VEGF. For the tumour density we
impose a no-flux boundary condition at x = 0. We assume symmetry of the tumour
about its centre and hence impose no flux boundary conditions for n2, a, c and n3 at
x = 1. We assume that initially some tumour cells are located at x = 1, the rest of
the domain is filled with normal cells and that the vasculature is only present near the
limbus. Initially the region is well oxygenated and no VEGF is present.



18 Mathematical Modelling of Vascular Tumour Growth 209

18.3 Model Simulations

We investigate, using numerical computation, the behaviour of the model in various
parameter regimes. We use the NAG library routine DO3PCF which discretises the
system of equations using finite differences and solves the resulting system of ordinary
differential equations using backward differentiation [26]. We find that, by changing
parameter values, the model can simulate a growing tumour before and after vascular-
isation, as well as the clearance of the tumour due to interactions with the host tissue.
Qualitatively we can capture avascular tumour growth with invasion of the host cells,
the migration of the neovasculature during the angiogenic process and also vascular
tumour growth characterised by the tumour growing larger and invading the host cells
more rapidly than its avascular counterpart.

In Fig. 18.1(a)–(e) we present numerical solutions of the equations (18.1)–(18.10)
for different parameter values. We observe avascular tumour growth and tumour inva-
sion of the host cells (see Fig. 18.1(a)); successful angiogenesis and tumour invasion
of the host cells (see Fig. 18.1(b)); avascular tumour growth and tumour coexistence
with the host cells (see Fig, 18.1(c)); successful angiogenesis and tumour-host coex-
istence (see Fig. 18.1(d)); and tumour regression during avascular growth only (see
Fig. 18.1(e)). We note that changes in key model parameters (competition parameters
c1, c2 and oxygen consumption λ2 as well as the chemotactic parameters η, ψ) allow
us to switch from one type of behaviour to another. We illustrate this in the bifurca-
tion diagrams in Fig. 18.2(a)–(c) where parameter space is divided into distinct regions
depending on the outcomes of the simulations.

Our results suggest that the success of the angiogenic process depends on the
strength of tumour-host competition: only when the tumour can compete with the
host cells will angiogenesis be completed (regions M and P in Fig. 18.2(a)–(b)). Thus
we predict that angiogenesis must follow invasive avascular tumour growth and it is
not possible for a tumour that initially regresses to then undergo angiogenesis and in-
vade the host cells. This occurs because in our model the tumour cells are the main
source of VEGF. Hence when the normal cells are dominant the tumour recedes and
VEGF secretion decreases (see Fig. 18.1(e)). Tumour vascularisation is quicker when
the tumour consumes larger amounts of oxygen (i.e., as λ2 increases; see Fig. 18.3(a)).
Equally, increasing λ2, and making the region hypoxic, in Fig. 18.2(a)–(b), increases
the size of the region P thus making it more likely for the tumour to invade the host
cells. This suggests that tumour invasion is stronger in hypoxic conditions and this is
a new prediction of our model. Combining these results we predict that hypoxic con-
ditions, brought about by large oxygen consumption by the tumour cells, render the
tumour more invasive and able to vascularise more quickly.

Successful angiogenesis, in Fig. 18.4(c)–(d), is characterised by vascular profiles
that propagate from the limbal vessels towards the tumour, with increasing speed and
increasing maximum density (see Fig. 18.4(c)). In addition the capillary tip profiles
precede the vessel profiles (compare Figs. 18.4(c) and 18.4(d)). These are features of
what is called the brush-border effect associated with successful tumour vascularisa-
tion in the experiments by Muthukkaruppan [17]. By tracking the position of a point
in the wave front over time, we estimate the speed of propagation of the tips to be
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Fig. 18.1. Series of plots illustrating the types of behaviour that emerge from equations (18.1)–
(18.10). The normal n1(−) and the tumour cell density n2(−−) propagate as waves of normal
cell regression and tumour invasion before and after successful vascularisation (a)–(d); or when
the normal cells are better competitors the tumour density regresses (e) in which case angio-
genesis is unsuccessful. Following successful vascularisation the tumour grows larger ((b) and
(d)). During avascular tumour invasion in (a) and (c) the capillary tips n3(−.−) propagate from
the limbus towards the tumour with increasing speed and increased maximum density. Post an-
giogenesis tip profiles propagate with constant speed and either increase to a maximum value
within the tumour mass (b) or decrease towards the tumour centre (d). The results are shown at
dimensionless t = 5, 10, 15 in (a), (c) and (e) and t = 20, 25 and 30 in (b) and (d). Parameter
values: r1 = 4, ρ1 = 8, R1 = 1, r2 = 10, ρ2 = 15, R2 = 2, dn2 = 0.0007, h = 10, λ1 = 0.1,
r3 = 0.1, r4 = 10, p1 = 10, dc = 0.28, γ = 1, dn3 = 0.0001, ψ = 0.8, η = 1.5, p2 = 50,
β1 = 10, s1 = 1, δ = 0.25, k = 30, p3 = 10, ε2 = 250, a2 = 0.9, ε3 = ε4 = 250, a3 = a4 = 0
and (a) c1 = 10, c2 = 5, λ2 = 50; (b) c1 = 1, c2 = 5, λ2 = 0.5; (c) c1 = 1, c2 = 25, λ2 = 50.

approximately 0.03 in dimensionless units (or 0.11 mm day−1 in dimensional units)
near the limbus and 0.13 in dimensionless units (or 0.4 mm day−1) near the tumour in
Fig. 18.4(c). This agrees with experimental measurements showing the vascular speed
increasing from 0.1–0.2 mm day−1 near the limbus to 0.3–0.8 mm day−1 near the tu-
mour [10]. Once the tumour is vascularised the speed of the vascular front becomes
constant and approximately that near the limbus prior to angiogenesis. Therefore once
the vessels penetrate the tumour their rate of propagation becomes constant. Further-
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Fig. 18.2. (a)–(b) Diagram showing how the competition (c1, c2) parameter space can be de-
composed into distinct regions depending on the long-time behaviour of the model solutions,
for two different values of λ2. In (a) λ2 = 5 and in (b) λ2 = 50. In regions M and P the tu-
mour is a similar or better competitor than the normal cells, the numerical solutions evolve as
travelling waves of tumour invasion of the host cells during the avascular phase followed by
successful angiogenesis and vascular tumour growth. In region Q the normal cells dominate; the
tumour regresses and fails to become vascularised. (c) Diagram showing the existence of a nu-
merically calculated region where the tumour grows as avascular or vascular depending on the
values of the chemotactic parameters η and ψ . This parameter space is determined with detailed
numerical simulation. The rest of the parameter values are as per Fig. 18.1(a) with tumour being
the better competitor and (c1, c2) ∈ P from (a)–(b). Qualitatively the results are the same when
(c1, c2) ∈ M from (a)–(b).

more the maximum density of the capillary tips either reaches a maximum value within
the tumour mass (see Fig. 18.1(b)) or decreases towards the tumour centre once the
tips have penetrated the tumour (see Fig. 18.1(d)). The former case occurs when the
tumour is a better competitor than the host cells, whereas the latter case occurs when
the tumour cells coexist with the host cells. Therefore we predict that the outcome of

 

Fig. 18.3. (a) Numerically calculated decrease in the time when the tumour becomes vascu-
larised as a function of the parameter λ2 that controls oxygen consumption by the tumour cells.
(b)–(c) Diagrams illustrating how the (�1, �2) and (�2, β2) parameter spaces can be decom-
posed into distinct regions depending on the effectiveness of an anti-proliferative therapy. In (b)
in the long term, only tumour cells are killed (II), only normal cells are killed (IV), both cell
types are killed (III) by the therapy, or it has no effect on tumour growth (I). In (c) the therapy
is not effective in region N; the tumour regresses and is removed in region R and the tumour
reaches saturated growth in region S.
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Fig. 18.4. Series of plots illustrating the profiles of the capillary tips and the vessel density
during unsuccessful angiogenesis (a)–(b) and during successful angiogenesis with brush border
(c)–(d). The parameters are as in Fig. 18.1(a) apart from γ = 19, η = 50 for (a)–(b) and γ = 1,
η = 1.5 for (c)–(d). We plot the profiles at dimensionless t = 5, 10, 15, 20.

the tumour-host interaction affects the behaviour of the vasculature during vascular
growth. A large vascular density (capillary tips in Fig. 18.1(b)) during vascular tumour
growth is, in our simulations, present during successful invasion of the host tissue by
the tumour cells. A small vascular density (capillary tip density in Fig. 18.1(d)) is
associated with tumour-host coexistence during vascular growth.

The model also shows that angiogenesis enhances the ability of the tumour cells
to invade the host tissue. For example, for the profiles depicted in Fig. 18.1(c) the
tumour invasion speed increases from 0.09 (or 0.27 mm day−1) to 0.105 (or 0.315
mm day−1) following successful angiogenesis. In addition the tumour density is much
larger following angiogenesis (compare Figs. 18.1(a) and 18.1(b)). These results sug-
gest that in the later stages of tumour growth, following vascularisation, the tumour
grows much larger and is more invasive than during the initial avascular stages of
tumour growth. These observations agree with experimental observations of tumour
growth in vivo [10].
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18.4 Applications of the Model

The model (18.1)–(18.10) can be used to investigate the effect of different anti-cancer
treatments. We now extend our model to include an equation for a blood-borne drug
with different modes of action. For example, model simulations suggest that a tumour
which in the absence of therapy invades the adjacent host tissue, when treated contin-
uously with an anti-proliferative drug can saturate in growth or can regress. The effect
of the drug in our simulations is thus similar to the effect of chemotherapeutic drugs
such as doxorubicin [3] which target rapidly proliferating cells. In Fig. 18.3(b)–(c) we
depict the bifurcation diagrams for the parameters that control the effectiveness of the
anti-proliferative therapy: �1 and �2 associated with the potency of the drug on the
healthy and the tumour cells and β2 representing the rate of drug uptake by the tumour
cells. We predict that the therapy is most effective when the potency on the tumour
cells and the uptake of the drug by the tumour cells are large, whereas the potency on
the normal cells is small.

Alternatively we study administration of a drug that destroys the vascular network.
Such a drug may fall into two categories: one that targets the angiogenic stimuli (e.g.,
VEGF) via inhibitors such as endostatin [19] or angiostatin [20]; or a drug such as com-
bretastatin (CAP4) [33] that directly targets the immature blood vessels. Within our
model we are able to incorporate these different modes of action of the anti-vascular
drug and compare the outcomes. Qualitatively the results are the same. Our simula-
tions predict that upon administration of the anti-vascular drug tumour vascularisation
can be prevented but tumour invasion of the host cells continues in this case. The tu-
mour density resembles an avascular mass that invades with a constant speed. This is
unrealistic, as we know that avascular tumours cannot grow indefinitely, and occurs
because the model [11] does not properly include necrosis. Recently, an extension of
the model in [11] has been proposed and shown to exhibit growth saturation [30]. A
future extension of the present integrated model would be to include this new model.

When a combination of anti-proliferative and anti-vascular therapy is introduced
into our model, the qualitative outcome is similar to that when only anti-proliferative
therapy is applied. Tumour invasion into the host cells can either be halted and the
tumour reaches a saturated growth, or tumour invasion is reversed and the tumour
regresses. For more details of these and other therapeutic applications see [22] and
[24].

18.5 Conclusions

We believe that the mathematical model presented here enables us to better understand
the complex interactions that govern tumour growth. The continuum approach adopted
in [22] allows us to make analytical predictions, for example, of wavespeed of invasion.
Recently many cellular automata (CA) approaches have been developed to describe
different aspects of tumour growth (see [16]). CA allows one to consider properties
of individual cells but there is little in the way of mathematical theory developed for
such models. Our model was the first deterministic model to study how tumour cells,
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host cells and host blood vessels interact. With our results we can capture avascular
followed by vascular tumour growth, as well as tumour elimination due to interactions
with the host tissue. We can confirm that a vascular tumour is more aggressive and
grows larger than its avascular counterpart. This agrees with in vivo observations of
tumour growth and the modelling results presented in [4]. Furthermore we predict that
it is not possible for a tumour that initially regresses to undergo angiogenesis and then
invade the host cells. This may be a consequence of the fact that we do not allow
for genetic mutations of the tumour cells. Our simulations also suggest that, during
vascular growth, the maximum density of immature vessels within the tumour mass
stays constant or decreases towards the tumour centre. In practice the situation which
arises depends on the nature of the tumour-host interactions.

In terms of novel therapies, our numerical results suggest that targeting a vascular
tumour with a highly potent anti-proliferative drug in combination with reducing the
VEGF influence in the region (and thus preventing angiogenesis) is the most effective
treatment. When the therapy only destroys the vascular network, we predict that angio-
genesis can be prevented but tumour invasion will continue unaffected. We note that
in our model there is continuous infusion of the drug. Questions remain as to whether
such a therapy is feasible and, of course, our modelling framework does not account
for the issue of side effects. A full critique of this modelling approach together with
possibilities for further research are presented in [24].
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Summary. Glioblastoma is the most malignant form of brain cancer. It is extremely invasive;
the mechanisms that govern invasion are not well understood. To better understand the process
of invasion, we conducted an in vitro experiment in which a 3D tumor spheroid is implanted into
a collagen gel. The paths of individual invasive cells were tracked. These cells were modeled as
radially biased, persistent random walkers. The radial velocity bias was found to be 19.6 µm/hr.
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19.1 Introduction

The outcome for patients with highly malignant brain tumors is extremely poor.
Glioblastoma, the most malignant form of brain cancer, is responsible for 23% of pri-
mary brain tumors and has a 5-year survival rate below 2.1% [1]. One factor that makes
glioblastoma multiforme (GBM) so difficult to treat is its high invasiveness [4]. It is
known that the invasive cells are highly motile, but the mechanisms that govern their
motility are not understood.

In this chapter, we present new results from experiments where fluorescently la-
beled tumor spheroids were grown in three-dimensional (3D) collagen gels. One day
after implantation, the system was imaged once per minute for 12 hours using wide
field microscopy. Postprocessing algorithms were used to derive individual cell paths
from these images. These cells were modeled as radially biased random walkers us-
ing a 3D Ornstein–Uhlenbeck (OU) process. The model fits the data and also provides
evidence for directed motility of the invasive cells away from the spheroid at a rate of
19.6 µm/hr.
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19.2 The Experiments

19.2.1 Cell Culture

U87 glioblastoma cells were cultured in Dulbecco’s modified essential medium (DMEM)
with 10% fetal bovine serum (FBS), supplemented with 100 U/mL penicillin and
100 mg/mL streptomycin. The histone-GFP (H2B-GFP) fusion protein was stably ex-
pressed in U87 cells. The protein was transfected via the pBOS-H2BGFP vector, re-
cently described by Kanda et al. [9] and commercially available (BD Pharmingen, San
Diego, CA). Blasticidin (VWR, Westchester, PA) at 5 mg/mL was added to the cell
culture medium to select for cells expressing the fusion protein.

19.2.2 Mullticellular Spheroids

Cells were grown to confluency in 10 cm diameter cell culture dishes, rinsed twice with
phosphate-buffered saline (PBS), and trypsinized. After trituration, the cell suspension
was centrifuged for 3 minutes at 2,000 RPM and the supernatant was replaced with
new cell media. The cell suspension was then diluted to a cell number density of 2.5 ×
104/mL. The hanging droplet method [10] was then used to produce spheroids. Briefly,
20 mL droplets of diluted cell suspension (∼500 cells) were pipetted on the inside of
the cover of a cell culture dish; the cover was then turned right side up and placed
on top of the culture dish; the droplets were allowed to hang for 3 days until cells
accumulated at the bottom of the drop through gravity and adhered to one another to
form a cell spheroid.

19.2.3 Tumor Model

The extracellular matrix was modeled, in vitro, by using type I bovine collagen (An-
giotech Biomaterials, Palo Alto, CA) at a final concentration of 1.5 mg/mL. The col-
lagen solution was prepared so as to contain 10% 10X DMEM, 10% FBS, 1% PS, and
0.025 M Na2HCO3 (Invitrogen, Carlsbad, CA). A neutral pH was achieved by adding
NaOH 1 M to the collagen solution. The spheroid droplet was added after three days of
hanging to 400 mL of collagen solution. The sample was then placed in an incubator
(37◦C, 5% CO2, 100% humidity) for 1 hour to allow collagen to polymerize. Then,
100 mL of cell media was added on top of the polymerized sample to prevent drying.

19.2.4 Image Acquisition

We used a Leica DM IRB inverted microscope (Leica Microsystems, Wetzlar, Ger-
many) with a 5X Leica objective to image our samples through a 640x480 Hamamatsu
C7190 high sensitivity digital video camera (Hamamatsu Photonics, K. K., Hama-
matsu City, Japan). The sample was placed on a heating stage (digital tempcontrol
37-2, Leica) and covered with a CO2 control chamber (digital CTI controller 3700, Le-
ica). We used a traditional FITC cube with a 100W mercury arc lamp (Ludl Electronic
Products, Hawthorne, NY) to excite the GFP-labeled nuclei and acquire fluorescent
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Fig. 19.1. Wide field confocal microscopy image of the invasive tumor spheroid.

images of our sample. A cell was visible if it was within approximately 25µm of the
focal plane. The resulting image was a 2D projection of the 3D cell paths near the focal
plane.

An example of an image taken from the setup is shown in Fig. 19.1. A total of 720
images were taken, one each minute for 12 hours. The paths taken by individual cells
were traced. From the image, the spheroid was determined to be 212 µm in radius. It
did not change significantly over the course of 12 hours. The coordinates for the center
of the spheroid were obtained by eye.

19.2.5 Cell Tracking

Identifying the nuclei on the images was achieved by a particle tracking method pre-
viously described by Crocker and Grier [2] and implemented in the IDL (Research
Systems, Inc, Boulder, CO) programming language. The output of the tracking routine
is particle position, velocity, brightness, and radius for each time frame, as well as a
particle ID assigned automatically by the program. All subsequent analysis of cell tra-
jectories was done using in-house written Matlab (Mathworks, Inc. Natick, MA) code.
Note that due to the high density of cells in the tumor core, the tracking algorithm
produces errors there. Thus all tracks located at the center of the image in the region
estimated to be the core were ignored. The paths are shown in Fig. 19.2.

19.3 Mathematical Model

A model that is frequently used to describe cell motility is the continuous, persistent
random walk, described by the Ornstein–Uhlenbeck (OU) equation [6, 8, 11]

dV = −β(V − V0r̂)dt + αdW. (19.1)

Here, V is a three-dimensional (3D) velocity vector, V0 is the velocity bias, and mul-
tiplication of V0 by r̂ indicates that this bias is in the radial direction, away from the
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(a) Cell paths from experiment (b) Cell paths simulated by (19.1)

Fig. 19.2. Cell paths from experiment and from Ornstein–Uhlenbeck model.

tumor spheroid. W is the Wiener process that represents the unpredictable aspects of
cell motion. The x , y, and z components of the velocity are modeled as independent
processes. One can extract physical meaning from α and β by noting that the persis-
tence time, P , is equal to 1/β, and the diffusion constant, D, is equal to nα/β2, where
n is the number of dimensions [11].

The tumor spheroid was modeled as a 3D reflecting sphere 157 µm in radius to
match the size of the spheroid in the experiment. Each individual invasive cell was
modeled as a random walker that obeyed (19.1). At time 0, random walkers were
placed in a planar slice 50 µm thick which passed through the center of the spheroid.
Their initial velocity was chosen to be radial and uniformly distributed in the interval
[0, 2V0]. When initially seeded, the cells were limited to be in a region within 200 µm
from the spheroid surface to reflect the fact that, at time 0 in the experiment, all the
invasive cells are in that region. The paths were recorded only when they stayed within
the 50 µm planar slice. This reflected the fact that cells could leave and enter the field
of view of the microscope.

19.4 Data Analysis

Using the above model, the paths from the experiment were analyzed so that the pa-
rameters for the model could be estimated. The track of an individual cell is denoted
by Xi(t), where t indicates the time at which the measurement was taken and i is the
index for a particular cell path. Paths may have missing data at some time points. The
velocity of a cell is given by a forward difference, where h is one minute, the time
between two successive images:

Vi(t) = Xi(t + h) − Xi(t)
h

. (19.2)
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Fig. 19.3. The autocorrelation ensemble (solid line) and the least squares fit (dashed line).

The velocity vector, Vi(t), is expressed in polar coordinates oriented at the spheroid
center. This vector is then split into its radial, V r

i (t), and angular, V θ
i (t), components.

The radial distance of the cell from the spheroid center is Ri (t). It should be noted that
while these cells moved in three dimensions, they were only imaged in two.

For the OU process, the autocorrelation function r(τ ) decays at a rate e−βτ . Thus
the autocorrelation function can be used to estimate β. We begin by finding the auto-
covariance function of an individual cell, ci (τ ), using

ci (τ ) = 1
Ni (τ )

tm−τ∑
t=t1

(V r
i (t) − V r

i (t))(V r
i (t − τ) − V r

i (t)). (19.3)

Here Ni (τ ) is the number of pairs of points for a particular cell path that are spaced
τ apart, t1 is the first time point at which a cell path was measured, tm is the last time
point at which that cell path was measured, and V r

i (t) is the average radial velocity of
that cell, over its entire time course.

The autocorrelation for a particular cell is given by ri (τ ) = ci (τ )/ci (0). The au-
tocorrelation for the ensemble of cells, r(τ ), is computed by averaging over all ri (τ )

at each time point. The result is shown in Fig. 19.3, along with a least squares fit.
From the fit, we estimate that β = 9.3/hr. Note that the least squares fit does not go
through the point (0, 1). This is probably due to the inaccuracy of the velocity mea-
surement at 1 minute time intervals caused by noise and pixelation. The diffusivity, D,
was estimated to be 216 µm2/hr, from [7] and the data from [5]. Using β, one finds
α = Dβ2/3 = 6300 µm2/hr3.

To estimate V0, we observe how the average radial velocity changes with the radial
distance from the center of the spheroid. This quantity, 〈V r 〉(d), is estimated, as shown
in (19.4), by averaging the velocities of all the cells that fall in a ring of thickness �d =
20 µm that is located d distance away from the center of the spheroid:

〈
V r 〉(d) = 1

N (d)

∑
i,t

{
V r

i (t) | Ri (t) ∈ [d, d + �d]
}
. (19.4)
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Fig. 19.4. The radial velocity (solid line) and angular velocity (dashed line) ensemble averaged
over all cells and time as a function of distance from the center of the spheroid.

Here, N (d) is the number of velocity measurements made in the ring of radius d . The
average angular velocity,

〈
V θ

〉
(d) is found in the same way. The average radial and

angular velocity are graphed in Fig. 19.4. From the figure, we see that 〈V r 〉(d) and〈
V θ

〉
(d) are approximately constant, with 〈V r 〉(d) = 19.6 µm/hr and

〈
V θ

〉
(d) = 0.8

µm/hr.
Of course, cells without a radial bias that diffuse and reflect from a spherical bound-

ary would also have a 〈V r 〉(d) that is greater than zero because cells will diffuse away
from the spheroid with time. To verify that this is not the cause of the bias, the model
was run with the same parameter values for α and β above, but with V0 = 0. The
results are shown in Fig. 19.5.

(a) Simulated cell paths (b) Radial and Angular Velocity

Fig. 19.5. Model simulation with the radial velocity bias set to zero. The radial bias that was
present in the experiments is not seen here.
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19.5 Discussion and Conclusions

The data provide clear evidence that when close to the spheroid, cells move away from
it at a constant rate of 19.6 µm/hr. It is known that over longer times, this rate will
decrease [3]. The cause of the radial bias is unknown. It may be due to chemicals in the
gel that direct cell motion, or it may be due to the way in which the cells reorganize the
collagen matrix as they move. Observing cell motion in a larger field of view and over
longer times so that the decrease in directionality can be observed would help to answer
this question. Since the images obtained were 2D projections of a 3D system, no direct
information about velocity of the cells perpendicular to the focal plane, 〈V z〉, was
obtained. However, assuming spherical symmetry, 〈V z〉 ≈ 〈

V θ
〉 � 〈V r 〉, suggesting

that the 2D projection alone provides sufficient information for estimating the cell
velocity in 3D.

It should be noted that there are differences between the simulated and real cell
paths. In the experiment, the path of an individual may have a short persistence time
during one time interval and a long persistence time during a later time interval. In
our model, persistence time is constant. It is not entirely clear what is causing the
cell motility to change. The periods of short persistence time may be due to cell-cell
adhesion when cells are in close proximity or it may be due to cells staying in place
during mitosis. It may also be that, in isolation, a cell would naturally behave this
way. It is not yet clear if it is necessary to consider this phenomenon when describing
invasion over longer time scales.
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Summary. A theoretical model based on the molecular interactions between a growing tumor
and a dynamically evolving blood vessel network describes the transformation of the regular
vasculature in normal tissues into a highly inhomogeneous tumor-specific capillary network.
The emerging morphology, characterized by the compartmentalization of the tumor into several
regions differing in vessel density, diameter and degree of tumor necrosis, is in accordance with
experimental data for human melanoma. Vessel collapse, due to a combination of severely re-
duced blood flow and solid stress exerted by the tumor, leads to a correlated percolation process
that is driven towards criticality by the mechanism of hydrodynamic vessel stabilization.
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20.1 Introduction

Tumor vasculature, the network of blood vessels in and around a growing tumor, is in
many respects different from the regular vasculature in normal tissues. Hypoxia, the
lack of oxygen, that prevents a small tumor nucleus from further growth, induces the
expression of various diffusible growth factors (GFs) by the tumor cells that trigger a
coordinated response of angiogenesis—the formation of irregular blood vessels [1, 2].
The expected increase in microvasular density (MVD) is usually observed in the pe-
riphery of the tumor, whereas the morphology of the vasculature in the central part
of the tumor is characterized by a decreased MVD, dilated vessels and regions of
necrotic tumor tissue [3,4]. The resulting tumor-specific capillary network is very het-
erogeneous, composed of dense and void regions and has a fractal dimension different
from normal arterio-venous or normal capillary networks [5].

Although on the molecular level the main actors in the angiogenic game are rapidly
identified, the physical principles that determine the global morphology of the vascu-
lar network in tumor tissues are not known. Since, for instance, MVD is used as a
diagnostic tool in cancer therapy [6], a quantitative understanding of the mechanism
that leads to the compartmentalization of the tumor vasculature into various regions
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differing substantially in vessel density appears mandatory. Moreover, scale-invariant
aspects like fractal dimension are used as hints towards the nature of the growth pro-
cess underlying the formation of the tumor vasculature [7]. In this chapter we propose
a theoretical model for the evolution of tumor vasculature that illuminates the physical
principles leading to its global morphology [8]. The experimentally observed increase
in MVD at the tumor perimeter and periphery and decrease in MVD and vessel dila-
tion in the tumor center in human melanoma [4] appear as the general scenario in our
theoretical model. Furthermore, we will argue that vessel collapses in the interior of
the tumor lead to a percolation process which is driven towards criticality, the percola-
tion threshold, via a mechanism of vessel stabilization by increased blood flow in the
remaining vessels.

20.2 Model

There is a large amount of work on the mathematical modeling of tumor-induced an-
giogenesis (for reviews see, e.g., [9, 10]), which can be classified into two groups:
Either they concentrate on blood vessel densities rather than vessel morphology (as in
continuum partial differential equation [11, 12] or in locally coupled map lattice [13]
approaches), or they represent vessels as interconnected lattice patterns, line segments
or continuous curves [14–17] and assume a static tumor. A growing tumor in the vas-
cular phase, however, remodels the blood vessel network via cooption, regression and
growth—and the emerging morphology is determined by the interaction of the two
dynamically evolving systems: the growing tumor and the remodeling vessel network.

20.2.1 Vessel Network

We describe the vessel network by a graph G = (V, E), in which edges e ∈ E rep-
resent tubular vessel segments of diameter d(e) and nodes v ∈ V represent vessel
junctions, where two or more vessel segments join. For the moment we restrict to cap-
illary networks and do not discriminate between arteries and veins, but a hierarchical
structure of the original vessel network is easily incorporated into our model [18].
The network is fixed in an initial configuration representing features of the normal
tissue vasculature like homogeneous microvascular density, typical vessel diameters,
etc., but it can dynamically change over time: new vessels can be inserted, others can
be removed, vessel diameter can change. For computational simplicity we allow only
discrete locations of the nodes, i.e., they occupy certain sites on a square lattice of grid
size 10 µm, by which each node gets a Cartesian coordinate r(v) = (x, y).

20.2.2 Blood Flow

Blood flow through this interconnected network of tubes is assumed to be an ideal pipe
flow with flow conservation at all junctions v:

∑
e∈E(v) q(e) = 0, which is Kirchhoff’s



20 Morphology of Tumor Vasculature 227

law. E(v) is here the set of all edges attached to the node v, and q(e) the flow rate
through vessel e. q(e) and f (e), which the shear force f (e) acting upon the vessel
wall, then follow Hagen–Poiseuille’s law:

q(e) = (π/128)η−1
d(e) · d4(e) ∇ P(e) and f (e) = (1/4) · d(e)∇ P(e), (20.1)

where ∇ P(e) is the pressure gradient in e, which is ∇ P(e) = P(v1(e))−P(v2(e))/ l(e),
with P(v) the pressure at node v, v1(e) and v2(e) the start and end points of the edges
e, and l(e) the length of vessel e. In principle the viscosity ηd(e) depends on the tube
diameter d(e), since blood is a non-Newtonian fluid, but for simplicity we set it to a
constant, as it is correct initially, when all vessels have the same diameter.

Together with fixed boundary conditions for the blood pressure P(v), the flow
conservation equations establish an inhomogeneous system of linear equations for the
blood pressures P(e), which is solved numerically for the vessel network at hand. We
choose boundary conditions that produce a homogeneous blood flow and shear stress
in all capillaries in the initial network: P(v) is fixed on all nodes v on the boundaries
of the system such that it decreases linearly from Pmax at the node at r = (x, y) =
(L , L) along the boundary nodes at r = (L , y) and r = (x, L) to (Pmax − Pmin)/2
at r = (L , 0) and r = (0, L); and from here further linearly along the boundary
nodes at r = (x, 0) and r = (0, y) to Pmin at r = (0, 0). One should note that these
boundary conditions produce a pressure gradient and hence a global blood flow in
the diagonal direction, which is somewhat unrealistic and will be repaired in initial
network configurations that contain a hierarchy of arteries and veins.

20.2.3 Tumor Growth

The tumor in our model is defined on a square lattice, where each site represents an area
of 10 µm × 10 µm. The tumor configuration is given by the set of lattice sites T that
are occupied by tumor cells. Initially a nucleus of N0 sites is occupied by tumor cells;
proliferation can happen only at empty neighbor sites of already occupied sites [19]
and removal (death) of tumor cells can happen everywhere. The restriction of tumor
cell (TC) proliferation to the outer rim of the tumor is also observed in real tumors [20]
and in theoretical models involving TC elasticity and increasing solid stress inside
the tumor [21]. More sophisticated representations of the growing tumor are easily
incorporated later into our model.

20.2.4 Oxygen Concentration

Proliferation and death of tumor cells depend on the supply of oxygen (or other nu-
trients), which is determined by the current vessel network: Oxygen is transported by
blood flow through the vascular system and has to diffuse through the vessel wall to
reach other cells in the extracellular matrix. In the case of a highly diffusible solute like
oxygen, the transmural flux Jw is essentially driven by the difference between the oxy-
gen levels inside and outside the vessel. With this boundary condition the distribution
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of extracellular oxygen is described by a diffusion equation with sink terms, for which
the adiabatic approximation is completely sufficient [22,23], since the inter-vessel dif-
fusion time for oxygen is of the order of 1–10 seconds whereas the cell proliferation
time is several hours. The diffusion constant of oxygen in tissue is of the order of
D ∼ 10−5 cm2/sec [24] and the mean square displacement of the underlying Brown-
ian motion of the O2-molecules is 〈x2(t) = Dt〉, hence the mean time for O2 to pass
from one vessel to another which are a = 100 µm apart is ca.

√
a/D = 10 sec.

The Green’s function method is an elegant and computationally tractable way to
solve the diffusion problem for the oxygen delivery to tissue by microvascular net-
works for large grid sizes [25, 26]. The essential idea is to represent blood vessels as
a set of discrete O2 sources and the O2 field in the tissue as a superposition of fields
resulting from those sources. In the most general case the source and sink strengths are
unknown and have to be determined implicitly by solving a system of linear equations
for them.

Here we assume a uniform oxygen consumption rate M0 of the normal tissue. Then
the oxygen distribution at site r resulting from a unit point source at r′ is defined as the
Green’s function G(r, r′) and given by the solution of

D�rG − M0G = −δ(r − r′) , (20.2)

where D is the oxygen diffusion constant and δ(r) is the delta function. The result-
ing G(r, r′) depends only on the distance from the point source R = |r − r′| and
decays exponentially with R on a length scale Roxy = √

D/M0). For computational
convenience we replace the exact Green’s function by a piece-wise linear function that
decays to zero on the same length scale:

G(r, r′) = 3
π R2

oxy

(
1 − |r − r′|

Roxy

)
· θ(|r − r′| − Roxy), (20.3)

where θ(x) is the step function (θ(x) = 1 for x ≥ 0, θ(x) = 0 for x < 0). Furthermore
here we assume for simplicity that the presence of TCs does not significantly alter the
oxygen consumption rate M0. At least for melanoma this appears to be an acceptable
approximation, since the skin tissue MVD0 ≈ 100/mm2 [4] indicates Roxy ≈ 100 µm
(see below), and data for pO2 gradients in tumors also indicate Roxy ≈ 100 µm [1].
There are, however, various ways in which one could include the effect of an increased
cell density approximatively, for instance, by introducing a TC-density dependent O2
diffusion range Roxy(ρ) that decreases monotonously with the local TC density ρ.

The total oxygen concentration O2(r) is then given by

O2(r) =
∑
e∈E

∑
r′∈e

J (r′) · G(r, r′), (20.4)

where J (r′) is the source strength of a vessel segment with its center at r′ [26]. This
depends on the difference between the blood O2 partial pressure inside the vessel seg-
ment at r′, Poxy(r′), and the tissue O2 concentration at r′: J (r′) = Poxy(r′) − O2(r′).
Inserting this into (20.4) yields a system of linear equations for O2(r′) at all vessel
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segments r′, its solution determines J (r′). We implemented this procedure for various
(small) vessel network configurations and compared the resulting field O2(r) with one
that we obtained by setting J (r′) = 1 for all vessel segments r′. It turned out that
both models lead to qualitatively the same O2 fields for the range of MVDs that oc-
cur in our simulation runs (see below). Quantitatively the model with constant source
strengths overestimates the O2 concentration by ca. 40% for an inter-capillary dis-
tance of 0.5 · Roxy, corresponding to 2·MVD0. Hence, for computational simplicity we
assume constant source strengths J (r′) = 1 in our model.

20.2.5 Growth Factor Distribution

Tumor cells under hypoxia secrete increased amounts of GFs that can stimulate the for-
mation of new blood vessels. In our model we assume that a TC at site r secretes GF
if O2(r) < coxy. The diffusion of the molecules into the extracellular matrix (ECM)
can be described by a diffusion process with source terms, which can again be approx-
imated to be adiabatic:

DGF�G F(r) − k1G F(r) + sG F (r) = 0, (20.5)

where G F(r) is the GF concentration field, DGF is the diffusion constant for GF in the
ECM, k1 is the degradation rate of the growth factors and sG F (r) the source strength at
location r. The latter we assume to be a delta function of unit weight at each TC under
hypoxia. As a result this diffusion equation can again be solved by the Green function
method and we replace the exact Green function by a piecewise-linear function as for
the oxygen concentration field. The GF concentration therefore is

G F(r) =
∑

r′∈T with O2(r′)<coxy

3
π R2

GF

(
1 − |r − r′|

RGF

)
· θ(|r − r′| − RGF). (20.6)

20.2.6 Dynamics

TCs proliferate/die when the local oxygen concentration is high/low. Vessels (edges)
emerge when the local GF concentration is high enough, and they vanish (collapse)
stochastically inside the tumor, when the hydrodynamic shear force acting on the ves-
sel walls is too low. The biological and pathophysiological motivation for the details
of the model definition is discussed in [8].

Starting with the initial configuration described above, the following updates are
performed sequentially in each time step of duration �t = 1 h. See Fig. 20.1 for an
illustration.

(a) TC proliferation. TCs can proliferate at tumor surface sites if the local oxygen
concentration is sufficient: If r is not occupied by a TC but has at least one neighboring
TC and if O2(r) > coxy: T → T ∪ {r} with probability pnew

TC = �t/tTC.

(b) TC death. TCs that are extremely under-oxygenated for a long time are eliminated.
We define the threshold for extreme under-oxygenation to be 10% of the threshold
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Fig. 20.1. Schematic illustration of the model: (a) TC proliferation, (b) TC death, (c) vessel
growth, (d) vessel dilatation, (e) vessel collapse due to low shear force, and (f) collapse of non-
circulated vessels.

beyond which they start to proliferate (i.e., 0.1 · coxy). If O2(r) < 0.1coxy for a TC at
site r the counter for the time that a TC at site r spent in hypoxia is increased by one:
tuo(r) → tuo(r) + 1. When tuo(r) > tmax, the TC is eliminated: T → T − {r} with
probability pdeath

TC = 1/2.

(c) Vessel growth. New straight vessel segments between two circulated vessels at site
r and r′ are introduced with probability �τ/Te (where Te is the endothelial cell (EC)
proliferation time) if: G F(r, t) > cGF, the neighbor of r on the migration path is not
occupied by a TC, no site and no neighbor site of the migration path are occupied by
ECs except r and r′, and |r − r′| < Mmax (Mmax being the maximum sprout migration
distance). In such an event, e(r, t) = 1 and er (r, t) = r0 along this path, and O2(r, t)
is updated.

(d) Vessel dilatation. In our model a vessel segment e at site r that is surrounded by
TCs and has a GF concentration G F(r, t) larger than cGF increases its radius d(e)
by an amount r0/2π with probability �τ/Te as long as d(e) ≤ dmax. To mimic the
smoothening effect caused by the surface tension of the vessel walls the location of the
dilatation is shifted to a neighboring vessel segment if a radius difference larger than
r0/2π would arise at the original location.

(e), (f) Vessel regression and collapse. Vessels can collapse due to solid stress exerted
by the tumor and also long-term reduction of wall shear stress is associated with a dra-
matic reduction of the vessel diameter, up to complete vessel occlusion. We used both
criteria to identify critical vessels: weakly perfused vessels e, which are surrounded
by TCs, collapse with probability p = �τ/Tcollapse if the wall shear stress f (e) is be-
low a critical value fcrit [25]. After each collapse event the blood flow is re-computed
and O2(r, t) is updated. Vessels that are cut from the blood circulation (q(e) = 0) are
instantaneously removed.
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20.3 Results

In contrast to [8] we consider here a situation in which the MVD of the original vessel
network is not sufficient for the tumor cells to proliferate and the secretion of GF is
necessary to increase the MVD such that TCs can proliferate in certain regions of the
tumor.

The original vasculature is modeled by a regular network of capillaries in a rect-
angular grid with vessel-to-vessel distance δ = 100 µm. This implies that the original
MVD is 10 vessel per mm (measured by counting the number of vessels in a vertical
cut). If we extend the network into three dimensions with the same network parame-
ters this implies an MVD of 100/mm2, close to the value that is characteristic for skin
tissue [4]. With Roxy = 100 µm this yields an oxygen concentration that is nearly
homogeneous and has a value of O2 = 0.2 (measured in the source strength of each
vessel segment). Thus setting coxy = 0.3 implies that TCs can survive (since according
to our definition they die only if their oxygen supply falls below 0.1coxy = 0.03), but
cannot proliferate in the original network.

We set RGF to 150 µm. The value of cGF is not crucial; if it is low it implies
that new vessels can be generated within nearly the whole radius RGF around a GF-
secreting TC. We set it to cGF = 0.01. Cells proliferate on the time scale of several
hours, therefore we set the time step to �τ = 1 h. Other parameters are: collapse
probability �τ/Tcollapse =0.01, critical shear force fcrit =0.5 f0 (where f0 is the shear
force in the original vasculature), sprout generation time Te = 40 h, TC proliferation
time Tc = 10 h, maximum sprout distance Mmax = 100 µm, TC-survival time to
tmax = 100 h, maximum vessel radius to dmax = 35 µm [4] and size of the initial
tumor nucleus N0 = 1000.

To obtain data for the stochastic time evolution of our model according to the
dynamics defined above, we performed Monte Carlo simulations. The result of one
representative run is shown in Fig. 20.2.

Tumor/vessel configurations at different times are shown in the middle column of
Fig. 20.2: Starting from a regular vessel network the MVD in the peritumoral region
is increased due to the supply of GFs from the tumor. Once the tumor grows over
this highly vascularized region, vessels start to collapse, by which the MVD tumor
center is continuously decreased until only a few thick vessels, surrounded by cuffs of
TCs remain. TCs at a distance larger than Roxy from these vessels die after time tmax,
producing necrotic regions.

The left and right panels of Fig. 20.2 show the GF concentration G F(x, y) and
oxygen concentration O2(x, y), respectively, for the tumor/vessel configurations at
time t . Both indicate roughly the spatial extent of the tumor and the region where
new vessels can grow. Far away from the tumor it is O2(r) = O2 = 0.2 and only in
the peritumoral region it is O2(r) > coxy = 0.3. Inside the tumor O2(r) is drastically
reduced at later times, leading to under-oxygenation of TCs and thus to GF production.
Consequently, inside the tumor G F(r) is high, nearly one everywhere—except in the
necrotic regions. Fig. 20.2 indicates a compartmentalization of the tumor into different
shells characterized by MVD, vessel diameter and necrosis, as observed in real tumors
[4]: A highly vascularized peritumoral regions, a well oxygenated tumor periphery and
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Fig. 20.2. Middle panel: Tumor and vessel network configuration at time t = 1, 100, 200, 400
and 600 (from top to bottom). The tumor is the grey area in the center—older TCs are darker
than younger ones. The initial capillary network can be seen at t = 1 (with a few new vessels
already there), vessel-to-vessel distance is 100 µm. White areas are necrotic regions. Left and
right panels: GF and oxygen concentration, respectively, for the configurations in the middle
panel.



20 Morphology of Tumor Vasculature 233

(a)
 

 

 

(b)
 

 

 

 

(c)

 

 

 

 

(d)

 

 

 

 

 

Fig. 20.3. (a) Tumor density as a function of the distance r from the tumor center for different
equidistant times t . One sees clearly that the radius of the tumor grows linearly in time. (b)
MVD/MVD0 as a function of r for different equidistant times t (same symbols as in (a)). By
comparison with the plots for tumor density in (a) one sees that the maximum MVD is localized
at the tumor boundary, where it is up to 2 times larger than in the normal tissue. (c) Vessel
diameter: It starts to increase linearly with decreasing r at the tumor boundary. For a fixed r
below the actual tumor radius the average vessel radius increases linearly with time. (d) Shear
force acting on the vessel walls, normalized to the shear force in the original capillaries. Note
the pronounced dip: It is located at the maximum of the MVD in (b), i.e., at the tumor boundary:
This is also the region where most vessels will collapse.

an hypoxic tumor center with decreased MVD, increased vessel diameter and large
necrotic regions.

Fig. 20.3 presents a quantitative analysis of this dynamical evolution. Shown in
Fig. 20.3(a) is the radial tumor density ρTC(R). The tumor radius grows linearly with
time t : RTC(t) − RTC(0) � 2t/tTC, where the factor 2 is typical for the Eden growth.
The radial vessel density MV D(R), shown in Fig. 20.3(b), is maximal at the tumor
boundary at RTC(t). With increasing time both densities are substantially reduced in-
side the tumor, indicating the emergence of necrotic regions. The radial vessel diameter
d(R), shown in Fig. 20.3(c), increases linearly from 1 at R � RTC + RGF to dmax at
the tumor center due to the continuous exposure of vessels to GF.

Such a characteristic vessel morphology is also in a quantitative agreement with
experimental data presented in [4], where the morphometry of human malignant
melanoma was analyzed and data for MVD and vessel perimeter were obtained in
three different regions of the tumors: (I) the tumor center, (II) the tumor periphery—a
100 µm wide band of tumor immediately adjacent to the invasive edge and (III) the
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peritumoral host tissue—a 200 µm wide band of host connective tissue immediately
adjacent to the tumor periphery. It was found that for melanoma larger than 1.5 mm
the MVD in (I) was less than 50% of the normal tissue MVD0, in (II) it was ca. 50%
more than MVD0 and in (III) it was ca. two times MVD0. Within the statistical error
of the experimental data (up to 30%), this agrees reasonably well with our results.

We investigated extensively as to how far our conclusions depend on the param-
eters chosen here—a full account of this parameter dependence is reported in [8]. It
turns out that the model behavior is robust and the parameters can be changed over
a wide range without changing the qualitative results; in particular: the characteristic
compartmentalization of the tumor, the vessel network morphology, the fractal dimen-
sion (to be studied below) and others. The question arises of which simplifications are
crucial and what would change our conclusions, if they are abandoned in favor of a
more realistic description. Obviously we cannot deal with all of them at once here, but
we name a few:

(a) Oxygen diffusion. We modeled O2 diffusion also by determining the source strength
of each vessel implicitly as described in [26], also taking into account a TC density
dependent O2 consumption. Although this implies a major computational effort the
quantitative change in the data (for fixed parameters) is only minimal—none of our
conclusions is altered.

(b) Growth factor diffusion. Passive (as we assumed in our model) or active (via con-
centration gradients) diffusion changes the effective diffusion range (RGF) slightly, but
does not alter our conclusions.

(c) Radius-dependent viscosity. (to model the Fahraeus–Lindquist effect) does not
change our results, as we checked.

(d) Tumor growth. More sophisticated tumor growth models can be incorporated than
the simplified (Eden-growth inspired) model we use. We do not expect changes in our
results as long as the tumor growth is restricted to a limited outer shell of TCs (as
theoretically described in [21] and experimentally reported in [20]).

More serious assumptions are those of a regular network of original capillaries,
including the boundary conditions for the pressure we have chosen. We are currently
working on a version of the model that starts with a hierarchical arterio-venous network
[18]; preliminary results indicate that the global picture that we present is maintained.
Many other modifications are imaginable and will be topics of our future studies.

20.4 Fractal Dimension

The geometrical features of the emerging tumor vasculature in our model are obviously
very different from the original, regular capillary network: the vasculature consists of
a combination of dense and void regions that might possess fractal properties. We used
the box-counting method to determine the fractal dimension D f as Nε ∼ ε−d f where
Nε is the number of boxes of volume ε2 necessary to cover the tumor vessel network,
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Fig. 20.4. Determination of the fractal dimension d f of the vessel network at time t = 1000
via the box-counting method: The number of boxes of size L that is needed to cover completely
the vasculature is plotted as a function of L in log-log scale. The slope d f of the curve is the
fractal dimension. We confined the measurement to concentric shell with fixed outer radius that
is determined by the limit of the peritumoral plexus and with varying inner radius Ri . The slope
of the curves decreases with increasing Ri : d f = 1.85 ± 0.05 for Ri = 0 (full squares, which
corresponds to the complete tumor vasculature) and d f = 1.60 ± 0.05 for Ri = 200 (which
corresponds to the peritumoral plexus exclusively), indicating that the fractal dimension is not a
homogeneous measure over all regions of the tumor vasculature.

which is defined to lie within the outer limit of the peritumoral region. The plot of Nε

versus ε shown in Fig. 20.4 yields d f = 1.85 ± 0.05, which agrees with the value
for the percolation cluster in conventional percolation in two dimensions [28]. We get
the same value for a wide range of parameter values and also with other methods to
estimate d f . When we restrict the fractal analysis to concentric shells (R1 ≤ R ≤ R2)
the estimates for d f decrease systematically, decreasing the tumor center (see inset
Fig. 20.4). Thus, the characteristic compartmentalization of the tumor vasculature is
also reflected in the fractal properties.

Since d f agrees with the value for the percolation cluster in two dimensions we
conclude that the basic mechanism responsible for the fractal properties of the tumor
vasculature in our model is the stochastic removal of vessels via vessel collapse and
regression. In conventional percolation a critical cluster only emerges for an exactly
tuned bond concentration. In our model the network is dynamically driven into this
critical state without such a fine tuning since the removal of vessels is correlated with
the blood flow: the collapse of weakly perfused vessels stabilizes the remaining ones
due to an increase in blood flow. We propose that this mechanism is also at work in real
tumors. Indeed the fractal analysis of two-dimensional photographs of vessel networks
in human carcinoma yields a value of d f = 1.89 ± 0.04 [5], which agrees with d f for
the percolation cluster in 2D random percolation [28]. It has been suggested [5] that the
origin of the fractal architecture of tumor vasculature might be based on an underlying
invasion percolation process of the newly grown tumor vessels [29] due to inhomo-
geneities in the growth-supporting matrix. Our theoretical model does not involve any
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such matrix inhomogeneities and we propose that it is rather the flow-correlated per-
colation process that determines the fractal properties of the tumor vasculature. Neo-
vascularization mainly occurs at the tumor perimeter and a drastic reduction of vessel
density is commonly observed in the interior of the tumor. Therefore, it appears un-
likely that the fractal properties attained during growth in the periphery, independent
of having characteristics of invasion percolation or not, survive the random dilution
process in the tumor center. Thus, whereas in the proposal of [5] the fractal properties
of the network are attained during growth of new vessels, we propose that it is mainly
the regression of vessels that is responsible for the overall fractal morphology of the
tumor vasculature.

20.5 Discussion

We have introduced a theoretical model for a dynamically evolving, two-dimensional
vessel network interacting with a growing tumor, which is guided by experimental data
for human melanoma. The emerging network morphology agrees well with those data
and we find that the network is remodeled from a regular into a fractal structure with
characteristics of conventional percolation. We have also implemented the model in
three space dimensions and find similar results [30], where d f = 2.52 turns out to
correspond to 3D percolation. This also suggests for a large class of real solid tumor
with decreased central MVD that the basic mechanism leading to the fractal features
of the tumor vasculature is the random vessel collapse inside the tumor and not a
stochastic vessel growth process.

An indirect experimental verification of this proposition is already given by the
experimental data presented in [5, 7]: The fractal dimension of invasion percolation
(growth-based mechanism), is 1.81 [29], whereas that of conventional percolation
(collapse-based mechanism) is 1.891 [28]. Their data for the fractal dimension of the
carcinoma vasculature is 1.88±0.02, which is obviously closer to, if not identical with,
conventional percolation, indicating at a collapse-based mechanism.

A direct proof of the proposition that vessel collapse is the relevant mechanism that
leads to the fractal structure of the tumor vasculature is probably difficult but at least
imaginable: We hypothesize that stabilization of tumor vessels without hampering the
growth of new vessels could give evidence for one picture or the other. Antiangiogenic
therapies with recurrent tumor growth may represent such a situation. Antiangiogenic
blockade is known to lead to initial inhibition of vessel growth but also to vessel sta-
bilization, and tumors may resume growth if the blockade continues for an extended
period [31]. One of the possible mechanisms to such recurrence is the survival of some
blood vessels which are stabilized by the adjacent smooth muscle cells and which sur-
vive vascular endothelial growth factor (VEGF) withdrawal, while other small vessels
lacking vascular supportive cells collapse. Despite the upregulation of VEGF (possi-
bility for new vessel growth) observed in all such tumors that resumed growth during
prolonged antiangiogenesis, new capillaries were not detected in any. Instead large
central vessels with significantly increased diameters and increased smooth muscle
developed. If the structural characteristics of vessel network formation were growth
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dependent (according to [5,7]) the newly synthetized VEGF and sprouting would result
in growth dependent scale invariance, but this was not the case. Therefore the study of
the fractal properties of tumor vasculature after antiangiogenic treatment could prove
that in the long term vessel collapse is the relevant mechanism that leads to the fractal
structure of the tumor vasculature.
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2 Département de Mathématiques et Applications, UMR 8553, École Normale Supérieure, 45,
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Paul-Vaillant-Couturier, F94807 Villejuif Cedex, France

Summary. We address the following question: Can one sustain, on the basis of mathematical
models, that for cancer cells, the loss of control by circadian rhythm favours a faster popula-
tion growth? This question, which comes from the observation that tumour growth in mice is
enhanced by experimental disruption of the circadian rhythm, may be tackled by mathematical
modelling of the cell cycle. For this purpose we consider an age-structured population model
with control of death (apoptosis) rates and phase transitions, and two eigenvalues: one for pe-
riodic control coefficients (via a variant of Floquet theory in infinite dimension) and one for
constant coefficients (taken as the time average of the periodic case). We show by a direct proof
that, surprisingly enough considering the above-mentioned observation, the periodic eigenvalue
is always greater than the steady state eigenvalue when the sole apoptosis rate is concerned. We
also show by numerical simulations when transition rates between the phases of the cell cycle are
concerned, that, without further hypotheses, no natural hierarchy between the two eigenvalues
exists. This at least shows that, if such models are to take into account the above-mentioned ob-
servation, control of death rates inside phases is not sufficient, and that transition rates between
phases are a key target in proliferation control.

Key words: Cell cycle, age-structured population, population growth, circadian rhythm.

21.1 Cell Cycle and Circadian Rhythm

The goal of this chapter is to address by means of mathematical and numerical models
the following idea: circadian rhythms regulate cell proliferation, and their disruption
favours the growth of ill-controlled proliferative cell populations. In particular, tumour
growth has been shown to be favoured in mice by disruptions of the normal circa-
dian rhythm, as assessed, e.g., by central body temperature or rest-activity record-
ings [9, 10], both by surgical resection of suprachiasmatic nuclei and by jet-lag like
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perturbations of the light-dark cycle. Also several epidemiological studies have shown
that workers exposed to light-dark rhythm perturbations due to prolonged shift work
are significantly more exposed to the risk of developing breast or colorectal cancer
than others with regular work time schedules [8, 23]. It is thus suspected that a loss
of circadian control on cell cycle dynamics may account for an acceleration in tumour
progression. This is also supported by clinical observations according to which patients
with cancer and disrupted circadian rhythms are less responsive to chemotherapy and
have a poorer prognosis with shorter life expectancy than others with the same dis-
eases but strong circadian rhythmicity [15, 20]. This idea is now sustained by a better
understanding of the mechanisms underlying apoptosis and cell cycle phase transitions
through proteins such as cyclins and p53. Indeed, the expression of cyclin-dependent
kinases Cdk1 and Cdk2 and their dimerisation with Cyclins B and E, respectively,
control the cell cycle phase transitions G2/M and G1/S, while protein p53 favours cell
cycle arrest in G2/M or G1/S, by acting on these cyclins, and secondary apoptosis
induction. And for instance, phosphorylation of the dimer CycB-Cdk1 by the kinase
Wee1 is directly controlled by the circadian gene Bmal1, and p53 expression by the
circadian gene Per1, see [3, 16, 21, 24, 26].

In this work (an abridged version of which has appeared in [6]), our approach re-
lies on mathematical equations for the cell cycle which are well established nowadays.
We introduce circadian control through periodic coefficients standing for phase tran-
sitions and apoptosis regulation by clock genes. We assess the hypothesis according
to which periodicity diminishes the population growth as compared to constant coef-
ficients (with the same average), i.e., we want to decide if a loss of circadian control
theoretically favours tumour growth.

General references and experimental validations of the topic of age-structured pop-
ulation dynamics and cell cycle can be found in [1, 2, 4, 14, 17, 22]. For a more recent
approach based on entropy properties, we refer to [18, 19]. Here and following earlier
work [5], we model our population of cells by a partial differential equation for the
density ni (t, x) ≥ 0 of cells with age x in the phase i = 1, . . . , I, at time t .



∂

∂t
ni (t, x) + ∂

∂x
ni (t, x) + [di (t, x) + Ki→i+1(t, x)]ni (t, x) = 0,

ni (t, x = 0) =
∫

x ′≥0
Ki−1→i (t, x ′) ni−1(t, x ′) dx ′, 2 ≤ i ≤ I,

n1(t, x = 0) = 2
∫

x ′≥0
K I→1(t, x ′) nI (t, x ′) dx ′.

(21.1)

Here and below we identify I + 1 to 1. We denote by di (t, x) ≥ 0 the apoptosis rate,
and by Ki→i+1 the transition rates from one phase to the next; (i = I ) is mitosis where
the two cells separate. These coefficients can be constant in time (no circadian control)
or time T -periodic in order to take into account the circadian rhythm. Our assumptions
are

Ki→i+1(t, x) ≥ 0, di (t, x) ≥ 0 are bounded, (21.2)
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and, setting min0≤t≤T Ki→i+1(t, x) := ki→i+1(x), max0≤t≤T [di + Ki→i+1] := µi (x)

(lower bound for the transition kernels and upper bound for the cell loss terms),
Mi (x) = ∫ x

0 µi (y)dy,

I∏
i=1

∫ ∞

0
ki→i+1(y)e−Mi (y)dy > 1/2, (21.3)

(thus ensuring positive population growth). Classically, one can introduce the growth
rate of the system λper (Malthus parameter, first eigenvalue) such that there is a unique
T -periodic positive solution to



∂

∂t
Ni (t, x) + ∂

∂x
Ni (t, x) + [di (t, x) + λper + Ki→i+1(t, x)]Ni (t, x) = 0,

Ni (t, x = 0) =
∫

x ′≥0
Ki−1→i (t, x ′) Ni−1(t, x ′) dx ′, 2 ≤ i ≤ I,

N1(t, x = 0) = 2
∫

x ′≥0
K I→1(t, x ′) NI (t, x ′) dx ′,

I∑
i=1

∫
Ni (t, x) dx = 1.

(21.4)

Under our assumptions 21.2–21.3, the existence of a solution to 21.4, with λper > 0,
follows from an infinite-dimensional version of Floquet theory and one has (see for
instance [18])

∑
i

∫ ∣∣∣ni (t, x)e−λpert − ρNi (t, x)

∣∣∣ϕi (t, x)dx → 0 as t → ∞,

where ϕi (t, x) denotes the periodic positive solution to the adjoint problem to 21.4 nor-
malised by

∑
i
∫

Ni (t, x)ϕi (t, x) dx = 1, and ρ = ∑N
i=1

∫
ni (t = 0, x)ϕi (t = 0, x) dx .

In other words, the periodic solution is the observed stable state after renormalisation
by the rate λper.

One can also introduce the coefficients averaged in time,

〈Ki→i+1(x)〉 := 1
T

∫ T

0
Ki→i+1(t, x) dt, 〈di (t, x)〉 := 1

T

∫ T

0
di (t, x) dt,

and consider the associated steady state solution. This allows us to define another
growth rate λs , and a steady state solution N̄i to
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∂

∂x
N̄i (x) + [〈di (x)〉 + λs + 〈Ki→i+1(x)〉]N̄i (x) = 0,

N̄i (x = 0) =
∫

x ′≥0
〈Ki−1→i (x ′)〉 N̄i−1(x ′) dx ′, 2 ≤ i ≤ I,

N̄1(x = 0) = 2
∫

x ′≥0
〈K I→1(x ′)〉 N̄I (x ′) dx ′,

I∑
i=1

∫
N̄i (x) dx = 1.

(21.5)

For these problems, we address the hypothesis that circadian control reduces the popu-
lation growth, i.e., λper ≤ λs (index per standing for “periodic” and s for “stationary”).
In Section 21.2, we first study the effect of small variations, with respect to a circa-
dian control, from constant transition and apoptosis rates on the resulting eigenvalue
λper. Then in Section 21.3, we prove that, surprisingly enough, a result opposite to
our experimental conjecture is true, i.e., λper ≥ λs , when the circadian control acts
only on the apoptosis rate. In Section 21.4, we show by numerical experiments that no
hierarchy exists between the two eigenvalues when the circadian control acts on the
transition rate K1→2 in a reduced two-phase model. These results give hints toward
designing physiologically based models of the cell cycle for cancer therapeutics; that
is discussed in Section 21.5. The results are summarised in Section 21.6.

21.2 Analysis of Local Variation by Small Oscillations

In this section, we study small variations, with respect to a circadian control, of the
growth rate λ and we show that its effect is only of the second order.

To do so, we consider that the transition kernels and the death rates show small
variation of order ε > 0 from their averages. Therefore we set

K̃ ε
i−1→i (t, x) := εK̃i−1→i (t, x) + 〈Ki−1→i (x)〉,
K̃ ε

I→1(t, x) := εK̃ I→1(t, x) + 〈K I→1(x)〉,
dε

i (t, x) := εd̃i (t, x) + 〈di (x)〉,

where the quantities d̃i , K̃i→ j have vanishing averages:

〈K̃i−1→i (x)〉 = 〈K̃ I→1(x)〉 = 〈d̃i (x)〉 = 0.

Then we define the solution nε
i (t, y) to the cell cycle system
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∂

∂t
nε

i (t, x) + ∂

∂x
nε

i (t, x) + [dε
i (t, x) + K̃i→i+1(t, x)]nε

i (t, x) = 0,

nε
i (t, 0) =

∫
x ′≥0

K̃ ε
i−1→i (t, x ′)nε

i−1(t, x ′) dx ′, 2 ≤ i ≤ I,

nε
1(t, x = 0) = 2

∫
x ′≥0

K ε
I→1(t, x ′) nI (t, x ′) dx ′.

(21.6)

Now, using the results recalled in Section 21.1, we know that, for all ε ∈ [0, 1],
there exist eigen elements associated with this problem, (N ε

i , λε, ϕ
ε
i ). They are solu-

tions to


∂

∂t
N ε

i (t, x) + ∂

∂x
N ε

i (t, x) + [dε
i (t, x) + λε + K ε

i→i+1(t, x)]N ε
i (t, x) = 0,

N ε
i (t, x = 0) =

∫
x ′≥0

K ε
i−1→i (t, x ′) N ε

i−1(t, x ′) dx ′, 2 ≤ i ≤ I,

N ε
1 (t, x = 0) = 2

∫
x ′≥0

K ε
I→1(t, x ′) N ε

I (t, x ′) dx ′
I∑

i=1

∫
N ε

i (t, x) dx = 1,

(21.7)


− ∂

∂t
ϕε

i (t, x) − ∂

∂x
ϕε

i (t, x) + [dε
i (t, x) + λε + K ε

i→i+1(t, x)]ϕε
i (t, x)

= ϕε
i+1(t, 0)K ε

i→i+1(t, x), 1 ≤ i ≤ I − 1,

− ∂

∂t
ϕε

I (t, x) − ∂

∂x
ϕε

I (t, x) + [dε
I (t, x) + λε + K ε

I→1(t, x)]ϕε
I (t, x)

= 2ϕε
1(t, 0)K ε

I→1(t, x),

(21.8)

with ∫ ∞

0

I∑
i=1

N ε
i (t, x)ϕε

i (t, x) dx = 1, ∀t ≥ 0. (21.9)

With this notation, we clearly have λ0 = λs . As a first step towards our main result,
we gather some formulae that are used to prove the following theorem.

Theorem 1 The function λ �→ λε is differentiable for all ε ∈]0, 1[, and

dλε

dε
= 1

T

∫ T

0

∫ ∞

0
N ε

I (t, x)
[
2K̃ I→1(t, x)ϕε

1(t, 0)

− (
d̃I (t, x) + K̃ I→1(t, x)

)
ϕε

I (t, x)
]
dxdt

+ 1
T

∫ T

0

∫ ∞

0

I−1∑
i=1

N ε
i (t, x)

[
K̃i→i+1(t, x)ϕε

i+1(t, 0)

− (
d̃i (t, x) + K̃i→i+1(t, x)

)
ϕε

i (t, x)
]
dxdt.

(21.10)
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The proof of the theorem is somewhat lengthy and will be detailed in an appendix;
see Section 21.7.
Corollary 1 For small circadian effect ε, the variations of λε are of order ε2; in other
words,

dλε

dε

∣∣∣∣
ε=0

= 0.

This corollary follows from the fact that for ε = 0 the functions N ε
i (t, x) and ϕε

i (t, x)

are independent of time. Therefore, in (21.10), we are left only with the time averages
of K̃i→i+1(t, x) and d̃i (t, x), which vanish.

We can also deduce from Theorem 1 that, in the particular case when Ki→i+1 is
independent of time and di is independent of age, we cannot control locally the growth
rate λ (see also Section 21.3 for a direct proof and a derivation of a global variation in
a more general case). Indeed, we have the following.
Corollary 2 Assume d̃i (t, x) = ρi (t), K̃i→i+1(t, x) = 0. Then

dλε

dε
= 0, (21.11)

and λs = λper.

Proof Using (21.10), we find

dλε

dε
= − 1

T

∫ T

0

∫ ∞

0

I∑
i=1

N ε
i (t, x)ϕε

i (t, x)dxρi (t) dt,

but we have
∫ T

0 ρi (t) dt = 0 and (21.9); thus we find (21.11) and

λper − λs =
∫ 1

0

dλε

dε
= 0. ��

As a conclusion of this section, we see that a direct computation in the most general
case, when Ki→i+1 and di are time dependent, leads to hardly tractable formulae; the
local variation of the first eigenvalue cannot be found directly because it is of second
order in ε. For this reason it is natural to turn to numerical computations, as we do in
Section 21.4.

21.3 Control Exerted on Apoptosis

In this section, we consider the case when the circadian control only acts on apoptosis,
i.e., Ki→i+1 depends only upon x .
Theorem 2 Assume that di (t, x) ≥ 0, Ki→i+1(x) ≥ 0 are bounded and that 21.3
holds. Then the eigenvalue problems 21.4, 21.5 have unique solutions (λper, N (t, x)),
(λs, N̄ (x)), and

λper ≥ λs . (21.12)
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Proof The existence part for the two problems is standard and we do not prove it
again (see [5, 18]). For the ordering of eigenvalues, consider the function qi (x) =
〈log(Ni (t, x)/N̄i (x))〉. It satisfies

∂

∂x
qi + λper − λs = 0,

with

qi (x = 0) =
〈
log

[∫
Ki−1→i (x)

N̄i−1(x)

N̄i (0)

Ni−1(t, x)

N̄i−1(x)
dx

]〉
.

Since dµi (x) = Ki−1→i (x)[N̄i−1(x)/N̄i (0)] dx is a probability measure because of
the condition N̄i (0) (a factor 2 should be included for i = 1), we also have

qi (x = 0) ≥
〈∫

log
Ni−1(t, x)

N̄i−1(x)
dµi (x)

〉
(by Jensen’s inequality)

=
∫

qi−1(x) dµi (x)

=
∫

[qi−1(0) + (λs − λper)x] dµi (x).

Therefore, summing over i from 1 to I ,

0 ≥ (λs − λper)
I∑

i=1

∫ ∞

x=0
x dµi (x),

and the result follows. ��
Notice that in [7], the same question has been addressed for comparing the eigen-

values of matrices with positive coefficients, and with either constant or periodic diag-
onal terms.

21.4 Control Exerted on Phase Transitions

We have performed numerical tests for the cell cycle systems 21.4, 21.5 based on a
classical upwind scheme with the CFL (Courant–Friedrichs–Levy) stability condition
CFL = 1. This means in our context that we chose equal integration steps in age and
time (�a = �t), which gives the exact transport solver (see [5] for details). We have
taken a simplified version of the cell cycle with two phases (I = 2): G1-S-G2 and M.
In other words, in the full cell cycle (G1, synthesis, G2, mitosis) we only retain as a
major event the transition from G2 to M. The apoptosis rate has been taken as constant
and the transition rates are

K1→2(t, x) = 1l[x∗,+∞[(x), K2→1(t, x) = 1l[x∗∗,+∞[(x),
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Table 21.1. The periodic and stationary eigenvalues for different duration G1-S-G2/M ratios
and for two periodic phase transition functions: ψ1 is a brief square wave (4 h/24 h), ψ2 a
longer one (12 h/12 h). For the reader’s convenience, the greater of the two eigenvalues is
underlined.

Time ratio, ψ1 λper λs
1 0.2385 0.2350
2 0.2260 0.2923
3 0.2395 0.3189
4 0.2722 0.3331
5 0.3065 0.3427
6 0.3305 0.3479
7 0.3472 0.3517
8 0.3622 0.3546

10 0.3808 0.3588
20 0.4125 0.3675

Time ratio, ψ2 λper λs
1 0.2623 0.2821
2 0.3265 0.3448
3 . . . . . .

4 . . . . . .

5 . . . . . .

6 . . . . . .

7 0.4500 0.4529
8 0.4588 0.4575

10 0.4713 0.4641
20 0.5006 0.4818

where ψ is a periodic function of time t and 1lI is the indicator function of interval I .
We have in mind the following order of magnitudes for several animal tumour cells:
total cycle duration is 21 h, 8 h for G1, 8 h for S, 4 h for G2, 1 h for M (therefore in this
case x∗ = 20 h and x∗∗ = 1 h). But we will also consider different duration ratios x∗/x∗∗
between the two phases G1-S-G2 and M, from 1 to 20. The reason for this is that al-
though the G2/M transition is known to be a circadian control target with an identified
mechanism (Bmal1→Wee1→Cdc2—the cyclin-dependent kinase Cdc2 being rather
known as Cdk1 in mammals), another control target, with an as yet unidentified mech-
anism (though the genes per and cMyc have been shown to be involved [11, 12]),
could take place at the G1/S transition, and the G1 phase may have a very variable
duration. Thus, while in principle testing here the G2/M transition, we may also be
testing the G1/S gate control by an unknown 24 h-rhythmic Cdc2 (Cdk1)-like factor.
The function ψ(t) has a 24 h period. We have tested several shapes for ψ (cosine and
square wave functions), but eventually kept only two square waves, a brief one with
4 hours at value 1 and the remaining 20 hours at 0, the other one with 12 hours at 1
and 12 hours at 0. The first one mimics the shape of the Cdc2 kinase behaviour, with
entrainment by 24 h-rhythmic Wee1, according to A. Goldbeter’s model of the mitotic
oscillator [13], the other a version of the same Cdc2 model, with no entrainment, but
with fixed coefficients also yielding a 24 h period. In Table 21.1 we show a comparison
between the two eigenvalues (periodic and stationary), for the two tested ψ periodic
transition functions.

It is apparent from this table that no clear hierarchy can be seen between the two
eigenvalues, even if some regularity may be suspected, and these simulations show
cases favourable to our initial hypothesis in the interval 2 ≤ G1-S-G2/M ≤ 7.



21 Cell Cycle Model 247

21.5 Discussion

Circadian control in general. Theorem 1 in Section 21.2 shows that in the general
case one cannot drive any conclusion on the initial question: Is the growth of the pop-
ulation hampered by a periodic control on phase transitions and death rates? This neg-
ative result invited us to examine particular cases.

Circadian control of population growth by targeting apoptosis. The rather surpris-
ing result, given previous experimental observations, that periodic control of apoptosis
in one phase resulted in enhanced proliferation, as compared to constant control (The-
orem 2 in Section 21.3), may indicate that apoptosis is no physiological target for
population growth control by the circadian clock. As regards p53, its circadian expres-
sion is thus likely to be linked more to its cell cycle arrest than to its apoptosis-inducing
capacities.

Circadian control of population growth by targeting phase transitions. This case
was simulated in a simplified way, with two different sorts of square waves in a reduced
two-phase cell cycle model, and even in these simple settings, we obtained contrasting
results, which did not enable us to answer the initial question. It is likely that two
phases only in the model may not be sufficient to account for the physiopathological
observation which guided us for this modelling work, and that, as it is, this model
aggregates in an inaccurate way physiological effects of the G1/S and G2/M transition
controls. Future work on the basis of this experimental observation should encompass
three phases: G1, S-G2, and M, better knowledge of circadian control both at the G1/S
and G2/M transitions, and synchronisation between these transitions.

Possible medical implications. Circadian rhythms are nonnegligible regulating fac-
tors of cell population growth, as shown by results from experimental and clinical ob-
servations. Cancer chronotherapy [15, 20] for fifteen years has been taking advantage
of circadian variations in cytotoxic drug therapeutic efficacy and unwanted toxicity.
These variations are likely due to the simultaneous regulation by the circadian clock of
cell cycle progression on the one hand, and of drug detoxification mechanisms on the
other hand. Elucidating both these control processes in a theoretical way might give a
better rationale to anticancer treatment optimisation. But other adjuvant therapies may
be used, aiming at resynchronisation of individual proliferating cells in growing popu-
lations by strengthening circadian control, possibly using hormones such as melatonin
and cortisol, or even feeding schedule [10,25]. For this prospect, the present work may
offer new guidelines for designing such therapeutic control processes.

21.6 Conclusion

To summarise these results:
1. This model allows us to study the interactions in proliferating tissues between

the cell cycle and physiological control systems such as the circadian clock. We have
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shown with Theorem 1 and its corollaries that classical perturbation analysis is un-
likely to provide an answer to the initial question of the effect of circadian control on
population growth.

2. More than two phases and a better knowledge of other mechanisms (cortisol,
Cyclin E on G1/S) might be necessary to account for the physiopathological facts
reported from animal experimentation and human clinical observations which guided
us in this investigation of the first eigenvalues of the periodic and stationary problems.

3. The unexpected result λper ≥ λs for apoptosis control shown in Theorem 2
suggests that the sole control of death rate inside cell cycle phases is unable to describe
control of proliferation by cytotoxic drugs in cancer treatment. Transition rates should
be considered in a therapeutic perspective.

21.7 Appendix: Proof of Theorem 1

First we introduce more condensed definitions: (N ε, λε, ϕε) by

∀ (t, y) ∈ [0, ∞[2, N ε(t, y) ∈ [0, ∞[I , N ε(t, y)|i := N ε
i (t, y),

∀ (t, y) ∈ [0, ∞[2, ϕε(t, y) ∈ [0, ∞[I , ϕε(t, y)|i := ϕε
i (t, y),

λε := λε.

Then, we define the operator L∗
ε such that L∗

εϕ
ε = λεϕε,

L∗
ε(g)|i := ∂

∂t
gi (t, x) + ∂

∂x
gi (t, x) − [dε

i (t, x) + K ε
i→i+1(t, x)]gi (t, x)

+ gi+1(t, 0)K ε
i→i+1(t, x), 1 ≤ i ≤ I − 1,

L∗
ε(g)|I := ∂

∂t
gI (t, x) + ∂

∂x
gI (t, x) − [dε

I (t, x) + K ε
I→1(t, x)]gI (t, x)

+ 2g1(t, 0)K ε
I→1(t, x),

and its dual satisfying Lε N ε = λε N ε. Thus, for all ε and ε′ such that ε and ε − ε′ ∈
]0, 1[, we have

λε =
∫ ∞

0
L∗

ε(ϕ
ε)(y)N ε(y) dy.

Therefore, we find

λε − λε−ε′ =
∫ ∞

0
L∗

ε(ϕ
ε)(y)N ε(y)dy −

∫ ∞

0
L∗

ε−ε′(ϕε−ε′
)(y)N ε−ε′

(y) dy.

But, the normalisation gives∫ ∞

0
ϕε(y)N ε(y) dy =

∫ ∞

0
ϕε−ε′

(y)N ε−ε′
(y) dy = 1, (21.13)

and so, we can write
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λε − λε−ε′ =
∫ ∞

0

(
L∗

ε(ϕ
ε)(y) − L∗

ε−ε′(ϕε)(y)
)

N ε−ε′
(y) dy

+
∫ ∞

0
L∗

ε(ϕ
ε)(y)

(
N ε(y) − N ε−ε′

(y)
)

dy

−
∫ ∞

0

(
L∗

ε−ε′(ϕε−ε′
)(y) − L∗

ε−ε′(ϕε)(y)
)

N ε−ε′
(y) dy.

Using the definition of L∗, L, and their duality, we find

λε − λε−ε′ =
∫ ∞

0

(
L∗

ε(ϕ
ε)(y) − L∗

ε−ε′(ϕε)(y)
)

N ε−ε′
(y) dy

+ λε

∫ ∞

0
ϕε(y)

(
N ε(y) − N ε−ε′

(y)
)

dy

− λε−ε′
∫ ∞

0

(
ϕε−ε′

(y) − ϕε(y)
)

N ε−ε′
(y) dy.

Thus, using the normalisation (21.13), we deduce from the above identity

λε − λε−ε′ =
∫ ∞

0

(
L∗

ε(ϕ
ε)(y) − L∗

ε−ε′(ϕε)(y)
)

N ε−ε′
(y) dy

+ λε

∫ ∞

0
ϕε(y)

(
N ε(y) − N ε−ε′

(y)
)

dy

− λε−ε′
∫ ∞

0
ϕε(y)

(
N ε(y) − N ε−ε′

(y)
)

dy,

and

λε − λε−ε′ =
∫ ∞

0

(
L∗

ε(ϕ
ε)(y) − L∗

ε−ε′(ϕε)(y)
)

N ε−ε′
(y) dy

+ λε

∫ ∞

0

(
ϕε−ε′

(y) − ϕε(y)
)

N ε−ε′
(y)

− λε−ε′
∫ ∞

0

(
ϕε−ε′

(y) − ϕε(y)
)

N ε−ε′
(y).

And so, we arrive at

(λε − λε−ε′
)

(
1 −

∫ ∞

0

(
ϕε−ε′

(y) − ϕε(y)
)

N ε−ε′
(y) dy

)

=
∫ ∞

0

(
L∗

ε(ϕ
ε)(y) − L∗

ε−ε′(ϕε)(y)
)

N ε−ε′
(y) dy.

Using the equality

(Lε
∗ − Lε−ε′

∗ )(g) = ε′( − [d̃i + K̃i→i+1]gi + gi+1(0)K̃i→i+1
)
,

we deduce
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(λε − λε−ε′
)

(
1 −

∫ ∞

0

(
ϕε−ε′

(y) − ϕε(y)
)

N ε−ε′
(y) dy

)

= ε′
∫ ∞

0

(
− [d̃i + K̃i→i+1]ϕε

i + ϕε
i+1(0)K̃i→i+1

)
N ε−ε′

(y) dy.

And finally, we obtain

λε − λε−ε′

ε′ =

∫ ∞

0

(
− [d̃i + K̃i→i+1]ϕε

i + ϕε
i+1(0)K̃i→i+1

)
N ε−ε′

(y) dy

1 −
∫ ∞

0

(
ϕε−ε′

(y) − ϕε(y)
)

N ε−ε′
(y) dy

. (21.14)

Using Lebesgue’s dominated convergence theorem, we can pass to the limit and
find that the function ε �→ λε (i.e., λε) is differentiable and (21.10) is satisfied. ��
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Summary. A quantitative understanding of the bone remodeling process is of considerable
biomedical and practical biotechnological interest to support the application of layer manufac-
turing techniques to produce scaffolds for surgical applications. Osteoclasts and osteoblasts play
a principal role in different models of the bone multicellular unit operating in bone and display
a rich spectrum of behaviour. The goal of this work is to show that it is possible to capture the
cyclic dynamics of operating cells. The central idea of the mathematical model is that the reg-
ulatory nature of osteocytes is the basis of the cyclic-like behaviour associated with the system
(remodeling process) as a whole. We developed this model taking due account of the apoptosis
of osteocytes as a possible regulation loop in bone remodeling control. By applying the ordi-
nary differential equations technique to the model, we show cyclic modes over a wide range
of constants that have clear biological relevance. Simulations show that for a particular range
of constants the model exhibits a torus-like quasi-steady state. Further investigation into these
simulations indicates the existence of a surface in the osteoclasts-osteoblasts-osteocytes-bone
space, that could be interpreted as a conservative value confirming the substrate-energy regener-
ative capability of the bone remodeling system. It is suggested that the nature of this recovering
potential is directed against both mechanical and biochemical damage to the bone.

Key words: Mathematical model, bone, remodeling, torus.

22.1 Introduction

The potential to apply layer manufacturing methods to the production of complex
scaffolds for tissue engineering has been recognised for several years [1–4]. How-
ever, despite some promising results [5,6], the full potential of this approach can only
be fully realised when the bone remodeling process is well understood. Moreover, if
this knowledge is incorporated into a mathematical model of the basic biological re-
modeling processes, this could then provide an important tool to enable the design
of scaffolds to be optimised. In our study we investigate possible cyclic (periodic)
steady-state dynamical options for known model approaches but with the addition of
osteocyte activity based rather on the interaction of bone cells (osteoblasts (OBl), os-
teoclasts (OCl), osteocytes (OCt)) and their relationship with bone material density.
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Fig. 22.1. Schematic representation of interaction between the cells in BMU. Arrows represent
the control loops of regulation in BMU on the cellular level.

22.2 Model Development

Although the model developed by Komarova et al. [7] predicts different modes of dy-
namic behaviour of the basic multicellular unit (BMU) in bone remodeling control,
a number of limitations to this model were identified by the authors of this paper,
omission of autocrine and paracrine regulation loop parameters, for example. Further-
more, many publications indicate the importance of the level of osteocyte regulation,
for example the role of the osteocyte apoptosis as a part of the mechanotransduction
control mechanism [8,9] under the influence of mechanical stress [10]. These issues
prompted us to take into account the osteocyte apoptosis in the bone remodeling regu-
lation loop and the requirement to redevelop the model in such a way that the autocrine
and paracrine control would be more biologically relevant from a generalised point of
view. We refined the regulation loops, which control the activity of the BMU, and at-
tempted to introduce a cybernetic approach in which the control would be minimised
from both the energetic (catabolic) and metabolic points of view. Additionally, the au-
thors believe that in order to produce a robust bone turnover process the regulation
needs to be robust at all levels of control, and indeed at the cellular levels. Taking
into account this point, we have attempted to develop and analyse the possible cellu-
lar model and robustness on the cellular level. The resulting cell-level control scheme
based on the introduction of the osteocytes control loop could be presented as shown in
Fig. 22.1, where osteocyte apoptosis initiates the osteoclast maturation from osteoclast
precursors.

On the basis of this scheme we developed a set of various differential equation
models using a particular range of functions in order to examine whether the model
simulates the dynamic behaviour of the bone turnover cycle. Linear and quadratic
dependence of functions, following [7] and modifying the model by introducing the
equation for OCt dynamics (equation for x3), gives the system

dx1

dt
= α11x1 + α1x1(1 − x3) − β1x2x3 (22.1)

dx2

dt
= α2(1 − x4) − β2x3 − β22x4 (22.2)
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dx3

dt
= α3x2x4 − sx3 (22.3)

dx4

dt
= −k1(x1 − 1) + k2(x2 − 1), (22.4)

where x1 is the relative concentration of osteoclasts; x2 is the relative concentration of
osteoblasts; x3 is the relative concentration of osteocytes; x4 is the relative bone mass,
s is the level of mechanical stress and α1, α11, α2, α3, β1, β2, β22, k1 and k2 are rate
constants.

The first equation listed above describes autocrine and paracrine OCl regulation of
OCt production and removal and follows the method of Komarova et al. The difference
from the Komarova model [7] in terms of OCl dynamics is that we put in a paracrine
term (which is the control feedback loop from the OCt) based on suggestions that OCt
play a key role in this regulation [8–10]. The last negative term in this first equation
describes OCl removal and reflects our proposition of the delayed paracrine control
of OCl by OBl. In the second equation of the system (22.2), which concerns OBl, the
first term describes the paracrine-like feedback control of bone material on OBl whilst
the other terms describe OBl transformation into OCt and their apoptosis/death. The
major difference from the Komarova model [7] is the introduction of the third equation
(22.3) to the model, which describes OCt dynamics, where the first term is responsible
for their transformation/differentiation from OBl and the second term describes the
OCt apoptosis/death affected by the level of mechanical stress (s). The fourth equation
of the system (22.4) follows the last equation from Komarova’s model [7] but with
the minor difference that the relative change was chosen as 1.0 instead of 100% as
in the original model. The relative change was chosen as a variable to describe OCt
population density, so all the variables describing OCl, OBl and OCt relative densities
are dimensionless. This approach was adopted so that the cyclic modes of the model
could be explored without requiring specific values for the cell variables. Indeed, the
system (22.1–22.4) is partially scaled by using relative population densities. However,
it is important to note that when the rate constants are specified in a particular unit,
then the time scale of the system becomes this unit. Because we wished to explore the
cyclic/periodic behaviour of the system in biologically relevant time scales (measured
in hours, days and weeks) the smallest unit of time employed was 1 hour and this
was used for our initial study. If Komarova’s constants k1, for example, are recalcu-
lated in cell−1∗ hour−1 this changes the constant from k1 = 0.24% ∗ cell−1∗ day−1 to
k1 = 0.0001 cell−1∗ hour−1, which is actually the range of constants we have studied.
The other rate constants α1, α2, β1, β2 have been considerably changed in sense and
dimension compared to the values employed by Komarova et al. [7]. Rate constant
α1 is no longer the paracrine feedback parameter for OCl-OBl but is now OCl-OCt
in our system. However, we retain its value in range of the original Komarova model.
We have taken the value for parameter α1 as α1 = 0.002 hour−1 or 3 cells ∗ day−1

(see Fig. 22.2 and Fig. 22.3), which is a biologically realistic rate for OCl generation
at a single remodeling site. This is based on the value used by Komarova, which is
independent of the type of paracrine feedback. A similar analysis and recalculation
procedure was undertaken for all rate constants employed in the model.
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A B
Fig. 22.2. Phase trajectories of 4D attractor of the system (22.1–22.4). The trajectories are shown
for steady state. A, α1 = 0.002, α11 = 0.002, α2 = 0.01, α3 = 0.2, β1 = 47.0, β2 = 0.6,
β22 = 0.045.0, s = 0.04, k1 = 0.00001, k2 = 0.01. B, α1 = 0.00002, α11 = 0.000032, α2 =
0.000525, α3 = 0.007, β1 = 5.0, β2 = 0.05, β22 = 0.00001.0, s = 0.0004, k1 = 0.000001,
k2 = 0.009.

Thus, regarding the variables used, we believe that the relative population densi-
ties are dimensionless, but the time scale of our resulting data is in hours and all rate
constants are in hour−1. On the other hand, when the cycle period is scaled in certain
time units, the cycles in all phase planes are actually in the same time units when the
population densities are normalised to dimensionless units. Therefore, rate constants
could change values that would render the model less biologically realistic. However,
the underlying behaviour of the model (within the range of constants used) is unaf-
fected. We also suggested that the new rate constant α3 should be in the same range as
the OBl first-order rate constant or even higher because the characteristic time of the
bone regeneration could be shorter than the characteristic time of OBl production. In
our study the α3 rate constant varies between 0.0001 and 0.5 hour−1 (Fig. 22.3), which
effectively covers the entire range of first-order kinetic processes between 1 hour and
1 second. This range of values is based on the osteocells production rate suggested by
Komarova—effectively the OBl production constant in [7]. This value has been derived
from the first-order kinetics data from experimental histomorphometric data [11,12].
However, this is a first-order rate constant when actually the OBl equation is second
order and sometimes even fractal [7]. This illustrates that ultimately from first-order
kinetic data it is possible only to conclude the range of rate constants. Moreover, the
experiments to study kinetic parameters in bone are really semi-in vivo experiments
because of the specific nature of hard tissue (bone) which prevents true in vivo results
from being determined. Gathering experimental data on the kinetic parameters of bone
enzymes, receptors and other complex molecular structures and then calculating and
employing these rate constants in kinetic models is rather conjectural.
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A

B

C

D
Fig. 22.3. Projections of the phase trajectories for the system (22.1–22.4). The graphs clearly
show a collapse of 4D asymmetric torus to narrow figure 8-shaped cycle. The phase trajectories
are shown in graphic matrix form at 4 intervals of time; start (row A), middle (rows B and C) and
steady state (row D). Left column, α1 = 0.002, α11 = 0.002, α2 = 0.01, α3 = 0.2, β1 = 25.0,
β2 = 0.6, β22 = 0.045.0, s = 0.04, k1 = 0.0001, k2 = 0.01. Right column, α1 = 0.00002,
α11 = 0.000032, α2 = 0.00055, α3 = 0.007, β1 = 50.0, β2 = 0.05, β22 = 0.00001.0,
s = 0.0004, k1 = 0.000001, k2 = 0.009.
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22.3 Results

For the wide range of constants discussed above we have numerically investigated
the above mathematical model. We found that the system displays a characteristic
cyclic behaviour with phase trajectories that show a steady-state asymmetric four-
dimensional (4D) cycle (Fig. 22.2A), which is sometimes figure 8-shaped, see Fig.
22.2B.

We suggest that the cycle has a “toroidal” origin. For particular parameters, this
torus is explicitly visible; see Fig. 22.3A. However, when other values are used, the
torus clearly collapses with time into the cycle, when the curvilinear topological equiv-
alent form is hidden; see Fig. 22.3, right column. Although for this particular case the
trajectories of the system are difficult to interpret biologically, it is worth taking into
account the existence of complex surfaces in 4D space.

The range of parameters employed in our study was selected to explore the com-
plex nature of the trajectory and the relaxation of the system into the attracting cycle.
For example, in Fig. 22.3, the left column shows that relaxation of the system occurs,
commencing with a torus with a high amplitude oscillation, which partially collapses
to form a distinctive attracting torus. However, in the right column of Fig. 22.3, the
cycle commences from an indistinct torus with high amplitude that relatively quickly
decays, which prevents a clear torus shape from being displayed (see Fig. 22.3 right
column, second row). This collapses to form an 8-shaped attractor in the OCl-OBl
phase plane and a “fish-shaped” attractor in the OCl-OCt phase plane (Fig. 22.3, right
column, final row). Another important difference between the results shown in the left
and right columns (Fig. 22.3) is that for the latter there is a certain area in the OBl-
OCt phase plane when relations between OBl-OCt switch from a negative to a positive
correlation (see the final three rows of the right-hand row). This result does not follow
logically from the design of the system and raises important questions regarding the
biological implications of this funding.

The steady cycle mode indicates periodic a type of behaviour with a time period
of several days, taking into account the range of rate constants used (hour−1). Over a
certain range of parameters, the trajectories have a tendency to change shape, size and
overlap, but their origin is invariably toroidal in nature; see, for example, Fig. 22.4A.

22.4 Discussion

In the introduction we stressed that the mathematical model developed in [7] predicts
different modes of dynamic behaviour of the BMU while demonstrating the critical
role for OCl autocrine regulation in the control of bone remodeling. In Komarova et al.
[7] this role has been investigated in the framework of a dynamical system, where the
OCt regulation at the cellular level was formally eliminated. In fact, these cells play a
vital role in signaling mechanical damage. The introduction to the model of this reg-
ulation loop obviously increased the dimensions of the dynamical system. However,
the system is still controlled with a minimal collection of cellular regulation loops.
Over a certain range of constants that have realistic biological time scales for the bone
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A B
Fig. 22.4. Phase trajectories for the system (22.1–22.4), A, α1 = 0.0002, α11 = 0.002, α2 =
0.01, α3 = 0.02, β2 = 0.6, β22 = 0.045, s = 0.04, k1 = 0.0001, k2 = 0.01. spanning
parameter a- β1 = 25.0, b- β1 = 35.0, c- β1 = 45.0. B, α1 = 0.00002, α2 = 0.000525, α11 =
0.000035, α3 = 0.007, β1 = 50.0, β2 = 0.05, β22 = 0.00001, s = 0.0004, k1 = 0.000001,
k2 = 0.009. spanning parameters: a- k1 = 0.000001, b- k1 = 0.00001, c- α3 = 0.005, k1 =
0.000001, d- k1 = 0.00001, α3 = 0.005.

model, one can see the torus-like surface (Fig. 22.5) in the multidimensional phase
space. In physics (mechanics), in the case of the classic 1D harmonic oscillator, such a
surface is described by a circle in 2D phase space (coordinate, derivative). This circle
represents a certain conservative value, i.e., the mechanical energy, which reversibly
transforms from the potential form to kinetic form. In our multidimensional OCl-OBl-
OCt-bone case, the shape of the toroidal surface reflects rather a certain interchange,
i.e., the transformation from the “metabolic and kinetic” form of the BMU into the
“bone material” form along the trajectory, which is supported in the steady state by the

Fig. 22.5. 3D representation of the phase trajectories’ evolution of the system (22.1–22.4).
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blood substrate-energy resource. The asymmetry of this torus indicates the complex-
ity of the phase relations in the BMU, OCt, bone mineral and organic components.
In the final analysis a basic bone remodeling steady-state turnover could exist and
all regulations in the direction of increasing or decreasing this level could be con-
sidered as the natural range of bone remodeling adaptability within the physiological
activities of the body. This conclusion leads us to look for a cyclic process as the
most optimised from the cellular regulation point of view. Another interesting result is
that by adjusting the rate control of particular model parameters, for example β1 (Fig.
22.4A), it is possible to control the shape and size of the attractor. This shows that the
conservative quantity, along the steady-state trajectory, changes with the spanning of
particular parameters and this in turn indicates that the substrate-energy metabolical
cost of maintaining a steady state is also affected by changes in the parameters. If we
consider how these findings can be mapped against realistic biological circumstances
it can be seen that changes in amplitude and period could be relevant to some phys-
iological situations. The increase in phase amplitude (Fig. 22.4) of oscillations and
their frequency for oscillating systems in physics leads to an increase of the energy
of the processes. Regarding the remodeling cycle, the biochemical nature of the exis-
tence of such a cyclic attractor indicates the need for biological resource (e.g., oxygen,
ATP, other feeding substrates). Increasing the amplitude (Fig. 22.4B) of oscillations,
and speeding or slowing down of the cycle are related to strengthening or weakening
of the supply of this resource. When the speed of the cycle is too fast (it could be
compared to Paget’s disease, for example) this could result in “overfeeding” of the re-
modeling cycle. When the energy-like remodeling potential is undersupplied the risk
of conditions such as osteoporosis may arise. To achieve optimal physiological con-
trol the metabolic resource required to support the cycle is balanced with the need to
recover the mechanical function of the bone, in an appropriate physiological time pe-
riod. In practice, the regulation of the cycle is probably maintained by a diverse range
of molecular control loops and in a very precise way because the metabolic “cost” of
correcting deviations from the ideal remodeling cycle places a significant burden on
the system.

Additionally, the analysis of the phase shape of the cycle makes it possible to say
that the relationships between OCl, OBl, OCt and bone mass are phase dependent. In
practical terms this means that if the cycle period is longer than the sampling time, the
resulting correlations established by these experiments could be different for different
time periods of the cycle, e.g., phase dependent. For example, when the phase trajec-
tory is figure 8-shaped, see Fig. 22.4B, OCl-OBl phase plane or OCl-bone phase plane,
the correlation coefficients between OBl-OCl or OCl-bone could be positive after sam-
pling on one time period and yet negative when sampled at another. Similar concerns
also relate to the rate constants, mentioned previously (Section 22.2 Model Develop-
ment). These findings reflect the complex nature of biochemical and cellular processes
in the body and show the necessity of comparing the results of model-based and non-
model-based approaches. Finally, within the framework of this rather phenomenologi-
cal level of modeling, the role of the diverse molecular factors in bone regulation, such
as receptors and mediators, the state of the membrane and the hormonal or genetic
system, are difficult to discuss. The roles of these or any other molecular messenger
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or substrate remain the subject of discussion in the biochemical literature, even for
the generalised animal model. Thus, the development of a mathematical model, based
on the molecular level of regulation in the bone, awaits more precise biochemical and
biophysical data.

22.5 Conclusion

The developed model displays steady-quasi-cyclic behaviour when one employs a
range of rate constants that is biologically realistic. We can conclude that the cyclic
steady state of the system has a form which is topologically equivalent to a torus
in multidimensional phase space. The existence of the surface in 4D osteoclast-
osteoblast-osteocyte-bone space indicates that there could exist a conservative value
for this dynamical system. In physics one usually interprets such a value as energy.
In the case of the BMU it could be interpreted as substance (substrate) and energy
recovery potential of the bone remodeling system. Metabolically and biochemically it
could be associated with the continuously operating, genetically predetermined BMU.
It provides a measure of the recovering ability of the BMU following mechanical and
biochemical damage to bone.
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Summary. Atherosclerotic lesions are predominantly localised to arterial bifurcations and
bends, and are highly correlated with areas of low wall shear stress (WSS), but the underlying
reason for this localisation is not fully understood. A key role is played by the endothelial cells,
which regulate the transport of materials from the bloodstream to the artery wall and secrete va-
soactive agents that modulate vascular tone. A mathematical model is presented, exploring the
link between arterial geometry, WSS and factors related to atherogenesis. The model simulates
the cellular response to the fluid shear stress on the cell membrane and the binding of ligands
to cell surface receptors. This is used to calculate the rate of production of nitric oxide (NO),
which is a potent vasodilator and anti-atherogenic factor. It is hypothesised that the section of en-
dothelium adjacent to a region of recirculating flow is most at risk of developing atherosclerotic
plaque, due to reduced bioavailability of NO.

Key words: Artery bend, calcium, endothelial cells, fluid shear stress, nitric oxide, recirculation
zone.

23.1 Introduction

It is now well established that the formation of atherosclerotic lesions is not evenly dis-
tributed throughout the circulatory system, but occurs much more frequently near ar-
terial bifurcations and in areas of high vessel curvature [5]. Atherosclerosis is strongly
associated with disturbed haemodynamic characteristics, such as flow detachment
from the artery wall, flow recirculation and oscillatory flow. In particular, the occur-
rence of atherosclerotic plaque is highly correlated with areas of the vasculature that
experience low time-averaged wall shear stress (WSS) [8]. The causal link between
low WSS and atherogenesis has long been the subject of investigation, but has yet to
be fully elucidated; for a review of the role of fluid shear stress in endothelial physiol-
ogy and pathology, see [11].

The intima (the portion of the artery wall most frequently affected by atheroscle-
rosis) is separated from the bloodstream by a monolayer of endothelial cells (ECs). It
has become increasingly recognised that this layer is not simply a passive barrier, but
plays a crucial role in maintaining vascular homeostasis and regulating the passage of
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materials between the blood and the vessel wall [16]. ECs are sensitive to mechanical
stimuli such as fluid shear stress, as well as biochemical stimuli such as blood-borne
agonists. ECs are also a source of numerous vasoactive factors, such as nitric oxide
(NO), prostaglandin, endothelin and angiotensin [4].

One of the earliest clinical markers of atherosclerotic plaque formation is impaired
EC-dependent vasodilation by NO. This state of endothelial dysfunction is frequently
detectable before any structural changes in the arterial wall occur [3]. As well as be-
ing a potent vasodilator, NO inhibits proliferation of smooth muscle cells (SMCs) and
aggregation and adhesion of platelets, and is thus a key atheroprotective factor [3, 12].
The main enzyme governing synthesis and release of NO in ECs is endothelial NO
synthase (eNOS). Endothelial production of NO is at least partially regulated by the
inositol trisphosphate (IP3)-dependent calcium (Ca2+) signalling pathway, which may
be activated by ligand-receptor binding and/or WSS. The elevated levels of free Ca2+
in the cytosol reversibly bind with calmodulin; the resulting Ca2+-calmodulin com-
plexes activate eNOS, thus causing an increase in the synthesis and release of NO. In
addition, NO leads to increased levels of cyclic guanosine monophosphate (cGMP),
which activates protein kinase G (PKG). This is thought to inhibit Ca2+ influx, thus
providing a negative feedback mechanism and limiting the concentration of Ca2+ in
the cytosol. For details of the IP3-Ca2+ signalling pathway in ECs and associated NO
production, see [7, 13, 15]. Reduced bioavailability of NO in atherosclerosis-prone re-
gions is likely a consequence of disruption of this Ca2+-dependent pathway.

In a previous model [10], the link between spatial haemodynamics and occurrence
of atherosclerotic lesions was investigated. This model considered the effects of two
types of stimuli: one biochemical (the binding of EC surface receptors by blood-borne
ligand) and the other mechanical (the physical force exerted on the cell membrane by
fluid shear stress). ECs are exposed to these stimuli in a spatially varying manner due
to non-uniformities in the fluid flow field and consequent mass transport pattern. This
results in differences in the behaviour of the intracellular Ca2+ pathway in different
regions of the endothelium.

In this study, the effects of these differences on endothelial production of NO,
which plays a crucial role in protecting the vasculature against atherogenesis, are ex-
amined. Reduced bioavailability of NO is a key factor in the onset of atherosclerotic
plaque formation [4, 12] and our model may thus be used to predict which areas of
the artery wall, in a specific vascular geometry, are most susceptible to cardiovascu-
lar disease. The model thus directly addresses the key issue of the causative link, and
its underlying biochemical mechanism, between the incidence of atherosclerosis and
regions of low WSS.

A number of computational fluid dynamical (CFD) studies that model the con-
centrations of particular chemical species in specific two- or three-dimensional arte-
rial structures may be found in the existing literature [6, 14, 17]. The model used in
this study focuses on a simple two-dimensional flow geometry with spatially varying
WSS. This is not intended to accurately replicate the complex situation in vivo, which
is possible only in numerically intensive CFD studies, but rather to identify the most
important features of the generic behaviour. The advantage of this approach is that it
captures the important flow characteristics present in realistic arterial geometries (flow
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separation, recirculation and subsequent reattachment), yet is sufficiently simple that
the model equations are mathematically tractable and the cause-and-effect relation-
ship between shear stress, advection, diffusion and reaction is not masked by complex
three-dimensional flow. This enables the model analysis to identify the most impor-
tant flow characteristics affecting the delivery of ligands to the endothelium and to
elucidate the underlying relationship between mass transport in the bloodstream and
chemical concentrations and reaction rates at the endothelial wall.

23.2 The Mathematical Model

23.2.1 Model for Wall Shear Stress and ATP Concentration

The mathematical model consists of two coupled components. The first concerns the
transport of chemical species in the bloodstream in a region of spatially varying WSS.
This model was developed in [1, 2, 9] and is used here to predict the concentration
of ATP at the endothelial surface. This is an important factor in initiating the Ca2+
signalling pathway via activation of G-protein-coupled receptors; spatial variation in
both ATP concentration and WSS will lead to variations in Ca2+ signalling and hence
in NO production.

Under the assumption that ECs hydrolyse ATP via receptor binding to form ADP,
a thin ATP concentration boundary layer will form in the bloodstream close to the
endothelial surface. Denoting the WSS by τw(x), it has been shown [9] that the con-
centration φ of ATP at the endothelium is closely approximated by

φ(x) = β(x)/ (β(x) + I K ) , (23.1)

where

β(x) = τw(x)
1
2

(
9

∫ x

0
τw (s)

1
2 ds

)− 1
3
, (23.2)

K = 1.7 × 10−6 m/s is the rate of ATP hydrolysis by ECs and I ≈ 0.89 is a constant
resulting from the transformation to the similarity variable β (for details see [9]).

This gives a relationship between the WSS and the ATP concentration for any arte-
rial geometry, provided that the Peclet number (i.e., the ratio of the rate of convective
transport to diffusive transport) is high. This is valid for a wide range of blood-soluble
factors, including adenosine nucleotides and lipoproteins, which have extremely low
diffusion rates (of the order 10−10 m2/s or less).

Attention is focused on the test geometry of a two-dimensional backward-facing
step (see Fig. 23.1). In this geometry, the flow exhibits separation, recirculation and
reattachment, thus comprising the fundamental haemodynamic characteristics of in
vivo blood flow. Fig. 23.2 shows the WSS and ATP concentration profiles on the bot-
tom surface of the backward-facing step (y = 0), under conditions of steady flow with
Reynolds number Re = 10. The model predicts that the ATP concentration is maxi-
mal at or very near to the stagnation point. The concentration decreases gradually as
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Fig. 23.1. Diagram of the model geometry of a backward-facing step. The flow exhibits de-
tachment at x = x1, with reattachment at the stagnation point, x = 0. There is a region of
recirculating flow for x1 < x < 0, whilst the flow becomes fully developed for x > 0.

one moves downstream and the flow becomes fully developed, but decreases rapidly in
the recirculation zone between the points of flow separation and reattachment [9]. The
profiles shown in Fig. 23.2 are considered to be the environmental stimuli to which the
ECs on the bottom surface of the vessel are exposed and hence form the “inputs” to
the model for intracellular Ca2+ signalling.

23.2.2 Model for Intracellular Signalling

The second component is the model for intracellular signalling. This consists of four
coupled differential equations describing the rate of change of concentrations of IP3
(i), cytosolic Ca2+ (Cc), Ca2+ in internal cellular stores (Cs) and activated eNOS (n):

di
dt

= ki
φ

Kc + φ

Cc

K1 + Cc
− µ1i, (23.3)

dCc

dt
= qrel − qres + qin − qout, (23.4)

dCs

dt
= −Vr (qrel − qres) , (23.5)

dn
dt

= kdisCc

K6 + Cc
− µ2n. (23.6)

 

(a) (b)

Fig. 23.2. Graphs of: (a) WSS τw; (b) surface ATP concentration φ against x under flow condi-
tions with Re = 10.
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Fig. 23.3. Schematic illustration of the model of intracellular signalling. Receptor activation
by external ATP stimulates IP3 generation, which releases Ca2+ from internal stores into the
cytosol. This can have a positive feedback effect by increasing the rate of IP3 production. De-
pletion of internal stores stimulates capacitative Ca2+ entry (CCE). WSS can also increase Ca2+
influx via shear-gated plasma membrane Ca2+ channels. Free cytosolic Ca2+ activates eNOS,
which has an inhibitory effect on the CCE channel. Cytosolic Ca2+ is resequestered back into
the internal stores and is pumped across the plasma membrane out of the cell by Ca2+-ATPases.

This is based on the models of [10, 18, 19]. The model is illustrated in Fig. 23.3 and a
brief description of equations (23.3)–(23.6) is given here; for full details, see [10]. The
meanings of the mathematical symbols and the values of the parameters are given in
Table 23.1. The two terms in (23.3) represent IP3 production (due to G-protein receptor
binding by external ATP) and decay: ki is the maximum rate of production, which is
attained for large external ATP concentration φ; IP3 production is accelerated by the
presence of cytosolic Ca2+ as part of a positive feedback mechanism. The qi in (23.4)
and (23.5) are the rates of: Ca2+ release from the internal stores into the cytosol (qrel);
Ca2+ resequestration by the internal stores (qres); Ca2+ influx (qin); Ca2+ efflux (qout).
These are defined as follows:

qrel = krel

(
i

K2 + i

)3
Cs, (23.7)

qres = kres

(
Cc

K3 + Cc

)2
, (23.8)

qin = kCCE

K4 + n
(
Cs,0 − Cs

)
(Cex − Cc) + F (τw) , (23.9)

qout = koutCc

K5 + Cc
. (23.10)

qrel is an increasing function of IP3 concentration, with maximum rate krel. qin consists
of Ca2+ influx stimulated by depletion of the internal stores, termed capacitative Ca2+
entry (CCE), and WSS-induced influx, F(τw), where F is an increasing function of
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Table 23.1. Table of parameter values.

Quantity Symbol Value and units

IP3 production rate ki 5.46 × 10−3 µM s−1

IP3 decay rate µ1 0.2 s−1

Ca2+ release rate krel 6.64 s−1

Ca2+ resequestration rate kres 5 µM s−1

Ca2+ efflux rate kout 24.7 µM s−1

eNOS-caveolin dissociation rate kdis 0.09 µM s−1

eNOS-caveolin association rate µ2 0.0167 s−1

Max. WSS-induced Ca2+ influx rate qm 17.6 µM s−1

CCE rate kCCE 5.7 × 10−6 s−1

Resting stored Ca2+ concentration Cs,0 2830 µM
External Ca2+ concentration Cex 1500 µM
Michaelis–Menten constants Kc 0.026 µM

K1 0 µM
K2 0.2 µM
K3 0.15 µM
K4 5 µM
K5 0.32 µM
K6 0.45 µM

Ratio of cytosol to ER volume Vr 3.5

WSS (with maximum rate qm). Note that the rate of CCE is attenuated in the presence
of eNOS, reflecting the negative feedback of high eNOS levels on Ca2+ influx. qres
and qout represent the actions of Ca2+-ATPases on the cytosolic Ca2+. Finally, the two
terms in (23.6) represent activation and deactivation of eNOS: eNOS is activated by
cytosolic Ca2+ at maximum rate kdis and deactivated at constant rate µ2.

23.2.3 Coupling the Model Components

A section of the endothelium on the bottom surface of a backward-facing step is
now examined. The WSS and ATP concentration profiles along this surface (shown
in Fig. 23.2) constitute the “inputs” to the intracellular signalling model. Specifically,
the ATP concentration, at a given position on the endothelium, determines the rate of
intracellular IP3 production due to receptor binding by modulating the first term in
(23.3). The WSS at a given position modulates the rate of Ca2+ influx into the cell via
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the shear-stimulated influx term F(τw) in (23.9). These combined stimuli thus deter-
mine the behaviour of the IP3-Ca2+ signalling pathway and its effect on eNOS activity,
via the system of differential equations (23.3)–(23.6).

Hence at any given position on the endothelial surface, the system (23.3)–(23.6)
can be solved numerically to give the local intracellular IP3, Ca2+ and eNOS dynam-
ics. By comparing the results in different locations along the endothelial surface, pre-
dictions can be made regarding the consequences for potential endothelial dysfunction
and the onset of early atherosclerosis.

The intracellular dynamics do not impact the model for mass transport in the blood-
stream, which is essentially decoupled. A more general model would allow for the
blood transport of factors, such as NO, secreted by the ECs in a spatially varying
manner. However, the extracellular concentration of Ca2+ is very high compared to in-
tracellular levels [15], and intracellular Ca2+ will not significantly affect extracellular
or fluid concentrations. Secretion of NO into the bloodstream may be significant, but
the primary action of NO considered here is its vasodilatory effect on sub-endothelial
SMCs. This action is paracrine in nature, so the local NO production rate, as indicated
by the intracellular activated eNOS concentraion, is used as a predictor of arterial wall
health.

23.3 Results

Fig. 23.4 shows the intracellular IP3, Ca2+ and eNOS dynamics in response to a step
increase in the extracellular ATP concentration from 0 µM to 0.06 µM (which is in
the physiological range of ATP concentrations found in the bloodstream [13]). This
stimulus initiates the Ca2+ mobilisation and influx pathways and the model produces a
biphasic response. The initial phase consists of a transient increase in cytosolic Ca2+,
and a corresponding decrease in stored Ca2+, representing a rapid release of Ca2+ from
the internal stores. In the second phase, there is a gradual decay of cytosolic Ca2+
to a plateau level as the cell’s Ca2+ extrusion mechanism takes effect. The activity
of eNOS, which is stimulated by cytosolic Ca2+, also exhibits a transient increase,
followed by a gradual decay. The response to a step increase in WSS (i.e., sudden onset
of flow) is very similar (data not shown). These results are in qualitative agreement
with experimental evidence on the response of ECs to a physiological stimulus of this
nature [20].

Notice that, after the initial transient, the signalling process settles down to a steady
state. In particular, the cytosolic Ca2+ and eNOS concentrations tend towards plateau
values, which are elevated above the levels in an unstimulated cell. The degree of ele-
vation above resting conditions varies with the level of stimulation (by both WSS and
ATP) and hence with position along the vessel. We therefore examine the relation-
ship between spatial location and the steady-state concentrations of cytosolic Ca2+
and eNOS, disregarding the initial transient behaviour. Fig. 23.5 shows the steady-
state concentrations of cytosolic Ca2+ and eNOS against distance downstream in the
backward-facing step for Re = 10. Notice that eNOS is lower in the recirculation zone
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(a) (b)

(c) (d)

Fig. 23.4. Graphs of intracellular concentrations against time in response to a step increase in
the extracellular ATP concentration from 0 µM to 0.06 µM: (a) IP3; (b) cytosolic Ca2+; (c)
stored Ca2+; (d) eNOS.

(x < 0) than in the region of fully developed flow (x > 1 mm), suggesting that this
area is more likely to develop atherosclerotic plaque.

To enable a comparison between model predictions for the backward-facing step
and more realistic geometries, the model was extended to a three-dimensional artery
bend. Simulations were run using the CFD package FLUENT to determine the WSS

(a) (b)

Fig. 23.5. Graphs of the steady-state intracellular concentration against x for Re = 10: (a)
cytosolic Ca2+; (b) eNOS.
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(a) (b)

Fig. 23.6. Contour plots of: (a) WSS; (b) surface ATP concentration in an artery bend at Re =
300. Flow is from top-right to bottom-left, and there is a region of low WSS and low ATP on the
inner wall downstream of the bend.

and ATP concentrations on the endothelium (see Fig. 23.6). A Reynolds number of
300 was used in these simulations: a higher value than that in the backward-facing step
simulations was used in order to replicate flow in a larger artery with flow detachment,
which occurs on the inner wall of the bend, resulting in a region of relatively low WSS
on the inner wall (darker region in Fig. 23.6(a)). These data were again used as the
inputs to the intracellular model, and the steady-state cytosolic concentrations of Ca2+
and activated eNOS were calculated on the artery wall (see Fig. 23.7). These are lower

(a) (b)

Fig. 23.7. Contour plots of steady-state intracellular concentrations in an artery bend for Re =
300: (a) cytosolic Ca2+; (b) eNOS.
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in the low WSS region on the inner wall than in regions of fully developed flow and
high WSS.

23.4 Discussion

The behaviour of a section of vascular endothelium near a flow disturbance has been
studied by coupling a model of fluid shear stress and ATP mass transport in the blood
vessel (inputs) to a model of intracellular signalling and consequent eNOS activity
(output). The results indicate that conditions favour atherogenesis (due to reduced
eNOS activity) in the recirculation zone that forms immediately downstream of a
backward-facing step. Clearly, the two-dimensional backward-facing step geometry
used in this model is not an accurate representation of in vivo arteries. Nevertheless,
the key fluid dynamical characteristics of flow separation, recirculation and reattach-
ment are present in the simplified model geometry.

To verify the model predictions in a more realistic geometry, the model was ap-
plied to a three-dimensional artery bend. The results confirm the spatial relationship
between disturbed flow (in particular low WSS) and reduced bioavailability of NO,
with consequent adverse implications for atherogenesis. We therefore hypothesise that
reduced NO production, due to impaired endothelial Ca2+ and eNOS signalling, is a
key factor in the localisation of atherogenesis to regions of low WSS and recirculat-
ing flow. This hypothesis is consistent with empirical observations that atherosclerosis
is strongly localised to arterial bifurcations and bends [5], regions which exhibit dis-
turbed flow characteristics and low WSS [11].

Although atherogenesis occurs as a result of a complex interplay between a wide
range of factors, the mathematical model provides insight into some of the mecha-
nisms responsible. In regions of fully developed flow (i.e., unidirectional flow with a
parabolic velocity profile), as occurs in relatively linear sections of the vasculature,
the mechanical WSS on the EC is moderate or high (in the range 1–5 Pa), as is the
convection of ATP into the thin mass transfer boundary layer near the endothelium.
Thus the combined environmental stimulus for EC in such a region is in the physio-
logical range, leading to activation of the IP3-Ca2+ signalling pathway and consequent
activation of eNOS and synthesis of NO. In contrast, the ECs in areas near a flow dis-
turbance or recirculation zone, as occurs near arterial bifurcations and bends, usually
experience lower time-averaged WSS (< 1 Pa). In addition, lower rates of convection
and longer residence times in such regions mean that the ATP concentration in the
mass transfer boundary layer can become substantially depleted. Hence the combined
environmental stimulus is low, leading to reduced Ca2+ signalling and eNOS activity.
As a consequence, this section of the endothelium is more prone to dysfunction and
associated onset of atherosclerosis.

The hypothesis that the artery wall in a region of recirculating flow experiences
impaired intracellular Ca2+ and eNOS signalling, and thus represents a “hot spot”
for the initiation of atherosclerotic lesions, needs to be tested experimentally. This
could be done by culturing vascular ECs on the bottom surface of a backward-facing
step flow chamber (as shown in Fig. 23.1) and perfusing the chamber with medium



23 Modelling the Early Stages of Atherosclerosis 273

containing ATP. The cells will thus be exposed to spatially varying shear stress and
ATP concentration and measuring these quantities will enable the theoretical results
(e.g., those shown in Fig. 23.2) to be validated. The cytosolic free Ca2+ concentration
at different points in the flow chamber can be measured by fluorescence and the results
compared to the theoretical predictions of our model.
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Summary. In vivo applications of biocompatible magnetic nanoparticles in a carrier liquid con-
trolled by an external magnetic field from outside the body have recently been proposed for
specific drug delivery such as in locoregional cancer therapies or the occlusion aneurysms. They
can also be used as guided contrast agents in myocardial imaging after myocardial infarction.
However, the choice of the optimal clinical setting still remains a challenge for all of the men-
tioned applications. A numerical heterogeneous multiscale model can be used for an optimal a
priori determination of the free parameters and might help to overcome this problem.

Key words: Navier–Stokes equations, Maxwell equations, multiscale, ferrofluids, biocompati-
ble, nanoparticles.

24.1 Introduction

Current research on methods to target chemotherapy drugs in the human body includes
the investigation of what are called biocompatible magnetic nanocarrier systems. For
example, magnetic liquids such as ferrofluids can play an important role as drug carri-
ers in the human body [1], while preventing damage to healthy human cells by allow-
ing more strict control in the treatment dose and by weakening global exposure to the
organism as in the case of ablation techniques.

Such is the case of modern locoregional cancer treatments using drug targeting
techniques. However, a remaining challenge for this medical application is the choice
of a safe and effective clinical setting, which must involve as a prerequisite the optimal
adjustment of the external magnetic field as well as the choice of ferrofluid properties.
In that direction, different theoretical mathematical models have already been proposed
in order to address several aspects related to the validity and safety of such medical
treatments [2].

In this chapter, we focus on the idea of a numerical heterogeneous multiscale model
which can be used for an optimal a priori determination of the free parameters. In this
study, we are going to present an approach to the implementation of such a multiscale
model. We applied a hybrid scheme which is based on Maxwell and Navier–Stokes
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equations to paramagnetic liquids. For a considered area of the body, the Maxwell
equations for the static magnetic case were solved. The vector potential was then cou-
pled to a liquid flow problem described by the Navier–Stokes equations by a volume
force acting on the magnetic liquid. Time-dependent boundary conditions were used
to describe the systolic blood flow regime. The system of coupled partial differential
equations was solved by the finite element method on adaptive meshes. For a repre-
sentative geometry, our hybrid model allowed the study of the hydrodynamics of the
magnetic liquid. Moreover, our model is open for an embedding of a nanoscale model
which represents the particle dynamics. It is concluded that the proposed model is a
prerequisite for the optimal computational choice of the free parameters of magnetic
liquids and the external magnetic field for in vivo applications.

24.2 Model Description

A simple and numerically effective geometric representation of a global vessel and an
external magnetic field is achieved with a two-dimensional (2D) model. A blood vessel
is fed with a liquid (blood) from the left in Fig. 24.1. The velocity and pressure field
is calculated in the bloodstream. The magnetic field (magnetic vector potential) that is
generated by the magnet is also calculated. This magnetic field generates a magnetic
volume force that affects the flow field in the blood vessel.

24.2.1 Model Equations

We consider Maxwell’s equations for the static case

∇ × H = J
∇ · B = 0

and the constitutive relationship

Fig. 24.1. The simplest 2D realization of a vessel with blood flow.
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B = µ(H + M),

where µ is the permeability, B the magnetic flux density, M the magnetization vector,
and J the current density. With the magnetic vector potential A (B = div A and rot A =
0) we obtain that

∇ × (µ−1∇ × A − M) = J.

In the 2D case, this can be written as

−∇ · (µ−1∇ A − γ ) = J,

where γ is the magnetization of the ferrofluid given by

γ =
(

α arctan
(

β
∂ A(x, y)

∂x

)
, α arctan

(
−β

∂ A(x, y)

∂y

))

as in [3]; also notice that A = Az and J = Jz .
It is important to point out that the vector potential was used to obtain the magnetic

field H, because of the numerical implementation. Note that B = div A and H =
µ−1B, which yields H = µ−1div A.

The time-dependent mass and momentum balances for an incompressible flow are
described using the imcompressible Navier–Stokes equations

ρ
∂u
∂t

− ∇ · η(∇u + (∇u)T ) + ρ(u · ∇)u + ∇ p = F,

where F involves gravity and magnetic forces Fm + Fg, the pressure term is repre-
sented by ∇ p, and the viscous contribution is η(∇u + (∇u)T ).

The components of the magnetic force are given as follows:

Fmag
i (x, y) = µ0(Mi (x, y) + M j (x, y))

1
2 µ−1




∂ A(x,y)
∂x

∂2 A(x,y)
∂x∂x + ∂ A(x,y)

∂y
∂2 A(x,y)

∂x∂y((
∂ A(x,y)

∂y

)2 +
(

∂ A(x,y)
∂x

)2
) 1

2




Fmag
j (x, y) = µ0(Mi (x, y) + M j (x, y))

1
2 µ−1




∂ A(x,y)
∂x

∂2 A(x,y)
∂y∂x + ∂ A(x,y)

∂y
∂2 A(x,y)

∂y∂y((
∂ A(x,y)

∂y

)2 +
(

∂ A(x,y)
∂x

)2
) 1

2


 .

24.3 Materials and Methods

On the vessel a non-slip wall condition was applied, e.g., u = 0, v = 0. At the outlet
we set up a pressure condition p = 0, and in the inlet boundary we applied a parabolic
flow profile with x-velocity component (v0/4)S(1−S)(γ sin(wt)+

√
sin2(wt)), where
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S is a segment length parameter that goes from 0 to 1 along the inlet boundary segment
and v0 is a limit velocity.

In order to avoid numerical instabilities that are inherent in the coupling of the
two systems of differential equations as well as singularities that occur while getting
approximating numerical solutions for each finite element, we made use of adaptive
meshing techniques that allowed existence and smoothness of a global final numerical
solution.

24.3.1 Numerical Results

Here we show the simulations of our modeling. Fig. 24.2 shows the contour lines of
the external magnetic potential to be applied. Fig. 24.3 shows the streamline graph of
the flow velocity field in the vessel at initial time. Fig. 24.4 shows the streamline graph
of the flow velocity field in the vessel at time t = 0.75. Fig. 24.5 shows the effect
of the magnetic field on the nanoparticles immersed in the blood flow. It is noticeable
that above a time t , the magnetic nanoparticle carriers in the flow are disturbed in the
vicinity of a magnetic field.

24.4 Conclusions

We have developed a numerical simulation for the behavior of magnetic nanoparticles
in a carrier liquid. By means of our mathematical modeling we have given insight in
the calculation of some of the parameters involved in drug targeting therapies.

The model that we have developed is a prerequisite for a more detailed and sophis-
ticated model (multiscale model) which must incorporate the nanoscale effects and
thus might allow a more realistic representation of the effects of magnetic fields and
ferrofluids. Such an approach should also consider the regimes in which the magnetic
fluid is likely to significantly influence the flow in a vessel.

Fig. 24.2. Contour lines of the external magnetic potential.
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Fig. 24.3. Streamline of the vessel flow velocity field at time t = 0.

Fig. 24.4. Streamline of the vessel flow velocity field at time t = 0.75.

Fig. 24.5. Nanocarriers affected by the external magnetic field at time t = 0.75.
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Summary. A mathematical model of water flow between dialysis fluid in the peritoneal cavity
and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic
and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations
of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles
for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times
from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters
that represent clinical treatments of peritoneal dialysis.

Key words: Distributed model, numerical solution, water transport, glucose transport, peri-
toneal dialysis.

25.1 Introduction

Peritoneal dialysis is a life-saving treatment for chronic patients with end stage renal
disease [1]. Dialysis fluid is infused into the peritoneal cavity, and, during its dwell
there, small metabolites (urea, creatinine) and other uremic toxins diffuse from blood
to the fluid, to be removed after some time (usually a few hours) together with the
drained fluid. The treatment is repeated continuously. The peritoneal transport occurs
between dialysis fluid in the peritoneal cavity and blood passing down capillaries in
tissue surrounding the peritoneal cavity. The capillaries are distributed within the tis-
sue at different distances from the tissue surface that is in contact with the dialysis
fluid. Hydrostatic pressure of the dialysis fluid is higher than hydrostatic pressure of
the interstitial fluid within the tissue. Therefore, a flow of fluid from the peritoneal
cavity to the tissue occurs (called peritoneal absorption), which reduces the effective-
ness of peritoneal dialysis. The removal of excess water from the patient is achieved in
peritoneal dialysis by inducing high osmotic pressure in the dialysis fluid due to a high
concentration of glucose that creates high osmotic pressure of the fluid [1]. Glucose



282 R. Cherniha, V. Dutka, J. Stachowska-Pietka, and J. Waniewski

(or another osmotic agent) diffuses from dialysis fluid dwelling in the peritoneal cav-
ity into the tissue. Its increased concentration within the tissue induces osmotic flow
of water across the wall of local capillaries from blood to the tissue [1]. How can this
water pass from the tissue to the peritoneal cavity towards higher hydrostatic pressure?
A mathematical description of osmotically induced fluid transport from blood to the
peritoneal cavity has not been formulated fully yet, in spite of the well-known basic
physical laws for these processes. A previous attempt to model water transport from a
distributed system of capillaries was based on the assumption that a thin layer of cells
(the mesothelium) on the surface of organs that surround the peritoneal cavity creates
an osmotic barrier, similar to that formed by the capillary wall (the endothelium), and
therefore a high osmotic pressure in the dialysis fluid overcomes its high hydrostatic
pressure [2]. However, there is no evidence for such a function of the mesothelium [3].
Furthermore, that model predicted negative hydrostatic pressure in the tissue [2]. Ex-
perimental studies in rats demonstrated that hydrostatic pressure in the abdominal wall
is positive during peritoneal dialysis with high glucose concentration in the dialysis
fluid [4]. Thus, a model based on different assumptions should be formulated. In the
present study we assume that the osmotic barrier is not created by the mesothelium
layer on the surface of the tissue, but that this barrier is distributed within the tissue,
i.e., an osmotic force may be created by a glucose concentration gradient at any point
in the tissue. The consequences of such an assumption are studied by computer simula-
tions. The model includes an additional assumption that, because of the high osmotic
pressure induced by glucose, some thermodynamic forces, such as the oncotic pres-
sure of proteins, may be neglected. A few exact solutions for the basic equations of the
model were found using some analytical methods [5].

25.2 Mathematical Model

The mathematical description of transport processes within the tissue consists in the
local balance of fluid volume and solute mass and is given by the following equations:

∂ν

∂t
= −∂ jV

∂x
+ qV ,

∂(νCG)

∂t
= −∂ jG

∂x
+ qG , (25.1)

where t is time, and x is the distance from the tissue surface in contact with dialysis
fluid. Here the volumetric flux jV and the solute flux jG across the tissue are given by
the formulas

jV = −νK
∂ P
∂x

+ σT GνK RT
∂CG

∂x
, jG = −νDG

∂CG

∂x
+ ST GCG jV , (25.2)

while the density of fluid flux qV and the density of glucose flux qG from blood to
tissue can be expressed as

qV = −L paσCG RT (CG B − CG),

qG = pGa(CG B − CG) + SCGqV ((1 − FG)CG B + FGCG) . (25.3)
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We also assume that the fractional void volume, ν, is given by the function

ν(P) = νmin + νmax − νmin

1 +
(

νmax−νmin
ν0−νmin

− 1
)

exp(−b(P − P0))
, (25.4)

which describes the experimental data on the increase of the volume filled by the in-
terstitial fluid with the increase of hydrostatic pressure of this fluid [6].

Equations (25.1)–(25.4) can be united into two equations for finding the glucose
concentration CG(t, x) and the hydrostatic pressure P(t, x). The boundary conditions
for a tissue layer of width L impermeable at x = L and in contact with dialysis fluid
at x = 0 are as follows:

x = 0 : P = PD, CG = CG D,

x = L :
∂ P
∂x

= 0,
∂CG

∂x
= 0. (25.5)

The initial conditions describe equilibrium within the tissue without any contact with
dialysis fluid at x = 0:

t = 0 : P = P0, CG = CG B . (25.6)

The parameters in the above equations are selected according to the clinical and
experimental data [4], [6]–[9]: K = 5.14 × 10−5 cm2 × min−1 × mmHg−1, hydraulic
permeability of tissue; σT G is the Staverman reflection coefficient for glucose in tissue
(varies from 0 to 0.01); RT = 18 × 103 mmHg × mmol−1 × mL, the gas constant
times temperature; L Pa = 7.3 × 10−5 mL × min−1 × mmHg−1 × g−1, the hydraulic
permeability of the capillary wall; σCG = 0.014, the Staverman reflection coefficient
for glucose in the capillary wall (as calculated using the two-pore model with small
pore radius 60 Ȧ and large pore radius 310 Ȧ); DG = 12.11 × 10−5 cm2 × min−1, the
diffusivity of glucose in tissue divided by ν0; ST G = 1−σT G , the sieving coefficient of
glucose in tissue; pGa = 3.4 × 10−2 mL × min−1 × g−1, the diffusive permeability of
the capillary wall; SCG = 1 − σCG , the sieving coefficient for glucose in the capillary
wall; FG = 0.5, a weighing factor; CG B = 6 × 10−3 mmol × mL−1, the glucose
concentration in the blood; CG D = 180×10−3 mmol×mL−1, glucose concentration in
the dialysate; PD = 3, 7.5 and 12 mmHg, intraperitoneal hydrostatic pressure; P0 = 0
mmHg, initial interstitial hydrostatic pressure; L = 0.5 cm; νmin = 0.17; νmax = 0.35;
ν0 = 0.175; and b = 1.7 mmHg−1. All pressures are scaled assuming atmospheric
pressure is equal to zero. A detailed physical and physiological background for the
model can be found in [5] (see also [1]–[4], [7, 10]).

25.3 Numerical Results

A numerical technique described in [11] was used to solve the boundary-value problem
(25.1)–(25.6). Numerical results for PD = 7.5 mmHg and σT G = 0.001 (the values
of other parameters are listed above and fixed) are presented in Fig. 25.1–25.3. Infu-
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Fig. 25.1. Volumetric flux jV (t, x) for in-
traperitoneal pressure PD = 7.5 mmHg and
σT G = 0.001.

Fig. 25.2. Interstitial pressure P(t, x) for
intraperitoneal pressure PD = 7.5 mmHg
and σT G = 0.001.

sion of hypertonic solution into the peritoneal cavity increases intraperitoneal pressure
and, consequently, causes rapid inflow of water into the surrounding tissue (Fig. 25.1).
Inflowing water initially increases P only in the superficial layer, whereas P in the
deeper tissue layers remains unchanged (Fig. 25.2). Later on, water penetrates deeper
layers of the tissue, causing a local increase of P . Finally, a steady state is obtained at
about 600 min after fluid infusion, with P decreasing with the distance from the cavity
(Fig. 25.2). The inflow of water into the tissue decreases with time and finally, at the
steady state, a reverse flow of water from the tissue into the cavity caused by the high
concentration of glucose may be observed (Fig. 25.1). The glucose concentration in the
tissue stabilizes quickly at a high level close to the cavity, but in the deeper part of the
tissue it is close to the initial value (Fig. 25.3). A similar type of glucose distribution
in the tissue was also obtained for PD = 3 and 12 mmHg and for different values of
σT G (data not shown). However, for higher values of P , deeper penetration of glucose
may be observed.

Fig. 25.4–25.5 present results obtained for σT G = 0.002 and σT G = 0.003 with
other parameters the same as in Fig. 25.2. It may be seen that the increase of osmotic
pressure of glucose due to the increase of σT G has an effect on the quantitative be-
haviour of water flow and interstitial pressure (Fig. 25.4–25.5). An increase of σT G
from 0.001 to 0.002 causes a reversed water flux, from the tissue into the cavity, at the
beginning of dwell in the tissue layer close to the cavity. This outflow dehydrates the
tissue and decreases P . Thus initially, negative P appears close to the peritoneal cav-
ity, later on increasing due to the inflow of water into the tissue (Fig. 25.4). This effect
may be even stronger for higher values of σT G (Fig. 25.5). Such a strong outflow of
water, caused by the osmotic effect of glucose, permanently decreases P in the whole
tissue layer below zero after about 100 min (Fig 25.5).

A similar behaviour of P may also be seen for PD = 3 mmHg (not shown) and
PD = 12 mmHg (Fig. 25.6–25.8). Depending on the values of PD and σT G , three



25 Fluid Transport in Peritoneal Dialysis 285

Fig. 25.3. Glucose concentration CG(t, x)

for intraperitoneal pressure PD = 7.5
mmHg and σT G = 0.001.

Fig. 25.4. P(t, x) for PD = 7.5 mmHg,
σT G = 0.002.

types of behaviour of peritoneal pressure are possible. Pattern 1: P remains positive in
the whole tissue layer (Fig. 25.6). Pattern 2: Negative pressure occurs at the beginning
of dwell in the tissue layer close to the cavity (Fig. 25.7). If the reversed volumetric
flux is not very strong and PD is high enough, an increase of P follows with P positive
at the steady state in the whole tissue (it occurs for PD = 3 mmHg and σ = 0.001).
Pattern 3: Negative pressure initially occurs only in the tissue layer close to the cavity,
whereas in the deeper part of the tissue P is close to zero. However, the strong influence
of glucose, which causes an outflow of water from the tissue, causes a further decrease

Fig. 25.5. P(t, x) for PD = 7.5 mmHg,
σT G = 0.003.

Fig. 25.6. P(t, x) for PD = 12 mmHg,
σT G = 0.002.
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Fig. 25.7. P(t, x) for PD = 12 mmHg,
σT G = 0.004.

Fig. 25.8. P(t, x) for PD = 12 mmHg,
σT G = 0.010.

of pressure in the tissue. Finally, at the steady state, P is negative in most of the tissue
layer (Fig. 25.7 and 25.8).

The reverse water flow (i.e., out of the tissue) that may occur close to the cavity
decreases with the distance from the peritoneal cavity to zero in the deeper tissue
layers. The total fluid outflow from the tissue to the cavity, calculated assuming that
the surface area of the contact between dialysis fluid and peritoneum is equal to 0.5 m2,
is similar at the steady state for all values PD and σT G and varies from −0.24 mL/min
to −0.5 mL/min. Furthermore, in simulations with high σT G , an outflow from the
tissue was observed for a short initial period of the peritoneal dwell, with the maximal
rate of −5 mL/min obtained for σT G = 0.01 and PD = 12 mmHg.

25.4 Discussion

The model of fluid transport in peritoneal dialysis with hypertonic glucose solution
presented in our study allows for analysis of the distribution of hydrostatic and os-
motic pressures and water flux in the tissue. Our aim was to check if the assumption
of the osmotic barrier distributed uniformly in the tissue allows for the high osmotic
flux of water from blood to the peritoneal cavity and concomitant positive hydrostatic
pressure in the tissue. The results show that the model is not able to describe these
phenomena in agreement with clinical and experimental data. The rate of flow to the
peritoneal cavity with hypertonic glucose solution is about 10–15 mL/min immediately
after the infusion of dialysis fluid. In our simulations the maximal flow rate was about
5 mL/min. Although higher values of outflow can be easily obtained using higher val-
ues of σT G , the cost for this initial outflow from the tissue is a negative hydrostatic
pressure (about −19.1 mmHg at x = 0.5 cm, Fig. 25.8) in the tissue. Moreover, this
outflow is transient and results from dehydration of the tissue rather than a persistent
outflow from the blood. Although such dehydration was discussed in the medical lit-
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erature, it was not found in experimental studies [12]. The persistent outflow from the
tissue can be observed in our simulations for low values of σT G , a weak osmotic bar-
rier, but only after a long time (>9 hours, Fig. 25.1) and at a low rate (< 0.5 mL/min).
This prediction is difficult to test, because in real dialysis the concentration of glucose
quickly decreases. In any case, this steady state outflow from the tissue cannot explain
the high initial values measured under clinical conditions. The presented model as
well as the previous one [2] cannot describe the currently available clinical and exper-
imental knowledge of the water transport in peritoneal dialysis. Although our model is
simplified, there is little hope that its further development can yield better agreement
with the data. Instead, a modelling based on the assumption of a heteroporous osmotic
barrier (similar to that created by the capillary wall) distributed within the tissue may
perhaps be able to describe water inflow to the tissue due to high intraperitoneal hy-
drostatic pressure and concomitant water outflow from the blood through the tissue to
the peritoneal cavity due to high osmotic pressure of the dialysis fluid.
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Summary. We discuss a model for the interaction between the parasite Trypanosoma cruzi and
the immune system in Chagas disease, by separately describing the intracellular and extracellular
parasite stages. The solution of the case where two antibody species are active is worked out in
detail, and a diagram showing the differents outcomes of the model is obtained. Our predictions
accurately reproduce experimental data on the infection evolution during the acute phase of the
disease and lead to an estimate of the damage generated by direct parasite action.
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26.1 Introduction

Chagas disease is an endemic parasitosis that affects nearly 20 million people in Cen-
tral and South America [1]. This disease is caused by the protozoan parasite Try-
panosoma cruzi, which is usually transmitted by a bloodsucking insect of the sub-
family Triatominae. Parasite invasion is associated with strong antibody and cellular
responses; the initial, acute, stage of the disease is characterized by a febrile illness;
the disease then enters into a latent stage in which there are no clinical signals re-
lated to the infection. Many years after the infection, infected individuals often de-
velop severe heart disorders including life-threatening electrical conduction abnormal-
ities and dilated cardiomyopathy [2]. Although its social and economic effects are well
known [1, 3], there is, at present, no effective vaccine against Chagas.

T. cruzi has a complex life cycle involving three main morphological stages: repli-
cating epimastigotes are found in the insect vector, while an intracellular reproductive
form (amastigote) and a blood circulating infective form (trypomastigote) are iden-
tified in the mammalian host. Trypomastigotes present in the insect feces invade the
host through mucosae or skin microlesions. Inside the host they penetrate cells in a
variety of tissues, where they differentiate into amastigotes. After several cycles of du-
plication by binary fission, they transform again into the nonreplicative trypomastigote
stage, filling and bursting the cell, which releases them into the bloodstream.
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We developed a model of the acute phase of the infection that predicts all possi-
ble outcomes of the disease: healing, death, and chronic infection, with stationary or
quasicyclical populations [4,5]. We obtained very good agreement between the predic-
tions of the model and available experimental results. Minor but definite discrepancies
remained, however, especially when comparing the observed parasite numbers in the
late infection stages with the model predictions. Very recently, and motivated by this
limitation, we generalized the model by separately describing the parasitic intracellular
and extracellular phases [6]. Much better fits were obtained with the improved model,
as we show in the text. Since we need to consider two specific antibody species, it is
advisable to undertake a more careful analysis of the model in this case. In addition to
comparison with the experiments, we present here the explicit steady-state solutions
of the two-antibody-species model and study the dynamics of the different populations
numerically.

26.2 Materials and Methods

Our model is built upon the following assumptions:

1. A parasite batch invades or is inoculated into a mammalian host.
2. Trypomastigotes invade healthy cells, where they mutate into amastigotes and re-

produce.
3. Newborn parasites break out of the cell and restart the invasive process.
4. Parasites activate antibody generation.
5. One or more antibody species mediate extracellular parasite removal.

We construct equations for the time dependence of the relevant cell and antibody
populations. Defining the infectivity ζ as the rate at which a circulating parasite pen-
etrates a host cell and the cytotoxicity η as the rate at which infected cells burst, the
equation describing the number r (t) of infected cells can be formulated as

ṙ(t) = ζn(t) − ηr(t), (26.1)

where n(t) is the number of circulating trypomastigotes. The evolution equation for
n(t) is

ṅ(t) = ηNrr(t) − n(t)
N∑

i=1
αi (t)ai (t) − ζn(t), (26.2)

where Nr is the mean number of trypomastigotes emerging from a ruptured cell,
ai (t) is the number of molecules of the i th antibody species, and αi (t) is the re-
moval efficiency, which is assumed to be a nondecreasing function of time: αi (t) =
αA,i + αB,i (1 − exp[−t/Ti ]), where Ti is a “learning time.”

Table 26.1 lists the main variables used in this work.
To construct the evolution equation for ai (t), we introduce N fixed values ai,0 that

represent a continuous source exactly compensating for the spontaneously inactivated
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Table 26.1. Main variables used in this work.

Variable Meaning

ai number of molecules of the i th antibody species
n number of circulating trypomastigotes
r number of infected cells
ai,0 initial number of molecules of antibody species i
n0 number of inoculated parasites
ζ infectivity, rate at which a circulating parasite penetrates a host cell
η cytotoxicity, rate at which infected cells burst
Nr mean number of trypomastigotes emerging from a ruptured cell
αi parasite removal efficiency of antibody species i
γi induced antibody production rate of species i
τi intrinsic lifetime of antibodies belonging to species i
� mean amastigote duplication time
κr ζ(Nr − 1) effective reproduction rate
Ti antibody learning time of species i

antibody molecules in the absence of parasites. If γi and τi are, respectively, the in-
duced antibody production rate and the intrinsic lifetime of antibodies belonging to
species i , antibody numbers evolve according to

ȧi (t) = (1/τi )
[
ai,0 − ai (t)

] + γi n(t) − αi (t)ai (t)n(t). (26.3)

The parameters η and Nr can be related by considering a simple Malthusian model
for the amastigote replication dynamics. If at time t0 a parasite penetrates a healthy
cell, the number ñ(t) of amastigotes at a time t ∈ [t0, Tb], where Tb is the cell-burst
time, is given by ñ(t) = exp[β(t − t0)], where β is the amastigote duplication rate.
Therefore, Nr = exp[β(Tb − t0)]. Since the mean amastigote duplication time is � =
β−1 ln 2, we get

� = (1/η) (ln 2/ ln Nr ) . (26.4)

Typically, � ∼ 8–21 hours [7]. Once the size n0 of the initial inoculation and the
form of the removal functions αi (t) are known, the set of equations (26.1) to (26.3)
can be solved to obtain the time dependence of the various populations.

26.3 Results and Discussion

26.3.1 Steady State: Two Antibody Species

The steady-state populations can be obtained by setting the time derivatives equal to
zero and letting lim(t→∞) αi (t) = αi . From Eq. (26.3), the steady-state antibody num-
bers are given by
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ais = ai0 + γiτi ns

1 + αiτi ns
. (26.5)

Substituting Eqs. (26.5) and (26.1) into (26.2), it is easy to see that the steady-state
parasite number, ns , must satisfy an N th-degree algebraic equation,

N∑
i=1

γi − κr =
N∑

i=1

γi − αi ai0

1 + αiτi ns
, (26.6)

where κr = ζ(Nr − 1). Of course, the trivial solution (ns = rs = 0, ais = ai0 for all
i) is also possible. It would correspond to a healthy host.

The conditions for the existence and stability of the solutions to (26.5) and (26.6)
can be worked out. In a previous work [6], we discussed the steady-state solutions of
the one-antibody problem, finding the corresponding phase diagram. Here we extend
our analysis to the case of two antibody species. If N = 2, (26.6) becomes a quadratic,
whose solutions can be expressed as

ns± = −B ± √
B2 − 4AC

2A
, (26.7)

where

A = τ1τ2α1α2 (γ1 + γ2 − κr ) ,

B = (γ1 + γ2 − κr ) (τ1α1 + τ2α2) − τ1α1 (γ2 − α2a20) − τ2α2 (γ1 − α1a10) ,

C = α1a10 + α2a20 − κr . (26.8)

We can now construct a three-dimensional phase diagram in the κr −γ1 −γ2 space.
To build it, notice that the condition C = 0 defines a plane κr = constant that divides
the phase space into two domains. We consider them separately.

(i) C < 0. There are two cases. If A < 0, i.e., if γ1 < κr −γ2, no steady-state solu-
tion is possible: weak antibody formation combines with strong parasite reproduction
to ensure indefinite growth of the parasite population, leading to host death (case III in
Fig. 26.1). If A > 0, on the other hand, the Routh–Hurwitz criterion [8] can be used
to show that the solution ns+ is stable: chronic disease develops (case I). By letting
A → 0+, i.e., as we approach the host death case, we observe that ns+ diverges, as it
should. The plane κr − γ1 − γ2 = 0 separates the death and chronic domains.

(ii) C > 0. If A < 0 (case IIIb), the outcome depends on the size of the initial
inoculation: although ns+ is always possible, a small invasive parasite batch n0 will be
eliminated by the initial antibody population, while a large n0 will lead to the chronic
stage. If A > 0 the situation is somewhat more complex: If B > 0 or if B < 0
and B2 − 4AC < 0, only the trivial solution is possible and the host always heals
(case II). If B < 0 and B2 − 4AC > 0 (case Ib), both solutions are possible, but the
Routh–Hurwitz criterion indicates that ns− is unstable. If n0 < ns−, the host heals,
while if n0 > ns−, n(t) tends to the upper steady-state solution ns+. This situation is
reminiscent of harvesting models [8, 9]; here the role of “harvester” is played by the
second antibody species. We remark that case Ib is not present when a single antibody
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Fig. 26.1. (a) κr − γ phase diagram corresponding to the one-antibody species problem. Here
α = 1, τ = 1, and a0 = 3. (b) Cross sections of the phase diagram describing the outcome of
the acute phase of the parasite infection when two antibody species are active, for the γ2 values
specified in the figure. We chose α1 = 1, α2 = 0.4, τ1 = 1, τ2 = 40, a10 = 3, and a20 = 1. In
cases Ib and IIIb the outcome depends on the initial conditions.

is active [6]. The domains corresponding to cases II and Ib are separated by the surface
B2 = 4AC .

Fig. 26.1(a) is the phase diagram corresponding to the single-antibody problem
(see Ref. [6]), while Fig. 26.1(b) exhibits cross sections of the (three-dimensional)
phase diagram taken for the indicated values of γ2. Three differences with the single-
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antibody solution stand out: the presence of region Ib, the rightward shift of the vertical
phase boundary between cases I and II, and the downward shift of the slanted line
corresponding to the separation between cases I and II on the upper side and case
III on the lower side. By looking at Fig. 26.1(b), we notice that the size of region Ib
decreases with increasing γ2: healing is favored if the induced antibody production
rate is high. We further note that the γ2 → 0 limit does not correspond to the single-
antibody problem. Even if less plentiful, the second antibody species is still present.

26.3.2 Competition Dynamics

Time-dependent solutions to Eqs. (26.1) through (26.3) are easy to obtain numerically
by using a standard Euler method. The parasite and antibody populations are shown
in Fig. 26.2 as functions of time for parameter values corresponding to case Ib. Un-
der these conditions, the coexistence of two steady states makes the model outcome
dependent on the inoculation size. For the smaller n0, the parasites are completely
eliminated and the numbers of antibody molecules return to their initial values. For
the larger inoculation size the parasites survive and the system reaches a steady state
corresponding to chronic disease. In both cases we observe a fast initial reduction in
the trypomastigote numbers. The initial absence of infected cells means that there are
no parasite sources; therefore, those that are destroyed or that have infected new cells
cannot be replaced. For intermediate times, the infected cells have already started to
replenish the parasite numbers, which continue to decrease, albeit at slower rates, but
the a2 population also decreases due to the relative weakness (γ2 = 0.1) of their pro-

Fig. 26.2. Case Ib: evolution of the parasite and antibody populations for two inoculation sizes:
n0 = 0.1 and n0 = 0.3. Parameter values are: κr = ζ = 3.3, η = 5, Nr = 2, r(0) = 0,
γ1 = 3.3, α1 = 1, τ1 = 1, a01 = 3, γ2 = 0.1, α2 = 0.4, τ2 = 40, and a02 = 1.
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duction rate. At the end of this intermediate stage the parasite number may reach the
threshold: if n(t) decreases below the unstable steady-state value (ns− = 0.036 for
the parameter values chosen here), the production of new parasites cannot compensate
for those destroyed by the immune system attack and the system converges towards
the healing attractor. But, if this value is not reached, the parasite survives the immune
reaction and the system enters the chronic stage.

26.3.3 Comparison with Experiments

We compared the predictions of the extended model (separate intracellular and extra-
cellular populations) with those of the original version by fitting experimental data for
BALB/c mice infected with T. cruzi (Tehuantepec strain) [10]. Three antibody species,
IgM, IgG1, and IgG2a, were included in the model, although the influence of IgM
turned out to be very weak. The observation that parasite control is almost completely
effected by the two IgG species underlines the importance of achieving a clear under-
standing of two-antibody species processes. The parameters were chosen to attain the
closest visual agreement between experimental data and model predictions. By keep-
ing the antibody parameters as in the original model (see Table 26.2), we obtained:
Nr = 13.8, ζ = 2.1 [1/w], η = 2.1 [1/w], and n0 = 100 [1/ml].

The results are presented in Fig. 26.3. It is evident that the modified version yields
a better fit, especially towards the end of the acute stage. This has been confirmed
by the application of the second-order (corrected) Akaike information criterion (AIC)
[11], which shows a substantial reduction (from 32.5 to −7.5) in the value of the AIC
estimator, defined as

AI C = N ln
(

SS
N

)
+ 2K + 2K (K + 1)

N − K − 1
, (26.9)

where N is the number of data points, K is the number of parameters, and SS is the
sum of squares of the differences between the model predictions and the experimental
points.

We have also successfully fitted the data for various parasite strains (Tulahuen and
CA-1) and mice (CBA/J and BALB/c), comparing the different model predictions of
damage produced in the host through cell destruction with the in vivo observations.
Remarkably, we found that the number of cells destroyed by the CA-1 strain, which

Table 26.2. Parameters for T. cruzi specific antibodies obtained fitting the experimental data of
El Bouhdidi et al. [10]. Here w stands for weeks.

Isotype a0 [ml−1] αA [ml/w] αB [ml/w] γ [w−1] T [w] τ [w]

IgM 6 ×1015 4.6 ×10−20 3.3 ×10−20 2 ×1010 2.4 8.3
IgG1 2.5 ×1017 0 1.2 ×10−18 8 ×1011 6.1 7.1
IgG2a 1.2 ×1018 0 4.1 ×10−18 25 ×1011 7.1 7.1
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Fig. 26.3. Fits to the experimental data of Ref. [10] using the original [5] (smooth lines) and
current (dashed lines) versions of the parasite-antibody competition model.

only causes a mild and late parasitemia, is much higher than the number corresponding
to the “strong” Tulahuen strain, in agreement with the experimental observations [6].

The values of the amastigote doubling times obtained by fitting our model to differ-
ent pairs of parasite/mouse strains are: Tehuantepec/BALBc: 21.2 hrs, Tulahuen/CBAJ:
18.7 hrs, Tulahuen/BALBc: 22.1 hrs, and CA-1: 82.1 hrs. These values of � are similar
to those obtained experimentally [7].

26.4 Conclusions

We have reviewed a model for the T. cruzi-immune system competition in Chagas
disease, showing that the separate modeling of the intracellular and extracellular para-
site stages yields a very accurate agreement with observed parasite and immunoglob-
ulin populations. This agreement validates the model assumptions. A new element
strengthening our model formulation is the consistency found between the predicted
and observed amastigote duplication times.

Since two antibody species are required to obtain accurate fits, we have analyzed
the steady-state and time-dependent solutions of the dynamical system formed by in-
tracellular and extracellular parasites and two antibody species. The steady states are
conveniently presented using phase diagrams that reveal the various possible outcomes
of the Chagas infection. The introduction of a second antibody species leads to the
emergence of a new region in the phase diagram, where the infection outcome (healing
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or chronicity) depends on the size of the parasite inoculation. If the induced antibody
production rate of the second antibody is increased, this region shrinks, favoring host
healing.
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Summary. We consider the numerical simulation of a time-dependent taxis-diffusion-reaction
model of fracture healing in mice using the method of lines. The partial differential equation
problem has an axi-symmetric structure and this is employed to properly reduce the model to an
equivalent problem in two-dimensional (2D) space leading subsequently to an efficient spatial
discretisation. Special care is given to respect conservation of mass and the non-negativity of
the solution. The numerical simulation results are contrasted to those obtained from a simplistic
reduction of the axi-symmetric model to 2D space (at the same computational cost). We observe
quantitative and qualitative differences.

Key words: Taxis-diffusion-reaction model, axi-symmetry, numerical method, finite volume
discretisation, fracture healing.

27.1 Introduction

In the theoretical study of bone fracture healing, the assumption of axi-symmetry of
the bones is ubiquitous and taxis-diffusion-reaction (TDR) systems are often used.
Numerical methods for the simulation of TDR systems in one, two and more space
dimensions are investigated in [1] and results of their successful application to a di-
verse selection of TDR problems in two dimensions in the field of mathematical biol-
ogy are presented in [2]. TDR systems are time-dependent partial differential equation
(PDE) systems whose solution components describe the spatio-temporal evolution of
chemical concentrations, and cell and other densities. For the numerical solution of
these systems, the method of lines (MOL) is followed in [1]. The spatial discretisa-
tion of the PDE system follows a finite volume approach and leads to the MOL-ODE,
a large system of ordinary differential equations (ODEs), which is then integrated in
time to yield the final numerical solution of the TDR system. The spatial discretisa-
tion is designed such that two qualitative properties of the TDR system are mimicked
by the exact solution of the MOL-ODE: first, the conservation of mass property, and
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second, the property that concentrations/densities are non-negative quantities. Further-
more, the spatial discretisation is of second-order accuracy, in general. This higher than
first-order property allows for suitably coarse grids while ensuring a sufficiently high
accuracy (see [3] for an instructive example). A coarse grid translates into a MOL-
ODE of more moderate dimension and hence a moderate computation time for the
time integration.

In Sec. 27.4, we extend the finite volume spatial discretisation from [1, 2] to axi-
symmetric (or cylindrically symmetric) TDR problems in three space dimensions as
defined in Sec. 27.3. This is achieved by reducing the axi-symmetric problem to an
equivalent TDR system in 2D space and then applying the techniques described in
[1, 2] to obtain the MOL-ODE representing the axi-symmetric problem. That way we
ensure the conservation of mass property and non-negativity of the exact solution of
the MOL-ODE. Furthermore, that MOL-ODE has a dimension which scales only like
h−2 with decreasing typical grid width h (in contrast to h−3 for general 3D problems)
and the evaluation of its right-hand side has about the same computational cost as for
the corresponding 2D problem. This renders our algorithm computationally efficient
while capturing the 3D nature of the problem.

To further motivate our work, we give, in Sec. 27.2, an example with circular
symmetry which demonstrates, by generalization, that the proper reduction of axi-
symmetric TDR problems to equivalent TDR problems in two dimensions is important.
In Sec. 27.5, we apply the discretisation developed in Sec. 27.4 to an axi-symmetric
TDR model of bone fracture healing. Our conclusions are presented in Sec. 27.6.

27.2 An Instructive Example

In this section we present a simple, yet significant, example which demonstrates why
a proper treatment of axi-symmetric TDR systems is necessary. For simplicity, we
consider a problem with circular symmetry in 2D space instead of axi-symmetry in
3D space as considered in Sec. 27.3. However, the conclusions hold for both problem
types.

Let Ω ⊂ R
2 be a ring-shaped domain with inner radius r0 = 0.01 ≥ 0 and outer

radius R0 = 1.01 > r0. For (x, y) ∈ Ω and times t > 0 we consider the scalar
diffusion-reaction equation for u(t, x, y) given by

∂t u = ∆u + g(u). (27.1)

We consider two different nonlinear reaction functions,

g(u) = g1(u) := αu(1 − u) and g(u) = g2(u) := −αu(1 − u)(β − u).

Function g1, with parameter α ≥ 0, is a logistic growth term and as such is present as
part of many PDE models of biological processes. Function g2, with parameters α ≥ 0
and −1 ≤ β < 1, is a cubic nonlinearity; for 0 < β < 1 the resulting diffusion-
reaction equation is used as a model of heterozygote inferiority in genetics [4].
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Fig. 27.1. Plots of ũ(t, r0) and v(t, r0) (top), and their absolute (middle) and relative (bottom, in
%) differences as functions of time t . The reaction function is g = g1 (left) and g = g2 (right).

Let r ≡ r(x, y) :=
√

x2 + y2 for (x, y) ∈ Ω . The above PDE is supplemented
with the initial condition u(0, x, y) = uinit(r(x, y)) on Ω , where uinit(r) := (r0 −
r)2 exp(−50 · (R0 − r)2) for r ∈ [r0, R0], and with consistent boundary conditions:
zero-flux for r(x, y) = r0 and the Dirichlet boundary condition u = 1 for r(x, y) =
R0. So we consider the case of a concentration u which initially has a peak equal to
one on the outer perimeter and rapidly decays to zero towards the inner perimeter of
Ω; in particular, the initial and boundary data depend on r = r(x, y) only. As time
proceeds, the concentration rises in the inside of the spatial domain.

We consider solutions u of (27.1) with circular symmetry; that is, there exists a
function ũ(t, r) for t ≥ 0 and r ∈ [r0, R0], such that u(t, x, y) = ũ(t, r(x, y)). A
change of coordinates (x, y) → (r(x, y), θ(x, y)), θ ∈ [0, 2π), and using the circular
symmetry of u transforms PDE (27.1) and its side conditions to an equivalent PDE
problem for ũ, namely

∂t ũ = ∂rr ũ + 1
r
∂r ũ + g(ũ), ũ(0, r) = uinit(r), ∂r ũ(t, r0) = 0, ũ(t, R0) = 1.

The above reduction of (spatial) dimension takes the geometry of the PDE problem for
u(t, x, y) properly into account. A more simplistic approach, see Sec. 27.5, to “reduce”
the dimension of the PDE problem for u(t, x, y) is to consider the whole problem in
1D space right away, i.e., to consider for a function v(t, r) with t ≥ 0 and r ∈ [r0, R0]
the problem

∂tv = ∂rrv + g(v), v(0, r) = uinit(r), ∂rv(t, r0) = 0, v(t, R0) = 1.

The simplistic approach does not take the geometry of the PDE problem for u appro-
priately into account and significant differences can arise between the reduced solu-
tions ũ and v, in particular for r ≈ r0 � 1. This is illustrated in Fig. 27.1, where
we have plotted the solutions ũ(t, r) and v(t, r) at r = r0 and also their absolute,
v(t, r0) − ũ(t, r0), and relative, (v(t, r0) − ũ(t, r0))/ max{|v(t, r0)|, |ũ(t, r0)|}, differ-
ences. We observe substantial relative differences of more than 50%. We also see, in
accordance with theoretical expectation, a faster increase of the properly reduced so-
lution ũ(t, r0) on the inner perimeter compared to v(t, r0). The aim of this work is



302 A. Gerisch and L. Geris

to show how the solution ũ can accurately be computed numerically as efficiently as
when using the potentially inaccurate model leading to v.

27.3 Axi-Symmetric TDR Systems

Let Ω ⊂ R
3 be a bounded domain with elements denoted by x and t ∈ J := (0, T ] ⊂

R the time and a finite time interval, respectively. We consider for the unknown func-
tion u : J ×Ω → R

n , representing, e.g., concentrations of chemicals, or cell or matrix
densities, the TDR system

∂t ui = −∇ ·
(

n∑
j=1

fi j (u)∇u j

)
+ gi (t, x, u) for all (t, x) ∈ J × Ω,

i = 1, 2, . . . , n,
(27.2)

with transport functions fi j : R
n → R and reaction terms gi : J × Ω × R

n →
R. We assume that fi i (u) = −pii (u) where either pii (u) ≡ 0 or pii (u) > 0 for
all possible values u. This implies that the i th term in the sum either vanishes (no
diffusion for ui ) or represents the quasi-linear diffusive flux −pii (u)∇ui for ui . For
the functions fi j with i �= j we assume the functional form fi j (u) = pi j (u)ui without
any sign restriction on pi j (u) such that the j th term in the sum represents the taxis
flux ui pi j (u)∇u j of ui with respect to u j . The PDE (27.2) is to be supplemented with
initial conditions u(0, x) = uinit(x) for all x ∈ Ω and suitable boundary conditions.
We assume that all data is such that the existence and uniqueness of a solution u is
ensured. Furthermore, we assume that this solution is non-negative on J × Ω . This is
natural since in our applications u represents a vector of concentration-like functions.

The diffusion and taxis terms in (27.2) are in divergence form and hence the TDR
system satisfies a conservation of mass principle: for all sub-domains V ⊂ Ω and
all i = 1, . . . , n, the temporal change of the mass of ui in V equals the mass flow
of ui due to diffusion/taxis through the boundary ∂V of V plus the mass of ui cre-
ated/destroyed within V due to sources, sinks or reactions. This principle is embodied
by the integral form of the conservation law (27.2),

d
d t

∫
V

ui dx = −
∫

∂V

n∑
j=1

fi j (u)∇u j · n(x)dx +
∫

V
gi (t, x, u)dx. (27.3)

If (27.3) holds for all t ∈ J , V ⊂ Ω and i = 1, . . . , n, then u is a solution of
the integral form of the TDR system. The integral form arises first when modelling
mass-conservative systems, and under suitable assumptions on Ω as well as sufficient
smoothness of u and the parameter functions of the model, it can be transformed to
the differential form (27.2). The form (27.3) of a TDR system is therefore more fun-
damental than (27.2) and is the basis for the finite volume spatial discretisation.

We now specialise the above definition of TDR systems. A TDR system having the
following two properties is called an axi-symmetric TDR system.
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1. Ω is axi-symmetric along the x-axis, that is,

Ω = {x = ϕ(x̃, θ) := (x, r sin θ, r cos θ)T : x̃ ≡ (x, r)T ∈ Ω̃, θ ∈ [0, 2π)},
for a subset Ω̃ ⊂ R × [0, +∞). We refer to Ω̃ as the cross section of Ω .

2. The reaction function gi as well as the initial and boundary conditions are axi-
symmetric. This means that, for example,

gi (t, x, u) ≡ gi (t, ϕ(x̃, θ), u) = gi (t, ϕ(x̃, 0), u) for all x ∈ Ω,

i.e., gi is independent of the angle θ . To emphasise this axi-symmetry, we intro-
duce the notation gi (t, x, u) ≡ g̃i (t, x̃, u) and uinit(x) ≡ ũinit(x̃).

Consider an axi-symmetric TDR system with axi-symmetric solution, i.e., u(t, x) ≡
ũ(t, x̃). Let V be an arbitrary axi-symmetric subdomain of Ω with cross section
A ⊂ Ω̃ (i.e., V is a cylindrical shell). By employing the axi-symmetric nature of the
problem, we reduce the volume and surface integrals in (27.3) to area and line integrals
and arrive at the (equivalent) integral form of the conservation law of an axi-symmetric
TDR system given by

d
d t

∫
A

rũi dx̃ = −
∫

∂ A

n∑
j=1

r fi j (ũ)∇̃ũ j · n(x̃)dx̃ +
∫

A
r g̃i (t, x̃, ũ)dx̃. (27.4)

Here ∇̃ denotes the gradient with respect to x̃ ≡ (x, r)T. With the help of the integral
theorem of Gauss we obtain, under additional smoothness assumptions and for the area
|A| of A tending to zero,

∂t (r ũi ) = −∇̃ ·
(

n∑
j=1

r fi j (ũ)∇̃ũ j

)
+ r g̃i (t, x̃, ũ), (27.5)

i.e., the differential form of the conservation law corresponding to (27.4).
We emphasise that (27.4) and (27.5) are conservation laws in two spatial dimen-

sions which fully capture the properties of axi-symmetric TDR systems (27.3) and
(27.2) in three spatial dimensions. Our derivation of a suitable and efficient spatial dis-
cretisation of axi-symmetric TDR systems will be based on the properly reduced 2D
problem (27.4).

27.4 A Finite Volume Spatial Discretisation

In this section we derive, on a partition of Ω̃ , a finite volume spatial discretisation of
the conservation law (27.4). This discretisation defines the MOL-ODE, which, in a
second step of the MOL, is integrated in time to yield the fully discrete approximation
to the solution of the TDR system. The latter is not discussed here but we refer to [1,5]
and the references cited there for appropriate numerical schemes.
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We continue to consider cross sections A ⊂ Ω̃ and associated cylindrical shells
V ⊂ �. Both V and A are referred to as finite volumes. The volume |V | and area |A|
are related by |V | = 2π r̄ |A|, where r̄ := |A|−1 ∫

A rdx̃ > 0 is the centre of mass of
A with respect to r . For the axi-symmetric solution u(t, x) we define the average in
V at time t , U(t; V ), and for the corresponding function ũ(t, x̃) the radius-weighted
average Ũ(t; A) at time t in A, i.e.,

U(t; V ) := 1
|V |

∫
V

u(t, x)dx and Ũ(t; A) := 1
|A|

∫
A

r ũ(t, x̃)dx̃,

respectively. Both quantities are related by r̄ U(t; V ) = Ũ(t; A). From Eq. (27.4) we
obtain the exact evolution equation for the time-dependent average Ũi (t; A)

d
d t

Ũi (t; A) = − 1
|A|

∫
∂ A

n∑
j=1

r fi j (ũ)∇̃ũ j · n(x̃)dx̃ + 1
|A|

∫
A

r g̃i (t, x̃, ũ)dx̃. (27.6)

Having a partition {Ak′l ′ } of Ω̃ , for instance as defined below, the purpose of the
spatial discretisation is to approximate the right-hand side of (27.6) by using the set
{Ũ(t; Ak′l ′)} and so to arrive at the MOL-ODE system

d
d t

Ũi (t; Akl) = H̃kl(t, {Ũ(t; Ak′l ′)}). (27.7)

From now on we consider a partition of Ω̃ with rectangular finite volumes Akl :=
(x̄kl −�x, x̄kl +�x)×(r̄kl −�r, r̄kl +�r) ⊂ Ω̃ with constant grid widths 2�x, 2�r >

0. The left, right, lower and upper neighbours of Akl are denoted by Ak−1,l Ak+1,l ,
Ak,l−1 and Ak,l+1, respectively. For such a partition, the line integral (excluding the
factor −1/|A|) in (27.6) decomposes into four parts corresponding to the edges of Akl .
We define the average total flux through the right and the upper edges of Akl (out of
Akl ) by

F [x,i]
kl (t, ũ(t, ·)) :=

n∑
j=1

F [x,i, j]
kl (t, ũ(t, ·)), F [r,i]

kl (t, ũ(t, ·)) :=
n∑

j=1
F [r,i, j]

kl (t, ũ(t, ·)),

respectively, where the individual flux contributions are

F [x,i, j]
kl (t, ũ(t, ·)) := 1

2�r

∫ r̄kl+�r

r̄kl−�r

[
r fi j (ũ(t, x̃))∂x ũ j (t, x̃)

]
x=x̄kl+�x dr,

and for F [r,i, j]
kl (t, ũ(t, ·)) accordingly. Then, by conservation of mass, the average total

fluxes through the left and the lower edges of Akl (out of Akl ) are −F [x,i]
k−1,l(t, ũ(t, ·))

and −F [r,i]
k,l−1(t, ũ(t, ·)), respectively. Hence, we arrive at

− 1
|Akl |

∫
∂ Akl

n∑
j=1

r fi j (ũ)∇̃ũ j · n(x̃)dx̃ = − F [x,i]
kl − F [x,i]

k−1,l
2�x

− F [r,i]
kl − F [r,i]

k,l−1
2�r

.
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This kind of discretisation of the transport term is called conservative as it clearly
respects the conservation of mass principle.

In order to define a spatial discretisation of the right-hand side of (27.6) in terms
of the average values {Ũi (t; Ak′l ′)}, it remains to define approximations F [x,i, j]

kl and
F [r,i, j]

kl for F [x,i, j]
kl and F [r,i, j]

kl , respectively, in terms of these average values alone.
Accordingly, the integral over Akl involving g̃i must be approximated by an ex-
pression G[i]

kl also using only these averages. The definition of these approximations
is the subject of the remainder of this section and is guided by two aims. First,
H̃kl(t, {Ũ(t; Ak′l ′)}) should approximate the right-hand side of (27.6) to second order,
in general, and second, the exact solution of the MOL-ODE (27.7) should be non-
negative whenever its initial data is such. See [5–7] for conditions on the MOL-ODE
ensuring this property.

Numerically we can only operate with the values Ũ(t; Akl) in all finite volumes Akl
of our computational grid. Let Ũi;kl(t) denote the exact value or a numerical approx-
imation of Ũi (t; Akl), and Ũkl(t) := (Ũ1;kl(t), . . . , Ũn;kl(t)). From this data we con-
struct a time- and space-dependent piecewise constant reconstruction of ũi on J̄ × Ω̃

defined by

(P0ũi )(t, x̃) := r̄−1
kl Ũi;kl(t) for all x̃ ∈ Akl .

The radius-weighted average over Akl of this reconstruction equals Ũi;kl(t). Higher-
order reconstructions are possible but not considered here.

In the following, we use the function (P0ũi ) as a replacement for ũi in order to
define approximations of the volume integral in (27.6) and of the diffusive/taxis fluxes
F [x,i, j]

kl (t, ũ(t, ·)) and F [r,i, j]
kl (t, ũ(t, ·)). We approximate the integrands, e.g., by using

finite differences to replace derivatives, such that, after substituting (P0ũi ) for ũi , the
integrals can be evaluated exactly.

Approximation of the volume integral in (27.6). We approximate for x̃ ∈ Akl

r g̃i (t, x̃, ũ(t, x̃)) ≈ r g̃i (t, (x̄kl , r̄kl), (P0ũ)(t, x̃)) = r g̃i (t, (x̄kl , r̄kl), r̄−1
kl Ũkl(t)),

and obtain

1
|Akl |

∫
Akl

r g̃i (t, x̃, ũ)dx̃ ≈ G[i]
kl (t) := r̄kl g̃i (t, (x̄kl , r̄kl), r̄−1

kl Ũkl(t)).

Approximation of the diffusive fluxes FFF[x,i,i][x,i,i][x,i,i]
klklkl and FFF[r,i,i][r,i,i][r,i,i]

klklkl . We first consider the flux
in the x-direction, F [x,i,i]

kl (t, ũ(t, ·)), and approximate for r ∈ [r̄kl − �r, r̄kl + �r ] the
terms in the integrand by

[
fi i (ũ(t, x, r))

]
x=x̄kl+�x ≈ fi i

(
ũ(t, x̄kl + 2�x, r̄kl) + ũ(t, x̄kl , r̄kl)

2

)
,

[
∂x ũi (t, x, r)

]
x=x̄kl+�x ≈ ũi (t, x̄kl + 2�x, r̄kl) − ũi (t, x̄kl , r̄kl)

2�x
.
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Now, using the piecewise constant reconstruction of ũ, this leads to

F [x,i,i]
kl (t, ũ(t, ·)) ≈ D[x,i]

kl (t) := fi i

(
Ũk+1,l(t) + Ũkl(t)

2r̄kl

)
· Ũi;k+1,l(t) − Ũi;kl(t)

2�x
.

Along the same lines we deal with the diffusive flux in the radial direction and arrive
at the approximation F [r,i,i]

kl (t, ũ(t, ·)) ≈ D[r,i]
kl (t), where

D[r,i]
kl (t) := r̄kl + �r

2�r
fii

(
Ũk,l+1(t)

2(r̄kl + 2�r)
+ Ũk,l(t)

2r̄kl

)
·
(

Ũi;k,l+1(t)
r̄kl + 2�r

− Ũi;kl(t)
r̄kl

)
.

Approximation of the taxis fluxes F [x,i, j]
klF [x,i, j]
klF [x,i, j]
kl and F [r,i, j]

klF [r,i, j]
klF [r,i, j]
kl , i �= ji �= ji �= j . Here we will only dis-

cuss the approximation of the radial fluxes F [r,i, j]
kl ; approximations for the axial fluxes

F [x,i, j]
kl follow accordingly. Remember that we have fi j (ũ) = pi j (ũ)ũi for i �= j . We

exploit this structure in the following and consider, for each i , all fluxes F [r,i, j]
kl with

j �= i simultaneously. That is, for a fixed value i , we consider the sum of fluxes

∑
j �=i

F [r,i, j]
kl (t, ũ(t, ·)) = 1

2�x

x̄kl+�x∫
x̄kl−�x

[
r ũi (t, x̃) ·

∑
j �=i

pi j (ũ) ∂r ũ j (t, x̃)

]
r=r̄kl+�r

dx .

We approximate, as in the diffusive case, the terms pi j (ũ(t, x, r)) and ∂r ũ j (t, x, r) at
r = r̄kl + �r for x ∈ [x̄kl − �x, x̄kl + �x] and then plug in the piecewise constant
reconstruction of ũ. This leads to the following definition of the local transport velocity
(in the radial direction) of component i due to taxis:

v
[r,i]
kl (t) := 1

2�r

∑
j �=i

pi j

(
Ũk, l+1(t)

2(r̄kl + 2�r)
+ Ũkl(t)

2r̄kl

)
·
(

Ũ j;k, l+1(t)
r̄kl + 2�r

− Ũ j;kl(t)
r̄kl

)
.

Depending on the sign of the velocity v
[r,i]
kl , we use either S[r,i,+]

kl (t) or S[r,i,−]
kl (t),

defined below, as an approximation of ũi (t, x, r̄kl +�r) for x ∈ [x̄kl −�x, x̄kl +�x].
This upwinding technique ensures that information for the approximation is mainly
taken from the upstream direction of the flow. Furthermore, in order to ensure the non-
negativity of the resulting MOL-ODE solution, we must employ limiting techniques in
the definition of these approximations (this is not necessary in the case of the diffusive
fluxes discussed above). For a thorough discussion of flux limiting we refer to [5, 8].
All approximated terms in the integrand are now independent of x and evaluation of
the integral leads to

∑
j �=i F [r,i, j]

kl (t, ũ(t, ·)) ≈ T [r,i]
kl (t), where

T [r,i]
kl (t) := (r̄kl + �r) ·

(
max{0, v

[r,i]
kl }S[r,i,+]

kl (t) + min{0, v
[r,i]
kl }S[r,i,−]

kl (t)
)

.

In order to define the approximations S[r,i,+]
kl (t) and S[r,i,−]

kl (t) we employ a smooth-
ness monitor function, denoted by θ

[r,i]
kl (t), of the solution ũi , given by
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θ
[r,i]
kl (t) :=

(
Ũi;k, l+1(t)
r̄kl + 2�r

− Ũi;kl(t)
r̄kl

)
/

(
Ũi;kl(t)

r̄kl
− Ũi;k, l−1(t)

r̄kl − 2�r

)

and a (Lipschitz continuous) limiter function � : R → R depending on θ
[r,i]
kl . An

example is the van Leer limiter �(θ) = (θ + |θ |)/(1 + |θ |). We then define

S[r,i,+]
kl (t) := Ũi;kl(t)

r̄kl
+ 1

2
�

(
θ

[r,i]
kl (t)

) (
Ũi;kl(t)

r̄kl
− Ũi;k, l−1(t)

r̄kl − 2�r

)
,

S[r,i,−]
kl (t) := Ũi;k, l+1(t)

r̄kl + 2�r
+ 1

2
�

(
(θ

[r,i]
k, l+1(t))

−1
) (

Ũi;k, l+1(t)
r̄kl + 2�r

− Ũi;k, l+2(t)
r̄kl + 4�r

)
.

This completes the definition of H̃kl(t, {Ũ(t; Ak′l ′)}) in (27.7) in finite volumes
Akl away from the boundary of Ω̃ . We do not discuss here the special approximations
required in volumes close to ∂Ω̃ (including the incorporation of boundary conditions)
but instead refer to [1]. The MOL-ODE (27.7) can be simplified somewhat by dividing
each equation by the appropriate value r̄kl . This results in a MOL-ODE for the averages
{U(t; Vk′l ′)} instead of the radius-weighted averages {Ũ(t; Ak′l ′)} and as such is more
user friendly.

27.5 Application to a Model of Fracture Healing in Mice

Our interest in numerical methods for axi-symmetric TDR problems caused by their
application to models of fracture healing of long bones. Considering the geometry of
the problem we and, e.g., the authors of [9] regard an axi-symmetric model of the bio-
logical processes as a good starting point. In this study, the mathematical model of [9]
was applied to our experimental set-up of a semi-stabilised tibial fracture in mice. Cer-
tain parameters of the mathematical model were adapted to obtain a good comparison
between the numerically predicted and the experimentally observed results; for details
we refer to [10].

Experimental model. A transverse fracture was made in the proximal tibia of 11-
week-old mice (Fig. 27.2). The fracture was semi-stabilised with a thin-walled needle
(0.4 mm) that spanned the bone longitudinally throughout the marrow cavity. Mice
were sacrificed at different time points after fracture induction (post fracture day (PFD)
3, 8, 13, 21) and prepared for histological examination.

Mathematical model. The mathematical model describes the actions and interactions
of mesenchymal stem cells, osteoblasts and chondrocytes, of which the differentiation
and anabolic activity (matrix synthesis) are regulated by chondrogenic and osteogenic
growth factors. “Ideal” mechanical and vascular conditions are assumed. Changes in
cell, growth factor and extracellular matrix (ECM) densities/concentrations are cap-
tured in a system of seven highly coupled nonlinear differential equations, forming a
taxis-diffusion-reaction (TDR) system:
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Fig. 27.2. Models of a semi-stabilised fracture in the tibia of 11-week-old mice. The arrows
in (a) indicate the fracture site, (b) illustrates the stabilisation of the fracture by a needle. (c)
is a generic model of the fracture site (black: needle, grey: cortex, hatched: callus), and (d) is
the simplified generic model used in the simulations (arrows: mesenchymal cell source, shaded:
growth factor source).

∂cm

∂t
= − ∇ ·

[
−Dcm(c)∇cm + cm

6∑
i=1

fi (c) ∇ci

]
+ f0 (cm, c) ,

∂c
∂t

=D�c + g (cm, c) .

(27.8)

This system is an example of the general TDR system (27.2) with u := (cm, c). Here,
cm (t, x) is the non-dimensional density of the mesenchymal stem cells and c (t, x) rep-
resents a vector of six non-dimensional concentrations or densities of chondrocytes, os-
teoblasts, ECM and growth factors, respectively. Dcm(c) and D (non-negative diagonal
matrix) represent the diffusion coefficients, fi (c) the taxis coefficients and f0 (cm, c)
and g (cm, c) are the reaction terms. The system (27.8) must be complemented by suit-
able initial and boundary data to ensure the existence, uniqueness and non-negativity
of a solution (cm, c). This data as well as the domain Ω are chosen such that we obtain
an axi-symmetric TDR system; see Fig. 27.2 for a sketch of the cross section Ω̃ and
the applied boundary conditions. The mathematical model considered in this work is
precisely the same as that studied in [10].

Results. The amounts of cartilage and bone in the callus at different stages of the
healing process in the animal experimental model were quantified from Safranin O and
Von Kossa stained sections, respectively (Fig. 27.3). Cartilage levels peak around PFD
8 while bone levels keep rising throughout the healing process, until the entire callus
is ossified at about PFD 21. These results correspond to the results obtained from the
axi-symmetric mathematical model using the numerical procedure described in Sec.
27.4. At PFD 4, no mesenchymal cells remain in the callus, while at the periosteal
surface intramembranous ossification starts. Chondrogenic differentiation proceeding
from the peripheral callus is followed by cartilage formation visible from PFD 5 and
building up to a maximum amount of cartilage in the callus at PFD 10, after which
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Fig. 27.3. Results showing the predicted density of bone [× 0.1 g ml−1] in the callus at different
time points after fracture induction, using the properly reduced axi-symmetric TDR system (a).
The relative difference [in %] from the solution using the simplistic “reduction” is represented
in (b). The maximal absolute difference is of the order of magnitude of 10−3 g ml−1. Plots (c)
through (f) show the cartilage and bone content of the callus at PFD 8 (c,e) and 13 (d,f). The
outer edges of the callus area and the old cortical bone are delineated, the cartilaginous areas are
encircled and new bone is distinguishable as the spongy black tissue.

endochondral ossification starts. Complete ossification of the callus is reached three
weeks after fracture induction.

Comparing the numerical solutions as obtained (i) from the properly reduced axi-
symmetric TDR system (as described in this paper) and (ii) from a simplistic “reduc-
tion” of the system to 2D space as, e.g., used in [9, 10], we observe small transient
differences in the time evolution of the solutions. An example of these differences is
given in Fig. 27.3 (a,b), showing that the front of growing bone has different speeds in
the two cases. The relative difference between both solutions is up to about 50%. No
difference is visible between the result at final time, as the callus eventually completely
ossifies.

27.6 Conclusion

In this work we have considered the MOL numerical solution of TDR systems with
an axi-symmetric structure. We presented a finite volume spatial discretisation (first
step of the MOL) of the problem exploiting that special structure. Its most important
properties are:

1. Proper reduction of axi-symmetric TDR problems to equivalent 2D problems on
the cross section of the axi-symmetric domain.

2. Second-order accuracy (in general) allowing for coarser grids than first-order dis-
cretisations would require and hence more favourable simulation times.

3. Ensuring of the conservation of mass property and the non-negativity of the exact
solution in the numerical scheme.
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This methodology is applied successfully in the simulation of an axi-symmetric TDR
model of fracture healing in mice; see [10] for details on the model. The numerical
simulation results obtained are in good agreement with available experimental data;
see also [10].

Instead of, as above, using a proper reduction of an axi-symmetric TDR problem
to an equivalent 2D problem, one could also model the processes simply as happening
on the 2D cross section of the axi-symmetric domain only. The costs of the numerical
simulation of both problems are about the same. However, the simplistic “reduction”
neglects the 3D nature of the original problem and potentially leads to wrong simula-
tion results. An instructive and biologically relevant example has been used to demon-
strate this danger. We and others have used the simplistic “reduction” of axi-symmetric
TDR systems in earlier work on fracture healing [9, 10]. For the axi-symmetric model
presented here and in [10], we have examined in this work the differences in the nu-
merical solutions as obtained from (i) the properly reduced TDR model (see above)
and (ii) the simplistic “reduction.” We have observed subtle differences (e.g., slightly
different wave speeds). However, these differences do not lead to conclusions different
from those drawn in [10].

Based on the work presented, we conclude that the simplistic “reduction” of axi-
symmetric TDR systems can lead to significant errors (despite its success for certain
TDR models). Therefore, to avoid these potential errors, we advocate the use of the
spatial discretisation described in this chapter, corresponding to a proper reduction of
axi-symmetric TDR systems.
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28.1 Introduction

The assessment of neonatal illness severity is a crucial issue in the neonatal intensive
care unit. Particular attention has to be paid to developing non-invasive methodologies
for data analysis that should give an illness severity score in real time. Ideally, that
score should reflect the current health status and suggest signs of incoming crises or
aggravation. In the last decades of the twentieth century, several methods from non-
linear dynamics have been proposed to answer such a clinical query. One of the most
significant is based on a measure of the information content in a time series. In an
experimental setting, information content may be approximated by means of compres-
sion algorithms [1]. This chapter aims at showing an application of this kind of ap-
proach in order to analyse time series resulting from clinical data. To be more precise,
starting from a set of time series related to a patient, the information content of each
series is calculated and a score is defined for the patient. To evaluate the agreement be-
tween that score and the actual patient severity, we analysed a preliminary set of blind
data collected by the Neonatal Intensive Care Unit, Siena University Hospital, Siena,
Italy (Claudio De Felice, M.D.). Our methods produced good results, pertinent with the
health status of the patients and in agreement with other totally different approaches
of nonlinear time series analysis (for instance, see [5]). Our results are summarised as
a severity score (see Fig. 28.3).
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28.2 Materials and Methods

28.2.1 Information Content of Time Series

One of the most significant tools from the modern theory of nonlinear dynamics used to
analyse time series of biological origin is related to the notion of information content of
a finite word as introduced by Shannon (see [6]). The intuitive notion of information
content of a finite word can be stated as “the length of the shortest message from
which it is possible to reconstruct the original word.” A formal mathematical definition
of this notion has been introduced by Kolmogorov using the notion of the universal
Turing machine (see again [6]). We will not enter into the details of the mathematical
definition, but simply use the intuitive notion of information content that we stated.

The method we use to study the information content of a finite word is related
to compression algorithms. These are a well-known tool present in every personal
computer, used to store files in the most economic way from the point of view of space
needed in the memory storage disks. The compression of a finite word reflects the
intuitive meaning of the information content of the word.

Let s = (s1s2 . . . sn) be an n-long word written in the finite alphabet A, that is,
si ∈ A for all i = 1, . . . , n. We will denote by An the set of all n-long words written
using A, and we denote A∗ := ∪nAn . A compression algorithm can be defined as an
injective function Z : A∗ → {0, 1}∗, that is, a binary coding of the finite words written
using A. By using the algorithm Z we define the information content of a word s as
the binary length of the compressed version of s, that is, Z(s). Hence,

I (s) := Information Content of s = |Z(s)|.

The notion of information content of a finite word can also be used for the problem
of giving a notion of randomness of a word. Namely, we can think of a word as being
more random the less efficient its compression achieved by a compression algorithm.
This argument leads to the notion of complexity C(s) of a finite word, defined as the
compression ratio, that is,

C(s) := I (s)
|s| = |Z(s)|

|s| .

The greater the complexity of a word, the higher the randomness of the word.
Let us consider now an application of these tools to time series. By a time series

we mean a finite set X = {X1, . . . , X N } of data, where each data is an array of real
numbers. The first step in the analysis is the reduction of a time series to a finite word.
This is accomplished by a partition of the set of possible values of the data. Let P be
such a partition into sets {I1, . . . , IL}; then to the time series X we associate the word
s ∈ AN , where A = {1, . . . , L}, with the rule that for all j = 1, . . . , N , we choose
s j = � ∈ A if X j ∈ I�. We can then define the complexity of the time series X as

C(X, L) := C(s),
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where the notation C(X, L) points out the role of the number of symbols of the alpha-
bet used to write the word s. In the following we will consider the effects of varying
L .

When analysing a time series it is convenient to consider asymptotic properties,
hence assuming an infinite time series. We can make this assumption to obtain some
mathematical results on the complexity of a time series. For an infinite time series
X = {Xi } we can define the asymptotic complexity

K (X, L) := lim
N→∞

C((X1, . . . , X N ), L)

with respect to an L-long alphabet.
If the time series X is the orbit of a dynamical system, then K (X, L) → h as

L → ∞, where h is the metric entropy of the system (see references in [1]). In fact,
there is an integer L0 such that K (X, L) = h if L ≥ L0.

A particular case is obtained when the series is generated by a white noise on the
unit interval [0, 1]. Let ξ be such a series. Then K (ξ, L) → ∞ as L → ∞, and the
asymptotic behaviour is K (ξ, L) ∼ log L (for two sequences (an) and (bn) of real
numbers, we say that an ∼ bn asymptotically if limn(an/bn) = 1) (cf. [2]).

In [2] the case of a time series (X + ξ) obtained as a random perturbation of a
dynamical system was also studied. The results show that for big L the behaviour of
K (X +ξ, L) is analogous to that of K (ξ, L), whereas for small enough values of L it is
possible to achieve K (X + ξ, L) = h where h is the metric entropy of the unperturbed
dynamical system. In particular, it is shown that it is important to compare the size of
the intervals of the partition used to obtain the symbolic word and the size of the noise.

The analysis we present in this chapter is performed with very short time series, and
often the range of different values in a single series is very small. These features imply
two drawbacks: (i) we are very far from obtaining an asymptotic behaviour, hence we
are looking at the transients; (ii) we cannot use alphabets with many symbols, hence
the limit in L can only be a rough approximation.

However, we can still analyse the series by comparing the results with those for
white noise. It is reasonable to treat short time series as obtained by noisy systems.
Moreover, we made partitions of the set of possible values of the data up to sets given
by single values, that is using the best “resolution.” Hence this analysis is compara-
ble with the case of time series obtained as a random perturbation of a dynamical
system with big values for L . For these reasons we decided to study the logarithmic
behaviour of the values K (X, L), and thus to make a linear interpolation of the set
{(L , K (X, L))} when plotted on a logarithmic linear scale. This gives a value q(X)

satisfying K (X, L) ≈ q(X) log L . For white noise we would have q(X) = 1, hence
our results give values q(X) ∈ (0, 1).

28.2.2 Experimental Data Sets

We applied our method to 23 triplets of time series related to 12 newborns admitted to
the Neonatal Intensive Care Unit (NICU) of Azienda Ospedaliera Universitaria Senese,
Policlinico “Le Scotte,” Siena, Italy (Claudio De Felice, M.D.). The mean gestational
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age was 32.5 ± 4.7 weeks (range: 23–38 weeks) while the mean birth weight was
1775 ± 766 g (range: 580–3380 g).

For each patient we considered a triplet concerning the following pulse oximetry-
derived signals:

• perfusion index (PI)
• pulse rate (PR)
• oxygen saturation (SpO2).

Pulse oximetry is a real-time, noninvasive technique to measure arterial oxygen sa-
turation and is routinely used in the monitoring of critically ill patients and during
surgical procedures. The principle of pulse oximetry is based on two light sources with
different wavelengths (660 and 940 nm) emitted through the cutaneous vascular bed,
usually of a finger or earlobe. As the deoxygenated hemoglobin (Hb) absorbs more
light at 660 nm (red light section of the visible electromagnetic spectrum) while its
oxygenated form (HbO2) absorbs more light at 940 nm (infrared), the ratio between the
red to infrared light absorbed gives the tissue oxygen saturation (SpO2). A third light
source at 800 nm provides an estimate of the overall hemoglobin concentration and can
be used to determine the variations in arterial blood volume (pulsatile component) and
calculate the pulse rate (PR). In addition, the ratio between the pulsatile component
(originating from the arterial component) to the nonpulsatile component (originating
from other tissues, including the connective tissue, venous blood, and bone) gives the
perfusion index (PI). As an abnormality in peripheral perfusion is associated with a
variation in the pulsatile component only, the value of this ratio reflects changes in
peripheral perfusion (see [7]).

These data sets were collected with Radical SET pulse oximeter, Masimo Co.,
Irvine, CA, USA, probe placed at either foot, according to the methodology illustrated
in [3] and [4]. They were registered every 4 seconds and the monitoring was car-
ried on over a time from 1 to 1.5 hours. The perfusion index is a percentage, while
pulse rate and saturation are integers. In order to reduce the time series into sym-
bolic strings, we have considered uniform partitions PL on the set of possible values
I = [min val, max val] made of L subintervals. For each time series, we have consid-
ered partitions where L ranges from 2 to 20 subintervals. We have used the compres-
sion algorithm called CASToRe developed by our group (see [1] for details). In Fig.
28.1 we give three different examples of triplets relative to different newborns.

When applying our analysis we were completely unaware of the health status of
each patient.

28.3 Results

In Fig. 28.2 the behaviour of the complexity K (X, L) with respect to the graining
size L is shown for the whole data set #01. The plot is in a log-linear scale and the
coefficient q(X) is the slope of the growth (severity coefficient), for perfusion index,
pulse rate, and saturation.
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Fig. 28.1. Data sets for three different newborns: #01 (top left), #02 (top right), #08 (bottom).
For each plot: PI series is at the bottom (rescaled, to be more readable), SpO2 is the middle
series, and PR is at the top.

28.3.1 Severity Score

For each patient, three coefficients q have been calculated. We denote by S(N ) =
(q(P I ), q(P R), q(SpO2)) the severity array of data set #N .

In order to classify the severity of each patient via their severity array, we have
defined the severity score as the �1-norm of the array:

 

 

Fig. 28.2. Complexities K (X, L) for data set #01. Perfusion index: top solid line; pulse rate:
middle crossed-dashed line; saturation: bottom star-dotted line. The graining size L ranges from
2 to 20. The plot is log-linear.
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Fig. 28.3. Severity score for the 23 data sets.

||S(N )|| = q(PI) + q(PR) + q(SpO2). (28.1)

Fig. 28.3 shows how the score varies for each data set: as a matter of fact, the results
show a high variability. The maximum is reached by data set #6, while the minimum
is for data set #19. Two extremal groups of data sets are immediately identified: A =
{#01, #06, #21, #22} have very high scores, while B = {#02, #10, #11, #12, . . . , #20}
have a very poor score. The remaining data sets, with intermediate scores, are grouped
in C = {#03, #04, #05, #07, #08, #09, #23}. It is a first hint for distinguishing the
group of healthier patients from less healthy patients. It is well known that life param-
eters should show a high irregularity to be more adaptive. Therefore, it is reasonable to
associate a higher severity to data sets in B whose severity score is lower and a lower
severity to A. A finer investigation is necessary to characterise the intermediate scores
for the group of data sets C.

A complementary useful tool is the normalised severity array:

S∗(N ) =
(

q(PI) − min(PI)
max(PI) − min(PI)

,
q(PR) − min(PR)

max(PR) − min(PR)
,

q(SpO2) − min(SpO2)

max(SpO2) − min(SpO2)

)
.

Normalised severity arrays belong to [0, 1] × [0, 1] × [0, 1]. For each N = 1, . . . , 23
we have represented S∗(N ) on a two-dimensional symplex, by drawing a ball with
radius proportional to the severity score (Fig. 28.4).

28.4 Final Discussion

The severity score method (SSM) introduced here allows an efficient and user-friendly
approach to early monitoring of a patient’s health severity. Concerning the three groups
identified in Section 28.3.1, their clinical status was the following, in agreement with
the experimental classification:
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Fig. 28.4. Severity array: symplex representation.

A = {#01, #06, #21, #22}: very low clinical severity.
B = {#02, #10, #11, #12, . . . , #20}: high clinical severity.
C = {#03, #04, #05, #07, #08, #09, #23}: all but #09 were cases of histologic

chorioamnionitis.
A few more details may be inferred from the severity array (Fig. 28.4). Patients

#02 and #08 are isolated from the others: they had severe crises some hours after the
end of the measurements. In particular, patient #08 shows an intermediate score, but
an anomalous correlation among the three clinical parameters is highlighted by the
symplex representation. Finally, the data sets from #09 through #20 are relative to the
same patient at different times. They were clustered almost all together in group B.
To sum up, this method gives interesting hints on a real-time assessment of disease
severity in a high-risk newborn population and would allow a reliable prediction of
possible disease aggravation episodes in order to institute a proper treatment. Also,
it encourages interdisciplinary collaboration to develop some diagnostic protocols to
help the medical team in deciding whether to take care of the patient in an intensive
care unit. Finally, a more correct assessment of disease severity should ideally lead to
a significant reduction in the total number of repeated invasive tests, including blood
sampling. This would reduce both blood loss and experience of pain in this particular
patient population. This has to be considered as one of the first experiments of the
ATTIS project, started in 2004 with the aim of developing and consolidating different
methods in time series analysis (ATTIS is the acronym for Approaches To TIme Series,
see http://www.attis-project.org).
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Summary. The inference of regulatory networks from microarray data relies on expression
measures to identify gene activity patterns. However, currently existing expression measures are
not the direct measurements of mRNA concentration one would ideally need for an accurate de-
termination of gene regulation. If the development of expression measures is to advance to the
point where absolute target concentrations can be estimated, it is essential to have an understand-
ing of physical processes leading to observed microarray data. We survey here the performance
of existing expression measures for oligonucleotide microarrays and describe recent progress in
developing physical dynamic adsorption models relating measured fluorescent dye intensities to
underlying target mRNA concentration.

Key words: Gene expression, microarrays, adsorption models.

29.1 Introduction

Top-down inference of genetic regulatory networks frequently relies on large-scale
gene expression data from microarray experiments [1]. These experiments are de-
signed to enable the evaluation of simultaneous expression of large numbers of genes
in prepared messenger RNA samples. Standard expression measures, which are not
direct measurements of transcript or mRNA concentration, are typically used to group
co-expressed genes in order to identify clusters and networks of causally connected
genes. However, bottom-up studies of relatively simple regulatory networks (see, for
example, [2] and references therein) show that gene regulation is often driven by sub-
tle changes in mRNA concentrations of specific genes, and that these genes may not
necessarily be highly expressed. Knowledge of absolute mRNA concentrations, rather
than relative expression measures in arbitrary units, could therefore prove invaluable
for the reconstruction of regulatory networks.

Data analysed from Affymetrix GeneChip arrays, the focus of this paper, usually
consists of expression measures such as determined by Microarray Suite v.5 (MAS5)
[3] or robust multi-chip average (RMA) [4]. Such indices are generally calculated by
subtracting an estimate of background (estimated from mismatch readings in the case
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of MAS5), and summarizing over readings from features within a probeset. The ap-
proach is largely empirical: little or no attempt is made to incorporate a model of the
physical processes driving hybridisation, and consequently neither the effects of sat-
uration at high target concentration nor the effects of probe sequence specificity are
accounted for. As a consequence, expression indices are given in arbitrary units and
not units of concentration.

Recently, studies have begun to address these issues by appealing to models based
on well-established principles of physical chemistry [6–9]. Such models, known gener-
ically as chemical adsorption models, offer the possibility of predicting absolute target
concentrations as opposed to relative expression measures, and hence have the poten-
tial to enable comparisons between expression levels of different genes.

In this chapter we review the performance of MAS5 and RMA expression mea-
sures in cases where the underlying mRNA concentration is known from spike-in ex-
periments. We also review the current status of physical adsorption models and dis-
cuss an important open problem, the perfect match/mismatch differential at saturation
concentrations. The eventual aim of such research is to provide a practical method of
estimating the absolute concentration of mRNA in biological samples from microarray
data.

29.2 Performance of Existing Expression Measures

Affymetrix GeneChip arrays consist of a substrate onto which short single strand DNA
oligonucleotide probes have been synthesized using a photolithographic process. The
microarray surface is divided into some hundreds of thousands of regions commonly
11 to 20 micrometers square, the probes within each region being synthesised to a spe-
cific nucleotide sequence. Throughout this chapter we use the word “probe” to refer
to a single strand of synthesised DNA, and “feature” to refer to a region of identically
synthesised strands. Depending on the array design, each gene is represented by a set
of between 11 to 16 pairs of features. One element of each pair is synthesised as a per-
fect match (PM) sequence designed to be of length 25 bases, and the other a mismatch
(MM) sequence identical with the PM sequence except that the middle (13th) base has
been replaced by its complement. In practice, the stepwise photolithographic process
for synthesising probes is not perfect, and each feature contains a population of probes
of lengths up to 25 bases [10]. Each PM sequence is claimed to be a non-overlapping
contiguous subsequence of the full gene sequence, chosen for its predicted hybridis-
ation properties and specificity to the potential target gene. The target RNA sample
is hybridized onto the chip to form probe-target duplexes, and the chip is scanned to
obtain fluorescence intensity readings from dyes incorporated during the laboratory
procedures.

The performance of the expression measures MAS5 and RMA can be evaluated us-
ing publicly available data from the Affymetrix Human HG-U95A Latin Square spike-
in experiment (http://www.affymetrix.com/support/technical/sample data/datasets.
affx). In this experiment genes (or, more precisely, RNA transcripts) were spiked in
at cyclic permutations of the set of known concentrations, together with a background
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Fig. 29.1. log(MAS5) (upper data points) and RMA (lower data points) expression measures for
the Affymetrix HG-U95A spike-in data set. The diagonal lines indicate the expected behaviour
if expression measures correctly track target concentration fold changes. Units on the vertical
axes are the arbitrary units in which these two expression measures are defined. The MAS5 and
RMA units are not related.

of cRNA extracted from human pancreas. The data consists of fluorescence intensity
values from a set of 14 probesets corresponding to 14 separate genes, each containing
16 pairs of features. For each probeset a set of fluorescence intensity values was ob-
tained for the 14 spiked-in concentrations (0, 0.25, 0.5, 1, 2, 4, . . . , 1024) pM. The
experiment was replicated three times using microarray chips from different wafers. In
common with previous analyses of this data set, we will concentrate here on data from
12 of the 14 genes, omitting data from two defective genes.

In Fig. 29.1 we plot MAS 5 and (PM-only) RMA expression measures as a function
of spike-in cRNA concentration for each of 12 genes, together with the required be-
haviour of an expression measure if it were to correctly track fold changes. These mea-
sures were evaluated using the functions mas5() and rma() provided with the Biocon-
ductor [5] package affy, Version 1.2. We see that with both measures fold changes are
underestimated in all cases at high and low target concentrations. Shown in Fig. 29.2
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Fig. 29.2. The same as Fig. 29.1 for spike-in data without the human pancreas background
cRNA.

are expression measures calculated from data provided by Affymetrix from a similar
experiment in which no human pancreas cRNA background was present. For these
data fold changes at low concentration are accurately reported by both MAS5 and
RMA, indicating that the problem at these concentrations is caused by cross hybridisa-
tion from non-specific targets. Underreporting of fold changes at high concentrations,
on the other hand, is known to be due to failure of expression measures to account
adequately for saturation of features. In the following section we present a physical
adsorption model which accounts for both of these phenomena.

29.3 The Langmuir Isotherm Model

The Langmuir model [6–9] is based on an assumption that there are two competing
processes driving hybridisation: adsorption, i.e., the binding of target molecules to im-
mobilized probes to form duplexes, and desorption, i.e., the reverse process of duplexes
dissociating into separate probe and target molecules
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Probe + Target � Duplex. (29.1)

Herein we shall always use the word “probe” to indicate single strand DNA immo-
bilised on the microarray, “target” to indicate RNA in solution and “duplex” to indi-
cate a bound probe-target pair. Both the forward and reverse processes are determined
by chemical rate constants which depend on a number of factors including activation
energies and temperature.

We briefly survey here two approaches to the adsorption model in the presence of
non-specific hybridisation, one by Hekstra et al. [6] based on balancing the chemical
reaction Eq. (29.1), and one by Halperin et al. [7] based on equilibrium statistical
mechanics. The approaches are shown to be equivalent and lead in both cases to a
hyperbolic response function, or equilibrium Langmuir isotherm, relating RNA target
concentration x to a measured equilibrium fluorescence intensity y, namely,

y(x) = y0 + b
x

x + K
. (29.2)

The isotherm is defined by three parameters: y0 is the measured background intensity
at zero specific target concentration, b is the saturation intensity above background at
infinite specific target concentration and K is the specific target concentration required
to reach half saturation.

29.3.1 Hekstra Approach

Hekstra et al. [6] determine the Langmuir parameters y0, b and K for hybridisation
in the combined presence of a specific cRNA target species and a single, non-specific
target species. Here we extend their results to any number of non-specific species i =
1, 2, . . . . We will define “specific” to mean PM specific. All other hybridisation will
be referred to as “non-specific.”

For a given feature on the microarray surface, whether PM or MM, let the con-
centration of target molecules specific to the PM feature of the neighbouring pair be x ,
and the concentration of the non-specific species i be zi . Let the forward and backward
rates of the chemical reaction Eq. (29.1) be kf and kb respectively for the formation of
duplexes with specific target molecules, and kfi and kbi for the formation of duplexes
with the i th species of non-specific target. Finally, let θ be the fraction of probe sites
occupied by specific probe-target duplexes, and φi be the fraction of probe sites occu-
pied by duplexes formed with the i th non-specific species of target.

The equilibrium equations are given by balancing forward and backward reactions:

0 = kfx

(
1 − θ −

∑
j

φ j

)
− kbθ, (29.3)

0 = kfi zi

(
1 − θ −

∑
j

φ j

)
− kbiφi . (29.4)

Defining equilibrium constants KS = kb/kf, Ki = kbi/kfi and solving for θ and φi
gives
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θ = x/KS

1 + x/KS + ∑
i zi/Ki

, φi = zi/Ki

1 + x/KS + ∑
j z j/K j

. (29.5)

Introducing proportionality constants bS and bi for the specific and non-specific hy-
bridisations and a physical optical background a, the measured fluorescence intensity
is

y(x) = a + bSθ +
∑

i
biφi = y0 + b

x
x + K

, (29.6)

where

y0 = a + A, b = bS − A, K = KS B, (29.7)

and

A = 1
B

∑
i

bi zi

Ki
, B = 1 +

∑
i

zi

Ki
. (29.8)

In spite of the presence of non-specific hybridisation the hyperbolic form of the Lang-
muir isotherm Eq. (29.2) is recovered. The purpose of Eqs. (29.7) and (29.8) is to relate
the three estimated isotherm parameters y0, b and K to the underlying physical param-
eters: a, bS, bi , KS, Ki and a set of non-specific background target concentrations zi .

29.3.2 Halperin Approach

The hyperbolic form of the equilibrium isotherm is equally derivable from statistical
mechanics by considering a Gibbs distribution at constant chemical potential [11].
Halperin et al. [7] have used this approach to study adsorption in microarray chips in
the presence of non-specific hybridisation. This approach has the benefit of relating
equilibrium constants to duplex binding energies.

For the case of one specific and several non-specific target species, the free energy
per mole of probe sites at the microarray surface is

γ = RT

[
θ ln θ +

∑
i

φi ln φi +
(

1 − θ −
∑

i
φi

)
ln

(
1 − θ −

∑
i

φi

)]

+ θµ0
pt +

∑
i

φiµ
0
pti +

(
1 − θ −

∑
i

φi

)
µ0

p, (29.9)

where the specific and non-specific coverage fractions θ and φi are defined in the
previous section, µ0

pt, µ0
pti and µ0

p are reference state chemical potentials per mole of
specific and non-specific probe-target duplexes and unmatched probes respectively, R
is the gas constant and T the absolute temperature. The exchange chemical potentials
of the various species of probe-target duplexes are

∂γ

∂θ
= RT

[
ln θ − ln

(
1 − θ −

∑
i

φ

)]
+ µ0

pt − µ0
p,
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∂γ

∂φi
= RT

[
ln φi − ln

(
1 − θ −

∑
i

φ

)]
+ µ0

pti − µ0
p.

At equilibrium these exchange chemical potentials balance the chemical potentials of
the corresponding target molecule species in solution. Assuming bulk concentrations
of target molecules are not appreciably affected by hybridisation, these are given in
terms of reference values µ0

t and µ0
ti at reference concentrations x0 and z0i of specific

and non-specific target molecules by

µt = µ0
t + RT ln

x
x0

, µti = µ0
ti + RT ln

zi

z0i
. (29.10)

Matching exchange chemical potentials with target chemical potentials gives

RT ln
x
x0

= RT

[
ln θ − ln

(
1 − θ −

∑
i

φ

)]
+ �G,

RT ln
zi

z0i
= RT

[
ln φi − ln

(
1 − θ −

∑
i

φ

)]
+ �Gi ,

where we have defined the duplex binding free energies �G = µ0
pt − µ0

p − µ0
t

and �Gi = µ0
pti − µ0

p − µ0
ti . Further defining KS = x0 exp(�G/RT ) and Ki =

z0i exp(�Gi/RT ) and rearranging gives the isotherms

θ

1 − θ − ∑
i φi

= x
KS

,
φi

1 − θ − ∑
i φi

= zi

Ki
.

Solving for θ and φi , we recover Eq. (29.5) and hence Eq. (29.6). Note that this ap-
proach establishes a relationship between binding free energies and the chemical equi-
librium constants introduced earlier.

29.4 Fits to the Spike-in Data

We have carried out an extensive statistical analysis of fits of the hyperbolic response
function Eq. (29.2) to the PM probe data from the Affymetrix Human HG-U95A Latin
Square spike-in experiment [9]. In Fig. 29.3 we show fits of Eq. (29.2) to fluorescence
intensity data from the 16 PM and MM features corresponding to one of the 12 genes.
These fits were estimated using a generalized linear model assuming the data at each
spike-in concentration for each probe sequence to be drawn from a gamma distribution.
The behaviour of this gene is typical of all 12 genes considered. Our findings [9] are
summarised as follows:

1. Measured fluorescence values can be approximated by a gamma distribution with
mean given by Eq. (29.2) and coefficient of variation of ≈ 0.17.

2. The equilibrium isotherm Eq. (29.2) tracks fold changes from both PM and MM
probes over the range of spiked-in concentrations from < 1 pM to > 1000 pM.
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Fig. 29.3. Fits of Eq. (29.2) to fluorescence intensity data for the 16 PM (black) and 16 MM
(grey) features of the gene 37777 at probeset of the Affymetrix spike-in experiment. Concentra-
tions (horizontal axes) are in picomoles per liter and fluorescence intensities (vertical axes) are
in the arbitrary units used in Affymetrix .cel files. The fit to MM probe No. 3 gave unphysical
negative values to the parameters K and b and is not shown.

3. All three parameters y0, b and K are probe sequence dependent (in contrast with
the findings of Ref. [8]).

4. MM features almost invariably saturate at a lower asymptotic intensity y0 +b than
their PM counterparts.

The final point has important consequences for the Hekstra/Halperin adsorption
model described in the previous section. Below we argue that, if the Hekstra/Halperin
model with non-specific hybridisation leading to the solution given by Eqs. (29.6)
through (29.8) is assumed, we are led inescapably to a conclusion that the PM and
MM intensity measurements for a given probe pair must saturate at the same asymp-
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totic intensity value, in obvious contradiction to observation 4 above. This point has
been inferred previously [10], but does not appear to be generally appreciated in the
literature, with the exception of work by Peterson et al. [12].

Consider two neighbouring features on a microarray, one PM and one MM, their
probe sequences differing only by the middle base. Note that here we define the word
“specific” to mean those target RNA which are exact complements to the PM sequence,
even when dealing with the MM feature. In what follows this definition will prove use-
ful given that, for most probe pairs, the dominant part of the MM signal at high spike-
in concentrations in the Affymetrix experiment appears to come from hybridisation of
spiked-in target RNAs complementary to the PM sequence (see Fig. 29.3 for instance).
Parameters relating to the PM and MM features will be indicated by superscripts PM
and MM respectively.

Although the sums occurring in Eq. (29.8) are over the same set of non-specific
targets for PM as for MM, one can expect AMM �= APM since in general K MM

i �= K PM
i .

Considering the asymptotic intensities at high concentration, however, Eqs. (29.6) and
(29.7) imply that, under the Hekstra/Halperin model, the non-specific hybridisation
effects cancel out:

yMM(∞) = yMM
0 + bMM = a + bS,

yPM(∞) = yPM
0 + bPM = a + bS.

(29.11)

Note that a and bS do not differ between intensity measurements from a neighbouring
PM/MM pair of features. The physical background a depends only on physical prop-
erties of the chip in the absence of any hybridisation, such as reflectance, and such
properties will not vary significantly over a distance of a few micrometers. The param-
eter bS depends only on the amount of fluorescent light emitted per hybridized specific
target RNA molecule, and as such is a function of the target sequence only, and not the
probe sequence. By our current definition of “specific” this is the same sequence for
PM and MM, and so bS is common to both. The Hekstra/Halperin model formulated
above then necessarily entails that yMM

0 +bMM = yPM
0 +bPM, in obvious contradiction

to the values of y0 and b obtained by fitting the spike-in data.
The source of the problem is that any model leading to the coverage fraction of Eq.

(29.5) entails that, at sufficiently high specific target concentration, all probes form
duplexes: as x → ∞, θ → 1. That is, all probes in the feature are predicted to form
duplexes if saturated with enough specific target, even in the case of the MM feature.
This prediction was not borne out by the experiments of Forman et al. [10] who ob-
served less than 10% coverage of PM features by probe-target duplexes at saturation
target concentrations.

The problem of differential PM/MM saturation has also been recognized in the
context of the Langmuir model without non-specific hybridisation by Peterson et
al. [12], who explain their experimental data by invoking a Sips isotherm [13] to ex-
plain a lower MM response curve at high target concentrations. Peterson’s experimen-
tal results are indeed a good fit to the Sips isotherm; however, the Peterson experiment
was carried out at a hybridisation temperature of 20◦C, while Affymetrix microarrays
are hybridized at 45◦C, which is much closer to the duplex melting temperature. Fur-
thermore, Peterson et al. found that heating the hybridisation buffer to 37◦C and then
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cooling back to 20◦C almost completely removed any difference in equilibrium satu-
ration intensities between PM and MM probes at a temperature well below the melting
temperature.

To determine whether the hyperbolic or Sips isotherm is more appropriate for the
Affymetrix spike-in data we have carried out a statistical analysis comparing the fits of
the MM data to both isotherms. Our results, which will be presented elsewhere [14],
show that for the Affymetrix spike-in data the extra parameters involved in invoking the
Sips isotherm are not significant, and that a hyperbolic response function adequately
describes the data. We conclude that, at a hybridisation temperature of 45◦C, the more
appropriate empirical fit to the spike-in data is Eq. (29.2), with yMM(∞) < yPM(∞).

29.4.1 The PM/MM Differential at Saturation Concentrations

To resolve the discrepancy between the observed PM/MM intensity differential at sat-
uration concentrations and the theoretical predictions of the models set out in Sect.
29.3 we have recently studied a number of possible extensions to the Hekstra/Halperin
model. Our analysis [14] dismisses a number of potential explanations for the discrep-
ancy, including non-equilibrium models of hybridisation (including multistep models
which take into account a slow initial step followed by a rapid zipping-up of probe-
target duplexes) the effects of bulk target-target hybridisation, and partial zippering of
duplexes. We have also considered the effect of competitive hybridisation from probe-
probe duplexes at the microarray surface which may render a fraction of DNA probes
unavailable to target molecules. While we are unable to dismiss entirely that this may
be the cause of the discrepancy, we find that such a model is unlikely to lead to a
hyperbolic response curve of the form of Eq. (29.2).

In the light of this analysis, we believe the most promising explanation for the
PM/MM intensity differential to lie not with the hybridisation process, but with the
ensuing washing step which is designed to remove unbound or loosely bound target
molecules from the microarray surface before scanning. A similar idea has been pro-
posed briefly by Zhang [15].

We return to the model prediction that, immediately prior to washing, the fraction
θ of sites on a feature occupied by specific probe-target duplexes and the fraction
φi covered by non-specific duplexes of species i are given by Eqs. (29.5). During the
washing process some of the duplexes will be dissociated. Suppose that the probability
that a given probe-target duplex has survived up to a washing time tW is s(tW ) for a
specific duplex and si (tW ) for the i th species of non-specific duplex. The survival
functions s and si depend only on probe and target properties and not on the target
concentrations x and zi . They satisfy s(0) = 1 and are monotonically decreasing. The
specific and non-specific duplex coverage fractions at time tW are then

θ(x, tW ) = s(tW )x/KS

1 + x/KS + ∑
i zi/Ki

, (29.12)

φi (x, tW ) = si (tW )zi/Ki

1 + x/KS + ∑
j z j/K j

. (29.13)
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Repeating the assumption used in Sect. 29.3 that the measured fluorescence intensity is
a linear function of the duplex coverage fractions, that is y(x, tW ) = a + bSθ(x, tW )+∑

i biφ(x, tW ), we find that the hyperbolic form

y(x, tW ) = y0(tW ) + b(tW )
x

x + K
(29.14)

is maintained, and that the empirically observed parameters are now given by

y0(tW ) = a + A(tW ), b(tW ) = s(tW )bS − A(tW ), K = KS B, (29.15)

where

A(tW ) = 1
B

∑
i

si (tW )bi zi

Ki
, B = 1 +

∑
i

zi

Ki
. (29.16)

Note that the parameter K is unaffected by the length of the washing process, and de-
pends only on duplex binding free energies via the hybridisation step. The asymptotic
fluorescence intensity at high target concentration,

y(∞, tW ) = y0(tW ) + b(tW ) = a + s(tW )bS, (29.17)

is depressed by the presence of the survival fraction s(tW ).
The simplest reasonable assumption, that the rate at which duplexes are dissociated

depends only on the current coverage fraction, leads to an exponential survival function

s(tW ) = e−κtW , (29.18)

where the constant κ is expected to increase with decreasing duplex binding affinity.
Since the binding affinity of a PM-specific target to an MM probe is less than that
to a PM probe, we expect in general that κMM > κPM, or equivalently, sMM(tW ) <

sPM(tW ) and hence yMM(∞) < yPM(∞) as observed. We conclude that the washing
hypothesis is promising in that it correctly predicts a hyperbolic isotherm with differ-
ential asymptotic PM and MM responses at high concentration.

29.5 Conclusions

The ultimate aim of this research is to provide a practical method of estimating absolute
concentration of mRNA in biological samples taken in a typical laboratory situation.
We are unaware of any existing downloadable software using adsorption models to
infer absolute RNA target concentrations from measured fluorescence intensities and
probe sequences. While the development of such a concentration estimator is still in
its infancy, preliminary work has been done on testing the ability of adsorption models
to recover known spike-in concentrations. Hekstra et al. [6] have used a simple lin-
ear model to infer probe sequence dependent parameters of the hyperbolic isotherm
Eq. (29.2) from nucleotide abundances within each probe sequence. The inferred hy-
perbolic isotherm is then used to extract a concentrations estimate from each of the
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Fig. 29.4. Estimates of mRNA concentration in the Affymetrix HG-U95A spike-in experiment
obtained by inverting the hyperbolic adsorption isotherm. For details of the calculaton, see
Ref. [9]. Error bars are approximate 95% confidence intervals obtained by bootstrap resampling.
The line indicates the perfect relationship between predicted and actual concentration.

16 PM features within a probeset, and an estimate of absolute mRNA concentration is
then obtained by averaging over these 16 values. They applied this method to a cross-
validated analysis of the Affymetrix HG -U95A spike-in experiment with reasonable
success. In a refined version of this calculation [9], we have found that biases can be
removed by replacing the average with the median, and have placed confidence in-
tervals on our concentration estimates using bootstrapping. Our results are shown in
Fig. 29.4. In most cases the actual spike-in concentration falls within the 95% confi-
dence intervals, which generally cover less than an order of magnitude.

While this method performs at least as well as conventional expression measures
in the case of the highly controlled Affymetrix spike-in experiment, it falls short of
providing a universally applicable mRNA concentration estimator. In a clinical labo-
ratory experiment, for instance, one would pay greater attention to normalisation ef-
fects caused by photomultiplier settings and variations in chip manufacture, and one
could not necessarily assume the non-specific background to have the characteristics
of the uniform background used in the spike-in experiment. Further analysis needs to
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be done with other spike-in data sets, and we next intend to analyse the more exten-
sive Affymetrix HG-U133A Latin Square data set. Also of interest are dilution data
sets such as that in Ref. [16]. These data sets do not provide absolute spike-in con-
centrations, as they are more concerned with exploring microarray responses in terms
of “fold changes.” However, given the highly non-linear response of microarrays ev-
ident in Eq. (29.2) and Fig. 29.3, the concept of fold change can be very misleading.
Nevertheless, these data sets could prove useful for testing any proposed concentration
estimator based on adsorption models.

The above method performed particularly well at high, saturation concentrations
(compare Fig. 29.4 with 29.1), but less well at low concentrations where non-specific
hybridisation is important. Furthermore, no use was made of the MM intensities. Here
we believe the model of Sect. 29.4.1 may be helpful. Assuming exponential survival
functions, Eq. (29.14) is a sum of exponentials whose dominant contribution at large
washing times tW comes from the specific target. If fluorescence intensities could be
continuously monitored in real time during the washing phase, using technology sim-
ilar to the flow cell experiment described by Forman et al. [10], the potential exists to
separate the specific signal from non-specific background as the linear contribution to
a logarithmic plot at tW → ∞.
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Summary. We have shown for a dataset of computationally predicted alternative splice sites
how inherent information can be utilized to validate the predictions by applying statistics on
different features typical for splice sites. As a promising splice site feature we investigated the
frequencies of binding motifs in the context of exonic and intronic splice site flanks and be-
tween the alternative and reference splice sites. We show that both partitions of splice sites can
statistically be separated not only by their distance to the splice signal consensus but also via
frequencies of splice regulatory protein (SRp) binding motifs in the splice site environment.

Key words: Splicing, alternative splicing, SR proteins, splicing enhancer.

30.1 Introduction

30.1.1 Alternative Splicing: From Sequence to Protein-Controlled Regulation

The excision of specific parts of mRNA strands before translation into proteins is called
splicing. The increasing proteome complexity from protozoan eukaryotes via nema-
todes and arthropods to vertebrates is attributed to mechanisms of differential, that is
alternative, splicing [1, 12, 21]. Furthermore, pathological complexity can be ascribed
to misregulated splicing processes where cancer is one of the most prominent exam-
ples [29]. The mechanism of alternative splicing has attracted a wide range of scien-
tific research addressing the problem with computational strategies and tools. Hence,
up to 60% of the human genes have been predicted to produce alternative splice forms
(asf ) [18, 22], and a variety of databases have been designed to collect splice forms
combined with experimental observations as tissue information or developmental and
pathology information [10]. Experiments on the spliceosome—the transient megadal-
ton complex that assembles the catalytic center to cut and splice pre-mRNA—showed



338 R. Bortfeldt, A. Herrmann, H. Pospisil, and S. Schuster

that splice regulatory proteins (SR proteins) are involved in initiating and maintaining
this complex [3,13,25]. These proteins form a family of proteins rich in serine-arginine
domains. Further, it was shown that SR proteins can additionally bind to specific se-
quence motifs (cis-elements) in order to promote alternative splice site usage and exon
definition [12, 19]. Considering the growing percentage of genes which are predicted
to produce alternatively spliced transcripts, there must be a dense regulatory network,
sensing and utilizing the information required to perform the surgical task of splic-
ing and thus reacting appropriately to environmental conditions that are required by a
specific splice form. Experimental studies in the last decade have provided examples
of regulated alternative splice events [1, 26], establishing working hypotheses and the
basis for further computational studies. Accordingly, the following roughly sketched
topics have been addressed with computational efforts:

(i) consensus splice signal prediction [30],
(ii) splice site plasticity [15],
(iii) exon/intron sequence composition [6]
(iv) splicing pattern statistics [31] and
(v) consensus enhancer/silencer signal prediction [5, 9].

From these approaches we utilized categories (i), (iv) and (v) to channel their capabili-
ties in the analysis of predicted asf. Furthermore, we tested whether repeats of splicing
enhancer motifs in the neighborhood of splice sites (GT..AG consensus) may constitute
a useful feature in discriminating alternative splice sites.

30.1.2 Prediction of Alternative Splice Forms

The EASED project4 [23] constitutes one of the earliest efforts to combine an algo-
rithm for asf prediction with a variety of additional medically relevant information
such as reference to cancer, prevalence for specific tissue and developmental informa-
tion [23]. Utilizing the EASED dataset of predicted asf this work combines splice site
information content, transcript abundance and exonic splicing enhancer (ESE) occur-
rence in order to infer knowledge about the quality of a set of predicted asf. A central
question was, whether multiple ESEs or enhancer repeats may contribute to the dis-
crimination of predicted alternative splice sites. Since the prediction algorithm of the
EASED pipeline relies on mRNA and expressed sequence tags (ESTs), the number
of transcripts as well as the results of the tested hypotheses can be taken as a gen-
eral validation criterion for the applicability of such comprehensive database systems
and predicted asf. Up to now no perfect ab initio prediction algorithm for alterna-
tive splice events exists, and many characteristic features if taken isolated may not be
strong enough to validate a splice site to certainty. The combination of several classes
of information such as splice site score (Sss), frequency of (splicing enhancing) SRp
binding motifs ( fese), transcript support ( ft ), tissue type, disease and developmental
state account for a strong ensemble that can shed more light on the processes of both
constitutive and alternative splicing.

4 http://eased.bioinf.mdc-berlin.de
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30.1.3 SR Proteins and Their Binding Signals

SR proteins are members of a family of proteins possessing serine-arginine rich do-
mains which can interact via these domains and thus provide bridging functions in
spliceosome assembly [11]. SR proteins can recognize and bind a variety of ESEs
and/or exonic splicing silencers (ESSs), which are motifs of approximately 6–12 nu-
cleotides. Studies have shown that more than one copy of a high affinity SR protein
(SRp) binding site can efficiently activate splicing, as was shown for three sequen-
tial SRp binding motifs (ASF/SF2 and SRp40) [27, 28]. This finding was explained
by the action of cooperative binding of a single factor, thus conveying specificity by
outcompeting other trans-factors with a lower degree of RNA affinity in this region.
Contrary to the single factor binding model, other studies have shown that combina-
tions of SR proteins can promote splicing by binding to the same enhancer motif [24].
A variation of this model is shown by another example where human caldesmon exon
5 and 6 showed multiple purine rich repeats with an enhancer function of which a 32
nucleotide (nt) stretch enhanced an internal alternative 5′ss within exon 5 [16]. Since
most of the reported ESEs show lengths between 5–19 nucleotides [11], longer mo-
tifs may consist of several overlapping submotifs that increase the binding affinity of
its recognizing trans-factors [8]. Even the possibility of a functional composite splice
regulatory element has been demonstrated where motifs within CD44 exon 5v had
to be direct neighbors to activate a functional splice complex, suggesting cooperating
interactions of the binding proteins [17].

30.2 Materials and Methods

30.2.1 Source of Alternative and Reference Splice Sites

All analyses are based on the EASED version 19.34a from December 2003 that uses
mRNA and gene sequence material of the underlying Ensembl database (same freeze)
and ESTs from dbEST (isochronic version) [2]. The analysis was restricted to Homo
sapiens as here the most abundant sequence information was available. Furthermore,
SR proteins and their binding motifs have been investigated most extensively in this
species. In general the prediction of the utilized asf is based on an mRNA-EST align-
ment with a stringent set of parameters [23]. Asf arise through gaps in either one or
the other alignment partner, be it mRNA or EST (Fig. 30.1). For each gene, the longest
mRNA not classified as “alternatively spliced” was taken per definition as the reference
transcript denoting a set of “constitutive” or reference donors and acceptors. Taking
the longest mRNA as reference offers the chance to observe as many alignment gaps
as possible against the available EST and, hence, to increase the number of consid-
ered alternative splice junctions. According to these mRNA forms, all other differing
splice junctions were considered alternative, whereas EST and, mRNA matching the
reference splice sites was counted as evidence for the reference dataset of donors and
acceptors. All gap coordinates in the transcripts were mapped back to genomic se-
quence to extract the required splice site sequence context. Labeling any transcript as
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Fig. 30.1. Transcripts (EST + mRNA) supporting reference (1) and alternative (2) splice sites.
Black arrows indicate the outcome of the EST-mRNA alignment; dashed arrows point to alter-
native splice sites predicted by the EST. Hatched boxes indicate introns.

the constitutively expressed form of its gene might be very debatable considering the
highly dynamic proteome of a living cell where “constitutive” conditions may finally
depend a on a number of external stimuli. Being aware of this uncertainty, we prefer
the term “reference” instead of “constitutive.”

30.2.2 Data Preparation and Refinement

For establishing the subset of EASED predictions used in the present work, the
database was queried with a threshold of at least 5 asf (EST) per gene. Next, all genes
whose supporting EST did not indicate alternative splice events utilizing the canonical
splice site dinucleotides GT..AG were discarded. After refinement the dataset consisted
of 2,624 genes with an average number of 8 alternative splice sites per gene and an av-
erage support of 3 ESTs per alternative splice site. In contrast ≈ 26 ESTs per reference
splice sites were found to align in the same region of the transcript. The decrease of
initially available ESTs and asf throughout the processing steps is documented in Ta-
ble 30.1. As a further parameter, the genomic sequence window around each donor
and acceptor was set to 100 nt in this study (Fig. 30.2). Finally, each splice site was
stored as an alternative (ass) or reference (rss) splice site together with a number of
supporting transcripts (mRNA and/or EST).

30.2.3 Splice Site Scoring

The reference and predicted alternative splice sites were evaluated (scored) by applying
a maximum entropy model (MEM) implemented by Yeo and Burge [30]. This model
estimates short sequence motifs of the donor and acceptor splice sites by approximat-
ing the maximum entropy distribution (MED). Minimizing the relative entropy

D( p̂) =
∑

p̂(x) log
p̂(x)

q(x)
, (30.1)

where p is the probability of a nucleotide at a specific DNA position and q a prior
background distribution, yields the MED that has the lowest relative entropy of all dis-
tributions that satisfy a set of constraints relative to the background distribution. Those
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Table 30.1. Dataset characteristics and refinement steps, satisfying asf prediction criteria (*) and
GT..AG consensus (**).

Processing step Number Source

blasted ESTs 5,427,257 dbEST (freeze Dec 2003)
Ensembl Transcripts (ENST) 31,609 Ensembl 19 34a (freeze Dec 2003)
Ensembl Genes (ENSG) 23,531 Ensembl 19 34a
EST, matching ≥ 1 ENST 3,947,548 EASED
asf predicting EST* 428,474 EASED
predicted as sites 102,104 EASED
ENST matching ≥ 1 asf 21,044 EASED
ENSG matching ≥ 1 asf 15,426 EASED
ENSG matching ≥ 5 asf 2,624 EASED
filtered** assAcceptors 3,862 inhouse software Jena
filtered assDonors 3,705 inhouse software Jena
filtered rssAcceptors 25,526 inhouse software Jena
filtered rssDonors 25,103 inhouse software Jena

marginal constraints are imposed by neighborhood relations between nucleotide posi-
tions (estimated from experimental data) and nucleotide frequency counts. The MEM
slightly outperforms maximum dependency decomposition (MDD) models and was
shown to be clearly better than weight matrix models (WMM), both of which are gen-
eralized by the maximum entropy principle. The MED model was trained against a test
set of 12,715 human introns utilizing a 9mer motif at the 5′ splice site (ss) and a 23mer
at the 3′ss, excluding potential alternative splice junctions and those not showing the

Fig. 30.2. Sequence windows used for determining the ESE frequencies around the scored splice
sites. The four validation classes are defined as I5, I3, E5 and E3 with the following convention:
E = exon, I = intron, 3 = downstream region (3′), 5 = upstream region (5′). Thus the intronic part
(grey hatched) is separated from the exonic part of the donor and acceptor splice sites (white
hatched); the position and size of the motifs used for scoring the 5′ss- and 3′ss are indicated
with black horizontal bars.
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GT..AG consensus [30]. The implementation is provided in Perl5 and thus the splice
site scoring was incorporated into the analysis pipeline.

30.2.4 ESE Scanning

To estimate the frequency of high scoring ESE motifs within the defined context of
the ass and rss, we used scoring matrices implemented in the ESEfinder tool [5]. The
matrices contain nucleotide frequencies of short motifs that were shown to bind the
SR proteins SF2/ASF (7mer), SC35 (8mer), SRp40 (7mer) and SRp55 (6mer). Ex-
periments have demonstrated the applicability of ESE consensus motifs in explaining
splice events such as exon skipping and mis-splicing due to point mutations within
those motifs [4]. Nevertheless, due to the degenerated nature of SRp binding motifs
we did not consider the frequency of ESE motif hits alone but evaluated their occur-
rence in the context of additional characteristic information (splice site score, tran-
script support). We scanned for the four ESE motifs in a window of 100 nucleotides
up- and downstream of the predicted ass and rss. Although scanning for exon splicing
enhancer motifs would imply to search only in exonic sequence, given, i.e., two alter-
native donor splice sites, it depends which of the two donors is considered to clearly
state whether the sequence between both donors is exonic or intronic. Thus, one could
find a motif as an intronic enhancer in the flanking intron sequence of the upstream
donor, which is viewed from the downstream donor an ESE. Besides covering up and
downstream sequence flanks in our analysis, we restricted the search to 100 nt in each
direction, as this splice site vicinity was previously shown to cover ESE locations [7,
14]. However, enhancer elements have also been reported at locations of more than
100 nt downstream of a donor site [20]. Additionally, restricting the window size may
further result in missing regulatory motifs that are used in a structural context (far-
ther distanced enhancer can bring their bound regulatory factors via RNA structure in
splice site proximity).

30.2.5 Data Partitioning for Statistical Analysis

As shown in Table 30.1, four classes (data subsets or partitions) were created from the
EASED data. These comprise the donor/acceptor sets of ass and rss splice sites. Due
to the up- and downstream distinction of the splice site environment, we obtain data
subsets that model either intron or exon specific features as, e.g., SRp binding motif
frequency.

30.3 Results and Discussion

30.3.1 General Characterisation of the Validated Splice Site Attributes

Splice Site Score. Comparison of the main attributes splice site score, transcript sup-
port and ESE frequency was done first for the complete distribution of both splice

5 http://genes.mit.edu/burgelab/maxent/
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Table 30.2. Distributional characteristics of splice site score (Sss ) (a) and transcript support ( ft )
(b) compared for donor and acceptor splice sites.

(a)

5′ss 3′ss

Minimum −44,399 −46,658
1st Quantile 6,640 6,483
Median 8,456 8,450
Mean 6,976 7,671
3rd Quantile 9,652 10,141
Maximum 11,807 15,589

(b)

5′ss 3′ss

Minimum 1 1
1st Quantile 1 1
Median 16 16
Mean 41 37
3rd Quantile 68 63
Maximum 466 326

site types (donors/acceptors) independent from partitioning into reference (rss) and
alternative (ass) splice sites. Our results indicate that the Sss between the whole un-
partitioned distributions of donor and acceptor sites vary significantly (p < 10−3,
Wilcoxon, t- and F-tests) in their means and variances. The mode of both distribu-
tions resides at Sss of 5–10, whereas donor splice sites show lower scores in their
quartiles and extrema than acceptor sites (Table 30.2).

Transcript Support. The number of transcripts that support donor and acceptor splice
sites ( ft = frequency of transcripts that utilize a specific splice site) show different
distributions in particular at higher transcript numbers per splice site (Fig. 30.3). Means
and variances of the splice site type dependent ft distributions vary significantly (p <

10−3) with a tendency to more transcripts at donor splice sites. The mode of both donor
and acceptor ft distributions resides between 1 and 20 transcripts.

(a) (b) (c)

Fig. 30.3. Histograms of splice site scores (Sss ) of donor (a) and acceptor sites (b); histogram
of transcript frequencies ( ft ) supporting the acceptor sites, where bins join acceptors which are
supported by a certain number (count) of observed transcripts (c).
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Table 30.3. Summary of ESE motif frequency ( fese) characteristics considering the whole set of
splice sites while distinguishing the intronic and exonic parts of donor and acceptor splice sites;
p(µ; σ 2) denotes p-values in comparing means and variances between the motif frequencies
at the specified exonic/intronic region; p-values of significantly (α ≤ 0.0001) different motif
frequencies between the compared splice site regions are marked with (*).

Splice
site E3 I3

SRp region Median Mean Variance p(µ; σ 2) p(µ; σ 2)

ASF/SF2 E3 4 3,934 5,285 — —
E5 4 3,933 5,016 < 1; < 10−4∗ < 10−4∗; < 10−4∗

I3 2 2,502 4,229 — —
I5 3 3,359 6,298 < 10−4∗; < 10−4∗ < 10−4∗; < 10−4∗

SC35 E3 4 3,901 3,989 — —
E5 4 3,873 3,949 < 10−1; < 1 < 10−4∗; < 10−4∗

I3 3 2,928 3,467 — —
I5 3 3,622 4,560 < 10−4∗; < 10−4∗ < 10−4∗; < 10−4∗

SRp40 E3 4 3,796 3,145 — —
E5 4 3,794 3,095 < 1; < 1 < 10−4∗; < 10−4∗

I3 3 2,823 2,522 — —
I5 3 3,452 3,183 < 10−4∗; < 1 < 10−4∗; < 10−4∗

SRp55 E3 2 2,344 2,277 — —
E5 2 2,334 2,236 < 1; < 1 < 10−4∗; < 10−4∗

I3 1 1,626 1,612 — —
I5 2 1,947 1,965 < 10−4∗; < 10−4∗ < 10−4∗; < 10−4∗

Frequency of SRp Binding Motifs. In investigating the repeated occurrence of SRp
binding motifs ( fese) we considered first the total number of detected motifs. Com-
parison of this combined number of ESE frequencies showed no significant difference
(p > 0.1, t-test) between the distributions in the exonic donor (E3) and acceptor (E5)
regions but a significant difference between the intronic donor (I5) and acceptor (I3)
regions (p < 10−4). Also, the occurrence of ESE motifs between adjacent exonic (E5)
and intronic (I3) splice site flanks differed significantly at acceptor sites (p < 10−3).
Looking at the motifs of the specific SR protein ASF/SF2, one observes similar fese
distributions in the exonic part of 5′ and 3′ splice sites, but though they show a signifi-
cant difference in their variances (p < 10−4), their means are not different (p > 0.1,
Wilcoxon test). In contrast, the number of ASF/SF2 motifs in the intron flanks of the
splice sites vary significantly in their variances and means (p < 10−4), and we found
the same effect between adjacent exonic and intronic splice site environments. A sum-
mary of variances and means characterizing the fese distributions of all four tested SR
proteins is listed in Table 30.3.
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Occurrence of SRp Binding Motifs at Low and High Scoring Splice Sites. Addition-
ally, and in order to validate fese independently from our definition of ass and rss,
all splice sites were separated by their Sss distributions (Fig. 30.3). Furthermore, only
the tails of the score distribution (< 0 and > 10) were selected. Besides addressing
the question of whether the fese distribution varies significantly between the low and
high scoring sets, this also served to measure the enrichment of predicted asf in both
score dependent data subsets (discussed in the section on ass and rss specific analyses).
The total donor/acceptor splice sites partition in 6%/4% with Sss < 0 contrasted by
19%/25% with a score above 10 and thus almost consensus quality. Between these
two sets of extreme-scoring splice sites we find significant differences in the means of
their total (exonic) fese distributions. In particular, at both donor and acceptor sites the
motif distribution of the protein SC35 tends on average to at least one motif more at
low scoring than at high scoring splice sites. For two other SR proteins this effect was
found only either at donor splice sites (SRp55) or at acceptor splice sites (ASF/SF2).

30.3.2 Characterization Specific to Predicted Alternative and Reference Splice
Site Attributes

Splice Site Score and Transcript Support. Comparing Sss between reference and
alternative donors shows a significant difference in the mean values (p < 10−4,
Wilcoxon test), although the mode of the distribution still resides at scores between
5 and 10. The same observation applies for the acceptor sites. Interestingly, the differ-
ence of the means between donor and acceptor score distributions is higher in ass than
in rss (underlined in Table 30.4).

Considering the number of transcripts that support the splice sites, the defined rss
are generally better covered with transcripts than the predicted ass (at both donor and
acceptor sites). The mode of both distributions can be found on a class level of 1–20
transcripts, though the overall number of transcripts is approximately six times higher
in the respective class level of the reference dataset. Between score and transcript sup-
port we found a strong dependency in both ass and rss (p < 10−4, χ2-test) whereupon
better scoring splice sites clearly show a better transcript support.

Table 30.4. Splice site score characteristics in the ass and rss datasets. Underlined values em-
phasize the significant difference between mean values of ass and rss score distributions.

Splice site # Total
type counts Median Mean SD Variance

all donors 28,808 8.456 6.976 5.475 29.971
ass donors 3,705 5.263 0.862 10.219 104.438
rss donors 25,103 8.626 7.878 3.557 12.652
all acceptors 29,388 8.450 7.671 4.446 19.765
ass acceptors 3,862 5.997 3.356 8.035 64.562
rss acceptors 25,526 8.678 8.324 3.122 9.747
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Table 30.5. Analysis of variances (F-test) and means (Wilcoxon test) between ESE motif fre-
quencies ( fese) distributed over ass and rss splice sites in different pre-mRNA contexts (see
Fig. 30.2); µ = sample mean, m = sample median, σ 2 = sample variance; p-values significant at
α ≤0.05 are marked with (*).

ass rss ass↔rss ass↔rss
SRp Region µ/m/σ 2 µ/m/σ 2 p(µ) p(σ 2)

ASF/SF2 E3 4,148/4/5,862 3,903/4/5,192 < 10−4∗ < 10−4∗

E5 4,187/4/5,382 3,894/4/5,950 < 10−4∗ < 10−3∗

I3 2,910/3/4,268 2,440/2/4,194 < 10−4∗ > 10−1

I5 3,864/4/6,580 3,285/3/6,213 < 10−4∗ < 5 · 10−2∗

SC35 E3 4,026/4/4,068 3,883/4/3,975 < 10−4∗ > 10−1

E5 4,076/4/3,949 3,842/4/3,941 < 10−4∗ > 10−1

I3 3,254/3/3,434 2,878/3/3,454 < 10−4∗ > 10−1

I5 3,914/4/4,477 3,578/3/4,558 < 10−4∗ > 10−1

SRp40 E3 3,769/4/3,299 3,800/4/3,122 > 10−1 < 5 · 10−2∗

E5 3,893/4/3,191 3,779/4/3,079 < 10−3∗ > 10−1

I3 3,081/3/2,583 2,784/3/2,501 < 10−4∗ > 10−1

I5 3,629/3/3,232 3,426/3/3,170 < 10−4∗ > 10−1

SRp55 E3 2,334/2/2,253 2,346/2/2,281 > 10−1 > 10−1

E5 2,347/2/2,327 2,332/2/2,222 > 10−1 < 10−2∗

I3 1,695/2/1,719 1,616/1/1,595 < 10−3∗ < 10−2∗

I5 2,098/2/2,101 1,924/2/1,941 < 10−4∗ < 10−2∗

SRp Binding Motifs in ass and rss Splice Site Environments. Considering fese at
exonic and intronic flanks of splice sites, one observes only subtle differences between
ass and rss. In the case of the ASF/SF2 motif, fese at the exonic 5′ and 3′ regions has
its mode at a frequency of three motifs (except for the exonic 5′ end of ass). Never-
theless, there is a significant difference in means and variances between the number
of ASF/SF2 motifs at the exonic part of ass and rss (Table 30.5). In contrast the in-
tronic regions of ass and rss show generally a higher ASF/SF2 motif abundance. This
is unexpected since this motif should—as an exonic splicing enhancer—occur more
frequently in exonic regions. There is no significant difference in the variances of the
fese distributions between intronic ass and rss acceptor sites, but here also the means
vary significantly. Considering the size of the dataset, the results clearly indicate a
tendency to more ASF/SF2 motifs in the flanking regions of predicted ass than in the
set of rss. Table 30.5 summarizes the observed distributions of SRp specific motif fre-
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quencies fese for ass and rss, compared between an exonic and intronic splice site
context. The ASF/SF2 and SC35 motif frequencies show in the exonic flanks of 5′ and
3′ splice sites a tendency to more motifs in the neighborhood of the ass than at the
rss splice sites. The same result was found for SRp40 motif frequencies in the exon
3′ flanks. SRp55 motifs appeared at exonic flanks of 5′ splice sites less but at 3′ more
frequently at ass than at rss. The means of the fese distribution of SRp SC35 show a
significant difference between the E3 and E5 sites, although the variances do not con-
vey this information. Based on these tests we concluded that fese is different between
mRNA regions around splice sites of ass and rss. While these motif modules might be
individually subtle (e.g., between two splice sites) they appear to be significant on the
whole dataset.

30.4 Summary

We have shown for a dataset of computationally predicted alternative splice sites (ass)
how inherent information can be utilized to validate the predictions by applying statis-
tics on different features typical for splice sites. These features were compared between
a set of predicted ass and splice sites arising from a set of mRNAs that did not predict
or have (by current experimental knowledge) ass. We refrain from the term “constitu-
tive” and use “reference splice site” (rss) instead, since our analysis suggests that in
spite of not predicting ass, the reference transcripts and their splice sites share similar
characteristics to the alternative ones as the overlapping regions in the splice site score
(Sss) distributions (+5 to -10) demonstrate. However, in the low scoring region both
ass and rss separate clearly with the ass exhibiting scores below zero more frequently
at both donor and acceptor sites. Thus, a significant part of the predicted ass possess
motifs incongruent to the consensus motif found for human GT..AG consensus splice
sites. In fact, this observation could still be due to pseudo splice sites but, as our test
of Sss against the transcript support ( ft ) indicates, there exists a clear dependency be-
tween the number of transcripts that utilize these splice sites and the pertinent score
in both the ass and rss. As a promising splice site feature we investigated the binding
motif frequencies ( fese) of splice-enhancing SR proteins (S Rp) in the context of ex-
onic and intronic splice site flanks compared between ass and rss. First we analyzed
the donor/acceptor site specific occurrence of SRp motifs independent from the clas-
sification into ass and rss. For both the exonic and intronic flanks we found a higher
variance for fese of the SRp ASF/SF2 at donor and acceptor sites, but between the
intronic splice site flanks only we found on average more motifs at the donor site. For
the other SRp motifs a similar trend to more binding motifs at intronic donor compared
to acceptor flanks can be observed. This finding further suggests a higher presence of
these motifs at the intronic flank of donor sites, a surprising effect since the motifs are
detected by consensus sequences made as exonic splicing enhancers (ESEs). Neverthe-
less, since the rss make up the major fraction in these donor/acceptor-intronic /exonic
datasets, this finding needed to be further investigated to derive conclusions on an ef-
fect that is present also in predicted ass. Hence, we continued to analyze differences in
fese of exonic donor and acceptor at ass and rss. The ASF/SF2 motif occurs in a signif-
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icant fraction of predicted alternative splice sites (exonic flanks) more frequently than
in the set of reference splice sites. While the medians of both frequency distributions
suggest four motifs at both alternative and reference splice site flanks, the mean and
variance indicate that at both 5′ and 3′ sites a motif pattern deviating from the rss exists,
with a tendency to at least one additional motif. Comparing the intron flanks, however,
showed no difference in the variances of the ASF/SF2 motif frequencies between ass
and rss. Diverging characteristics (equal variances versus different means) in the ass
and rss specific motif frequencies of the three other types of SR proteins suggest that
both datasets exhibit little variation around significantly different ESE patterns. It will
be interesting to follow up investigations on modules of SRp binding motifs between
predicted ass and rss to get a computational grip on possible multimerized enhancer
(or silencer) protein complexes as well as on their role in a prediction pipeline of ass.
Summarizing, it can be concluded that the combination of statistical investigations
on different splice site related attributes offers a suitable approach to refinement and
evaluation of predicted alternative splice variants.
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Summary. In this chapter we present the decomposition approach to the analysis of large gene
expression profile data sets. We address the problem of analysis of transient time-course data
of expression profiles. We accept the assumption that co-expression of genes can be related to
their belonging to the same Gaussian component. We assume that parameters of Gaussian com-
ponents, means and variances, can differ between time instants. However, the gene composition
of components is unchanged between time instants. For such problem formulations we derive
the appropriate version of expectation-maximization algorithm recursions for the estimation of
model parameters. We apply the derived method to the data on gene expression profiles of human
K562 erythroleukemic cells and we discuss the obtained gene clustering.

Key words: Gene expression profiles, maximum likelihood, EM method, Gaussian compo-
nents.

31.1 Introduction

An approach that has the potential to support analyzing DNA microarray data is mix-
ture modeling of the probability distribution of gene expression levels. This approach
is based on the empirical observation that probability density functions of gene expres-
sions can be represented by using mixtures of distributions and uses the hypothesis that
parameters of approximating mixture distributions contain useful information. Several
researches in this field have appeared in the literature [10], [4], [13], [12], [8], [7], [14].
As demonstrated in the referenced papers, approximating the probability density func-
tions (pdfs) of logarithms of expression levels or fluorescence intensities of probes by
mixtures of distributions can be used to solve several issues in the interpretation of
DNA microarray data. Reference [10] surveys methods for obtaining parameters of
mixtures of different distributions and proposes to use mixtures of factor analyzers for
unsupervised classification of colon and leukemia gene expression data sets. In [4] the
decomposition of expression level probability density functions into Gaussian compo-
nents is used to set thresholds to classify expression levels as “change,” “no change,”
“overexpressed,” “underexpressed” etc. In the papers [13] and [12] different variants
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of Bayesian mixture based clustering procedures were studied. Methods for estimating
mixture parameters involved Gibbs sampling in conjunction with an infinite mixture
technique. Arguments were given that the proposed approach has a superior ability to
detect the number of components over classical, information criteria based methods.
The elaborated methods were applied to yeast cell-cycle data obtained with the use
of DNA microarrays. In [8] a hierarchical agglomerative clustering method was used
for an initial guess of mixture parameters and the mixture model was combined with
dimensionality reduction technique in the analysis of cutaneous melanoma data. In [7]
a mixture model was used for determining differential expression of genes in the pres-
ence of mixed cell populations. In [14] mixture modeling was applied to the problem
of missing measurements in DNA microarrays.

In this chapter we address the problem of analysis of transient time-course data of
expression profiles. Like others, we accept the assumption that co-expression of genes
can be related to their belonging to the same component. We assume that parame-
ters of Gaussian components, means and variances, can differ between time instants.
However, the gene composition of components is unchanged between time instants.
For such problem formulations we derive the appropriate version of the expectation-
maximization (EM) algorithm recursions for estimation of model parameters. We ap-
ply the derived method to the data on gene expression profiles of human K562 ery-
throleukemic cells and we discuss the obtained gene clustering.

31.2 Modeling Probability Distributions of Gene Expressions

We use the standard paradigm that information on the process behind the DNA mi-
croarray experiment is encoded in the ratios of RNA concentrations between different
experiments. The researcher is interested in by how many fold the RNA concentration
has increased or decreased from one measurement to the other. Consequently, we ana-
lyze DNA microarray fluorescence levels and we denote by x the base two logarithm
of the normalized fluorescence signal. We assume that this signal is a realization of a
random variable, which we denote by X .

31.2.1 One Microarray Chip

We assume that the probability distribution of the random variable X is described by a
normal mixture model,

f (x) =
K∑

k=1
αk fk(x). (31.1)

In the above expression x denotes base two logarithm of expression level, f (x)

is its probability density function, αk, k = 1, 2, . . . , K are weighting coefficients∑K
k=1 αk = 1, and fk(x), k = 1, 2, . . . , K are pdfs of normal components of the

mixture f (x), i.e.,
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fk(x) = 1√
2πσk

exp

[
− (x − µk)

2

2σ 2
k

]
, (31.2)

where µk is the expectation and σ 2
k the variance of the kth normal component. The

parameters to adjust are number of components, expectations and variances of each
component and weighting coefficients.

We denote the number of gene probes at a DNA microarray chip by N . We treat
genes as N independent realizations of random variable X with distribution (31.1).
With N independent measurements, the parameters of (31.1) can be estimated by the
maximum likelihood method, where the likelihood function is given by

L(x1, . . . , xN ) =
N∏

n=1

K∑
k=1

αk fk(xn), (31.3)

where xn stands for the logarithm of the expression level of the nth gene. For distri-
butions with multiple components there are no analytical expressions for estimates of
parameters, but efficient numerical approaches were elaborated based on the EM al-
gorithm [5], [3], [11] or on the use of versions of the Metropolis–Hastings sampling
algorithm [15]. Iterations of the EM algorithm for updating estimates α1, . . . , αK and
µk , σk , k = 1, 2, . . . , K assume the following form [11]:

αnew
k =

∑N
n=1 p(k | xn, pold)

N
, (31.4)

where

p(k | xn, pold) = αold
k fk(xn, pold)∑K

κ=1 αold
κ fκ(xn, pold)

, (31.5)

and p stands for the vector of all parameters, p = [µ1, . . . , µK , σ1, . . . , σK ]. The ex-
pression (31.5) gives the conditional probability distribution of latent variable k given
data xn and given the estimate of parameters xn . For location and scale parameters we
have

µnew
k =

∑N
n=1 xn p(k | xn, pold)∑N

n=1 p(k | xn, pold)
, k = 1, 2, . . . , K , (31.6)

and

(σ new
k )2 =

∑N
n=1(xn − µnew

k )2 p(k | xn, pold)∑N
n=1 p(k | xn, pold)

, k = 1, 2, . . . , K . (31.7)

Superscripts “old” and “new” are added to denote two successive iterates. Expressions
(31.6)–(31.7) follow from performing the M step of the EM algorithm involving max-
imization of expectation of the complete data likelihood function.
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31.2.2 Time-Course Microarray Data

A probability density mixture model of the form (31.3) incorporates information about
a single experiment with one DNA microarray chip. As stated in the introduction,
our aim is the analysis of experiments with the use of DNA microarrays, where gene
expression profiles are samples at time instants t1, t2, . . . , tM . We assume that at each
time instant the gene expression profile can be represented as a mixture of components.
The number of components as well as the composition (by composition we mean the
assignment of genes to components) remain constant over time. However, Gaussian
components are changing over time in the sense that their expectations and variances
differ at different time instants.

The maximum likelihood approach can be modified to account for time-course mi-
croarray data. Let us denote by xm

n the measurement of the logarithm of the expression
of the nth gene, at time instant tm . The likelihood function assumes the form

L(x1
1 , . . . , x M

1 , . . . , x1
N , . . . , x M

N ) =
N∏

n=1

K∑
k=1

αk

M∏
m=1

fk,m(xm
n ) (31.8)

with fk,m(xm
n ) standing for the Gaussian probability density function of the kth com-

ponent at the mth time instant,

fk,m(x) = 1√
2πσk,m

exp

[
− (x − µk,m)2

2σ 2
k,m

]
. (31.9)

The appropriate version of the EM algorithm for maximum likelihood function (31.8)
can be obtained either by using (31.8) in the definitions of the E and M steps of the EM
algorithm [11], or by replacing a univariate distribution fk(x) by a multidimensional
(M-dimensional) normal probability density function in (31.4)–(31.7). The resulting
EM iterations are as follows:

αnew
k =

∑N
n=1 p(k | x1

n , . . . , x M
n , pold)

N
, (31.10)

where

p(k | x1
n , . . . , x M

n , pold) = αold
k

∏M
m=1 fk,m(xm

n , pold)∑K
κ=1 αold

κ

∏M
m=1 fκ,m(xm

n , pold)
(31.11)

and p stands for the vector of all parameters, p = [µ1,1, . . . , µ1,M , . . . , µK ,1, . . . ,

µK ,M , σ1,1, . . . , σ1,M , . . . , σK ,1, . . . , σK ,M ]. For location and scale parameters we
then have

µnew
k,m =

∑N
n=1 xm

n p(k | x1
n , . . . , x M

n , pold)∑N
n=1 p(k | x1

n , . . . , x M
n , pold)

, k = 1, 2, . . . , K , (31.12)

and
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(σ new
k,m )2 =

∑N
n=1(xn − µnew

k )2 p(k | x1
n , . . . , x M

n , pold)∑N
n=1 p(k | x1

n , . . . , x M
n , pold)

, (31.13)

k = 1, 2, . . . , K , m = 1, . . . , M.

Again, superscripts “old” and “new” are added to denote two successive iterates.

31.2.3 Estimating Number of Components by Bayesian Information Criterion

An issue to solve in numerical computations is how many components K should ap-
pear in (31.1), (31.3), (31.8). If K is too large, the model becomes overparametrized
and some components are unnecessary and non-informative. If K is too small, sev-
eral different components may become merged into one. Detection of model over-
parametrization can be done by using information criteria. In order to estimate the
number of parameters we used the Bayesian information index (BIC) [2]. Using the
BIC can be understood as penalizing the number of parameters used in the model by
subtracting the term weighted by the logarithm of the number of observations from the
likelihood function. Since the number of parameters is 3K −1, then the BIC-corrected
likelihood (31.8) becomes

L B I C (x1
1 , . . . , x M

1 , . . . , x1
N , . . . , x M

N )

= L(x1
1 , . . . , x M

1 , . . . , x1
N , . . . , x M

N ) − 1
2
(3K − 1) ln(N ∗ M). (31.14)

31.3 Experimental Data

We applied a mixture decomposition model to the data [9] on cellular responses of
human leukemic cells K562 to X-ray irradiation. Affymetrix U133A DNA microarrays
with 22,000 human gene probes were used to record gene expression profiles at 5 time
instants at and after irradiation, t1 = 0 h, t2 = 12 h, t3 = 24 h and t4 = 36 h. For this
data we applied our method of decomposing the pdf into Gaussian components.

The EM method is known for sticking to local maxima. Therefore, we have repeat-
edly launched EM (31.10)–(31.13) starting from random initial guesses of parameters
(10 repeats were applied for each K ). We also used a method of bisection to compute
the maximal BIC-corrected likelihood.

As the result we obtained 45 normal components. When using the rule “gene n
belongs to component k∗” if

arg max
k

p(k | x1
n , . . . , x M

n , p) = k∗, (31.15)

then the numbers of genes that belong to components 1–45 range from 25 to 643.
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31.3.1 Analysis of Mixture Decomposition with the Use of Gene Ontology (GO)
Terms

The decomposition of a pdf into normal components is based on the hypothesis
that genes with both similar values of expressions and similar patterns of expression
changes should be classified to the same component. However, there is a lot of ran-
domness in the data and the assumption that all 45 components can be treated as infor-
mative is rather naive. Therefore, components should be analyzed from the viewpoint
of their possible relation to processes and signaling pathways.

Here we will analyze only the basic issue of non-randomness of the decomposition
into components. We verify whether comparisons of gene ontology (GO) terms [6] of
genes belonging to the obtained 45 components will be statistically significantly dif-
ferent from comparisons of genes belonging to components drawn randomly. We have
decided to use a somewhat indirect approach involving pairwise comparisons of com-
ponents. The reasons for that were (i) comparisons can be easily made with the use
of internet GO browsers, and (ii) they provide enough statistical evidence for random-
ness or non-randomness of the gene composition of obtained Gaussian components.
Consequently, in addition to the decomposition resulting from the maximum likeli-
hood, we have assigned genes into 45 random components. We use the notation EM
components for those resulting from maximum likelihood with the use of the EM al-
gorithm and random components for those drawn randomly. The numbers of genes in
random components were set equal to the numbers of genes in EM components. Then
we drew randomly 80 pairs (i1, j1), . . . , (i80, j80) and we performed parallel compar-
isons of EM component ik with EM component jk and of random component ik with
random component jk , k = 1, 2, . . . , 80. We used the GO browser FatiGO [1] to per-
form comparisons. Comparisons of gene contents of components are possible in three
categories: biological process, cellular component and molecular process. For each of
80 pairs of comparisons we have also chosen randomly one of these three mentioned
categories. By statistical comparison we specifically mean statistical test, where the
null hypothesis is that two sets of genes do not differ in biological functions, molecu-
lar functions or cellular components. The results of comparisons can be quantitatively
described in terms of the p-value of statistical tests using statistics based on a multi-
nomial distribution. In Fig. 31.1 we show comparison histograms of the p-values. The
upper plot presents the histograms resulting from comparing genes in EM components
while the lower plot presents the histograms resulting from comparing genes in random
components.

As seen from the figure, the p-values corresponding to comparisons of EM compo-
nents are very significantly shifted towards the left. When comparing histograms cor-
responding to EM and random components using the non-parametric test of Smirnov
and Kolmogorov, the null hypothesis of no shift between distributions can be rejected
at a significance level lower than 10−10.



31 Mixture Decomposition of Time-Course Data 357

    

    

Fig. 31.1. Histograms of frequencies versus p-values for statistical tests of composition com-
parisons of two components of genes. Upper plot is for EM components and lower plot is for
random components.

31.4 Conclusion

The analysis of DNA microarray data most often involves supervised or unsupervised
classification or clustering. Due to the special structure of gene expression profiles,
where the number of genes greatly exceeds the number of experiments or observa-
tions, classification and clustering are often combined with dimensionality reduction
and principal component analysis techniques. Decomposition into probability distri-
bution mixture components, discussed here, can also be viewed as a type of cluster-
ing technique since it leads to grouping of genes into classes defined by components
composition. The advantages of the approach using mixture modeling are that the de-
composition follows from maximization of the likelihood function and that there is a
reasonable method of estimating the number of components.

In the case of time-course data, we can additionally analyze the time evolution of
parameters of Gaussian components µ and σ , which can improve our understanding
of the data. The analysis of experimental data indicates that the obtained decompo-
sition into time-evolving Gaussian components is highly non-random. Therefore, by
further analysis of the obtained components one can get some insight into the molec-
ular processes behind the observed patterns of change in the gene expression profiles.
We do not show detailed results due to space limitations, but some of the obtained
components have nice biological interpretations resulting from their gene composition
in conjunction with the pattern of time evolution of their expression levels.
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The imposed restriction that gene composition of Gaussian components must re-
main unchanged between time instants is rather natural and allows interpretation of
time evolution of clusters of genes in terms of biological or molecular processes. A
Gaussian mixture decomposition of expression profiles of individual time points would
include significantly lower numbers of components, ranging from 3 to 5. Each of these
components would include a large number of genes and the structure of their GO
composition would be less specific. Since both the numbers and gene composition of
components change in time, they cannot be interpreted as being related to biological
processes.
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Summary. The analysis of gene expression profiles of cells and tissues, performed by DNA
microarray technology, strongly relies on proper bioinformatical methods of data analysis. Due
to the large number of analyzed variables (genes) and the usually low number of cases (arrays)
in one experiment, limited by the high cost of the technology, the biological reasoning is difficult
without previous analysis, leading to a reduction of the problem dimensionality. A wide variety
of methods have been developed; the most useful, from a biological point of view, are methods
of supervised gene selection with estimation of false discovery rate. However, supervised gene
selection is not always satisfying for the user of microarray technology, as the complexity of
biological systems analyzed by microarrays rarely can be explained by one variable. Among un-
supervised methods of analysis, hierarchical clustering and principal component analysis (PCA)
have gained wide biological application. In our opinion, singular value decomposition (SVD)
analysis, which is similar to PCA, has additional advantages that are very essential for the in-
terpretation of the biological data. In this chapter we shall present how to apply SVD to unsu-
pervised analysis of transcriptome data obtained by oligonucleotide microarrays. These results
have been derived from several experiments, carried out at the DNA oligonucleotide microarray
Laboratory at the Institute of Oncology, Gliwice, and are currently analyzed from a biological
point of view.

Key words: Singular value decomposition, gene expression data, gene selection, hierarchical
clustering.

32.1 Unsupervised Methods in Analysis of Gene Expression Data

Unsupervised analysis should be the first step in all microarray experiments. It reveals
the intrinsic structure of the data, which helps to verify whether the assumptions of
the microarray experiment are held and whether the major observed variability is re-
lated to the experimental variables or to confounding factors. Moreover, it allows for
rapid detection of outliers, thus it is a valuable method of quality control. Last, but
not least, unsupervised analysis is invaluable in genome-wide experiments, in which
we aim to classify the samples based on their gene expression profiles and in this
way to gain biological knowledge about subgroups of these samples. These three ap-
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proaches are discussed later in this chapter. Various methods of unsupervised analy-
sis have been developed. Initially, they were based on known statistical methods of
clustering. At the moment, a widely accepted method is hierarchical clustering with
various distance definitions and metrics. Other algorithms, which were used mainly to
cluster genes and were not efficient in clustering of a limited number of microarray
samples, are less widespread and are used only for specific occasions. Hierarchical
clustering is a very useful method of analysis and visualization (by dendrograms) of
differences/similarities between samples or genes. It allows one to calculate the dis-
tance between samples and divides the whole group into a chosen number of clusters.
Moreover, being similar to methods used in taxonomy, dendrograms are easily under-
stood by biologists. Dendrogram classification of genes and samples accompanied by a
heatmap plot is probably one of the most informative methods of microarray data visu-
alization.
However, when used in unsupervised analysis, hierarchical clustering has serious
drawbacks. To be a fully unsupervised method, it should be used on all microarray
genes or on genes filtered without the use of any variables in question. Clustering by
all genes is a method which allows one to detect large differences in gene expression
profile (e.g., it can separate expression profiles of different tissues), but when used on
less variable experimental data, it will rather depend on technical parameters of arrays.
This way it is more suitable for visualization of technical differences, but it has no place
in routine use to answer biological questions. This is partly caused by the large number
of genes on some arrays (more than 50K transcripts on routinely used oligonucleotide
microarrays), from which only a small proportion is expected to be expressed. Filtering
of genes by different variance measures may be useful in reducing the number of genes
for clustering, but taking into account that some coordinated biological changes show
a rather low amplitude, this strategy does not seem to be optimal. Moreover, in rou-
tine hierarchical clustering of normalized data every gene has equal weight, and thus
some (e.g., not expressed) genes may bias the final result. At present there is no widely
accepted method to select just the important transcripts in a gene expression profile.
The use of singular value decomposition (SVD) for analysis of microarray data has
been detailed in [1]. A profound description of SVD and a comprehensive survey of its
applications in gene expression data analysis are given in [2] and references therein.
SVD is a standard method of linear algebra and it may be easily performed on large
matrices without significant computational cost. The most important feature of SVD
which predisposes it to be used for the analysis of microarray data is that the char-
acteristic modes obtained from decomposition of a gene expression matrix of various
samples usually have a meaningful biological interpretation. In a homogeneous bi-
ological system, like in in vitro cell culture, the majority of genes are coordinately
regulated by a limited number of signals, thus they exhibit similar expression profiles.
Obviously, the complexity of this regulation is large and many genes are affected by
numerous transcription factors, but it has been shown in yeast that common gene ex-
pression patterns in a cell cycle may be easily detected by SVD [3]. In experiments on
cells from cultures the diversity of gene expression depends on the complexity of each
cell transcriptome and the differences in the cellular cycle stage. However, microarray
experiments are very often performed on even more complex biological systems, i.e.,
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tissue samples. In tissues, the inherent feature is the heterogeneity of cells within the
sample and until the microdissection techniques (allowing one to dissect the tissue into
cells of various morphology) become widespread, the expression profile of the tissue
depends on the transcriptional changes in cells and the differences in cellular content
of the tissue. As we will show later, this second factor very often prevails over the
whole gene expression profile and the analysis of characteristic modes then helps to
interpret their biological meaning. However, the shape of the modes rarely provides
us with direct conclusions, and thus we extend the method to select the genes corre-
lated to each characteristic mode. Such an unsupervised gene selection method, when
used together with hierarchical clustering, is a strong and powerful tool for biological
analysis of microarray data. We briefly describe the principles of our method and show
some examples of its application.

32.2 Singular Value Decomposition to Select Major Variability
Genes in Transcriptome Data

32.2.1 Definition of SVD

The SVD of any n × m matrix A (gene expression matrix) has the form [4]

A = U SV T, (32.1)

where U is an n × m orthonormal matrix, whose columns are called the left singular
vectors of A (gene coefficient vectors), and V is an m × m orthonormal matrix, whose
columns are called the right singular vectors of A (expression level vectors). S is a
diagonal matrix S = diag(s1, s2, . . . , sm). The diagonal elements of matrix S are, as a
convention, listed in a descending order, s1 ≥ s2 ≥ · · · ≥ sm ≥ 0, and are called the
singular values of A.

32.2.2 Characteristic Modes

Let us denote the rows of matrix SV T by Xi , i = 1, . . . , m. The orthogonal vectors
Xi = siv

T
i are called the gene characteristic modes associated with gene expression

matrix A. In an analogous way, the rows of matrix SU T, can be defined as array
characteristic modes. The properties of both types of modes are similar so we present
them only for the gene modes.

The profile of the j th gene, included in the row A j of matrix A, can be obtained as
linear combinations of the characteristic modes. The coefficients of the combination
are the corresponding entries of matrix U ,

A j =
m∑

i=1
U ji Xi . (32.2)



364 K. Simek and M. Jarz cab

The contribution of modes to the gene pattern decreases from the higher order to the
lower order modes. Usually not all characteristic modes are needed to reconstruct gene
expression patterns with a reasonable accuracy . We may use a truncated expression,

A j =
l∑

i=1
U ji Xi , l < m. (32.3)

There are several heuristic methods to estimate the number l of the most significant
characteristic modes [5]. One of the simplest is to retain just enough modes to capture
a large percentage of the overall expression. Usually values of 70–90% are proposed.
The other procedure is to exclude characteristic modes such that the fraction of ex-
pression pi they capture is less than (70/m)%. Another method is the examination of
scree plots for s2

i or log s2
i . Using this method one can usually find a natural border

between significant and insignificant singular values (called the elbow). The singu-
lar values which represent the magnitudes of the corresponding modes can be used
as measures of the relative significance of each characteristic mode in terms of the
fraction of overall expression that it captures:

pi = s2
i∑m

j=1 s2
j
, i = 1, . . . , tgm. (32.4)

A similar index, defining the contribution of the i th mode to the pattern of the kth gene,
can be defined in the form

ci
k = (Uki si )

2∑m
j=1(Ukj s j )2 . (32.5)

32.2.3 Gene Selection Using SVD

In the clustering literature, SVD is sometimes applied to extract the cluster structure in
the data and reduce its dimensionality prior to clustering. Since characteristic modes
are uncorrelated and ordered, the first few most significant ones, which contain most
of the variations in the data, are usually used. Namely, characteristic mode coefficients
(gene coefficient vectors), instead of original variables, are used for clustering. Our ap-
proach differs from that known from the literature. We apply SVD as a preprocessing
step before cluster analysis of gene expression data. As a result, a small set of orig-
inal genes is selected and then applied to cluster samples using one of the standard
algorithms.

Algorithm of gene selection. The gene selection algorithm inspects gene coefficient
vectors (columns of matrix U ) corresponding to the set of the most significant charac-
teristic modes. Each coefficient is compared to the threshold value [6], whose meaning
is similar to a 3σ statistical significance cutoff, equal to W n−1/2 , where n is the num-
ber of genes and W is a weight factor whose recommended value is greater than 3.
If the magnitude of the element is greater than the threshold value, the corresponding



32 SVD Analysis of Gene Expression Data 365

gene is selected to the clustering set. In practice we choose genes with sufficiently big
coefficients for the most important characteristic modes, or in other words, genes for
which values of index (32.5) for the most important modes are big enough. In the result
we obtain a set of genes with patterns “similar” to the dominant modes.

32.3 Applications of Unsupervised Singular Value Decomposition
Method to Microarray Data

We applied the SVD algorithm to four datasets of gene expression profiles related to
cancer. The first data set was obtained from a cell culture experiment with murine
melanoma cells exposed to hypoxic conditions (low oxygen tension) [8]. In this exper-
iment oligonucleotide microarrays were used (Affymetrix MG-U74). Hypoxia was ob-
tained by three different methods: chemical mimicry with cesium chloride, a Billups–
Rothenberg chamber and an incubator with regulated O2 tension, set to low O2 level.
Three other experiments were carried out with clinical material: tumor samples and
corresponding normal tissues analyzed by gene expression profiling. In the first ex-
periment we compared gene expression of papillary thyroid cancer to normal thyroid
tissue from the same individual. The analyzed dataset consisted of 16 tumor and 16
normal samples hybridized to HG-U133A oligonucleotide microarrays and prepro-
cessed by MAS5 algorithm [7]. In the second experiment we compared two different
histological types of thyroid cancer. We performed SVD on a set of 57 thyroid neo-
plasms: 38 of papillary histology and 19 follicular adenomas or carcinomas [9]. We
also compared gene expression profiles of laryngeal cancer and corresponding normal
tissue and analyzed by HG-U133 Plus 2 microarray 17 samples of laryngeal cancer (9
microarrays) and normal tissue (8 samples) [10].

32.3.1 The Influence of Hypoxia on Gene Expression Profile

Hypoxia is an intrinsic feature of many malignant tumors and is highly related to their
resistance to various treatment modalities (chemotherapy, radiation therapy). Thus, a
sound understanding of the molecular mechanisms underlying hypoxia is crucial to the
development of new molecular methods of therapy. In this experiment we obtained 13
microarrays from hypoxic cells and 8 from control samples. We performed SVD of the
whole dataset and obtained 20 gene characteristic modes with the first mode account-
ing for 39.7% of variance and the first 5 modes describing 83% of the data variability
(Fig. 32.1). This result was highly satisfying (more than 80% of the variability ex-
plained by only 5 expression patterns), but simultaneously showed that confounding
factors influence the effect of hypoxia. We selected 154 genes correlated to the first
mode profile. Hierarchical clustering of all samples based on these 154 genes (Fig.
32.2) ideally divided control and hypoxic samples which confirmed that the major
source of variability in the analyzed dataset was the hypoxic-control difference. This
was the proof that genes selected on the basis of this comparison are not strongly af-
fected by technical factors. An important fact in understanding the SVD method was
that the first mode profile itself was less clearly differentiating hypoxic and control
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Fig. 32.1. Relative significance of gene characteristic modes in hypoxia experiment.

Fig. 32.2. Hierarchical clustering of first mode genes in hypoxia study. Real hypoxia (black) and
hypoxia mimicry (dark grey) is distinctly different in expression profile from control samples
(light grey).
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Fig. 32.3. First three gene characteristic modes in hypoxia study. Difference between hypoxic
(H) and control (C) samples can be shown in all three modes, but it is influenced by other sources
of variability (CoCl2-treated specimens, first four from the left, are clearly different from other
hypoxic samples).

samples. The shape of this pattern was influenced not only by the hypoxic-normal dif-
ference, but also by other factors (Fig. 32.3). Thus, direct analysis of mode patterns
was not fully justified and we preferred to use gene selection. This approach is very
powerful, not only because it allows one to properly classify samples, but because it
also gives a number of genes related to each expression pattern. The gene content of
this list can facilitate the biological reasoning, as shown later. In summary, SVD anal-
ysis allowed us to confirm that the control-treated difference was the major source of
variability in the performed experiment, detected the important changes between two
hypoxic conditions and thus influenced the further supervised analysis [8].

32.3.2 Gene Expression Profile of Papillary Thyroid Cancer

The next application of the SVD method is the analysis of the gene expression profile
in papillary thyroid carcinoma. This malignant tumor is the most common cancer of
the thyroid gland [7]. The first three characteristic modes in this dataset, which were
considered significant, accounted for 40.4% of the variance in this dataset (Fig. 32.4).
The much lower percentage of variability described by SVD analysis in comparison
to the data described above is characteristic for the study of clinical specimens, where
the samples differ not only by one variable (like hypoxia in the previous example), but
by a whole set of features related to patients and the disease. Nevertheless, the most
important factor of variability, revealed by the first mode, was the difference between
normal thyroid and papillary thyroid cancer—all samples, clustered by 310 genes cor-
related to the first mode, were ideally separated into tumors and normals (Fig. 32.5).
This was the proof of proper quality control in sample selection, and it confirmed that
the tumor-normal difference in this type of cancer is large enough to be detected by
unsupervised methods. Even more interesting were the results of clustering by the sec-
ond and third modes: both these patterns were unexpected, and before the study we did



368 K. Simek and M. Jarz cab

Fig. 32.4. Relative significance of characteristic modes in thyroid cancer study.

not have any knowledge as to what factors (except tumor-normal difference) might in-
fluence the expression profile. The clustering based on second mode expression profile
revealed two groups of samples, both containing two subgroups of tumors and normals
(Fig. 32.6). We could not attribute this subdivision to any clinical factor. The clustering
based on the third mode genes did not show any attributable pattern, only some paired
samples (tumor-normal) were co-clustering together. When we analyzed the content
of the selected gene lists, we revealed that for the second and the third modes the
significant proportion of transcripts was immune-related genes (40.3% in the second

Fig. 32.5. Hierarchical clustering of thyroid tumors (t) and normal thyroid tissues (n) based on
genes selected by the first mode.
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Fig. 32.6. Hierarchical clustering of thyroid tumors (t) and normal thyroid tissues (n) based on
genes selected by the 2nd mode. The analysis reveals two distinct subgroups, each containing
both tumor and normal tissues.

mode, 39.2% in the third mode). This suggested that the expression profile of papil-
lary thyroid cancer is strongly influenced by expression of immune-related genes, the
majority of them probably expressed in infiltrating leukocytes. However, the origin of
these transcripts has still to be confirmed.

32.3.3 Distinguishing Between Histological Subtypes of Differentiated Thyroid
Cancer

Papillary thyroid cancer is the most common malignant tumor of the thyroid, but there
exist other histological types of thyroid neoplasms. The diagnosis of this tumor by
microscopic analysis is related to numerous problems. The most difficult is the differ-
entiation between two entities: follicular carcinoma and follicular adenoma, the latter
one being a benign disease and not demanding the intensive treatment applied to both
follicular and papillary cancers.

The situation is complicated further by the presence of a follicular variant of pap-
illary thyroid cancer. The first four modes explained more than 45% of the variability
(Fig. 32.7). The genes selected on the basis of mode correlation coefficients were very
interesting from a biological point of view, and hierarchical clustering revealed distinct
differences between tumors of both histological subtypes. However, the same conclu-
sions were obtained by the analysis of array characteristic modes. Two-dimensional
analysis of the first two modes (Fig. 32.8) revealed that tumors cluster not according to
the difference between benign and malignant (which was expected from the difference
in their clinical behavior), but according to the morphological distinction between pap-
illary and follicular features. All follicular adenomas and carcinomas except one had
positive values of the first mode coefficient, while all classic papillary tumors except
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Fig. 32.7. Hierarchical clustering of thyroid cancer specimens of different histopathological
subtype. Follicular cancers (F) and adenomas (A) are clustering together, while papillary cancers
(not labelled) are within the other branch of dendrogram. Follicular variant of papillary cancer
(V) samples are found within both subgroups.

two had negative coefficients. Benign and malignant follicular tumors could not be dis-
tinguished based on the gene expression profile. A very interesting category was the
follicular variant papillary tumors: they were interdispersed between follicular tumors
and papillary cancers, some of them with negative and some with positive coefficients.
It is now a matter of debate and thorough analysis, whether this group is heterogeneous
in biological nature or whether the histopathological criteria used to classify them are
not adequate.

Fig. 32.8. Analysis of array characteristic modes shows distinction between follicular tumors
(adenomas marked by circles, carcinomas by plus signs) and papillary tumors (papillary cancer
marked by dots, follicular variant of papillary cancer denoted by x marks).
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Fig. 32.9. Analysis of array characteristic modes in laryngeal cancer helps to detect outliers
in gene expression profile: two mislabelled samples classifying in the inappropriate class of
samples and two normal samples with distinctly different second mode coefficient values.

32.3.4 Detecting Outliers in Gene Expression Profile

SVD is a very powerful unsupervised method for detecting outliers in gene expression
profiling experiments. A good example is our study of the gene expression profile in
laryngeal cancer.

By analysis of array characteristic modes we found that two samples are probably
mislabelled (one tumor clustered with normal tissues and one normal tissue with tu-
mors), and two normal samples were distinctly different from all other samples within
the second mode (Fig. 32.9). Using supervised methods of gene selection on the whole
dataset we were unable to detect any genes significantly differentiating tumors and
normal tissues. After exclusion of detected outliers, we determined a number of genes
to have biological meaning, and we are further validating their significance.

32.4 Conclusions

Singular value decomposition is a reliable mathematical tool for revealing the main
sources of variability in analyzed microarray datasets. When followed by a gene se-
lection procedure based on gene characteristic mode coefficients, it is also a robust
technique to provide biological interpretation of observed variability. Calculation and
analysis of the array characteristic modes allow easy detection of outlier samples in
microarray data.
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