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Ultralow-angle dynamic light scattering with a charge coupled device
camera based multispeckle, multitau correlator

Luca Cipelletti and D. A. Weitz
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 18 December 1998; accepted for publication 11 May 1999!

We use a charge coupled device~CCD! camera and a multi-tau software correlator to measure
dynamic light scattering~DLS! at many angles simultaneously, from 0.07° to 5.1°. Real-time
autocorrelation functions are calculated by averaging both over time and over CCD pixels, each
corresponding to a different coherence area. In order to cover the wide spectrum of decay times
associated with the large range of accessible angles, we adopt the multitau scheme, where the
correlator channel spacing is quasilogarithmic rather than linear. A detailed analysis is presented of
the effects of dark noise, stray light, and finite pixel area, and methods to correct the data for these
effects are developed, making a CCD camera a viable alternative for a DLS detector. We test the
apparatus on a dilute suspension of colloidal particles. Very good agreement is found between the
particle radius derived from the CCD data, and that obtained with a conventional DLS setup.
© 1999 American Institute of Physics.@S0034-6748~99!05008-X#
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I. INTRODUCTION

Dynamic light scattering~DLS! is a well-established
technique for investigating the dynamics of a wide variety
systems. It has been successfully applied to countless p
lems in physics, chemistry, biology, and medicine. In a D
experiment, the quantity of interest is the ensemble-avera
temporal autocorrelation function of the fluctuations of t
light scattered by the sample. A typical setup includes a la
source, a goniometer, and a detector, usually a photom
plier tube, whose signal is fed to an electronic correlator. T
detector collects light from a single coherence area
speckle.1,2 To obtain good statistical accuracy, it is necess
to extensively time-average the correlator output; for
ample, to attain a statistical uncertainty of 1% require
measurement over 10 000 characteristic decay times of
correlation function. For ergodic samples, the time averag
directly yields the desired ensemble average. However,
approach may be difficult or even impossible for studyi
samples that are nonergodic, where time and ensemble a
aging are no longer equivalent. This approach is also imp
tical for systems with very slow dynamics, where the av
aging time becomes too long. Examples of systems of g
interest which exhibit slow dynamics or nonergodic behav
include colloidal glasses and polymeric or colloidal gels.
addition, the interesting dynamics often occurs at len
scales as large as several microns, corresponding to
small angles, and very slow dynamics. To measure DLS
der these conditions requires a new strategy.

The most direct and effective approach is to use a m
tielement sensor, such as the pixel array of a charge cou
device ~CCD! camera, to collect the signal from many di
ferent speckles simultaneously. For slow dynamics, corr
tion functions can be calculated by software for each pi
and then averaged. Since different speckles are statistic
independent, the pixel averaging enhances the statistica
curacy and the total duration of the experiment can be
3210034-6748/99/70(8)/3214/8/$15.00
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duced by a factor equal to the number of coherence a
sampled. Under proper conditions, direct ensemble ave
ing is also possible, thus allowing one to study nonergo
samples. Wong and Wiltzius3 first demonstrated the feasibi
ity of this approach by measuring DLS with a CCD came
Autocorrelation functions were averaged over rings of pix
centered about the transmitted beam position, that is, o
speckles corresponding to the same magnitude of the sca
ing wave vectorq[uqu but different azimuthal orientation
whereq54pl21 sinu/2, u is the scattering angle, andl is
the wavelength in the medium. This geometry was also u
to help overcome the very low scattered intensity enco
tered in the extension of speckle correlation spectroscop
small-angle x rays.5–7 So-called ‘‘multispeckle’’ autocorrela-
tion functions were also measured by Kirschet al.,4 who
incorporated a CCD detector in a traditional DLS setup.
their case, the averaging was not azimuthal, but rather ov
limited number of speckles corresponding to a small so
angle centered around the direction set by the goniom
arm.

Despite the increasing use of CCD cameras for corre
tion spectroscopies, many important issues have not, as
been addressed. The algorithms used cannot meet the
putational load required to calculate in real time the autoc
relation functions averaged over both pixels and time. T
constrains and limitations specific to a CCD sensor have
been fully addressed. Due to the reduced dynamic ra
~typically 2–3 decades!, the contribution of the dark noise t
the autocorrelation function can be significant, as can
distortions introduced by pixel saturation. Moreover, the
nite pixel-to-speckle size ratio must be taken into accoun
obtain the absolute scale of the autocorrelation functio
These limitations have restricted the use of CCD camera
samples for which the shape of the autocorrelation funct
was knowna priori,3,5–7 or to samples where some overla
existed with data obtained with a traditional setup.4 For light
4 © 1999 American Institute of Physics
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scattering, CCD cameras are particularly well suited
ultrasmall-angle scattering, where the speckle averaging
the capability of collecting data at many scattering ang
simultaneously match well with the wide range of azimuth
and scattering angles usually accessible in a low-q apparatus.
The relatively low data acquisition rate of a CCD camera
of little concern, since at smallq the speckle dynamics ar
slow. However, at small angles, stray light scattered from
optical components can often dominate the total intens
while this can be subtracted from the average or static in
sity, it can mix with the fluctuations, leading to severe d
tortions of the correlation function. Thus, special care m
be taken to correct for these effects.

In this article, we discuss the implementation of an a
paratus for measuring DLS at ultrasmall angles using a C
camera. We access angles from 0.07° to 5.1°, correspon
to length scales spanning almost two decades, from a
microns to a fraction of a millimeter. To simultaneous
cover the wide spectrum of relaxation times associated w
such a large range of length scales, we adopt the mult
correlation scheme,9 where the delay times are spaced qua
logarithmically, rather than linearly. The multitau algorith
requires less data storage and processing time, thus allo
us to calculate time- and pixel-averaged autocorrela
functions in real time. Multiple exposure times are also us
to optimize the mean intensity level for all scattering vecto
A detailed analysis of the effects of dark noise, stray lig
and finite detector area on the autocorrelation function
presented. Formulas are derived that allow us to extract
field autocorrelation function from the measured CCD sig
autocorrelation. The correlator algorithm and the data cor
tion procedure are designed to study both ergodic and n
ergodic samples.

In Sec. II of this article, we describe the experimen
setup, while in Sec. III, we present our implementation of
software multitau, multispeckle correlator, focusing first
the algorithm~Sec. III A!, then on the corrections needed
account for stray light, dark noise and pixel area~Sec. III B!.
Finally, in Sec. IV we describe and discuss an experime
test of the apparatus.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The lig
source is a frequency-doubled Nd:YAG laser~Coherent
315M! that operates at a wavelength of 532 nm. The la
beam is coupled to a polarization-maintaining single-mo

FIG. 1. Experimental setup.
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fiber optics. We use a set screw to partially block the be
before coupling it to the fiber, so that the beam power can
attenuated to a fewmW, as required for a typical measure
ment. The beam exiting the fiber is collimated by a lens t
1/e2 diameter of 7.7 mm and a portion is directed by a be
splitter ~BS! onto a photodiode~PDM!, which monitors any
fluctuations in the incident power. The transmitted comp
nent impinges onto the scattering cell, which is typically
flat cell, 2–10 mm in thickness. The optical scheme for
collection of the scattered light is similar to that described
Ferri.8 Both the scattered and the transmitted light are c
lected by a lens~L! with a focal length of 100 mm. In its
focal planeS, a small mirror~M! is placed, at an angle o
45° to the incident beam. The transmitted beam is int
cepted by this mirror and directed to a photodiode~PDT!,
allowing the sample transmission to be measured. The C
objective~O! images the focal planeS onto the CCD senso
with unit magnification. With this optical scheme, each CC
pixel corresponds to a different scattering wave vectorq.
Scattering wave vectors of the same magnitudeq are mapped
to pixels lying on a circle centered about the optical ax
The optics are designed in such a way that the speckle siz
the sensor plane corresponds roughly to the pixel size.
most two decades in scattering vector are access
200 cm21<q<14 000 cm21, corresponding to scatterin
angles from about 0.07° to 5.1°. The minimum angle is li
ited by the size of the small mirror that blocks the transm
ted beam, while the angular range is dictated by the sen
size. The CCD camera is a 10-bit digital camera~Eastman
Kodak Megaplus 1.6i ) with a 153231024 pixel sensor, each
pixel being 939 mm2. The maximum camera speed is
frames per second. The digitized images are acquired b
frame grabber~Matrox Pulsar! and transferred for real-time
processing to a PC with an Intel Pentium II processor r
ning at 400 MHz.

III. SOFTWARE CORRELATOR

We outline the general features of the multitau, mu
speckle algorithm in Sec. III A. The effects on the measu
autocorrelation functions of the CCD dark noise, stray lig
the finite pixel-to-speckle size ratio are discussed in S
III B. Formulas are derived to correct for the distortions d
to these effects.

A. Multitau, multispeckle autocorrelation function
calculation

We use custom-written software to calculate real-tim
autocorrelation functions in parallel for all pixels processe
To access a wide range of delay times without exceeding
PC memory and computation power, the multitau correla
scheme first proposed by Scha¨tzel9 is adopted. In order to
obtain good statistics even for short runs and to study n
ergodic samples, the autocorrelation functions calculated
all pixels with the same magnitude of the scattering vec
are averaged. Let us first focus on the calculation of
autocorrelation function for a single pixel. In the multita
scheme, the correlator channel spacing is quasi-logarith
thus spanning several decades in delay times with a lim
number of channels. The algorithm consists of implement
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a set of linear correlators, each of which has a small num
of channels, typically sixteen, evenly spaced in time. T
delay time is not the same for all correlators, but rath
doubles from one correlator to the next. To increase the
tistical accuracy, the sampling time also doubles with
delay time, as shown schematically in Fig. 2. The desi
multitau autocorrelation function is obtained by merging t
output of all linear correlators. Note that for all correlato
but the first, the autocorrelation function needs to be ca
lated only for the second half of the channels, since the
half corresponds to time delays already covered by the fa
correlators. The input for the first correlator is the data fro
the CCD camera, whose frame rate and exposure time se
shortest delay timetmin and sampling timetexp, respectively.
Pairs of subsequent data are then combined by avera
them, and input into the next correlator. This scheme is i
ated for all linear correlators. The averaging process dese
a brief comment. To reduce the amount of required mem
the smallest data format that can accommodate the 10
CCD data, 16-bit integers, is adopted for all correlators. B
cause of this integer format, whenever the sum of the
data points to be combined is odd, the average is under
mated by 0.5 intensity levels~or counts!, due to the round-
off inherent in integer division. This would result in a spu
ous ‘‘jump’’ in the multitau autocorrelation function whe
changing from a set of channels at a given time delay se
ration to the next set. We avoid this artifact by random
adding 1, with probability1

2, to the sum of the pair of data
prior to division. Thus, the data fed to the slower linear c
relators are equally likely to be~slightly! underestimated o
overestimated, and on average the round-off errors canc

We now describe the averaging of the multitau autoc
relation functions calculated for different pixels, and the
fore speckles, but for the same magnitudeq of the scattering
vector. The un-normalized intensity autocorrelation funct

FIG. 2. Schematic sketch of the multi-tau correlator architecture.
streams of data input to the linear correlators are plotted on the left, from
fastest~top! to the slowest~bottom!. The width of the columns is propor
tional to the sampling time. The channel spacing for each linear correlat
shown on the right. Only channels represented by the filled symbols
actually processed. For clarity, only three linear correlators with four ch
nels each are shown.
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GI(q,t) is calculated by averaging over the appropriate
of pixels:

GI~q,t!5^^I p~ t !I p~ t1t!&f& t , ~1!

whereI p(t) is thepth pixel intensity at timet, and^...&f and
^...& t indicate the azimuthal averaging over all pixels asso
ated to the sameq and the time average, respectively. T
normalized intensity autocorrelation functiongI(q,t) is
computed by applying a ‘‘fully symmetric’’ normalization
scheme:

gI~q,t!5GI~q,t!/@^^I p~ t !&f&0<t<trun2t^^I p~ t !&f&t<t<trun
#,

~2!

wheret run is the duration of the experiment, and^...& t1<t<t2
indicates the time averaging from timet1 to time t2 , the
measurement being started at timet50. The normalization
in Eq. ~2! reduces the sensitivity to drifts in laser power,
essential feature when running long measurements and w
the largest delay time becomes comparable to the duratio
the experiment. This reduced sensitivity is obtained by av
aging the values of the mean intensity that appear in
denominator of Eq.~2! over the same periods of time durin
which the data used to calculateGI(q,t) are collected. It is
important to notice that the autocorrelation function is fi
averaged over all pixels and then normalized. For an ergo
sample, one could equivalently follow the reverse order, i
average the normalized, time-averaged autocorrelation fu
tions calculated for each individual pixel. However, th
would be computationally less efficient, since one wou
need to keep in the computer memory a very large numbe
correlation functions~one per processed pixel, instead of o
for eachq!. More importantly, this order is essential for
nonergodic system, since it directly yields the ensemb
averaged autocorrelation function.10,11 We emphasize, how-
ever, that in order to obtain the ensemble average by p
averaging, the scattering volume must be large enough t
statistically representative of the whole sample; thus
sample must be homogeneous over length scales compa
to the incident beam width. As a consequence, the sam
must be illuminated with a broad beam, as described in S
II. Finally, we note that there are similarities between t
pixel-averaging method described above and other sche
proposed in the past for studying nonergodic samples wi
single detector, where the contribution of different speck
to the autocorrelation function was obtained by rotating
translating the sample during the measurement.12,13 How-
ever, the multispeckle technique has the significant adv
tage of collecting data in parallel rather than sequentia
thus for a given total measurement time, much longer ti
delays are accessible.

In a typical experiment, the calculation is carried o
simultaneously for several sets of pixels, corresponding
different values ofq. Given the wide range of accessib
scattering vectors, the mean intensity may vary considera
from one set of pixels to the other. This poses a seri
problem, due to the limited dynamic range of the CCD se
sor. To overcome this limitation and to optimize the me
sured mean intensity at all scattering angles, for everytmin
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we collect a sequence of a few frames~typically 3–5!, each
at a different exposure time, instead of acquiring an ima
with a single exposure time. For each scattering angle, o
the data at the most suitable exposure time are proces
Experimentally, we find that the optimal mean intensity
about 15% of the saturation level, corresponding to 1
counts for a 10-bit camera. Lower mean count values y
an appreciably poorer signal-to-noise ratio, while higher v
ues cause a significant fraction of the CCD pixels to satur

B. Corrections for dark counts, stray light, and finite
sensor area

In this subsection, we describe how the measured a
correlation functions are corrected for the effects of d
counts, stray light, and finite sensor area to obtain the des
physical quantity, the normalized field autocorrelation fun
tion

gE~q,t!5^Ep~ t !Ep* ~ t1t!&f,t /^I p~ t !&f,t , ~3!

where^...&f,t denotes the average first over pixels and th
over time. The correction scheme proposed here is also
plicable to nonergodic samples, since it is based on an in
pendent measurement of the contribution of stray light to
total scattering, with no assumptions being made about
full decay of the correlation function. Before describing t
details of the correction procedure, we briefly discuss
physical origin and the importance of each of these effe
Dark counts are due to thermal and pixel read-out noise
well as to an offset in the setting of the black-level referen
voltage of the digitizer. They can be a significant fraction
the measured intensity level because of the limited dyna
range of the CCD, and consequently they can apprecia
distort the measured autocorrelation function. In particu
the presence of a constant offset is reflected in a spur
correlation at long time delays. The stray light is due
scattering from the optical components themselves~lenses
and cell walls! and is therefore a static contribution. Its im
pact can be reduced by using carefully cleaned, high-qua
optical elements and by disregarding pixels that are ob
ously saturated due to flare and backreflections. Howe
stray light is unavoidable at low angles, where its intens
can be equal to or even larger than the scattering from
sample alone. Stray light acts as a local oscillator,1 mixing
with the field scattered by the sample. Therefore, the D
signal is no longer purely homodyne. The effect of so
degree of heterodyning is twofold. First, the autocorrelat
function base line is raised, since the static stray light give
finite contribution at any delay time. Second, the decay r
is changed. Note that the amount of mixing, i.e., the inten
of the stray light, is constant in time but varies from pixel
pixel. The effect of the finite pixel area, compared to t
speckle area, is to decrease the amplitude of the time-var
part of the intensity autocorrelation functionGI(q,t). Under
homodyne conditions, this reduction is accounted for b
multiplicative constant, the so-called coherence factorb I .1

The generalization to the case of a heterodyne signal wil
discussed at the end of this section.
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We will now derive an expression that relates the fie
autocorrelation function for the light scattered by the sam
alone to the measured intensity autocorrelation function.
first consider the simpler but rather uncommon case wh
the pixel size is much smaller than the speckle size, so
b I51. The intensity on the CCD at timet and pixelp is

Sp~ t !5Dp~ t !1@Ep~ t !1Esl,p#@Ep* ~ t !1Esl,p* #, ~4!

whereDp(t) is the dark count level,Ep(t) is the field scat-
tered by the sample,Esl,p is the pixel-dependent stray ligh
field which is constant in time, and all nonessential multip
cative constants have been dropped. The autocorrela
function that is experimentally measured is

GS~q,t!5^Sp~ t !Sp~ t1t!&f,t . ~5!

By using Eq.~4!, GS(q,t) can be expressed in terms of th
dark counts and the scattered light

GS~q,t!5GI~q,t!1^I sl
2 &f,t12^I sl&f,t^I &f,t

12^D&f,t@^I sl&f,t1^I &f,t#

12^I sl&f,tGE~q,t!1GD~q,t!. ~6!

In Eq. ~6!, I and I sl are the scattering intensity from th
sample and the stray light, respectively;GD(q,t) is the au-
tocorrelation function of dark counts, andGE(q,t) is the
field autocorrelation from the sample, which is the quant
we wish to determine. For brevity, here and in the followi
the explicit dependence on time and pixels has been omit
In deriving Eq. ~6!, we have made the following assump
tions:

~i! Both E and Esl obey the statistics of speckle field
thus they are stationary, zero-mean circular complex Ga
ian random variables. It follows that^E&f5^Esl&f50 and
^I &f5const and̂ I sl&f5const.

~ii ! E and Esl are uncorrelated, so that̂EEsl* &f

5^E&f^Esl* &f50.
~iii ! The dark count level, the stray light, and the sc

tered intensity are mutually uncorrelated, so that^ID &f

5^I &f^D&f , ^I slD&f5^I sl&f^D&f , and ^I slI &f5^I sl&f

^I &f .
Equation~6! is the first step for expressing the field a

tocorrelation function in terms of measurable quantities.
proceed further, we make use of the Siegert relation1,2

GI~q,t!5^I &f,t
2 1@GE~q,t!#2. ~7!

Insertion of the Siegert relation in Eq.~6! yields

@GE~q,t!#212^I sl&f,tGE~q,t!1^I sl
2 &f,t1^I &f,t

2

12^I sl&f,t^I &f,t12^D&f,t@^I sl&f,t1^I &f,t#

1GD~q,t!2GS~q,t!50. ~8!

GE(q,t) can be obtained by solving Eq.~8!, since all other
quantities are experimentally accessible, as we will n
show. We start with the quantities related to the dark no
Test measurements show that, although the dark noise f
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single pixel is time dependent, its azimuthal average^D&f is
constant. Moreover, the dark noise is found to be unco
lated. Therefore,

GD~q,t!5H ^D2&f,t , t50

^D&f,t
2 , tÞ0

~9!

and^D&f,t and^D2&f,t can be easily measured by acquirin
a set of frames with the CCD shutter closed. Similarly,
stray light contribution can be measured prior to the run
filling the cell with just the solvent. This procedure is ro
tinely adopted in very small angle static light scatteri
measurements.8 We tested its applicability to DLS by mea
suring the autocorrelation function of the stray light alon
No appreciable time dependence was found, thus dem
strating thatEsl,p is constant in time and that stray light ca
be reliably measured by this procedure. Finally, the m
scattering from the sample alone can be obtained by subt
ing the stray light from the measured total scattered intens
In subtracting the stray light, care must be taken to norma
it by the sample transmissionT, since the stray light will be
attenuated by a factorT due to the presence of the scatteri
sample.8 We measureT by comparing the signal at th
transmitted-beam photodiode in the presence of the sam
to that when the cell is filled with the solvent alone. Note th
the cell cannot be moved after measuring the optical ba
ground, to avoid changes in the stray light. To summar
^I &f,t , ^I sl&f,t , and^I sl

2 &f,t are obtained from

^I sl&f,t5T@^Ssl&f,t2^D&f,t#, ~10a!

^I sl
2 &f,t5T2$^Ssl

2 &f,t22^D&f,t@^Ssl&f,t2^D&f,t#2^D2&f,t%,

~10b!

^I &f,t5^S&f,t2^D&f,t2^I sl&f,t , ~10c!

whereSsl is the CCD signal when the cell is filled just wit
the solvent. We have thus shown that Eq.~8! together with
Eqs.~9! and~10! allows one to calculate the field autocorr
lation function GE(q,t) from measurable quantities: th
measured autocorrelation function,GS(q,t), the total scat-
tering, and the dark noise and stray light. Normalizi
GE(q,t) by ^I &f,t yields gE(q,t), the normalized field au-
tocorrelation function.

So far we have assumed that the pixel size is neglig
compared to the speckle size. More generally, we must
tend the above relations to the more common case of a fi
sensor size, where the pixel and speckle sizes are com
rable. This can be done by replacing Eq.~4! by

Sp~ t !5Dp~ t !1E
Ap

d2x@ I ~x,t !1I sl~x!

1E~x,t !Esl* ~x!1E* ~x,t !Esl~x!#, ~11!

where the integration is over the pixel areaAp and where we
have explicitly included the spatial dependence of the s
tered and stray-light fields~again, inessential multiplicative
constants have been dropped!. By interchanging the order o
integration and averaging, it is easy to show that the m
value of the intensity is not affected by the pixel integratio
-
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Then, the only terms that need to be modified in Eq.~6! are
GI(q,t), ^I sl

2 &f,t , and 2̂ I sl&f,tGE(q,t). The first term can
be expanded by means of the modified Siegert relation:1,2

GI~q,t!5^I &f,t
2 1b I@GE~q,t!#2. ~12!

This is the familiar correction introduced in a homody
experiment to account for the finite sensor area. The co
ence factorb I can be calculated from the detector geome
and the beam intensity profile:

b I5E d2xRA~x!um~x!u2, ~13!

where the so-called complex coherent factorm~x! is the nor-
malized Fourier transform of the beam intensity profi
while RA(x) is simply related to the detector geometry.2 The
second term,̂ I sl

2 &f,t , could be expanded in a similar way
However, this is unnecessary since^I sl

2 &f,t can be obtained
directly from measured quantities through Eqs.~10!. Due to
integration over the pixel area, the last term
2^I sl&f,tGE(q,t), is reduced by a factorbE

2, where

bE5E d2xRA~x!m~x!. ~14!

A factor of bE arises from the spatial integration of the cro
term ^E(x1 ,t)E* (x2 ,t1t)&f,t .14 An additional factor ofbE

arises from the analogous integration of the spatially fluc
ating stray light cross term̂Esl(x1)Esl* (x2)&f,t . If the pixel
area is negligible, this term reduces to the^I sl&f,t factor in
Eq. ~6!.

We can now generalize Eq.~8! to the more realistic case
of a finite pixel size:

b I@GE~q,t!#212bE
2^I sl&f,tGE~q,t!1^I sl

2 &f,t1^I &f,t
2

12^I sl&f,t^I &f,t12^D&f,t@^I sl&f,t1^I &f,t#

1GD~q,t!2GS~q,t!50. ~15!

This equation is the main theoretical result of this artic
Together with Eqs.~9! and ~10!, it constitutes the desired
formula for correcting DLS data from a CCD camera for t
effects of dark noise, stray light, and finite pixel area. It c
be solved forGE(q,t); the normalized field autocorrelatio
function is then obtained as before fromgE(q,t)
5GE(q,t)/^I &f,t . In order to apply Eq.~15!, it is necessary
to evaluateb I and bE . Although it is possible to calculate
them from the beam 1/e2 diameter and the pixel size,2 we
rather derive their value from the intensity autocorrelati
measured att50. In fact, by definitionGE(q,0)5^I &f,t , so
that for t50 the only unknowns in Eq.~15! areb I andbE .
Moreover, from the theoretical expression of the comp
coherence factorm, we can calculatebE

2 as a function ofb I .
We find that, for the experimental parameters of our set
bE

2'b I'0.55 and that the following linear approximatio
may be used

bE
2520.1411.18b I . ~16!

Operationally, we thus insert Eq.~16! in Eq. ~15! evaluated
at t50, and solve forb I .
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This correction scheme is also applicable to nonergo
samples, provided the required values for the stray light
the dark counts can be obtained from a measurement o
cell filled with the solvent alone. The question is th
whether or not assumptions~i–iii ! made in deriving the cor-
rection formula still hold for a nonergodic sample, thus w
must determine if ^E&f50, ^EEsl* &f50, and ^ID &f

5^I &f^D&f . For a nonergodic sample, the scattered fi
can be decomposed to a sum of a constant and a t
varying part.10 If there is a constant component, thetemporal
statistical properties ofE andEEsl* change; thus the scattere
field is no longer zero mean and it is partially correlated
the static stray light field. However, its spatial statistic
properties are unaffected. Since assumptions~i! and ~ii ! in-
volve only spatial averaging, they can be safely assume
be also valid for a nonergodic sample. Similarly, the coh
ence factorsb I and bE are calculated from the value o
GS(q,t50), which is averaged first spatially and then te
porally, and therefore their values do not depend on
sample ergodicity. This is in contrast with the case of a t
ditional setup, for whichb I is derived from a purely tempo
ral average, and thus can largely vary for nonergo
samples.10 Finally, assumption~iii ! is clearly independent o
the nature of the sample. Therefore, we conclude that
correction procedure is valid for all samples both ergodic a
nonergodic. We emphasize, however, that if the time av
aging is carried out before the pixel averaging, then this
gument does not hold and the correction scheme would
when applied to nonergodic samples.

IV. EXPERIMENTAL TEST AND DISCUSSION

We have experimentally tested the apparatus by mea
ing the autocorrelation function of the light scattered by
diluted suspension of polystyrene spheres. The spheres~Se-
radyn lot JS 2678! had a radius of 1.095mm and a polidis-
persity of about 5%, as rated by the manufacturer, and w
suspended at a volume fractionw'331025. To avoid sedi-
mentation, we used a buoyancy-matching mixture of H2O
and D2O as a solvent. Note that, unlike the case of a tra
tional DLS experiment, sedimentation does contribute to
decay of the correlation functions for the CCD-based ap
ratus; this is due to the average over different orientation
q and to the heterodyning induced by stray light. The exp
ment was done at room temperature~2261 °C!. Autocorre-
lation functions for twelve different scattering vectors ran
ing from q5302 cm21 to q512 412 cm21 were
simultaneously measured. The run duration was 2560 s,
minimum time delaytmin being 1.25 s. For eachq, the auto-
correlation function was azimuthally averaged over a ring
pixels centered about the optical axis and over time, follo
ing the procedure described above. The mean radius an
thickness of these rings were chosen to increase with
same power law, keeping their ratio~approximately! con-
stant, and evenly spacing the values ofq on a logarithmic
scale. The total number of processed pixels was 115 4
limited primarily by the computer speed. Three different e
posure times were used to optimize the mean intensity le
at all q vectors, as explained in Sec. III A. To apply the str
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light correction described above, the cell was filled with t
solvent alone and the stray light intensity was measured p
to the DLS runs. We used a pipette to remove the solvent
to insert the particle suspension without moving the cell fro
its holder, thus avoiding any changes in the stray light due
a change in the cell position. Table I lists the principal me
surement parameters.

In Fig. 3 we show on a semilogarithmic plot a typical s
of measured normalized intensity autocorrelation functio
Here the autocorrelation functions are corrected only for
contribution of the dark noise. Figure 3~a! shows the auto-
correlation functions for the six largestq, while Fig. 3~b!
shows the data taken at the lowest angles~note the difference
in thex axis scale!. Very good quality data are obtained eve
at the lowest angles, for which the run duration is just a f
times the autocorrelation function decay time, due to the
eraging over pixels. At higher angles, the autocorrelat
functions decay exponentially for about two decades, as
denced by the linear behavior on the semilogarithmic p
This behavior is expected for a dilute suspension of sphe
undergoing brownian motion.1 At lower angles, the autocor
relation functions do not decay completely, reaching a p
teau at long time delayst. The plateau is due to the stat

TABLE I. Measurement parameters for the experimental test of the ap
ratus. For each scattering vectorq, we report the relative uncertaintydq/q
~due to the thickness of the ring of pixels associated toq!, the exposure time
texp, the number of processed pixelsNq , and the ratio between the mea
stray light intensity and the mean intensity of the light scattered by
sample alone,̂I sl&f,t /^I &f,t .

q ~cm21! dq/q texp ~ms! Nq ^I sl&f,t /^I &f,t

302 3.43 1022 20 87 6.937
428 2.43 1022 20 183 2.490
594 1.83 1022 20 281 2.159
834 2.53 1022 20 865 1.226

1158 3.43 1022 49 1902 0.722
1627 2.73 1022 49 3616 0.266
2273 2.63 1022 49 4855 0.091
3191 2.33 1022 49 8579 0.043
4461 2.33 1022 49 16015 0.025
6240 2.53 1022 49 24584 0.021
8730 2.53 1022 49 41467 0.022

12412 2.53 1022 120 13065 0.025

FIG. 3. Intensity autocorrelation functions simultaneously measured
twelve scattering vectors. From top to bottom:~a! 2273, 3191, 4461, 6240
8730, and 12 412 cm21; ~b! 302, 428, 594, 834, 1158, and 1627 cm21. The
data are corrected only for the CCD dark noise.
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contribution of the stray light, which prevents the scatte
intensity from being completely decorrelated even at v
larget. The height of the plateau increases with decreas
scattering vector, reflecting the increase, at lower angles
the stray light intensity compared to the scattering from
sample alone~see Table I!. The noise observed at long tim
delays and smallq is due to long-term power fluctuations o
the incident beam, and to the poorer statistics of the auto
relation functions at the smaller angles. In fact, both
number of pixels per ring and the number of decorrelat
times ~the physically relevant time scale! decrease withq.
Thus, a reduced number of statistically independent d
contribute to the pixel and time average. Finally, the int
cepts att50 of the autocorrelation functions are lower th
1, due to the finite pixel size, and change slightly withq, due
to saturation effects that depend on the value of the m
intensity.15 The angular dependence of the intercept is m
mized by optimizing the exposure time for eachq, as de-
scribed before.

To obtain quantitative information from the autocorre
tion functions, we perform a cumulant analysis,1 fitting to the
following expression:

ln@gE~q,t!#5G02G1t2
1

2!
G2t22

1

3!
G3t32¯ ~17!

Figure 4 shows a log-log plot of the decay rateG1 , obtained
from an average over five runs, as a function ofq2. We
obtainedG1 from a second-order cumulant analysis of t
autocorrelations functions, corrected for the dark noise o
~open circles! and for both the dark noise and the stray lig
~filled squares!. A first-order cumulant analysis yielded sim
lar results, the fit being less good due to the slightly polid
perse sample and, for the uncorrected data~open circles!, to
the contribution of the stray light. The decay rates span m
than three decades, due to the wide range of scattering
tors q. To simultaneously cover such a large spectrum
characteristic decorrelation times, the adoption of the mu
tau correlator scheme is mandatory. At larger angles, the
sets of data superimpose andG1 is linear inq2, in agreement

FIG. 4. Decay rateG1 , averaged over five runs, from a second-order cum
lant fit of the measured autocorrelation functions. Open circles refer to
data corrected only for the CCD dark noise, filled squares to the data
rected for both dark noise and stray light.
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with expectations for a purely diffusive system, for whic
G15Dq2, whereD is the particle diffusion coefficient. At
lower angles, the data which are corrected only for d
noise deviate from the linear behavior, withG1 being in-
creasingly lower than expected. Qualitatively, this trend c
be understood; due to the stray light, the signal is not m
sured under homodyne conditions, but rather under pa
heterodyne conditions. The lower the angle, the stronger
stray light contribution and the closer the signal to pure
heterodyne conditions, for which the decay rate is half of t
measured in a homodyne experiment.1 However, by correct-
ing the autocorrelation functions for the stray light as d
scribed in Sec. III B, the linear behavior ofG1 is recovered
over the full range ofq2, demonstrating the feasibility of this
correction. The solid line in Fig. 4 is a linear fit (G15Dq2

1C) of the data corrected for both dark noise and stray lig
The fitting parameters are D5(1.72960.001)
31029 cm2 s21 andC5(21.4861.66)31024 s21, indicat-
ing that, within the experimental uncertainties, the data
hibit a linear behavior, going through the origin. By mea
of the Stokes-Einstein relationshipD5kBT/6phR, we can
calculate the particle radiusR from the fitted value ofD ~the
viscosity h was measured to be 1.08660.007 cp at 22 °C!.
We find R51.1560.01mm, in good agreement with the
manufacturer value,R51.095mm, obtained with a tradi-
tional DLS setup, and for which an estimated error of 0.
mm was reported.

The effect of the stray light can be appreciated better
plotting the particle radiusR, calculated fromD5G1 /q2 and
the Stokes–Einstein relationship, as a function ofq, shown in
Fig. 5. The data corrected only for the dark noise~open
circles! show a large increase inR at the smaller angles, du
to the underestimation ofG1 discussed above. The fully cor
rected data~filled squares! exhibit considerably less devia
tion. We emphasize that the correction procedure is effec
even for the innermost sets of pixels, for which the str
light intensity is several times larger than the scattering fr
the sample~see Table I!. The large error bars at very lowq
reflect the inherently poorer statistics of the autocorrelat

-
e
r-

FIG. 5. Particle radiusR calculated by means of the Stokes–Einstein re
tionship from the decay rates shown in Fig. 4~open circles and filled
squares!. The stars are values ofR obtained with a traditional setup and
hardware correlator at 18°, 25°, 45°, and 60°. The line is the manufactu
value forR.
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functions at the smaller angles, discussed above in con
tion with Fig. 3~b!. In Fig. 5 we also show the value of th
particle radius obtained by measuring the autocorrela
functions at much higher angles with a traditional gonio
eter and hardware correlator. The stars refer to data ta
between 18° and 60° and averaged over four runs. As ca
seen, there is good agreement between the experim
value of R obtained with the two different techniques an
with the value reported by the manufacturer~straight line in
Fig. 5!, the CCD data being slightly closer to the manufa
turer’s radius.

In conclusion, we have implemented a setup for meas
ing DLS at ultralow angles, and we have analyzed the pe
liarities and the limitations inherent in the use of a CC
sensor as a detector. The main difficulties are imposed by
reduced dynamic range of the CCD camera, compared to
of the photomultiplier tubes traditionally used for DLS, an
by the unavoidable stray light scattered by the optical co
ponents of the setup. We have developed a method for
recting the experimental data for the distortions induced
the CCD dark noise, the stray light, and the finite pixel si
that allows us to extract the field autocorrelation functio
This feature is of particular interest when the shape of
correlation function is not knowna priori, or when relevant
information are embedded in the presence and the height
plateau at large time delays, as, for example, is the case
gels. The algorithm and the data correction procedure
scribed here are essential in order to fully exploit the pot
tial of small-angle DLS. More generally, we believe that th
will be valuable in all applications were a CCD sensor
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used to measure the time autocorrelation of the scattered
diation, an experimental technique of growing interest a
importance.
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