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We study dense colloidal crystals under oscillatory shear using a confocal microscope. At large strains
the crystals yield and the suspensions form shear bands. The pure harmonic response exhibited by the
suspension rules out the applicability of nonlinear rheology models typically used to describe shear
banding in other types of complex fluids. Instead, we show that a model based on the coexistence of
linearly responding phases of the colloidal suspension accounts for the observed flows. These results
highlight a new use of oscillatory measurements in distinguishing the contribution of linear and nonlinear
local rheology to a globally nonlinear material response.
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When sheared out of equilibrium, the flow response of
many complex fluids is highly non-Newtonian, and non-
linear effects can prevail even for noninertial flow rates. A
striking and technologically important phenomenon, com-
mon in many complex fluids, is the formation of shear
bands where the material separates into regimes charac-
terized by different flows or strain rates [1–5]. Shear bands
make rheological measurements notoriously difficult to
interpret and can lead to destruction of flow laminarity in
various technological applications. Understanding the
physical mechanisms for formation and stability of shear-
banded flows will reveal key principles underlying the
control of complex fluid flows. Shear banding is typically
investigated by measuring the material response to steady
shear in commercial rheometers. With these methods si-
multaneous measurements of the full displacement field on
the scale of the constitutive particles have been inacces-
sible [3–5]. Consequently, it has been difficult to distin-
guish a homogenous sample response, where the entire
sample is characterized by the same strain rate, from a
heterogenous one, where the sample separates into shear
bands with different strain rates. This lack of information
also limits the ability to test theoretical descriptions of
shear banding that typically assume the material stress
response is a nonlinear multivalued function of strain rate
[6–8]. As a result, independent confirmations of such
models are not available and their predictive capability
for more complex time-dependent oscillatory shear, where
nonlinear rheology results in anharmonic flow, is limited
[9]. Direct flow visualization under time-dependent shear
is essential for elucidating the correct material rheology
underlying shear banding.

In this Letter we describe measurements using con-
focal microscopy to image flow profiles of a colloidal
crystal under oscillatory shear. At low strains homoge-
nous linear shear gradients are observed throughout the
crystal. At sufficiently high strains, bands of low and
high strain rates appear, corresponding, respectively, to a

crystalline phase and to a smecticlike phase where hex-
agonally close packed (hcp) colloidal sheets flow over
one another [10–15]. The oscillations are purely harmonic
with a frequency identical to the one applied. This indi-
cates shear-banding results from coexistence of two line-
arly responding phases of the suspension. Finally, we
present a simple model for shear banding in a linearly
responding system that correctly captures the observed
behavior.

The suspensions consist of spherical poly-(methyl meth-
acrylate) particles stabilized by a thin layer of poly-12-
hydrostearic acid [16]. The particles are impregnated with
rhodamine dye and suspended in a mixture of cyclohexyl
bromide and decalin, chosen to match the particle density
and index of refraction, thus allowing us to image the
three-dimensional (3D) structure of the suspension using
confocal microscopy [17–19]. The solvent viscosity is
!0 " 0:02 poise and the particles have a diameter a "
1:4 "m and a polydispersity in radius of 5%.

Our shear cell consists of two parallel plates: a movable
microscope cover slip and a fixed glass plate 5 mm in
diameter. Both plates are flat on the particle scale and
parallel to within 1 "m over the entire shear zone. We
control the gap separation L, the shear frequency f, and the
strain amplitude #app. A sinusoidally driven piezoelectric
actuator translates the cover slip and produces displace-
ments in the x direction of up to 90 "m at f # 100 Hz.
The sample between the shearing plates is in contact with
an amorphous suspension with volume fraction $ "
0:61$ 0:02 that surrounds the shear zone. The apparatus
is mounted on an inverted microscope that allows direct 3D
visualization of the sheared suspension.

We prepare a uniform random hcp (rhcp) crystal by
preshearing the suspension at #app > 1 and f " 90 Hz
for at least 1 h. We determine the maximal amplitude of
the particle displacement field ju%z&j in the x direction at
different heights above the oscillating plate, z. Only
samples exhibiting uniform planar structures throughout
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the shear zone are considered. Also, we work at gaps large
enough to avoid confinement effects [20].

We summarize our data by plotting z as a function of
ju%z&j for a wide range of f and #app (Fig. 1). In each plot, f
is fixed and flow profiles at different #app are compared.
For low #app, we observe a homogenous linear gradient in
the displacement amplitude of the crystal, ju%z&j' z for all
values of f [first two profiles in Figs. 1(a)–1(e)]. At higher
strains the crystal yields, and the flow profiles show a
surprising f dependence: for f < 3 Hz a region close to
the upper static plate exhibits a significantly larger strain
than that near the lower oscillating plate; this indicates
shear banding. The only observed difference in the struc-
tures of the two phases is a slightly larger interlayer sepa-
ration ((0:1 "m) in the flowing hcp phase [21]. The
highly strained portion of the sample increases with #app

[Figs. 1(a)–1(c)]. Moreover, the size of the highly strained
region increases with f. For f > 3 Hz the strain extends
across the whole sample [Figs. 1(d) and 1(e)]. While a
homogenous crystalline structure is unlikely to exist at
such high strains, it is not obvious if the profiles reflect a
homogenous response of a noncrystalline phase throughout
the gap or thin and thick shear bands corresponding to
crystalline and noncrystalline phases, respectively.

Finally, in all the profiles the displacement amplitude of
the oscillating plate (solid symbol) is larger than the am-
plitude of the colloidal hcp sheet adjacent to it (open
symbols). Hence there is slip between the plates and the
suspension. To characterize the slip, we define the strain
induced in the colloidal suspension as #ind "
)ju%top layer&j! ju%bottom layer&j*=L [22] and plot it ver-
sus #app for f " 60 Hz [Fig. 1(f)]. The lower slope char-
acterizing the points #ind & 0:1 indicates a greater fraction
of the applied strain is taken up by slip at low #app.

Shear banding is traditionally studied in samples under
steady shear. The standard argument is that shear banding
arises from a nonlinear, multivalued rheology [6–8]
[Fig. 2(a)]. Since flows where d%

d _# < 0 are unstable, non-
inertial homogenous flows with _#1 < _#app < _#2 must split
into bands with distinct values of _#, but identical stress
[Fig. 2(a)]. For oscillatory strain the stress must oscillate
and change sign. This has two consequences for the non-
linear model: first, since the high shear rate band continu-

ously changes between positive and negative values of _#,
the flow must exhibit discontinuous behavior during a full
period of oscillation. Second, any nonlinearity in % would
cause the displacement field to respond anharmonically. To
test the applicability of such models we measured the
temporal flow patterns of different layers in a highly
shear-banded flow [Fig. 2(b)]. Remarkably, the colloidal
sheets flow in a smooth sinusoidal fashion at the applied f
throughout the gap. This striking observation indicates
shear banding in our suspension does not reflect a non-
linear local rheology but rather, a linear yet nonuniform
response to shear that is characteristic of coexistence be-
tween two distinct phases [23].

To model the linear response at low # we note that at rest
the suspension forms a rhcp crystal. This phase remains
stable and occupies the entire gap for small strains #ind <
#yield, where #yield is the yield strain of the crystal. Previous
studies established that near equilibrium the crystal stress
can be modeled as a sum of viscous and elastic components
with effective viscosity !s and shear modulus G [24,25].
For larger strains #ind > #yield a second phase appears, in
which the hcp colloidal sheets flow freely over each other
signaling a vanishing shear modulus. We model this phase
as a Newtonian fluid with effective viscosity !f. At a given
f, the stress in both phases is linearly proportional to the
strain [Fig. 2(c)]. The linear rheology of both phases results
in harmonic stress response to oscillatory displacements,
consistent with the flow pattern in Fig. 2(b).

To account for slip, we also consider flows in the two
viscous solvent layers coupling the suspension to the shear-
ing plates. Since !0 + !s, !f, the strain in the solvent
layers is much larger than in the suspension, leading to the
observed slip. For shear flow along x̂ with gradient along ẑ,
the off-diagonal components of the stress tensor corre-
sponding to shear stress in the various phases are

 %s " G#s , !s _#s %f " !f _#f %b;t " !0 _#b;t;

(1)

where # " @u=@z is the local strain. Here #s, #f, #b, and
#t represent time-dependent strains in the solid and fluid-
like phases, and bottom and top solvent layers, respec-
tively. Neglecting inertia, # is uniform in each phase, and
%s " %f " %b;t. For a harmonic response, the coefficients

 

FIG. 1 (color online). Flow profiles for various values of #app and f. Figures (a)–(e) correspond to f of 0.02, 0.11, 0.5, 15, 60 Hz,
respectively. Shown are maximal displacements ju%z&j at several values of z (open symbols). All lengths are normalized by the gap
width L. For each profile, the point %ju%0&j; 0& represents the applied amplitude (solid symbols). (f) Plot of #ind vs #app for f " 60 Hz.
The shallow and steep solid lines are linear fits to the #ind < 0:1 and #ind > 0:1 data, respectively.
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G, !s, and !f must be independent of f, #s, #f. The strains
#b and #t are inversely proportional to the effective thick-
ness of the bottom and top solvent layers db and dt, both of
which may depend on $, f, surface chemistry, and packing
geometry. The stress field satisfies @%=@z " 0. The gen-
eral oscillatory displacement field consists of linear pro-
files in each of the phases:

 u%z; t&=L " #appRe )%&, 'z&ei2(ft* (2)

The amplitude and phase lag of the flow field in each phase
(solidlike, fluidlike, or solvent layer), are determined by a
distinct pair of complex coefficients &, '. The coefficients
are found by requiring stress uniformity and continuity of
the flow profile. For #ind < #yield the suspension forms a
homogenous crystal; there, these requirements yield a
unique profile. For shear-banding profiles an additional
constraint is needed to solve for the height z- of the
boundary between the fluid and solidlike phases, and to
determine a unique solution [26]. We divide the remaining
discussion into two parts. First, we address the low #ind
regime. Second, we discuss shear banding at #ind > #yield.

Case I (#ind < #yield homogeneous).—Since the dynam-
ics are linear, the only nontrivial property of ju%z&j in this
regime is the ratio #ind=#app. Our model predicts that for a
uniform phase #ind=#app must not depend on strain. This
corresponds well with our measurements as can be seen
from the representative data for #ind < 0:1 [Fig. 3(a)].
Similar plateaus for #ind < 0:1 are observed at all f. The
plateau values of #ind=#app predicted by our model in the
limits of high and low f are

 #ind=#app "
!
L
ds

"
2
#!

!0

G

"
2
, ds

L
!0!s

G2

$
%2(f&2; f ! 0

(3)

 #ind=#app "
!0

!0 , %ds=L&!s
; f ! 1: (4)

Here, we assume symmetry between top and bottom layers
ds " db " dt, and that ds is f independent. For low f, the
balance between the f independent elastic stress, which
dominates the response of the solidlike phase, and the f
dependent viscous stress in the solvent layer, leads to
Eq. (3). By contrast, for high f the response in the solidlike
phase is also governed by viscous stress; this leads to the
f-independent expression in Eq. (4). The crossover be-
tween these asymptotic behaviors occurs at 2(fcross '
%ds=L&G=%!0 , !sds=L&.

We show the f dependence of the plateau values of the
ratio #ind=#app in Fig. 3(b). The saturation of #ind=#app

predicted by Eq. (4) for high f is confirmed by the data;
this trend is independent of the parameter values and there-
fore strongly supports our linear rheology model, Eq. (1).
Moreover, the plateau values of #ind=#app saturate to about
1=2, from which we obtain: !s ( !0%L=ds&. The low-f
behavior, Eq. (3), is in qualitative agreement with our data.
Unfortunately, for systems where f + 0:02 Hz relaxation
mechanisms such as grain boundary motion dominate and
our model no longer applies. This makes it hard to verify
the low f limit. As a final check, using fcross ' 0:1 Hz and
the estimate G " 0:1 Pa [25], yields ds ' 0:1 "m consis-
tent with experiment estimates.

Case II (#ind > #yield shear banding).—Above yielding,
excess strain is taken up by a fluidlike phase which either
partially or completely fills the gap. The latter case gives
rise to shear banding. For f < 3 Hz, the region near the
oscillating plate remains crystalline with # # #yield for
0< z< z- while the region near the static plate (z- < z<
L) becomes fluidlike [Figs. 1(a) and 1(b)]. For given f and
#app our model predicts a continuous set of shear-banded
profiles, parametrized by the variable z-. This degeneracy
can be removed by a selection rule z- " z-%f;#app&, not
addressed in our model.

We can compute z- for each profile by fitting the data to
shear-banded solutions solidlike at z < z- and fluidlike at
z > z-. To quantitatively fit the profiles, in addition to z-,
the numerical values of G, !s, !f, db, and dt must be
determined. Since the solid layer near the plate is exposed
to the same conditions as in Case I, we use db " ds which
is related to !s through the relation !s " !0%L=ds& ob-
tained above. The remaining parameters are determined by
data fitting. To insure linearity G, !s, !f are taken to be

 

FIG. 3. (a) The ratio #ind=#app vs #ind for f " 60 Hz. (b) Plot
of the #ind=#app low strain plateau vs f.
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FIG. 2 (color online). (a) Schematic of stress vs strain rate in a
nonlinear rheology model for shear banding. The two bands
correspond to values of _# where the horizontal dash-dotted line
intersects the solid parts of %% _#&. (b) Plots of u vs t for f "
1:5 Hz and #ind ( 0:6. The curves correspond to flows in the
crystalline (z " 0:04) transition (z " 0:59) and liquid (z " 0:96)
regions. The solid lines are fits to the data of the form u%z; t& "
ju%z&j cos)2(ft, )%z&*, where )%z& is a phase shift.
(c) Schematic of stress amplitude vs strain amplitude in a linear
response model for shear banding at a constant applied f. The
crystal (top curve) becomes unstable at j#j " #yield.
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independent of f, #app. While we allow dt and z- to depend
on f and #app, only z- exhibited significant f and #app

dependence. Excellent agreement is achieved between the
best-fit profiles [solid lines in Fig. 1(a)–1(e)] and our data.
The values of the fitting parameters are G " 0:2 Pa, !s "
0:29 Pa s (which yields ds " 0:04 "m), !f " 0:05 Pa s,
and dt ( 0:05 "m. The viscosities are about 120 and 20
times larger than !0. The shear modulus agrees well with
G' 0:1 Pa obtained in simulations [25].

Analysis of the high-f flows (f . 3 Hz, #ind > #yield) is
more challenging since it is difficult to determine whether
the profiles reflect a homogenous, fluidlike phase across
the sample, or coexistence between solidlike and fluid-
like phases. Physically, shear banding is easily observed
at low f. Since the stress balance in this regime is domi-
nated by the viscous response in the fluidlike phase and
elastic behavior in the solidlike phase, in the limit f ! 0,
j#sj=j#fj ! 0 so that the crystalline portion of the sus-
pension is characterized by a very steep region of the flow
profile. In contrast, at high f, coexistence requires stress
balance between two viscously dominated responses. Thus
j#sj=j#fj ! !f=!s in this regime, resulting in two tilted
linear profiles, with different slopes. Evidence for shear
banding can, however, be extracted from the data in
Fig. 3(a). As with homogeneous crystal flows, a homo-
genous fluidlike flow across the gap must give rise to a
plateau of #ind=#app. The data for #ind > #yield do not satu-
rate to a constant value; thus, the suspension is unlikely to
be composed of a homogenous fluidlike phase. Instead,
using the same material parameters obtained from fitting
the low f data, we find that solutions of our model that best
fit the profiles in the regime f . 3 Hz and #ind > #yield

consist of a solidlike phase for z- < z< L near the static
plate and a fluidlike phase at 0< z < z-. These best-fit
profiles [solid lines Fig. 1(c)–1(e)] are in good agreement
with the data.

In summary, the observed harmonicity of the flows
provides clear evidence for the underlying linear rheology
in the homogeneous and shear-banding regimes. It is only
through the use of oscillatory shear and direct observation
of the displacement field that we are able to reveal the
linear nature of the rheological response in nonhomoge-
nous flows. Moreover, our ability to directly observe dis-
placement fields on the particles scale should facilitate
future studies aimed at determining the mechanical or
thermodynamic selection mechanisms of z-, which is cru-
cial for understanding shear banding in complex fluids.
Our results highlight new insights into the rheology under-
lying inhomogenous flows in complex fluids obtained by
combining oscillatory measurements with flow visualiza-
tion, and suggest similar measurements should be per-
formed on other complex fluids that exhibit shear
banding. An interesting question is whether a linear re-
sponse model, such as the one incorporated here, can be

used to describe shear-banding phenomena typically attrib-
uted to nonlinear rheology in other systems.
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