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Dynamics of density fluctuations in colloidal gels 

A.H. Kral l* ,  Z. Huang ,  D.A. Wei tz  

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA 

Abstract 

We use dynamic light scattering to measure the dynamic structure factor of density fluctu- 
ations occurring in colloidal suspensions that have attained a quiescent state long after 
aggregation. We find a stretched-exponential decay to a finite plateau. Our interpretation of the 
arrested decay is that these systems are gels, i.e., systems possessing a finite elastic modulus G. 
We develop a theory for the internal elastic modes of a fractal cluster and use it to derive G and 
the arrested, stretched-exponential behavior of colloidal gel dynamics. Good agreement be- 
tween experiment and theory is obtained. 
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1. Introduction 

Colloidal aggregation is an outstanding example of a process that produces fractal 
objects [1,2]. Many studies have investigated the growth and morphology of particle 
clusters aggregating in dilute suspensions where encounters between clusters are 
relatively rare events, i.e., the volume of the system occupied by clusters remains small. 
These studies have investigated, for example, the different cluster-size distributions 
and fractal dimension values that result in the limiting cases that the rate of the 
colloidal aggregation is controlled by the diffusion of the clusters [3 -5 ]  or, conversely, 
by the low probability of the formation of a permanent bond [6,7]. Recent work has 
turned to more concentrated suspensions where cluster growth can proceed to a late 
stage in which the clusters occupy most of the system's volume and are therefore in 
continual proximity with their neighbors. In the case of aggregation tending toward 
the diffusion-limited colloidal aggregation limit (DLCA), light scattering experiments 
have revealed a low-angle scattered intensity ring which implies the existence 
of spatial ordering among the clusters [8-10].  One can explain the ordering by 
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assuming that, under DLCA conditions, the clusters are relatively monodisperse with 
an average radius Re, so that neighboring clusters are typically separated by the 
average cluster diameter 2Rc, i.e., the clusters order like the molecules of a dense fluid. 
This picture leads us to expect for the final state of the aggregating colloid a gel in 
which clusters of a characteristic size pack and bond with their neighbors in a network 
that spans the system. In this paper, we use dynamic light scattering to study the 
relaxation of density fluctuations of such fractal colloidal gels. Gels of all types have 
received much attention recently because of their fascinating dynamic behavior 
[11-15]. Gels of the type considered here are particularly interesting since the arrest of 
the rigid motions of their fractal clusters constituents removes the contribution made 
by translations and rotations to the signal detected in a dynamic light scattering 
experiment, allowing us to observe for the first time the internal motions of fractal 
colloidal clusters. The importance of internal motions is that they are the elementary 
excitations analogous to sound waves in homogeneous systems. The much-studied 
polymeric gels do not permit these motions inside the fractal to be resolved with light 
scattering, since for them Rc is much smaller than the wavelength of light. 

Information about the density fluctuations of a system may be obtained by dynamic 
light scattering (DLS) through a measurement of the normalized dynamic structure 
factor f(q, t) = S(q, t)/S(q, 0) [16], where 

1 M 
= ~ (exp {iq" [rj(0) - rk(t)]}). (1) S(q, t) -M j, 21 

Here S(q, t) is the normalized autocorrelation function of the Fourier transform at 
wave vector q of the position-dependent number density of the particles j = 1 . . . . .  M 
contained in the scattering volume. The angle brackets denote a statistical-mechanical 
ensemble average. In liquid-like systems, the position rj (0) of particle j at an arbitrary 
time t = 0 becomes uncorrelated with the position rk(t) of any particle k after 
a sufficiently long delay time t. For such systems, f (q, t) decays to zero at long times, 
the ensemble average is equivalent to an average over time, and identical results are 
obtained from different scattering volumes. By contrast, in a gel, the interconnection 
of clusters throughout the system results in a solid-like material in which clusters that 
are neighbors at any instant remain neighbors indefinitely. Accordingly, the decay of 
f(q, t) may saturate at a finite value, f(q, oo), indicating the presence of static spatial 
non-uniformity, even though the system is macroscopically homogeneous. This in- 
homogeneity of the system at the microscopic level implies that averaging over space 
as well as time is now required in order to realize the ensemble average. Techniques, 
now standard, are available that allow us to obtain f(q, t) with the proper averaging 
for such non-ergodic systems [17,181. When this is done, f(q, oo) becomes meaningful 
as a quantity that characterizes the ability of the gel to remain rigid in the presence of 
thermal agitation. In fact, we relate f(q, or) to the macroscopic elasticity of the gel. In 
this article, we report measurements of f(q, t) of fractal colloidal gels as a function of 
the volume fraction, ~b, of the unaggregated colloidal particles. We introduce a model 
for gel dynamics that fits the data and which allows us to infer the elastic modulus, G, 
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of the gel. We find that G has a power-law dependence on q~. To obtain a functional 
form for f(q,  t), we identify a set of elastic distortions of the interior of a cluster. 
A thermal sum over these modes yields a form for f(q,  t) similar to the result obtained 
in the classical model of a harmonically bound Brownian particle [11,15], but with 
stretched-exponential dynamics; the predicted stretching exponent is in good agree- 
ment with the measured one. The characteristic time of the relaxation, z, is expressed 
in terms of the gel's macroscopic elastic modulus G and the viscous drag coefficient 
6nqRc of the typical cluster. Here r/is the viscosity of the solvent. Over the range of 
volume fractions we measure, we infer a variation of G through six orders of 
magnitude with a power-law dependence G (~b) oc ~b 3'9. 

2. Experiment 

We study colloidal gels of the type whose behavior as aggregating systems has been 
discussed extensively by Giglio and his group [8,9]. We prepare them by mixing equal 
volumes of a suspension of polystyrene spheres, diameter 19 nm, and a solution of 
MgC12. In each case, the solvent is a D20 /H20  mixture, D20 mass fraction 0.70, 
whose density equals that of polystyrene [19]. This practice prevents gravitational 
settling of the aggregating clusters, and is essential to form a gel. After mixing, 
a portion of the aggregating suspension is transferred to a scattering cell. We use cell 
thicknesses of 1 mm for the more concentrated samples and 5 mm for the more dilute 
ones. This keeps the transmission of the unscattered beam above 0.3 which we believe 
is sufficient for us to neglect multiple scattering. At the colloidal concentrations under 
study here, aggregation in the strict DLCA limit proceeds too rapidly to allow us time 
for the mixing and transfer. We therefore choose a standard salt concentration of 
6 mM in the final gel, such that the colloids aggregate somewhat more slowly. The 
aggregation is nevertheless close enough to the DLCA limit to result in the appearance 
of the low-angle intensity ring [9]. We use a multiple delay-time correlator to measure 
the normalized scattered intensity autocorrelation function g2(t) = ( I (0) I ( t ) ) / ( I )  z, 
which is related to f(q,  t) by the Siegert relation [20]. For fluid systems, including the 
aggregating colloid, the amplitude g2(t = 0) of g2(t) is close to 2 provided that the 
detector receives light from within a single laser speckle, as is the case for our 
instrument. During the aggregation, we obtain the average hydrodynamic radius, Rh, 
of the growing clusters from a cumulants analysis of g2(t). We find that the clusters 
grow until a time of the order of 103 to 104 s, depending on the colloidal concentra- 
tion. For colloid volume fractions above ~b ~ 10 -3, the end of the growth of 
Rh coincides with the appearance of a nonexponential behavior for g2(t) and a reduc- 
tion of the amplitude g2(0). Also at this time, the values of Rh begin to vary more from 
run to run. The amplitude loss and noisiness of Rh are typical features of nonergodic 
systems. In particular, the decrease of g2 (0) is closely related to the saturation of the 
decay of f(q, t) to a finite value f(q, ~), and thus indicates gelation of the system. The 
aggregation of more dilute colloids with q~ < 10-3 ends when the values of Rh become 
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constant without an increase of run-to-run fluctuations and g2(t) acquires a non- 
exponential character without loss of its amplitude. That these more dilute colloids 
also form gels is suggested by the observation that an aggregated sample, initially 
homogeneous as judged by the eye, fragments into coarse pieces if it is gently tapped 
or vibrated. We shall therefore assume that the aggregation of all of our samples ends 
with the formation of a gel, even though, in principle, our measurements imply 
gelation of only the more concentrated systems with volume fractions ~b > 10- 3 such 
that the decrease of 92(0) can be observed. 

3. Behavior during gelation 

We obtain interesting qualitative information on the kinetics of gelation from 
correlation functions that are measured in runs of short duration made during the 
aggregation and gelation. Here, and for this purpose only, we ignore the issue of 
nonergodicity, since the methods we use to obtain the proper ensemble averaging are 
difficult to apply to a system which is not in equilibrium. Fig. 1 shows the behavior of 
gz(O) and the apparent hydrodynamic radius R h as functions of the time since the 
initiation of the aggregation of a colloidal suspension with particle volume fraction 
~b = 5 × 10- 3. These values have been obtained by fitting the initial decay of 92 (t) with 
the form gz(t) = 1 + A exp( - 2Dq2t), where A and D are fitting parameters. During 
the period of free growth of the aggregating particles, D is the diffusion coefficient of 
the randomly moving clusters from which their average hydrodynamic radius R h may 
be found from the Stokes-Einstein relation D = kBT/6nqRh. Initially Rh increases, 
reflecting the growth of the aggregates. However, about 1500 s after initiation of the 
aggregation, Rh is seen to attain a maximum. At about the same time, gz(O) shows 
a drop from the initial value, close to 2, that occurs in fluid systems. The interpretation 
of Fig. 1 is that this sample has gelled at the gel time tgel = 1500 s; subsequently 
Rh should be viewed as a quantity that characterizes the dynamics of density fluctu- 
ations in the gel and not as the radius of any aggregates of colloidal particles. The 
decrease of Rh shows that the time scale of such dynamics shortens in the curing gel, 
while the behavior of g2(0) indicates that their amplitudes decreases. Both trends may 
be due to the stiffening of the gel. This behavior is consistent with that reported for 
a polymeric gel whose dynamics also showed a divergent characteristic time at the gel 
time [13]. This analysis is only qualitative because of the neglect of ensemble 
averaging; however, some ensemble averaging is actually provided by occasional 
rearrangements of the early gel as it sets. These re-arrangements are the source of the 
noisiness of the data shown in Fig. 1. 

4. Dynamics of quiescent gels 

For the remainder of this article we discuss only quiescent gels. Typically, we take 
data during a two-day period beginning one day after the preparation of the samples. 
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Fig. 1. Aggregation and gelation of a suspension of 19 nm diameter polystyrene spheres, ¢ = 5.0 × 10 -3, 
[MgC12] = 6 mM. The upper and lower curves are respectively the intensity autocorrelation function 
amplitude 92(0) and the apparent hydrodynamic radius Rh as functions of the time since the initiation of the 
aggregation. The system gels at tgel ~ 1500 s. 

Dur ing  this time, the gels exhibit steady-state behavior. The correlat ion functions g2 (t) 

taken from samples with ¢ > 10-3 have reduced values of  g2(0). For  these samples, 

we make a supplementary  measurement  of  the scattered intensity averaged over 
speckles so that we can apply the modified Siegert relation derived by Pusey and van 

Megen to reduce g2(t) to  the properly averaged f ( q ,  t) [18]. Gels with ¢ < 10 -3  yield 
values for g2(0) that  are experimentally indistinguishable f rom those of fluid sytsems. 
We therefore calculate f (q ,  t) using the usual Siegert relation to which the modified 

one reduces in this case, assuming that  here effects of structural arrest are too  small to 
cause a time average to differ appreciably from an ensemble average. 
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In Fig. 2, we plot the normalized dynamic structure factors f(q, t) of three gels with 
colloidal monomer volume fractions in the range 1.7 x 10 -4 ~< ~b ~< 5.0 x 10 -3 as 

functions of q and t. Data taken at three scattering angles 0 are shown for each 
concentration. The lowest angle, 0 = 15 °, is in all cases much larger than the angle 
where occurs the intensity peak corresponding to cluster ordering. The wave number 
of the probed density fluctuation is related to the scattering angle 0 by 
q = (4nn/2)sin(O/2), where b = 1.33 is the refractive index of the solvent and 
2 = 530 nm is the wavelength of the laser. It is seen that the gel with the highest 
concentration ~b = 5 x 10- 3 has highly arrested dynamics with f(q, t) > 0.85 for delay 
times t out to 100 s. The intermediate gel, ~b = 1.5 x 10- 3, shows much larger ampli- 
tudes for temporal density fluctuations; nevertheless the saturation of f(q, t) to finite 
values indicates that this sample also lacks the complete relaxation of a liquid-like 
system. With the most dilute gel, ~b = 1.7 x 10 -4, we obtain at all angles decays of 
f(q, t) to values below 0.1. Given the level of noise in the data, these decays cannot be 
reliably distinguished from decays to zero. The time scale for these decays decreases by 
about two orders of magnitude as q increases over the range of our measurements. 
The decays of the two more concentrated gels, on the other hand, occur on time scales 
that depend on q much less strongly but are quite different for the two concentrations, 
being of the order of 10 -3 s for the most concentrated sample and 0.1 s for the 
intermediate sample. In all cases, the range of times over which f(q, t) has an 
appreciable variation is very broad, say three decades. For  comparison, the times over 
which a decaying exponential varies appreciably cover a range of only about one 
decade. 

5. Model for the dynamics of fractai gels 

To explain these observations, we introduce the following model for the internal 
dynamics of gelled fractal clusters. It has been shown that a good approximation for 
the dynamic scattering of a fractal cluster is obtained if one ignores the details of its 
structure on length scales shorter than q-  1 1-21]. The reason is that colloidal particles 
that are this close to each other scatter the incident radiation nearly coherently. We 
therefore treat the cluster as an assembly of sub-clusters of radius q-  1, regarding these 
sub-clusters as the elementary units that scatter the incident radiation. Throughout,  
we shall call these sub-clusters "blobs". We then apply Eq. (1) to the assembly of blobs, 

Fig. 2. Ensemble-averaged dynamic structure factors f(q, t) of quiescent colloidal gels. The two more 
concentrated gels are stiff enough  that  thermal  mot ions  are localized to distances of the order  1/q or less; 
consequently the decay of f(q, t) saturates at long times. The least concentrated gel is floppy enough  that 
a full decay is observed. (a) Colloidal m o n o m e r  volume fraction ~b = 5.0 x 10- 3, the three data  sets, f rom 
top to bot tom,  cor respond to scattering angles 0 = 15 °, 32 °, and 64°; the smoo th  curves are calculated from 
Eq. (7) with 6 2 = 3 . 1 x 1 0 - 4 1 a m 2  and z = 3 . 9 x 1 0  3s. ( b ) ~ b = l . 5 x l 0 - a ;  0 = 1 5  °, 32 °, and 64°; 
62 = 5.9 x 10 -3 ~tm 2, z = 0.36 s. (c) 4~ = 1.7 x 10 ~; 0 = 15 °, 45 °, and 90°; 62 = 2.2 ~tm 2, z = 1850 s. 



26 A.H. Krall et al./Physica A 235 (1997) 19-33 

having re-interpreted the coordinate rk(t) in Eq. (1) as the center of mass of blob k. As 
a further approximation, we ignore the terms of Eq. (1) that describe the product of 
fields scattered from distinct blobs, i.e., we restrict the sum to the terms j = k. This 
step yields a good approximation because colloidal particles separated by distances 
greater than q-  1 scatter the incident radiation nearly incoherently [21]. Under these 
approximations, the normalized dynamic structure factor becomes [16] 

f(q, t) = exp { - q2(Ar2(t))/6}, (2) 

where (ArZ(t)) is the mean squared displacement of the center of mass of a typical 
blob of radius q-  1. In writing Eq. (2), we have neglected rotations since we expect 
them to be suppressed in the case that the clusters are packed in a gel. In any case, it is 
known that the effect of rotations is only to change the time scale of f(q, t), relative to 
the prediction of Eq. (2), by a factor of the order of 2 [21]. The saturation of the decay 
of f(q, t) indicates that the motions of a given blob are localized in that there exists 
a characteristic value, say 62, for the mean squared displacement at long times. That is, 
(Ar2(t)) ~ 62 as t--, oo. Now although the blob's motions are local in this sense, 
since the particles in a cluster may interact it is also true that the blob's motion are 
coupled to the motions of particles throughout the cluster. In general, a large number 
of distinct types of such collective motions, or modes, may contribute to the motion of 
the given blob. By assumption, the amplitude of the net contribution of all these 
modes is the blob's maximum mean squared displacement 62. However, each mode 
may make its contribution on a time scale characteristic of that mode. In this case, the 
buildup of (drZ(t)) to its final value is a process occurring over a range of character- 
istic times. The measured decay of f(q, t) occurs over a wide range of times. This 
observation suggests that a large number of collective modes of internal motion 
within the fractal cluster, covering a wide range of characteristic times, contribute to 
the observed dynamics. 

To this point, the discussion is quite general. To make progress, we need a sche- 
matic picture of these collective motions. Let us imagine that the given blob is carried 
along by the motion of some "sub-cluster" in which it is imbedded; this sub-cluster is 
itself imbedded in and carried along by a larger sub-cluster, and so on. Thus we 
imagine a hierarchy of local modes each of which contributes to the motion of the 
blob. The succession goes on up to include the motions as a unit of the entire cluster of 
radius Re. We enumerate the modes by the radii Ri of the sub-clusters i = 0, 1, . . . ,  N, 
where sub-cluster 0 is the blob with Ro = q-  1, sub-cluster N is the entire cluster with 
RN = Re, and in general sub-cluster Ri is contained within sub-cluster Ri+l. Since 
within the fractal no preferred length scale can be singled out, we have Ri+ 1/Ri =-f, 
where f is a fixed scale factor. This relation fixes the number of modes, N, in terms of 
the scale factor through fN ,~ qRc. We treat each mode as an independent, over- 
damped harmonic oscillator characterized by a spring constant xl and a relaxation 
time zi for an exponential return to equilibrium. We assign r~ in terms of x~ as 
z~ = 6gqR~/~ci, assuming that a Stokes drag coefficient 6nqR~ applies to the sub-cluster 
of radius R~. The first mode, i = 0, is the fastest and stiffest and the only mode that can 
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contribute to the motion of the given blob if all parts of the cluster except for the blob 

and its immediate surroundings are held fixed. The last mode, i = N, is the slowest 
and floppiest and the only mode that can contribute if the cluster is rigid. We assume 
that the spring constant xc of this last mode sets the scale for the gers macroscopic 
elastic modulus G through G oc xc/Rc. The reason for this identification is that 2Re is 
the average spacing between clusters, while x~ is the average effective spring constant 
describing the elastic bond between clusters. Since we assume the modes are indepen- 
dent, the mean squared displacement, (Ar2), of the given blob is the sum ~/s= o (Ar 2) 
of the amplitudes of each mode. According to the equipartition of energy principle, 
these satisfy x~ (Ar 2) = 3kBT, where kB is Boltzmann's constant. To obtain the full 
dynamic behavior, (Ar2(t)), of the mean squared displacement of the blob, we 
similarly sum the time-dependent mean squared displacements, (Ar2(t))= 
(At  2) [1 - exp( - t/zi)], contributed by each mode. These have exponential relax- 
ations from their initial values of zero to their final values (Ar2). Thus our model 
becomes complete once we assign the spring constants x~ characteristic of the collec- 
tive motion executed by the sub-cluster of size Ri. To do this, we invoke a power-law 
relation between spring constant and size that is due to Kantor  and Webman [22, 23-]: 

~ci = ~ (Ri/R~)-a. (3) 

Here the exponent fl is given by fl = 2 + dn, where the backbone dimension dB ,-~ 1.1 
is the fractal dimension of the space of paths remaining on the cluster that connect 
pairs of points on the cluster. Thus we have z~ = z~(Ri /RJ + 1, where z~ = 6nrIR~/Kc is 
the system's slowest relaxation time and describes how the typical cluster, acted on by 
the restoring forces provided by its neighbors, relaxes to its equilibrium position. We 
pass from a discrete sum over the modes i = 0, 1, . . . ,  N to an integration over the 
sizes R of the modes to obtain finally 

(Ar2(t))-3k~T~c~ f 2 2 o R l n f \ ~ ]  1 - e x p L ~ R -  ~ ' (4) 

Here, since qR~ ~> 1 strongly holds in our measurements, we have extended the lower 
limit of the integral from R = q-  1 to R = 0. This approximation allows us to express 
the integral in terms of the incomplete gamma function, 7(a, x) [24], but has a negli- 
gible effect on the final results, as we have verified by evaluating Eq. (4) numerically as 
written and from the finite lower limit R = q-1. There now appears in Eq. (4) the 
quantity 1/R lnf ,  which is the number of modes per unit increment of the mode size R. 
This particular form for the density of modes is the direct consequence of our 
identification of the system's normal modes as the local motions of sub-clusters whose 
sizes satisfy the relation R~÷~/R~ =f .  Eq. (4) becomes 

3kBT - 
(dr2(t)) f l~ lnf{1  -- [psP(F( -- p) - y( - p, s))]}, (5) 

where p = fl/( fl + 1) and s = t/z~. Here F is the usual gamma function. The quantity in 
square brackets is a function that decays to 0 from an initial value of 1. The beginning 
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of its expansion in powers ofs is 1 - F(1 -- p)s p + fls - psE/(4 --  2p) + .-.. Therefore, 
at early times t ~ re, Eq. (5) is identical with the s tre tched exponent ia l  form 

= 3k~T  ~ 1 -  _ t P , 
( A r E ( t ) )  f l ~ c l n f ~  exp I (b-~z~) 1 } (6) 

where b = [F(1 - p)] - lip. By integrating Eq. (4) numerically, we find that Eq. (6), with 
b so specified and with p = fl/(fl + 1), is a good approximation only for very early 
times such that s -- t/z~ is of the order 1 0  - 2  o r  less. However, ifp and b are treated as 
free parameters, Eq. (6) is an excellent approximant to the computed integral for all 
times less than about 10z~. In this sense, our theory predicts a stretched exponential 
form for fractal gel dynamics. We have evaluated Eq. (4) using various choices for 
fl and find that the effective stretching exponent p is always somewhat less than 
f l / ( f l  + 1), while the effective value for b ~ 0.3 does not vary much as a function of ft. 

Insertion of Eq. (6) into Eq. (2) yields our model equation for the dynamic structure 
factor of fractal colloidal gels: 

f ( q ,  t) = exp { - -  qEt~2 [1 -- e (tmP]}, (7) 

where we treat 62 and z as volume-fraction-dependent fitting parameters. We assign 
the effective stretching exponent p a fixed value independent of volume fraction but 
optimize p in order to obtain the best agreement between the data and the model. If we 
set fl = 3.1, the theoretical value for p, found by fitting the numerically computed 
integral Eq. (4) to the approximant Eq. (6), is 0.70, which may be compared 
with f l /(fl  + 1) = 0.756. From our theory may be derived two relations linking the 
fitting parameters 62 and ~ = bzc to the gel's properties G and R~. These are 
G cc x~/Rc = 6nrlb/z and 62/z = D c / 2 f l b l n f ,  where D~ = ksT/6r~rlR¢ is the Stokes- 
Einstein diffusion coefficient for the typical cluster taken in isolation in the solvent of 
viscosity q. Below, in numerical expressions for G and R¢, we have used b = 0.3, 
fl = 3.1, and f = 2. We have also set G - Kc/R~ identically. Thus our values for G are 
only estimates holding to within an undertermined factor of the order of one. 

6. Application of the model 

The smooth curves of Fig. 2 have been computed from Eq. (7) with the stretching 
exponent p assigned a best-fit, universal value of 0.66, close to the theoretical value of 
0.70 that results from the choice dB= 1.1 for the backbone dimension. Generally, Eq. 
(7) gives quite a good description of the data. The fine scale of Fig. 2(a), however, 
allows us to see long-time deviations of the behavior of the stiffest, highly arrested gel 
from our model. Specifically, the dynamic structure factor of the most concentrated 
gel continues to decay weakly at times much longer than the characteristic time ~, 
whereas the model predicts a decay to a fiat plateau. The observed sloping plateau 
suggests that the full behavior of density fluctuations in colloidal gels includes 
a second, slow process that partially completes the arrested decay of the first process 
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which is the one modeled by our theory. The two-step decay qualitatively resembles 
the beta and alpha decays of systems close to a glass transition. This analogy has 
already been made for polymeric gels 1-14]. Here, for all but the most concentrated 
gels, the final decay seems to be a small effect occurring only at extremely long 
times. 

Fig. 3 summarizes the behaviour of gels with volume fractions covering the range 
1 x 10 - 4  ~< ~b ~< 5 X 10 -3 .  Saturation of the decay of f(q, t) is measurable only for 
sufficiently concentrated gels in the range 1 x 10- 3 ~< ~b ~< 5 x 10- 3. Accordingly, both 
6 2 and T have been adjusted in fitting Eq. (7) to the correlation functions we obtained 
from the samples in this range. Their values appear in Fig. 3 as circles. The values for 
the parameter 6 2 are well represented by a power-law form in the volume fraction: 
6 2 = 1.8 x 10-,0 ~tm 2 ~b-2.7. We cannot detect saturation of the correlation functions 
of the weaker gels with concentrations in the range 1 x 10-4 ~< ~b < 1 x 10-3. There- 
fore, in order to represent them with Eq. (7), we fix 6 2 by extrapolating it from the 
power-law fit to the values of 6 2 obtained from the more concentrated samples. Only 

is then adjusted in the fit to correlation function data. Values for 3 2 and z so 
obtained for the more dilute gels appear in Fig. 3 as squares. Over the full volume 
fraction range 1 x 10 -4 ~< ~b ~< 5 x 10 -3, "C has a power-law dependence on th given by 

= 3.5 x 10-12 s ~b - 3.9; the behavior of z is continuous across the two ranges we have 

defined in our analysis. The inferred variation of z (and G oc z-  1) over a six-decade 
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range is remarkable. We point out, however, that this wide variation of z is not 
observed directly, since the correlation functions of weak gels typically attain values 
experimentally indistinguishable from zero in times much less than ~. (For example, 
see Fig. 2(c) and note that z = 1850 s for this concentration.) The reason is that z is the 
characteristic time required for the mean-squared displacement of a typical blob in the 
cluster to relax to its saturated thermal value (which 62 to within factors of order one); 
provided •2q2 is of order one or less, the saturation is observable in the scattering 
experiment and ~ is also the characteristic time for the decay of f(q,  t). For a suffi- 
ciently dilute gel, however, we have 62q 2 >> 1 at all but inaccessibly low angles and the 
scattered light is completely decorrelated by blob displacements much smaller than 
V/-~. These displacements occur in times of the order 1/Dcq 2 ~ ~. Here Dc ,~ 62/~ is the 
free diffusion coefficient of an isolated cluster. This remark explains the behavior 
noted above, i.e. that the time scale of the correlation function of the least concen- 
trated gel of Fig. 2 shows more q-dependence than do those of the more concentrated 
gels. 

These remarks can be made more quantitative. For  early delay times satisfying 
t ~ ~, Eq. (7) becomes 

f(q,  t) ~-- exp( -- Dpq2tp) , (8) 

where Dp =- 62/z  p may be called a "stretched" diffusion coefficient. In dilute gels, the 
numerical values of Dp and q can be such that most of the decay of f(q,  t) occurs while 
t ~ ~ holds and Eq. (8) applies. A sensitive test for this stretched-exponential behavior 
is a plot of In I f(q,  t)] versus Dpq2t p, which should yield a straight line, independent of 
angle and volume fraction. Fig. 4 is a plot of this form for two volume fractions, 
1.0 × 10-4 and 7.0 × 10-4, and several angles. The smooth curves have been calculated 

from the full form of our model (Eq. (7)); in the case of the higher concentration, terms 
neglected in Eq. (8) are important enough to cause the curves to depart slightly from 
linearity and to show a small angle dependence. Most noteworthy is how straight the 
data are at early times. This behavior indicates that the initial motion of clusters in 
colloidal gels is a free but anomalous diffusion, i.e., 

( ArZ(t) ) = 6Dpt p (9) 

for times t ~ r. Such anomalous or stretched diffusion has been reported in polymeric 
gels [13,14], but only as a secondary process that occurs after an initial regime of 
linear diffusion. Such a regime would appear as rounding off of the curves of 
Fig. 4 and is not observed. Here, moreover, we have accounted for the stretching as 
the consequence of the superposition of collective motions that occur within a fractal 
object. 

Fig. 4 also shows that the measured behavior of colloidal gels deviates slightly from 
our model with respect to the dependence of f(q, t) on q or angle: the data indicate 
a small increase of Dp as q decreases. Fig. 2 shows that the saturation behavior of 
f(q,  t) with respect to q also departs slightly but systematically from our model: the 
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Fig. 4. Dynamic structure factors f(q, t) of dilute colloidal gels. Stretched-exponential dynamics occur 
down to even the earliest delay times of 10 ~ts. The smooth curves are computed from Eq. (7); Dp is defined 
by 62/C with p = 0.66. Upper data and curves: ~b = 1.0 x 10-4; circles denote 0 = 30 ° and squares denote 
60°; 62 = 9.2 ~tm 2, z = 1.4 x 104 s. Lower data and curves (with f(q, t) shifted down by a factor for clarity): 
q~ = 7.0 × 10 4; circles denote 0 = 40 ° and squares denote 90°; 62 = 0.050 ~tm 2, T = 6.1 s. 

low-angle  co r re la t ion  funct ions of the more  concen t r a t ed  gels tend  to decay  more  than  

is p red ic ted  by  the self-consistent  fit of the mode l  to the da t a  t aken  over  all angles. 

This  t rend  could  be expressed as a small  increase of 62 as q decreases.  O u r  mode l  

assumes tha t  f (q ,  t) depends  on q only  t h rough  the q2 tha t  occurs  explici t ly in Eq. (7). 

The  d a t a  show tha t  this is indeed the d o m i n a t e  dependence.  

F r o m  the above  power - l aw express ions  for the pa r a me te r s  62 and  z, toge ther  with 

the re la t ions  given be low Eq. (7) for the gel p roper t i e s  G and  Rc, we find 

G ~ (1.6 × 101° dyn/cm2)(b 3"9 and  Rc "~ (0.38)Rlq~- 1.2. Here  R1 = 9.5 nm is the radius  

of a co l lo ida l  monomer .  F o r  compar i son ,  Buscall  et al. cons idered  the shear  modu lus  

of a close pack  of  fractal  s t ructures  and  pred ic ted  G oc q~v with v = 3.5 + 0.2 and 

4.5 + 0.5 for cluster  g rowth  by, respectively,  diffusion-l imited and  reac t ion- l imi ted  

aggrega t ion  [25]. Accord ing  to ou r  finding, the modu lus  a t ta ins  values tha t  are  within 

the measu remen t  capabi l i t ies  of  conven t iona l  mechan ica l  rheometers  for co l lo ida l  

vo lume fract ions near  the upper  end of  the range where we have m a d e  spec t roscopic  

measurements .  F o r  example ,  our  express ion gives G = 17 dyn / cm 2 for ~b = 5 × 10-3 
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Thus, it should be possible to test directly the validity of this optical method for the 
determination of gel elasticities. The optical method then extends the range of 
measurements to much more dilute gels. Our result for the characteristic cluster radius 
Rc can be compared with the expression Rc ~ Rlc~-1/~3-d~) where d I is the fractal 
dimension. This formula estimates Rc as the average cluster size at the moment when 
the volume fraction occupied by clusters attains 1 in diffusion-limited aggregation. 
Static scattering measurements on our samples give a fractal dimension d I = 2.1, 
closer to the value expected for reaction-limited aggregation. With this value, the 
estimated exponent for R~ is - 1.1, close to the exponent - 1.2 we find from our 
analysis of dynamic scattering data. 

7. Discussion 

The dynamics of colloidal gels are undoubtedly influenced by the mode of the 
aggregation process in which they are formed. As discussed above, in order to keep the 
rate of aggregation sufficiently slow to permit mixing, we have primarily studied 
systems that aggregate in a regime intermediate between the reaction- and diffusion- 
limited extremes. However, we can achieve the strict DLCA regime for those suspen- 
sions at the lowest colloidal monomer concentrations. Thus, in one experiment we 
initiated aggregation of a dilute suspension, q~ = 1.0 × 10 -4, by adding MgC12 to 
a final concentration of 30 mM. Over several hours, we observed growth of 
Rh consistent with the power-law behavior Rh oc tl/n~ expected in DLCA [5]. After 
a few days, the system reached a quiescent state which we assume is a gel. We then 
obtained data similar to those shown in Fig. 4. We found, however, that this 
diffusion-limited gel required a higher value, p -- 0.71, for the stretching exponent. The 
change improves the agreement with the value 0.70 predicted by our model of gelation 
and gel dynamics, which is partly based on a DLCA picture of colloidal aggregation. 
We take the fact that the change is, however, rather small as an indication that our 
model applies to the rest of our gels, which were formed in aggregation processes that 
were partly limited by the rate of reaction. 

In this paper, we have described dynamic light scattering measurements performed 
on colloidal suspensions that have attained a quiescent state long after aggregation. 
We argue that such systems are gels; we show how the elastic modulus of the gel can 
be inferred from the amount of arrest of thermal density fluctuations. The relaxation 
of density fluctuations is of a stretched exponential form. We show that the origin of 
this behavior is the hierarchy of elastic internal motions occurring within the fractal 
clusters. We have modeled the structure of the gel as a close pack of clusters whose 
radius is the radius at which clusters growing by the diffusion-limited aggregation 
process occupy all the system's volume. We propose that this simple model may 
provide a unified picture for analyzing colloidal gel behavior as it is exhibited by 
various experimental techniques including dynamic and static light scattering and 
mechanical rheology. 
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