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Abstract

The dynamics of a glass-forming material slow greatly near the glass transition, and molecular motion becomes

inhibited. We use confocal microscopy to investigate the motion of colloidal particles near the colloidal glass transition.

As the concentration in a dense colloidal suspension is increased, particles become confined in transient cages formed by

their neighbors. This prevents them from diffusing freely throughout the sample. We quantify the properties of these

cages by measuring temporal anticorrelations of the particles’ displacements. The local cage properties are related to the

subdiffusive rise of the mean square displacement: over a broad range of time scales, the mean square displacement

grows slower than linearly in time.
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1. Introduction

As glass-forming materials are cooled, the

sharply increasing viscosity of the liquid is ac-

companied by equally dramatic changes in the

motion of tracer particles within the material [1].

In particular, the mean square displacement hDx2i
(MSD) of an ensemble of tracer particles embed-

ded in a glass-forming material forms a plateau at

intermediate lag times, reflecting the crowding of

the particles which prevents easy rearrangements

[see Fig. 1(a)]. At longer lag times, the MSD shows
an upturn, returning to diffusive motion, albeit

with a greatly reduced diffusion coefficient

(hDx2i � 2D1Dt). Dense colloidal suspensions are

simple materials which undergo a glass transition

as the particle concentration increases, and pro-

vide a way to directly study the anomalous kinetics

of the colloidal particles near the glass transition,

to determine how the local motion of individual
particles gives rise to the unusual behavior of the

ensemble MSD [2,3]. The plateau in the MSD is

subdiffusive: for a range of time scales Dt, hDx2i
grows as hDx2i � ðDtÞc with c < 1; c ¼ 1 is the

Chemical Physics 284 (2002) 361–367

www.elsevier.com/locate/chemphys

*Corresponding author. Tel.: +1-404-727-4479; fax: +1-404-

727-0873.

E-mail address: weeks@physics.emory.edu (E.R. Weeks).

0301-0104/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0301-0104 (02 )00667-5

mail to: weeks@physics.emory.edu


more typical diffusive case. Typically subdiffusion
arises when a system possesses memory [4]. In this

work, we test this by looking for temporal corre-

lations in the particle motions. We find that these

correlations do exist and are due to the ‘‘cage ef-

fect’’ of glassy systems (see Fig. 2). We character-

ize this cage effect, and directly connect the local

description of particle caging to the subdiffusive

plateau in the MSD and the lag-time dependent
anomalous diffusion exponent cðDtÞ.

2. Experimental procedure

Our samples are colloidal poly-(methylmethac-

rylate) (PMMA) particles, sterically stabilized by a

thin layer of poly-12-hydroxystearic acid [2,5,6].
They are in an organic solvent mixture of cyclo-

hexylbromide and decalin, chosen to closely match

the density and index of refraction of the particles

[5]. The particles have a radius a ¼ 1:18 lm and a

polydispersity of �5%. They are dyed with rho-

damine dye, which results in a slight charging of
the particles. Despite this slight charge, their phase

behavior is similar to colloidal hard spheres [7]: we

find /freeze ¼ 0:38 and /melt ¼ 0:42 (for hard

spheres these values are /f ¼ 0:494 and /m ¼
0:545). As the concentration is further increased,

we see a glass transition at /g � 0:58, in agreement

with what is seen for hard spheres. Samples with

/ > /g do not form crystals in the bulk even after
they have been sitting for several months. More-

over, the diffusion constant for such samples goes

to zero – the samples become nonergodic [1].

We view the colloidal particles with a fast

scanning laser confocal microscope, to obtain

three-dimensional images from deep within the

sample [2,3,5,8]. In practice, we focus at least

30 lm from the coverslip of the sample chamber,
to avoid wall effects. By taking a series of three-

dimensional images at intervals of 10–20 s, we are

able to follow the motion of several thousand

colloidal particles for several hours. We identify

Fig. 1. (a) Mean square displacement for three ‘‘supercooled

fluids,’’ with volume fractions / as indicated. The vertical lines

indicate the cage rearrangement time scale Dt	. (b) The symbols

indicate the measured anomalous diffusion exponent cðDtÞ,
equivalent to the logarithmic slope of hDx2i. The lines show the

predicted value cest based on Eq. (3) (dotted line / ¼ 0:46, solid

line / ¼ 0:52, and dashed line / ¼ 0:56). (c) The anticorrelation

scale factor cðDtÞ from Eq. (2); see text for details. (d) rcage as a
function of Dt. The symbols in (b–d) are the same as part (a).

Fig. 2. (a) Trajectories of particles from a sample with

/ ¼ 0:52, over a 2 h period. The axes are labeled in microns,

and the circle illustrates the particle size. These trajectories are

from particles within a 2:5 lm thick region within the sample;

the gray shades indicate vertical distance (darker is closer to the

coverslip). (b) and (c) are magnifications of two of the trajec-

tories, with tick marks indicating 0:2 lm spacings. These two

particles alternate between being trapped in a local cage, and a

slight jump to a new location when the cage rearranges. Note

that the jump distances are typically shorter than the particle

radius; this is not a projection effect.
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particle centers with an accuracy of 0:03 lm hor-

izontally and 0:05 lm vertically; the poorer verti-

cal resolution is due to optical limitations of the

microscope. For further details, see [5,9].

3. Results

Wecalculate themean square displacement hDx2i
from the measured particle positions, and several

typical curves are shown in Fig. 1(a). The data at

short Dt (less than 10 s) is obtained from two-di-

mensional measurements within the three-dimen-

sional sample, in order to improve the time
resolution. At the shortest lag times, hDx2i increases
due to the diffusive motion of the particles. At in-

termediate time scales, the MSD has a plateau,

which becomes more pronounced as the volume

fraction / increases toward /g � 0:58. This plateau
is due to the cage effect: particles are trapped in

transient cages formed by their neighbors, and thus

cannot diffuse freely through the sample [1,10]. At
the largest Dt, the cages rearrange, and particles are

able to diffuse throughout the sample, albeit with a

greatly decreased diffusion coefficient D1 [10–12].

This can be seen in the particle trajectories shown in

Fig. 2. Fig. 2(a) shows two-dimensional projections

of trajectories of several particles within a small

region. The two particles marked b and c are mag-

nified to the right, and show the difference between
caged motion, and the rearrangements.

The cage rearrangements – that is, the relatively

rapid shifts in particle positions seen in Fig. 2 – are

reflected in broad tails for the distribution of

particle displacements [12–15]. These distributions

are shown by the symbols in Fig. 3(a). The time

scales for the displacements are chosen to be

comparable to the end of the MSD plateau. The
majority of particles move only short distances, as

they are confined within cages. However, the dis-

tributions show that a nontrivial fraction of par-

ticles do move large distances, more than would be

expected if the distributions of displacements were

gaussian [dotted lines in Fig. 3(a)]. A traditional

way to quantify the relative size of the tails of the

distribution is to calculate a nongaussian param-
eter, which compares the fourth moment of the

distribution to the second moment:

a2ðDtÞ ¼
3hDr4ðDtÞi
5hDr2ðDtÞi2


 1; ð1Þ

which is zero for a gaussian distribution, and lar-

ger when the distribution is broader (for example,

a2 ¼ 1 for an exponential distribution) [12,15–17].

This parameter is close to zero at small and large

lag times Dt, and is a maximum at an intermediate

value Dt	 which we use to define the cage rear-

rangement time scale [11,12]. This time scale is

indicated by vertical bars in Fig. 1(a), and corre-
sponds qualitatively with the end of the MSD

plateau.

To quantify the cage effect, we wish to look for

temporal correlations in a particle’s motion; we

follow the method of Doliwa and Heuer [10,11]. In

particular, if a particle moves in one direction for a

period of time, its neighboring particles (the

‘‘cage’’) will prevent further motion in that direc-
tion, and may push the first particle back toward

the middle of the cage. In this way, the positions of

the neighboring particles, which have shifted

slightly to allow the interior particle to move,

Fig. 3. (a) Probability distribution functions for displacements

r01 with time scales Dt ¼ 260 s for / ¼ 0:46, 700 s for / ¼ 0:52,

and 1000 s for / ¼ 0:56. (b) hx12i as a function of r01 for the

same data shown in (a). The values of Dt for the three data sets

have been chosen to produce similar behavior at small r01,
which in these cases is reasonably well described as hx12i ¼

ð0:26Þr01 (indicated by the dashed line). The departure from

the small r01 behavior occurs at rcage � 0:75; 0:35, 0:25 lm for

/ ¼ 0:46; 0:52; 0:56.
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provide a ‘‘memory’’ of the interior particle’s

motion. Thus we expect that usually a particle’s

motion will be temporally anticorrelated, unless it

is involved in a cage rearrangement (and thus

moves and then stays in its new position). To look

for this, we pick a time scale Dt and then consider
displacement vectors for each particle, D~rrmn ¼
~rrðnDtÞ 
~rrðmDtÞ. In particular we wish to deter-

mine how D~rr12 depends on D~rr01, and how this

depends on the time scale Dt [10].
Anticipating that D~rr12 is directionally correlated

with D~rr01, we consider two components of D~rr12: x12
is the component of D~rr12 parallel to D~rr01, the

original displacement, and y12 is the component of
D~rr12 along an arbitrarily chosen direction perpen-

dicular to ~rr01 [10]. Because of the arbitrariness in

calculating y12, the average hy12i ¼ 0. For dilute

samples, caging does not occur and hx12i ¼ 0; hx12i
will be negative if memory effects are present.

Particles which initially move farther must move

their neighbors farther as well, and so we expect

that hx12i will depend on how far a particle has
originally moved, r01 ¼ j~rr01j. To investigate this we

compute the average value hx12i as a function of

r01, and plot this in Fig. 3(b) for three different

volume fractions [10]. Dt has been chosen so that

the curves have similar behavior at small r01, and
also to be close to the cage rearrangement time

scale Dt	. The average is taken over all particles

and all initial times. x12 is negative, indicating an-
ticorrelated motion: particles which move in one

direction during the first time interval will, on

average, move in the opposite direction during the

subsequent time interval. This is a direct signature

of the cage effect. Moreover, for particles with

small displacements r01, the average subsequent

displacement hx12i is linearly proportional to r01, as
indicated by the dashed line in Fig. 3(b). For larger
r01, hx12i is no longer proportional to r01, and in

fact becomes almost independent of r01 [10].

The departure from the linear behavior at small

r01 occurs at smaller distances as the volume frac-

tion / increases toward the glass transition. The

existence of two regimes – a linear response at small

r01 and a breakdown of this linear response at larger

r01 – suggests that the crossover point can be taken
as rcage, and the two regimes be identified as caged

particles and rearranging particles respectively.

In other words, particles with r01 < rcage typically

remain caged, and the effect of the cage is to push

the particle back toward its original position

[10,11]. The strength of this effect is given by

hx12i ¼ 
cr01 ð2Þ
with for example c ¼ 0:26 for the data shown in

Fig. 3(b). Particles with r01 > rcage still tend to be

pushed back, but not as far as predicted from

linear extrapolation from the small r01 behavior:

thus these particles may end up in new positions,

and their behavior reflects cage rearrangements
rather than caged motion. The changes seen in Fig.

3(b) as / is increased shows that the cage size rcage
decreases as the glass transition is approached

[18,19].

By studying the Dt dependence of the propor-

tionality constant c and cage size rcage, we can

better understand the MSD. The value of c de-

pends strongly on the chosen time scale Dt, as
shown in Fig. 1(c). In the middle of the MSD

plateau, c is large, close to 0.5; at larger Dt it de-
creases, signaling a diminishing cage effect. cðDtÞ
can be related to the logarithmic slope of the MSD

[10], to directly connect the cage effect to the

subdiffusive MSD plateau. Locally the MSD

grows as hDr2i � DtcðDtÞ, with the anomalous dif-

fusion exponent cðDtÞ equal to the logarithmic
derivative of hDx2i. This can be estimated as

cestðDtÞ ¼
d lnhDr2i
d lnDt

� ln½jD~rr01 þ D~rr12j2=hr201i�
lnð2Dt=DtÞ

¼ lnð2þ 2hx12r01i=hr201iÞ
ln 2

� 1þ lnð1
 cðDtÞÞ= ln 2: ð3Þ

We have used hr212i ¼ hr201i (time invariance) and

the final approximation uses hx12r01i=hr201i � hx12i=
hr01i � 
c, in anology with Eq. (2); we have veri-

fied that these approximations are reasonable [11].

In Fig. 1(b) the symbols show cðDtÞ computed

directly from the MSD, and the lines show cestðDtÞ
calculated from Eq. (3). The subdiffusive plateau

in the MSD is seen as a broad range of Dt for

which cðDtÞ < 1, although it is also clear that c
does not have a constant value anywhere in the
plateau, but rather is a smoothly evolving function

of Dt. Moreover, the behavior of cðDtÞ is well
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captured by the calculated value based on cðDtÞ, as
shown by the agreement between the symbols (c)
and the lines (cest). In other words, the subdiffusive

behavior of the MSD is a direct consequence of the

caged motion of the particles, as measured by Eq.
(2). As Dt increases, the cage effect becomes less

important, cðDtÞ decreases toward zero (no cag-

ing), and the MSD approaches diffusive behavior

(c ! 1).

The behavior of the cage size rcage is shown in

Fig. 1(d). rcage is relatively insensitive to Dt, indi-
cating that the size of the cage is more likely a

static property [10,18]. The cage size decreases as
the glass transition is approached, although it has

a nonzero value at the glass transition [18,19]. The

diffusive behavior of the MSD at large time scales

can thus be thought of as due to the random walks

of the individual particles, each taking steps of size

rcage in random directions [18]. On the cage rear-

rangement time scale Dt	, only a few particles

move (5–10%) [2,12,18], and so in fact the average
time between random walk steps is much larger

than Dt	 as seen in [18].

Further insight into the cage effect can be

found by studying the behavior of the total dis-

placement D~rr12 rather than focusing only on x12,
the component in the direction of D~rr01. D~rr12 can

be decomposed into the deterministic part (hx12i
given by Eq. (2) and hy12i ¼ 0), and a stochastic
part. Both the deterministic and stochastic parts

may depend on r01. To measure the importance

of the stochastic part, we compute rk ¼
hx212i 
 hx12i2 and r? ¼ hy212i 
 hy12i2, shown in

Fig. 4 by the connected symbols and unconnected

symbols, respectively. The behaviors of the par-

allel and perpendicular components are similar at

small values of r01, but differ markedly when the
original displacement has a larger distance r01
[11]. The transverse component r? is nearly

constant as a function of r01, but rk becomes

much larger when r01 is larger. Again, any de-

pendence whatsoever on r01 is indicative of

memory in the system, and the increase in rk
reflects a memory of mobility. Particles which

move large distances originally (large values of
r01) are more mobile subsequently (large values of

rk), and in particular are more mobile along the

direction of the original motion.

Confirmation of this is seen by plotting the

distribution functions Pkðx12jr01Þ and P?ðy12jr01Þ in
Fig. 5, where the open circles are for r01 < rcage and
the closed circles are for r01 > rcage. Gaussian fits to

these distribution functions are shown by the lines.

All of the functions appear similar, except for

Fig. 4. rk (connected symbols) and r? as a function of r01, for
three different volume fractions as indicated. The time scales are

as in Fig. 3.

Fig. 5. (a) The functions Pkðx12jr01; tÞ and (b) P?ðy12jr01; tÞ, for
/ ¼ 0:52 (a liquid), with t ¼ t	 ¼ 600 s. The open circles are all

data for r01 < rcage ¼ 0:4 lm and the closed circles are for

r01 > rcage. The gaussian fits are shown as dashed lines for

r01 < rcage and solid lines for r01 > rcage, and have widths of

r � 0:13 lm for all except rkðr01 > rcageÞ ¼ 0:22 lm. Similarly,

the nongaussian parameter a2 ¼ 1:8 for all except Pkðx12jr01 >
rcageÞ, which has a2 ¼ 1:0.
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Pkðx12; r01 > rcage), which is significantly broader

[solid circles in Fig. 5(a)]. Thus, particles which

originally have larger displacements are more

likely to continue moving in the same direction

(large x01 > 0) or more likely to move a large dis-

tance backwards (x01 < 0), but slightly less likely
to stay in the same position. Moreover, as rk 6¼ r?,

the particles undergoing cage rearrangements

move in a highly anisotropic fashion. The distri-

butions are broader than Gaussians, as can be seen

by comparing the symbols to the lines; this is a

reflection of the underlying broad distributions of

the displacements, as shown in Fig. 3(a). Note also

that the distributions shown in Fig. 5 are sym-
metric about the peak; this is unsurprising for

P?ðy12Þ and perhaps more surprising for Pkðx12Þ.

4. Discussion

We have studied the microscopic motion of

thousands of tracer particles in a concentrated
colloidal sample, in order to understand the dra-

matic dynamical changes near the glass transition.

In particular, near the glass transition, particles

are confined to transient cages, resulting in tem-

poral anticorrelations in particle displacements.

We find that caging can be described as a deter-

ministic anticorrelated motion, plus a stochastic

part. The deterministic part is due to memory
provided by the caging particles, which must ad-

just their positions to allow a particle to move, and

subsequently push that particle back toward its

original position. By quantifying these effects (as

given by Eq. (2)), we can connect the properties of

the cage directly to the subdiffusive growth of the

mean square displacement (MSD), shown in Fig.

1(a). The connection is quite good, as seen by
comparing the lines and symbols in Fig. 1(b).

The long time behavior of the MSD is diffusive,

as seen in Fig. 1(a). This can be thought of as due to

the random walks taken by the individual particles,

which alternate between being stuck in cages for a

randomduration, and a cage rearrangementmotion

of random length (see Fig. 2). A simple possibility

which leads to diffusive motion at long times is that
the cages responsible for the subdiffusive plateau

have finite lifetimes with a characteristic time scale.

An alternate possibility is that the cage rearrange-

ment motions could be L�eevy flights. L�eevy flights are
motions with an infinite mean square step size, in

other words, cage rearrangements would involve

movements that carry particles large distances. In

such a way, diffusive motion at long times could be
due to a competition between cages with infinite

mean lifetime, and motions with infinite mean

square lengths [4]. (These possibilitieswould suggest

that the distribution for cage times and/or step sizes

are power laws, for example PðDxÞ � ðDxÞ
m
for the

cage rearrangement displacement Dx with 1 <
m < 3.) L�eevy flights seem possible when looking at

the broad tails shown in Fig. 3(a). However, at best
Fig. 3(a) shows a truncated L�eevy distribution. We

do not see any particles making dramatic displace-

ments much larger than their own radius; the tra-

jectories shown in Fig. 2 making small adjustments

(less than the radius of the particle) are typical. It

seems likelier that the characteristic step size is rcage,
a small and finite distance, and thus the diffusive

growth of theMSDasDt ! 1 is due to a finite cage
lifetime [18]. In glassy samples, the cage rearrange-

ments are no longer allowed, and thus theMSDwill

be subdiffusive at all times, and perhaps asymptot-

ically reach a plateau; thus we expect these concepts

to be even more useful in understanding the strange

kinetics of nonergodic glassy samples.
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