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We show that geometric confinement dramatically affects the shear-induced configurations of dense
monodisperse colloidal suspensions; a new structure emerges, where layers of particles buckle to stack
in a more efficient packing. The volume fraction in the shear zone is controlled by a balance between the
viscous stresses and the osmotic pressure of a contacting reservoir of unsheared particles. We present a
model that accounts for our observations and helps elucidate the complex interplay between particle
packing and shear stress for confined suspensions.
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Colloidal suspensions in thermodynamic equilibrium
exhibit fascinating phase behavior, controlled by a deli-
cate interplay between interparticle interactions and
volume exclusion. Packing constraints are essential for
determining the structures that result and an understand-
ing of these has been instrumental in elucidating the
phase behavior formed by colloidal suspensions under
various conditions. These include the packing of spheri-
cal particles in bulk [1,2] and the unavoidable defects
formed when particles order on the surface of a spherical
drop [3]. Exposing such suspensions to large strains can
drive them out of equilibrium and significantly modify
the particle configurations; nevertheless, the shear
stresses can still effectively thermalize the particles,
allowing them to explore their phase space and adopt
reproducible structures. For example, in bulk, a dense
suspension of monodisperse particles subjected to oscil-
latory shear will order into hexagonally close-packed
(hcp) layers oriented parallel to the shearing plates [4–
7]. The shear-induced viscous stresses force adjacent
layers to separate allowing them to flow over one another,
and the particle velocity and the amplitude of the motion
vary linearly between the shearing plates [4–7]. While
these structures have been well described, the complex
interplay between particle packing and the shear induced
stresses which leads to formation of these structures is
still poorly understood.

When a dense suspension of monodisperse particles is
geometrically confined between two plates but not sub-
jected to shear, the packing constraints force the suspen-
sion to adopt equilibrium structures different from those
observed in bulk [8–11]. Subjecting such highly confined
suspensions to shear is of considerable technological
relevance to coatings, lubricants, and biorheology [12–
14]; moreover, the limited number of particle layers may
facilitate a more quantitative analysis of the stresses,
and a direct determination of the interplay between pack-
ing and shear-induced stresses, allowing the resultant
nonequilibrium structures to be explicitly determined.

Surprisingly, such highly confined suspensions subjected
to shear have never been investigated.

In this Letter, we investigate dense colloidal sus-
pensions highly confined between two flat plates and
subjected to large oscillatory shear.We show that confine-
ment forces the suspension to adopt structures that are
translationally invariant along the direction of particle
motion and include striking gaps in the packing which,
nevertheless, allow the particles to pack more efficiently
than those observed in bulk. We present a model that
accounts for our observations by elucidating the interplay
between shear stress, particle packing, and geometric
confinement that leads to these ordered, but highly non-
equilibrium structures.

The suspensions contain spherical poly-(methyl-
methacrylate) (PMMA) particles sterically stabilized by
a thin layer of poly-12-hydroxystearic acid [15–17]. The
particles are impregnated with rhodamine dye and sus-
pended in a mixture of cyclohexyl bromide, tetralin, and
decalin, chosen to match both the index of refrac-
tion and density of the particles. This procedure allows
us to view the three dimensional structure of the suspen-
sion using fluorescence and confocal microscopy [16].
Optical tweezers measurements [18] and electrophoretic
mobility measurements show that the dying process im-
parts a positive charge onto the particles. The liquid-
crystal coexistence regime for these particles is shifted
and has been shown to occur at a particle volume fraction
0:38<�< 0:42 [19], whereas in hard spheres, this re-
gime occurs at 0:494<�< 0:545. While the experi-
ments described in this Letter use charged particles,
preliminary experiments using particles that are signifi-
cantly less charged reproduce the observed phenomena
and indicate that charging effects play a secondary role
in the observed pattern formation. The solvent mixture
viscosity �0 � 0:023 P. The particles have a diameter
d � 1:42 �m and polydispersity of 5%.

Our apparatus [20] mounts on an inverted microscope
and allows 3D visualization of a suspension with control
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over gap separation, shear frequency, and shear ampli-
tude. The suspension is sheared between a fixed plate
5 mm in diameter and a movable microscope coverslip,
both of which are flat on the particle length scale. Set
screws fix the gap, D, between 1 and 100 �m, and align
the plates so they are parallel to within 1 �m over the
shear zone. A sinusoidally driven piezoelectric actuator
moves the coverslip and produces up to 30 �m displace-
ments at frequencies, f, ranging between 0 and 100 Hz.
The 5 mm plate is immersed in the suspension so par-
ticles in the shear zone contact a large reservoir of par-
ticles fixed at volume fraction, � � 0:61� 0:02. The cell
is enclosed so no solvent evaporates. This lets us work
with the suspensions for periods longer than a year.

To drive the suspension out of equilibrium, we shear
with maximum strains, � * 0:3 and frequencies, f *
5 Hz. A phase diagram of the transition from equilibrium
to nonequilibrium structures as a function of � and f will
be shown elsewhere [21]. When the gap holds more than
11 layers, the morphology is identical to that in bulk
suspensions [Fig. 1(a)]. However, when the gap holds
fewer than 11 layers, confinement plays a critical role.
The hcp layer structure becomes intermittent, occurring
only at discrete plate separations. For gaps incommensu-
rate with these separations, we observe a remarkable new
ordering [Figs. 1(b)–1(e)]. Fluid voids appear within the
planes and the layers break up into hcp strips aligned in
the direction of plate motion, x. Moreover, the strip
widths vary with depth, z. A typical example obtained
for a gap slightly smaller than that confining four flat
layers is shown by the series of x-y images in Figs. 1(b)–
1(e). Near the stationary upper plate, the strips are three
particles wide and have fluid voids between them
[Fig. 1(b)]. In a plane 1:3 �m lower, particles orient in
two-particle-wide strips, alternating with one-particle-
wide strips [Fig. 1(c)]. Remarkably, the velocity of the
two-particle-wide strips is larger than that of the one-
particle-wide strips. This structure repeats 1:3 �m
farther down, but this time the velocity of the one-
particle-wide strips is larger [Fig. 1(d)]. Finally, 1:3 �m

farther down, the layer nearest the bottom shearing plate
is again oriented into three-particle-wide strips separated
by fluid voids [Fig. 1(e)]. It is convenient to examine the
strips along the hcp lattice vector directions. Inspection of
Fig. 1(b) along the y0 axis shows that the three-particle-
wide strips are registered. Microscopy measurements in-
dicate the registration arises from interdigitation with the
one-particle-wide strips which align with the fluid voids
but are located in the plane 1:3 �m below [Fig. 1(c)]. This
configuration forces the one- and three-particle-wide
strips to have equal velocities. Similar interdigitation is
observed for the two-particle-wide strips in Figs. 1(c) and
1(d). Again, the interdigitation forces the strips in differ-
ent layers to have equal velocities. Finally, similar behav-
ior is observed for the one- and three-particle-wide strips
in Figs. 1(d) and 1(e).

We summarize this behavior in the y0-z schematic of
the particle positions shown in Fig. 2. The dashed lines
indicate the z position of the x-y planes depicted in
Figs. 1(b)–1(e). The shadings delineate particles in con-
tact and moving with equal velocities. This figure shows
the peculiar patterns result from a buckling of the colloi-
dal and lubricating fluid layers. The particle velocity and
oscillation amplitude of the buckled particle layers still
vary linearly between the shearing plates. Since the two
sets of particle strips shown in Figs. 1(c) and 1(d) belong
to different layers they move with different velocities.
This is in sharp contrast with the behavior of sheared
bulk suspensions where the layers always remain flat.

In confined unsheared suspensions, the reservoir os-
motic pressure, �res, sets the volume fraction of particles
in the gap. Then, the interplay between the particle os-
motic pressure in the gap and the confined geometry
determines the suspension structure [8,9].When the shear
rate is large enough to produce nonequilibrium struc-
tures, the viscous stress, ��, dominates and determines
the suspension structure. Therefore, the effective pressure
arising from the shear stress [22] must balance �res to
determine the volume fraction in the shear zone. If we
start with a commensurate configuration and increase the

FIG. 1. Structure of a sheared suspension with � � 0:38, f � 30 Hz, and � � 0:61. The plate moves in the x direction. (a) shows
a confocal micrograph of a sheared suspension forming hcp layers when D � 80 �m. (b)–(e) show micrographs of the suspension
in the buckled state. The gap is set slightly below the height commensurate with confinement of four flat hcp layers. (b) shows an x-y
image slice of the suspension near the upper plate. (c)–(e) show slices that are, respectively, 1.3, 2.6, and 3:9 �m below the slice in
(b). The images are presented side by side so that the strip alignment can be compared. The y0 direction is aligned with one of the
characteristic hcp lattice vectors and forms a 60� angle with the x direction. The x, y, and y0 directions are indicated in the bottom
left corner of (a).
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gap keeping the layers flat, �� will decrease since there
will be more fluid between the layers. To maintain the
balance between �� and �res the layers must increase
their volume fraction. However, due to the constraints
imposed by the confined geometry, sufficiently dense
packing cannot be achieved with flat hcp layers. Instead,
the system must adopt a buckled configuration. The shear
stress forces the suspension to have translational invari-
ance along the direction of particle motion. Thus the
suspension cannot adopt a configuration which corre-
sponds to an optimized 3D packing. Instead, it must
optimize its packing within the y0-z plane. Indeed, elim-
inating the fluid gaps and grouping the particles into
triangles (Fig. 2), we find the buckled structures resemble
the densest 2D packing of static hard disks under incom-
mensurate confinement [23].

To estimate ��, we consider a gap where the suspension
forms flat hcp layers. Since the shear takes place in the
lubricating fluid between the layers, the effective viscos-
ity, �eff , of the combined structure is �eff � �0D=

P
ili,

where li is the thickness of the ith lubricating fluid
layer. The viscous stress is �� � �f�eff . Intriguingly,
the hcp layer structure introduces an ambiguity in the
calculation since different flow configurations lead to
different li. Nevertheless, we can calculate �� for two
limiting flow configurations. In the straight flow con-
figuration, particles move directly over the peaks of the
hcp sheet below. In this case, we set li � 0 when the
peaks touch and the interlayer distance is d. In the zigzag
flow configuration, particles move above the valleys
formed by particles in the layer below [5]. In this case,
we set li � 0 when the interlayer distance is d

���
3

p
=2. This

is the minimum separation for flow configurations con-
strained to move without transverse displacements. By
measuring the interlayer spacing for the different flows,
we find that �� � 6:0 dyn=cm2 independent of the flow
configuration. This stress must balance �res to ensure no
net flux of particles between the shear zone and the
reservoir. Simulations of unsheared disordered hard
spheres [24] show � � 1:1 dyn=cm2 when � � 0:61.
Furthermore, in charged spheres � can easily reach
6 times this value [25]. Thus, the stress balance is con-
sistent with our observations.

This stress balance helps determine the nonequilibrium
structure of the suspension for small D. We define ~D �
D=d, set �f � 30 s�1, and, in Fig. 3, plot �� versus ~D for
structures with up to ten layers. The solid and dashed
curves correspond to �� values calculated for straight and
zigzag flow configurations, respectively. The horizontal

dash-dotted line denotes �res � 6:0 dyn=cm2. At each
gap, the system must assume a structure where �� �
�res. Therefore, as ~D is reduced, a system initially in a
straight flow configuration must increase the amount of
zigzag with which the flat hcp layers move. For systems
with fewer than eight layers, the stress curves for such
configurations always reside between a solid curve at high
~D and a dashed curve at low ~D (Fig. 3). However, as ~D is
reduced further, the system must form a buckled struc-
ture with one fewer layer. Further reduction in ~D causes
the amplitude of the buckles to decrease. Eventually the
layers become flat and the system is described by the next
solid stress curve with one fewer flat layers.

We can further confirm this picture by accounting for
the disappearance of the buckled state at large gaps. The
~D separation between the dashed curves in Fig. 3 is
smaller than that of the solid curves. Consequently, the
buckled state regions shrink with increasing ~D and even-
tually vanish when the curves cross. The curve crossing
indicates that more than one flow configuration satisfies
the pressure balance for gaps with more than eight layers.
To investigate this crossover in the experiments, we fix
�f � 30 s�1 and plot the separation between the top and
bottom layers, � ~Dtb, for the maximally buckled (open
symbols) and straight (closed symbols) flow configura-
tions with different numbers of layers (Fig. 4). This mea-
surement indicates the crossover appears when the system
reaches 12 layers. The mismatch in crossover values sug-
gests that in the straight flow configuration, the hcp sheets
also move with some degree of registration so that the
minimum interlayer separation is less than d. Indeed,
even in the buckled state, where layers move with the
least amount of zigzag, ping-pong-ball models show the
minimum interlayer separation is 0:94d. This separation
would lead to a crossover at 13 flat layers, which is in
excellent accord with our observations.

FIG. 3 (color online). Transition mechanism predicting buck-
ling in confined suspensions. The solid and dashed curves
indicate �� versus the rescaled gap, ~D, for systems with up to
ten layers. The solid curves correspond to flat hcp sheets
moving in the straight flow configuration. The dashed curves
correspond to the zigzag flow configurations and delineate the
border between the zigzag and buckled phases. With increasing
gap, the buckled region becomes smaller and eventually dis-
appears when the dashed and solid curves cross. The horizontal
dash-dotted line corresponds to the value of �res.

FIG. 2. Suspension structure in the y0-z plane.
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An additional test of the model is obtained by observ-
ing how the slope of the linear fit to the buckled state data
in Fig. 4 changes with shear rate. By varying �f, the
position where the dashed �� curves intersect the �res

line shifts. Therefore, the manner in which the ~D spacing
between the �� curves varies predicts the shear rate
dependence of the slope. For 0:3< �f < 30 s�1, the
range of shear rates over which the measurements could
be taken; the predicted slope is 0.95 at �f � 30 s�1 and
slowly approaches 0:87�� ���

3
p

=2� as the shear rate is re-
duced. In the experiments, we observe a slope of 0:92�
0:05 at �f � 30 s�1, which gradually decreases to 0:89�
0:05 at �f � 0:3 s�1. Again, the measurements are in
excellent agreement with the predictions.

Our experiments clearly elucidate the complex inter-
play between the reservoir osmotic pressure and the shear
stress in determining the unusual packings of confined
colloidal suspensions subjected to high shear. Our results
represent an important instance in which the nonequilib-
rium configurations of a sheared suspension can be de-
termined. Similar effects will occur and must be
considered in other flow geometries provided the shear
stress dominates in the shear zone and the osmotic pres-
sure dominates in the reservoir; for example, such an
interplay would be expected in a standard rheometer
with a Couette geometry. This interplay may allow for
tuning of the sheared suspension’s rheological properties.
Finally, since the observed structures are a consequence
of sphere packing in confined geometries, such packing
considerations may also impact the trends observed in the
shear of very thin atomic and granular films [26–28].
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FIG. 4 (color online). Separation between the top and bottom
layers, � ~Dtb, for maximally buckled (open symbols) and
straight (closed symbols) flow configurations with different
numbers of layers. The measurement error is on the order of
the symbol size. The shear rate �f � 30 s�1. A crossover of the
curves occurs when the layer number is 12.
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