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Abstract 

The transport of classical waves in strongly scattering media is investigated using ultrasonic 
techniques, allowing us to measure both the ballistic and scattered components of the wave field. 
We find that the ballistic propagation is dramatically slowed down by scattering resonances, 
although the group velocity remains well-defined. The propagation of the scattered waves is 
also strongly affected by resonant scattering, and is shown to be well described by using the 
diffusion approximation. A model based on the generalized coherent potential approximation 
gives a quantitative explanation of the experimental data. 
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I.  Introduction 

Over the last decade, there has been renewed interest in the study of  the multiple 
scattering o f  classical waves (light and sound) in strongly scattering media [1,2]. One 
reason for this interest is the realization that wave phenomena in strongly disordered 

inhomogeneous materials often exhibit radically different behaviour from that normally 

associated with waves. For example, the fact that wave propagation under the conditions 
o f  strong multiple scattering can be well described by using the diffusion approximation 

is quite remarkable, as the diffusion approximation completely ignores wave interference 
which is one o f  the most basic properties o f  waves. Even more remarkable is the 

complete change in the basic wave character implied by the possibility that a wave 
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may become localized in random and partially ordered materials. These and other 
related questions have motivated extensive research activity [1], although from the 
experimental point of view, most studies have involved only electromagnetic waves 
until quite recently. 

In this paper, we summarize some of the recent achievements using sound to gain 
new information on the propagation of classical waves in strongly scattering materials 
[3,4]. By focusing on acoustic waves, we are able to exploit the ability of ultrasonic 
techniques to detect directly the wave field, rather than its intensity, allowing both phase 
and amplitude information to be measured. We have used this approach to study wave 
propagation in a simple disordered medium consisting of glass beads randomly close- 
packed in water; in the intermediate frequency range where the ultrasonic wavelength 
is comparable to the bead size, the large acoustic mismatch between glass and water 
ensures very strong scattering. Although the detected signals are dominated by multiply 
scattered waves, the phase sensitivity of ultrasonic transducers allows us to extract the 
weak signal that propagates ballistically through the medium without scattering out of 
the forward direction. This ballistic signal remains coherent to the incident pulse even 
though it is strongly affected by the scattering resonances, which cause a remarkable 
slowing down of the phase and group velocities. These scattering resonances also 
dramatically affect the propagation of the scattered waves, whose energy transport is 
shown to be well described by using the diffusion approximation. We are able to 
obtain additional insights into the nature of classical wave propagation in this strongly 
scattering regime by comparing the velocities of the ballistic and diffusive waves, and 
also to explain our results using a new theoretical approach that correctly accounts for 
the coupling between resonant scatterers. 

2. Ballistic propagation 

In Fig. 1, we illustrate how the ballistic pulse is extracted from the total signal 
detected in our ultrasonic experiments. Fig. l(a) shows typical examples of the acous- 
tic waveforms transmitted through a thin slab-like sample of glass beads of 0.5 mm 
radius in water. The incident pulse was generated using a focusing transducer, giv- 
ing an excellent approximation to a point source, and the transmitted signals were 
detected using a miniature hydrophone, allowing the fully transmitted waveforms to 
be measured accurately [4]. The three waveforms shown in Fig. l(a) were taken by 
translating the sample sideways while holding the transducers fixed, thereby measur- 
ing the propagation through different ensembles of scatterers in the sample. For times 
greater than about 6 ~ts, the detected field fluctuates wildly in amplitude and phase from 
position-to-position, reflecting the spatial fluctuations (speckles) characteristic of scat- 
tered waves. However, at the leading edge of the waveforms, the detected signal shows 
only small variations between speckles, indicating the presence of a ballistic component 
that is coherent, both spatially and temporally, with the incident pulse. We extract this 
ballistic signal by averaging the field over at least 100 speckles; this procedure cancels 
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Fig. 1. (a) Time dependence of typical ultrasonic waveforms transmitted through a 3.4 mm thick sample 
containing glass beads of 0.5 mm radius in water. The sample thickness corresponds to about 4 mean free 
paths at the central frequency (2.5 MHz) of the short incident pulse used in these measurements. (b) Average 
transmitted field, corresponding to the ballistic pulse (solid curve), is compared with the field in one of the 
speckles shown in the upper panel. 

the scattered component because of its random phase fluctuations from speckle-to- 
speckle, giving the average waveform shown by the solid line in Fig. l(b). In practice, 

the elimination of the scattered component from the ballistic pulse is facilitated by 

replacing the hydrophone by a large-diameter piezoelectric transducer, in which the 
spatial averaging is largely accomplished within the phase-sensitive detector itself. 

The ballistic pulses for samples of  different thicknesses are compared with the inci- 

dent pulse in Fig. 2. Clear evidence of the dispersion is seen, both by the broadening 
of the transmitted pulses and by the differences in the propagation times of the wave 

crests (which travel at the phase velocity, Vp)  and the pulse envelopes (which travel at 

the group velocity, vg). However, despite the very strong resonant scattering (the mean 
free path is comparable to the ultrasonic wavelength throughout this frequency range), 
the locations of  the peaks in the pulse envelopes, and hence the group velocity itself, 
remain well-defined. To measure accurately the frequency dependence of the group and 
phase velocities, we use a longer incident pulse consisting of about 10 oscillations and 
digitally filter the waveforms to form Gaussian pulses with relatively narrow frequency 
bandwidths. Over the dimensionless frequency range 1 < k w a  < 10 ( k w  is the wave vec- 
tor in water and a is the bead radius), we find a very large variation, more than a 
factor of  2, in the group velocity (Fig. 3(a)), directly showing the dramatic effects 
of  scattering on the propagation of the coherent, unscattered component. Even more 
striking are the extremely low values of  the group velocities that are observed over 
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Fig. 2. Ballistic pulses transmitted through samples of different thicknesses (lower three panels). The input 
pulse is shown in the top panel. 
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Fig. 3. (a) Frequency dependence of the group velocity. The solid symbols represent the experimental data 
which are compared with the predictions of the GCPA model (solid curve). (b) The energy velocity obtained 
from the measurements of the diffusion coefficient and transport mean flee path for multiply scattered sound. 
The dashed curve is identical to the theoretical curve in (a) to facilitate comparison of the two velocities. 

most  o f  this f requency range, these be ing  substantially less than the sound veloci t ies  

in ei ther glass or water.  

The  origin o f  these very  s low veloci t ies  can be unders tood using a mode l  based 

on the genera l ized coherent  potential  approximat ion  ( G C P A )  [5,6], which  o v e r c o m e s  
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a fundamental limitation of the traditional CPA approach to wave propagation in the 
intermediate frequency regime. To calculate the scattering quantitatively, we model a 
typical scatterer as an elastic sphere (glass) that is coated with a layer of water and 
embedded in a homogeneous effective medium whose properties account for the pres- 
ence of the other scatterers in the system. The dispersion relation of acoustic waves in 
the medium is then determined by identifying the peaks of the spectral function, given 
by the negative imaginary part of the Green's function, in the frequency-wave vector 
plane [3]. A contour plot of the spectral function for our glass bead in water system 
is shown in Fig. 4, where the dispersion relation given by the peaks is highlighted by 
the solid line. Excellent agreement is found with our experimental data (solid symbols) 
which are determined from measurements of the phase velocity [3]. By numerically 
differentiating the theoretical dispersion curve, we calculate the group velocity and 
again find extremely good agreement with our data (Fig. 3(a)). The physical mecha- 
nism underlying the remarkable slowing down of the phase and group velocities can 
be understood as follows: because of the strong coupling between the resonant scatter- 
ers, the uniform effective medium sensed by the coherent ballistic propagation is very 
strongly renormalized, in much the same way as the quantum mechanical resonances 
are shifted when there is strong coupling between them. Thus, the ballistic pulse is 
still able to propagate coherently while being very strongly affected by the scatterers. 
Furthermore, we find, both experimentally and theoretically, that the group velocity 
does not lose its meaning despite the very strong scattering [3], thereby resolving a 
long-standing problem, first recognized by Sommerfeld [7] and Brillouin [8] and more 
recently discussed by van Albada et al. [9], in the definition of the group velocity in 
strongly scattering media. 

3. Diffusive propagation 

We next turn to the propagation of the scattered acoustic waves, which are respon- 
sible for most of the energy transport through strongly scattering materials. Although 
it is difficult to describe the multiple scattering of classical waves from first principles, 
considerable progress has been achieved through the use of the diffusion approxima- 
tion, in which the transport of the configurationally averaged wave intensity is treated 
as a random-walk process. All phase information in the multiply scattered waves is 
neglected, and the propagation is characterized by the diffusion coefficient, D = v~l*/3, 

where Ve is the average velocity at which energy is transported and l*, the transport 
mean free path, is the length over which the direction of propagation is randomized. 
Despite the success of this simple model in describing the propagation of light and 
microwaves in random media [1], it is only relatively recently that the application of 
the diffusion approximation to multiply scattered sound has been convincingly demon- 
strated [4]. 

We used pulsed experiments to measure the diffusion coefficient, D, from the tempo- 
ral evolution of the transmitted acoustic intensity, which we determined by ensemble 
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Fig. 4. Gray-scale contour plot, with dark being high and light being low, of the frequency and wave vector 
dependence of the spectral function. The peaks delineate the dispersion relation, shown by the solid black 
and white line. The open circles are experimental data, determined from the frequency dependence of the 
phase velocity. The dispersion relation for water is shown by the dashed line for comparison. 

averaging the square of  the envelope of the scattered sound field over a large 

number of  independent speckles. Typical results are shown in Fig. 5, where we compare 

the diffusive time profiles measured at four different frequencies; for ease of  compar- 
ison, the time profiles at each frequency are displaced vertically by equal amounts. 

A square input pulse of approximately 4 ~ts was used for these measurements, ensur- 

ing a well defined ultrasonic frequency. The symbols represent the experimental data, 
and the solid lines are fits to the solution of the diffusion equation in which we have 

correctly accounted for the incident pulse width, the effects of  absorption, reflections 

at the boundaries, and the location inside the sample of the effective diffusive source 
[4]. Excellent agreement between theory and experiment is shown in this figure for all 

the frequencies, demonstrating the validity of the diffusion approximation for multiply 

scattered sound [4] and allowing reliable values of the diffusion coefficient to be deter- 
mined. Fig. 5 also shows that there is a large variation in the diffusive time profile with 
frequency, indicating that both the diffusion coefficient, D, and the absorption time, za, 
exhibit a strong frequency dependence. 

In Fig. 6, we summarize the frequency dependence of D and Za l, measured for two 

different bead radii, a = 0.5 and 0.25 mm. The diffusion coefficient exhibits a strong 

dependence on both frequency and bead size. By contrast, the absorption rate exhibits 
a roughly linear increase with frequency but is independent of  a. Thus, the absorption 
cannot be due to the usual viscous losses encountered in a fluid near a fluid-solid 
interface, since this mechanism gives an absorption rate proportional to both the surface 
area and the square root of  frequency [10]. Instead, it appears that the absorption is 
intrinsic to the glass beads themselves, as the measured absorption depends solely on 
the amount of  glass in the suspension and has a frequency-dependence characteristic 
of  internal friction in glassy solids. 
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Fig. 5. Time profiles of  the ensemble-averaged transmitted intensity of  multiply scattered sound at the four 
incident frequencies shown. The experimental data (symbols) are compared with fits to diffusion theory (solid 
curves). 
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Fig. 6. Frequency dependence of  the diffusion coefficient, D, and the absorption rate, z~- ] , for beads of  two 
different radii, a. 

Further insight into the behaviour of  the diffusion coefficient is obtained by noting 
that the minima and maxima in D for the two bead sizes occur at the same values of  
kwa as the minima and maxima seen in the group velocity (Fig. 3(a)). This suggests 
that the group and energy velocities may have a similar frequency dependence. To 
investigate this interesting possibility, we used quasi-continuous-wave experiments to 
measure the transport mean free path l* from the thickness dependence of  the absolute 
transmitted intensity [4]. From these data and our measurements of  D, we obtain the 
results for the energy velocity, Ve = 3D/l*,  shown in Fig. 3(b). Near the first minimum 
in the group velocity, where the excitation of  internal modes within the glass spheres 
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causes the scattering mean free path to become less than half the wavelength, the 
energy velocity is a little slower than the already very slow group velocity, while 
at the higher frequencies, where the ratio of mean free path to wavelength is larger, 
the two velocities are indistinguishable within experimental error. Thus, most of the 
dramatic slowing down of wave propagation due to scattering resonances is captured by 
the group velocity that describes coherent wave transport. This suggests that a unified 
picture of wave transport within the generalized coherent potential approximation may 
be possible, thereby elucidating the close connection shown in Fig. 3 between the 
group and energy velocities which describe the transport of energy by the ballistic, and 
diffusive waves, respectively [11]. 

4. Conclusions 

In this paper, we have focused on some new developments in the understanding of 
the classical wave propagation in multiply scattering materials that have been made 
possible using sound rather than light as the experimental probe: the measurement and 
definition of the group velocity under conditions of strong resonant scattering, and the 
relationship between the very slow group and energy velocities. Our measurements of 
multiply scattered sound may also have important applications in the non-destructive 
ultrasonic evaluation of very inhomogeneous materials, where we have recently demon- 
strated the feasibility of measuring the dynamics of the scatterers using a technique 
called diffusing acoustic wave spectroscopy [12]. 
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