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Initiation of polarization. Two factors
appeared to be necessary to initiate the observed
polarization of the cytoskeleton: HTLV-I infec-
tion of the cell and contact with another cell. It
is not yet clear which molecules mediate these
signals. HTLV-I Env protein is again a candi-
date for this function, because it is the only
HTLV-I protein that is expressed intact on the
outside of the infected cell. However, HTLV-I
also up-regulates expression of certain adhesion
molecules such as integrins (/9, 20), which will
increase the likelihood of cell-cell adhesion.
Furthermore, Yamamoto et al. (20) found that
ligation of ICAM-1 on the cell surface induces
expression of HTLV-I genes, which suggests
the existence of a positive feedback loop be-
tween cell-cell adhesion and HTLV-I gene ex-
pression (fig. S3).

HTLV-I Gag protein, in complex with
the HTLV-I genome, appears to be trans-
ported to the MTOC by a microtubule-
dependent process. Microtubules have been
shown to be involved in the intracellular
transport of other viruses, e.g., adenovirus
and herpesvirus (2/-23).

The junction formed between an HTLV-
I-infected T cell and another T cell shared
two similarities—ordered talin domains
and MTOC polarization—with the “immu-
nological synapse” (24). However, in the
present study the MTOC polarization oc-
curred within the HTLV-I-infected cell,
not toward the infected cell. Therefore,
MTOC polarization was not triggered by
recognition of HTLV-I antigens presented
by a neighboring T cell, and the structures
we report here cannot be considered an
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“immunological” synapse. The term “viro-
logical synapse” may be more appropriate.

HTLV-I can infect almost any mammali-
an cell in vitro, but in vivo it is almost
confined to T cells, for unknown reasons
(25-27). It is possible that T cell-specific
factors are required either for efficient
HTLV-I replication or for the process of cell-
to-cell transfer reported here.

We conclude that HTLV-I exploits the nor-
mal physiology of the T cell to enable efficient
cell-to-cell transmission by forming a close con-
tact with the recipient cell and using the cy-
toskeleton to propel viral material into the recip-
ient cell (fig. S3). Although HTLV-I has a pe-
culiarly strong dependence on cell contact for
efficient transmission of the virus between cells,
it is possible that other lymphotropic viruses,
such as HIV-1 (28, 29), use a similar mecha-
nism to spread between lymphocytes.
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We describe experimental investigations of the structure of two-dimensional
spherical crystals. The crystals, formed by beads self-assembled on water droplets
in oil, serve as model systems for exploring very general theories about the
minimum-energy configurations of particles with arbitrary repulsive interactions
on curved surfaces. Above a critical system size we find that crystals develop
distinctive high-angle grain boundaries, or scars, not found in planar crystals. The
number of excess defects in a scar is shown to grow linearly with the dimensionless
system size. The observed slope is expected to be universal, independent of the

microscopic potential.

Spherical particles on a flat surface pack most
efficiently in a simple lattice of triangles,
similar to the arrangement of billiard balls at

the start of a game. Such six-fold coordinated
triangular lattices (/) cannot, however, be
wrapped on the curved surface of a sphere;
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instead, there must be extra defects in coor-
dination number. Soccer balls and Cg,
fullerenes (2, 3) provide familiar realizations
of this fact; they have 12 pentagonal panels
and 20 hexagonal panels. The necessary
packing defects can be characterized by their
topological or disclination charge, ¢, which is
the departure of their coordination number ¢
from the preferred flat space value of 6 (¢ =
6 — ¢); a classic theorem of Euler (4, 5)
shows that the total disclination charge of any
triangulation of the sphere must be 12 (6). A
total disclination charge of 12 can be
achieved in many ways, however, which
makes the determination of the minimum-
energy configuration of repulsive particles,
essential for crystallography on a sphere, an
extremely difficult problem. This difficulty
was recognized nearly 100 years ago by J. J.
Thomson (7), who attempted, unsuccessfully,
to explain the periodic table in terms of rigid
electron shells. Similar problems recur in
fields as diverse as multielectron bubbles in
superfluid helium (&), virus morphology (9—
11), protein s-layers (/2, 13), and coding
theory (4, 15). Indeed, both the classic
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Thomson problem, which deals with particles
interacting through the Coulomb potential,
and its generalization to other interaction po-
tentials remain largely unsolved after almost
100 years (16-18).

The spatial curvature encountered in
curved geometries adds a fundamentally
new ingredient to crystallography, not
found in the study of order in spatially flat
systems. To date, however, studies of the
Thomson problem and related problems
have been limited to theory and computer
simulation. As the number of particles on
the sphere grows, isolated charge 1 defects
are predicted to induce too much strain; this
excess strain can be relieved by introducing
additional dislocations, consisting of pairs
of tightly bound 5-7 defects (/9), which
still satisfy Euler’s theorem because their
net disclination charge is zero. Disloca-
tions, which are pointlike topological de-
fects in two dimensions, disrupt the trans-
lational order of the crystalline phase but
are less disruptive of orientational order
(19). Although they play an essential role in
crystallography on a spherical surface, the
configuration and orientation of these excess
defects remain undetermined and can only be
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Fig. 1. Light microscope images
of particle-coated droplets. Two
droplets (A) and (C) are shown,
together with their associated
defect structures (B) and (D). (A)
An ~13% portion of a small
spherical droplet with radius R =
12.0 pm and mean particle spac-
ing a = 29 um (Rla = 4.22),
along with the associated trian-
gulation (B). Charge +1(—1) dis-
clinations are shown in red and
yellow, respectively. Only one
+1 disclination is seen. (C) A cap
of spherical colloidal crystal on a
water droplet of radius R = 43.9
pm with mean particle spacing
a = 3.1 pm (R/a = 14.3), along
with the associated triangulation
(D). In this case the imaged crys-
tal covers ~17% of the surface
area of the sphere. Bars [(A) and

)], 5 pm.
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fully understood through a combination of the-
ory and experiment. Experimental realiza-
tions that probe the subtle structures have,
however, been sorely lacking.

We present an experimental realization of
the generalized Thomson problem that allows
us to explore the lowest energy configuration
of the dense packing of repulsive particles on
a spherical surface. We create two-dimen-
sional packings of colloidal particles on the
surface of spherical water droplets and view
the structures with optical microscopy.
Above a critical system size, the thermally
equilibrated colloidal crystals display distinc-
tive high-angle grain boundaries, which we
label “scars.” These grain boundaries are
found to end within the crystal, which is not
observed to occur on flat surfaces because the
energy penalty is too high.

Our experimental system is based on the
self-assembly of 1-pwm-diameter cross-linked
polystyrene beads adsorbed on the surface of
spherical water droplets (of radius R), them-
selves suspended in a density-matched toluene-
chlorobenzene mixture (20). The particles are
imaged with phase contrast, using an inverted
microscope. The curvature of the spherical wa-
ter droplet limits the imaged surface area to
between 5 and 20% of the full surface area of
the sphere, depending on the size of the droplet.
After the center of mass of each bead has been
determined, the lattice geometry is analyzed by
Delaunay triangulation algorithms (27) appro-
priate to spherical surfaces.

We analyze the lattice configurations of a
collection of 40 droplets. A typical small
spherical droplet with system size R/a = 4.2,
where «a is the mean particle spacing, is
shown in Fig. 1A. The associated Delaunay
triangulation is shown in Fig. 1B. The only
defect is one isolated charge +1 disclination.
Extrapolation to the entire surface of the
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sphere is statistically consistent with the re-
quired 12 total disclinations.

Qualitatively different results are ob-
served for larger droplet sizes as defect con-
figurations with excess dislocations appear.
Although some of these excess dislocations
are isolated, most occur in the form of dis-
tinctive (5—7—5—7—...—5) chains, each of
net charge +1 (Fig. 1D). These chains form
high-angle (30°) grain boundaries, or scars,
which terminate freely within the crystal.
Such a feature is energetically prohibitive in
equilibrium crystals in flat space. Thus, al-
though grain boundaries are a common fea-
ture of two-dimensional (2D) and 3D crystal-
line materials, arising from a mismatch of
crystallographic orientations across a bound-
ary, they usually terminate at the boundary of
the sample in flat space because of the
excessive strain energy associated with iso-
lated terminal disclinations. Termination
within the crystal is a feature unique to
curved space. Thus, our results provide im-
portant guidance to determine the configu-
ration of excess defects on a sphere.

To ascertain that the colloidal particles
are equilibrated, we use particle-tracking
routines and subsequent automated triangu-
lation to measure the mobility of the ob-
served screening dislocations. The diffu-
sion of thermally excited colloid particles
on the surface of the water droplets results
in local rearrangements of the crystal struc-
ture. Thermal fluctuations create and de-
stroy dislocations once every few seconds,
on average, indicating that the defect arrays
reach equilibrium much faster than the ob-
servation time of 10 to 60 min. The equil-
ibration time can also be estimated by the
time required for a dislocation to diffuse
across typical defect structures. The mea-
sured diffusion constant allows us to calcu-
late equilibration times that range from a
few seconds to hundreds of seconds, de-
pending on the size of the crystal. Because
the spherical crystals exist for 10 to 60 min,
the system has sufficient time to reach
equilibrium. Thus, our observations reflect
the equilibrium ground state, as opposed to

Excess Dislocations N

System Size R/a

Fig. 2. Excess dislocations as a function of
system size. The number of excess dislocations
per minimal disclination N as a function of
system size R/a, with the linear prediction given
by theory shown as a solid red line.
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a history-dependent nonequilibrium effect,
which is the case for crystals in flat space.

To quantify the behavior of the scars,
we determine the number of excess dislo-
cations per chain for each droplet, with the
convention that dislocations are counted as
part of the same array if they are within
three lattice spacings, and plot the results as
a function of R/a (Fig. 2). Scars only appear
for droplets with R/a = 5. These results
provide a critical confirmation of a theoret-
ical prediction that R/a must exceed a
threshold value (R/a). ~ 5, corresponding
to M =~ 360 particles, for excess defects to
proliferate in the ground state of a spherical
crystal (22). The precise value of (R/a),
depends on details of the microscopic po-
tential, but its origin is easily understood by
considering just one of the 12 charge +1
disclinations required by the topology of
the sphere. In flat space such a topological
defect has an associated energy that grows
quadratically with the size of the system,
because it is created by excising a 60°
wedge of material and gluing the bound-
aries together (23). The elastic strain ener-
gy associated with this defect grows as a
function of the area. In the case of the
sphere, the radius plays the role of the
system size. As the radius increases, isolat-
ed disclinations become much more ener-
getically costly. This elastic strain energy
may be reduced by the formation of linear
dislocation arrays, i.e., grain boundaries.
The energy needed to create these addition-
al dislocation arrays is proportional to a
dislocation core energy E_. and scales
linearly with the system size. Such screen-
ing is inevitable in flat space (the plane) if
one forces an extra disclination into the
defect-free ground state. Unlike the situa-
tion in flat space, grain boundaries
on the sphere can freely terminate (22-26),

Fig. 3. Model grain boundaries. This image is
obtained from a numerical minimization,
based on the theory of (22), for a system size
comparable to that of the droplet in Fig. 1, C
and D.

and our experimental results confirm these
theoretical expectations.

One systematic approach to determining
the ground state of a collection of M parti-
cles distributed on the sphere and interact-
ing through an arbitrary repulsive potential
(22, 27) treats the disclination defects
themselves as the fundamental degrees of
freedom, with the 6-coordinated particles
forming a continuum elastic background.
The agreement between the predicted and
observed values of (R/a)_ supports the va-
lidity of this theoretical approach. The orig-
inal particle pair potential is replaced by a
long-range defect pair potential given by

X(B) =R (1+ [t =B gz Inz/(1—2)])

for a pair of defects separated by an angular
distance B. The potential is attractive for
opposite-charged defects and repulsive for
like-charged defects. The underlying mi-
croscopic potential enters only in determin-
ing the proportionality constant (equivalent
to an elastic Young modulus) and E_. Many
predictions of this model are therefore uni-
versal in the sense that they are insensitive
to the exact microscopic potential. This
enables us to make definite predictions
even though the colloidal potential is not
precisely known. It also means that our
model system serves as a prototype for any
analogous system with repulsive interac-
tions and spherical geometry. To further
test the validity of this approach, we show
a typical ground state for large M in Fig. 3.
The system size here is R/a = 12, similar to
the droplet in Fig. 1D. The results are
markedly similar to the experimentally ob-
served configuration in Fig. 1D; the only
difference is a result of thermal fluctua-
tions, which break the two defect scars in
the experiment. This agreement between
theory and experiment also provides con-
vincing evidence that these scars are essen-
tial components of the equilibrium crystal
structure on a sphere.

The theory predicts that an isolated
charge +1 disclination on a sphere is
screened by a string of dislocations of
length cos™'(5/6)R =~ 0.59R (22). We can
use the variable linear density of disloca-
tions to compute the total number of excess
dislocations N in a scar. We find that N
grows for large (R/a) as @3)[VI1 — 5
cos™ 1(5/6)](R/a), ~ 0.41R/a, independent-
ly of the microscopic potential. This pre-
diction is universal and is in marked agree-
ment with the experiment, as shown by the
solid line in Fig. 2.

We expect these scars to be widespread
in nature. They should occur, and hence
may be exploited, in sufficiently large viral
protein capsids, giant spherical fullerenes,
spherical bacterial surface layers (s-layers),

and the siliceous skeletons of spherical ra-
diolaria (aulosphaera) (28), provided that
the spherical geometry is not too distorted.
Terminating strings of heptagons and pen-
tagons might serve as sites for chemical
reactions or even as initiation points for
bacterial cell division (/2) and will surely
influence the mechanical properties of
spherical crystalline shells.
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