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Elasticity of Compressed Emulsions
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The elastic shear modulus of monodisperse emulsions is shown to exhibit a universal dependence
on droplet volume fractionf when scaled by the Laplace pressure of the droplets, increasing as
fsf 2 fcd, wherefc ø 0.635, the value of random close packing of solid spheres. Surprisingly the
osmotic pressure required to compress the emulsions to increasef is nearly the same as the shear
modulus over a large range of volume fraction, while the bulk osmotic modulus differs significantly.
Models based on the structural disorder of the emulsions are discussed to account for these data.

PACS numbers: 82.70.Kj
s-
ver

s,

tic

b-
ts

s

-

er
d

n
e-

ls
ble
e

y

s.

the
s
he
Emulsions are droplets of one fluid dispersed in a seco
immiscible fluid and are stabilized by a surfactant. One
their most important and useful attributes is their rheolog
despite being comprised solely of fluids, emulsions ca
nevertheless be elastic solids. This elasticity is achiev
precisely because the droplets are fluid. When an osmo
pressureP is exerted on the droplets, their volume fractio
f is increased and their shape is distorted, storing ene
in their interfaces [1]. The elasticity can result from
the energy stored by additional deformation of the sha
induced by an applied strain. The energy scale th
controls this deformation is the internal or Laplace pressu
of the dropletssyr, wheres is the interfacial tension and
r is the radius of the undeformed droplet.

The key to the origin of the elastic modulus of an
emulsion is its dependence onf and hence on osmotic
pressure. However, this intrinsic relationship is not we
understood. Forf ø 1, an emulsion should resemble a
dry foam, where the elasticity results entirely from th
stretching of the interfaces [2]. An extension to lowerf

for a two-dimensional lattice of deformable cylinders sug
gested that the shear modulus should exhibit only a we
volume fraction dependence asf decreases, until it falls
precipitously to zero when the droplets no longer touch a
thus are not deformed [3]. More exact, three-dimension
calculations for ordered lattices arrive at a similar conclu
sion [4,5]. However, results from an extensive series
experiments were in sharp disagreement with these p
dictions; the measured shear modulus was found to ve
asG0 , f1y3sf 2 fcdsyr, wherefc ø 0.71 [6]. This
emulsion was comprised of polydisperse droplets, comp
cating a precise comparison to the theoretical predicti
and suggesting the discrepancy results from polydispers

In this Letter, we present measurements of thef depen-
dence of the elastic modulus of emulsions comprised
monodisperse droplets. Thus the Laplace pressure is
same for each droplet, enabling a precise comparison w
theoretical expectations. We show that the shear mo
ulus exhibits a universalf dependence when scaled by
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syr, which can be described byfsf 2 fcd; however,
herefc ø 0.635, the volume fraction of randomly close
packed spheres. More surprisingly, we show that the o
motic pressure is nearly the same as the shear modulus o
a large range off. By contrast, the longitudinal counter-
part of the shear modulus, or the bulk osmotic modulu
has a markedly differentf dependence. We also measure
the frequency dependence of both the storage, or elas
modulusG0, and the loss, or viscous modulusG00. Their
behavior is reminiscent of a glass, consistent with the o
served structure of the emulsion droplets. This sugges
that the origin of thef dependence of the elasticity is the
structural disorder of the droplets.

The emulsions were comprised of silicon oil droplet
in water, stabilized by 0.01M sodium dodecylsulphate
(SDS), and purified using a crystallization fractiona
tion technique [7]. The polydispersity was about 10%
of the radius, while the interfacial tension wass ­
9.8 dynycm. The volume fraction was set by centrifu-
gation and was measured by weight before and aft
evaporation of the water. The droplet structure remaine
disordered at all values off. The linear viscoelastic shear
moduli were measured by applying an oscillatory strai
and measuring the resultant stress. A cone and plate g
ometry was used for higherf while a double wall Couette
geometry was used for lower volume fractions. The wal
of both containers were roughened to a scale compara
to the droplet size, completely eliminating any slip at th
boundaries [8].

Typical results for bothG0 and G00 as functions of
the maximum applied oscillatory straing are shown in
Fig. 1 for several volume fractions of an emulsion with
r ø 0.53 mm. The elastic modulus increases by nearl
four decades asf increases; moreover, it is always
larger than the loss modulus at sufficiently small strain
By contrast, at larger strains, the apparentG00 initially
rises and then decreases but is always larger than
apparentG0. This presumably reflects the increased los
due to large scale structural rearrangements or flow of t
© 1995 The American Physical Society 2051
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droplets as the strain increases above the yield value.
our measurements are made at sufficiently small strains
that bothG0 andG00 are in theg independent regime.

The frequency dependence of the moduli is shown
Fig. 2 for severalf. In all cases, there is a plateau
in G0svd; at high f, this extends over the full four
decades of frequency measured, while for the lowestf,
the plateau is no longer strictly independent ofv but can
still be uniquely identified by the inflection pointG0

p. By
contrast, for allf, G00svd exhibits a shallow minimum
G00

m, the frequency of which increases withf. This
minimum must result from an increase inG00svd at both
higher and lower frequencies. The low frequency rise
G00 implies the existence of relaxation processes resulti
from very slow structural rearrangements of the drople
[9]. The high frequency rise inG00 reflects the ultimate
domination of the viscous relaxation of the fluid phase
very high frequencies, well above those measured. W
useG0

p to characterize the static elasticity at frequencie
above the extremely slow rearrangements of the glas
structure, andG00

m to characterize the associated los
modulus.

We measure thef dependence of bothG0
p andG00

m for
samples with different radii and normalize the results b
the energy density of the undeformed dropletssyr. We
also account for the consequences of the thin water film
thicknessh between the droplet interfaces [10] due to th
screened Coulomb repulsion between them. This rep
sive force is often called a disjoining pressure [11]. Th
thickness of this film must very with volume fraction, a
the droplets are squeezed together and become increasi
deformed, forcing the repulsive films closer together. F
low f, we findh ø 175 Å, consistent with force-distance
measurements for these emulsions where the screen
length is,50 Å [12]; at the highestf, we estimateh ø
50 Å by comparison to measurements of the film thick
ness at similar osmotic pressures [13]. We interpolate li
early between these two values forf $ 0.64 to obtain an
effective volume fractionfeff ø fs1 1 3hy2rd. This in-
cludes the film with the volume of the droplets and focuse

FIG. 1. Theg dependence of the storageG0 (solid points) and
lossG00 (open points) moduli of a monodisperse emulsion wit
r ø 0.53 mm for feff ø 0.80 (diamonds), 0.63 (triangles), and
0.60 (circles), measured atv ­ 1 radysec.
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FIG. 2. The frequency dependence of the storageG0 (solid
points) and lossG00 (open points) moduli of a monodisperse
emulsion withr ø 0.53 mm for feff ­ 0.80 (diamonds), 0.63
(triangles), and 0.60 (circles). The results for the two large
feff were obtained withg ­ 0.005, while those for the lowest
were obtained withg ­ 0.015.

on the consequences of the droplet packing, independen
the effects of the repulsive interaction. The scaled data f
G0

p all fall onto a single curve, as shown by the solid point
in Fig. 3; the data forG00

m also fall onto a single curve, as
shown by the open points in Fig. 3. The scaledG0

p rise
by nearly four decades asfeff increases from 0.60 to 0.65.
Moreover, over allfeff shown,G0

p dominates overG00
m;

this becomes increasingly pronounced at highfeff. The
scaling withsyr confirms that the elasticity results from
the storage of energy at the droplet interfaces. Moreove
the scaling indicates that the elasticity of these compresse
monodisperse emulsions is universal, dependent only
the packing geometry of the droplets.

Like the elasticity, the osmotic pressure also reflec
energy storage in the interfaces as they are deformed w
increasingf. To compare the osmotic pressure with the
shear modulus, we measured itsf dependence using an
emulsion withr ø 0.48 mm. At high f, P was set by
dialysis using calibrated polymer mixtures [14], while a
lower f, it was set by gentle centrifugation. The value
of feff corresponding to eachP was determined and the
data, normalized bysyr, are plotted as the large open
circles in Fig. 3. Remarkably, to within experimenta
uncertainty,P is nearly the same asG0

p, until it diverges
at highfeff.

To understand these results, we consider the behav
in different regimes of volume fraction. Nearfeff ø 1,
the behavior of the emulsion should be analogous
a dry foam assuming the imposed shear stretches t
films as the droplets deform, rather than further squeezin
the droplets together. A random, dry foam, is predicte
to have G0 ø 0.55syr [2]. Our results suggest that
G0 approaches0.6syr, in excellent agreement with this
prediction. The osmotic pressure is affected by th
repulsive interactions and should diverge as the drople
are increasingly deformed, as observed in our data.
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FIG. 3. The plateau value of the elastic modulusG0
p and the

minimum of the loss modulusG00
m normalized by syr for

emulsions withr ø 0.25 (solid circles), 0.37 (triangles), 0.53
(squares), and 0.74mm (diamonds), plotted as functions of
feff. Excellent scaling of the data is observed, demonstrati
the universal nature of the elasticity. The large open circl
are the measured values of the osmotic pressure, normalized
syr for an emulsion withr ø 0.48 mm. The osmotic pressure
is nearly the same as the elastic modulus, until it diverges
very high volume fractions. The solid line represents the bu
osmotic modulus.

Below fc ø 0.635, packing constraints do not force
the droplets to deform, yet the emulsion still retain
its elastic behavior, despite the fact thatP is orders
of magnitude less than the Laplace pressure. He
entropic effects must play a significant role since th
droplets are small enough that their Brownian motio
is important. Thus the behavior might be understoo
by comparison to solid colloidal spheres. Forf $

0.55, solid spheres also exhibit a plateau inG0svd and
a minimum in G00svd, with G0

p larger thanG00
m; this

results from the packing constraints of a colloidal glas
[15]. Dynamic light scattering measurements from inde
matched emulsions confirm the presence of a colloid
glass transition atfeff ø 0.58 [16]. Thus, by analogy,
nearfc the emulsion elasticity is entropic in origin and
should scale askBTyr3 rather thansyr; however, our
data are insufficient to ascertain this.

The most unusual behavior occurs abovefc, where
packing constraints force the droplets to deform. He
G0

p decreases approximately linearly withfeff 2 fc; we
show this in Fig. 4 where we replot the data abovefc

on a logarithmic plot. We emphasize, however, that th
behavior does not persist to the lowestfeff where G0

p
continues to decrease. This linear dependence is re
niscent of that observed for polydisperse emulsions [6
however, herefc corresponds to random close packin
of monodisperse spheres. The data forP also exhibit
an approximately linear increase abovefc, although with
more scatter, until they diverge nearfeff ø 0.8. There-
fore, the bulk osmotic modulusGB ­ fdPydf must in-
crease sharply atfc and thus exhibits a dramatically dif-
ferentfeff dependence than the shear modulus, as sho
schematically by the solid line in Fig. 3.
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To understand this behavior, we first consider th
behavior of a single droplet confined in a box, whos
dimensions are decreased by a small amountdx below
2r, thereby deforming the droplet shape and forming fl
facets of areaa at the walls. For small deformations, the
Laplace pressure is unchanged, so the force on the fa
is asyr, and the osmotic pressure of the droplet isP ,
asyr3. Both a and the change in the volume are linearl
related to dx; thus P , sfeff 2 fcdsyr. The facet
behaves as a harmonic spring; the force is proportion
to dx and hence tofeff 2 fc, while the spring constant
is syr. More detailed calculations of the energy o
weakly deformed droplets arrive at a similar prediction
except with an additional logarithmic dependence th
leads to a slight modification very close tofc [4]. This
central spring picture can be generalized to describe a b
emulsion by assuming that the neighboring droplets for
the box. Then the osmotic pressure squeezes oppos
interfaces together to form flat facets, each of whic
behaves as a harmonic spring. However, these springs
never be attractive but are always compressed; moreov
they support only central forces. Because of packin
disorder, the flat facets pushing on each droplet a
random in their direction. However, since each dropl
cannot move, the total force exerted on it must sum
zero; as a result, all facets do not necessarily have eq
areas, and thus all springs are not equally compressed.

Whenf . fc, the droplets must be deformed, and th
volume fraction dependences of both the osmotic press
and the shear modulus depend on the behavior of the fac
As the osmotic pressure is increased and the droplets
further compressed, new facets must form. Thus one p
sible model for the behavior of the shear modulus is b
analogy to a network of springs, which are cut randoml
Computer simulations, and effective medium theory, for a
ordered network of harmonic springs suggest that the sh
modulus decreases linearly in the number of springs, g
ing to zero at the rigidity transition [17]. Stretched spring
exhibit a similar behavior, althoughfc is modified [18].

FIG. 4. The values ofG0
p and P normalized bysyr and

plotted logarithmically as a function offeff 2 fc. The solid
line is the behavior predicted by the network spring model fo
G0

pyssyrd.
2053



VOLUME 75, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 4 SEPTEMBER1995

at
e-
re;
s

-
d.
al
it

al
s.
y
s,
n-
r
ar
s

,
d
d
r

,

B

Assuming that the number of facets varies linearly wit
volume fraction, we might expect the shear modulus
decrease linearly asfeff 2 fc; the critical volume frac-
tion is that of random close packing of the monodisper
spheres, where facets are first formed. This model is si
ilar in spirit to a computer simulation of two-dimensiona
polydisperse disks, which exhibits a rigidity loss trans
tion asf is decreased [19]. Since the density of spring
varies asfeff, we expectG0

p , feffsfeff 2 fcdsyr; this
does describe the data, as shown by the solid line in Fig.
However, this picture can only describe the behavior
the osmotic pressure if we assume that it is dominated
the facets that are first formed atfc. Each of these must
be further compressed with increasingfeff; by contrast,
any new facets are significantly less compressed wh
first formed and thus make a smaller contribution. In th
case,P , feffsfeff 2 fcdsyr, until the approximation
of constant droplet radium fails, whereupon the osmot
pressure diverges. This is also in accord with the data,
shown in Fig. 4.

While appealing, this picture probably does not ad
quately capture the physics asfeff approachesfc. The
percolation effects inherent in this picture require a d
creasing number of facets to cause the loss of elastic
However, even atfc, each sphere has, on average, s
nearest neighbors, restricting the total number of addition
facets that can be formed with increasingfeff and thus the
total change in the modulus that can be achieved. It is po
sible that the remnant polydispersity of the droplets lea
to far fewer facets atfc, thereby broadening the transition
and causing the linear decrease to persist. A much m
likely possibility recognizes the effects of the disorder o
the facets. Since the facets support only central force
they cannot support a shear stress by themselves, but
so only because of their packing. However, because
their disorder, some facets may shift positions upon app
cation of the shear. Indeed it is likely that some facets a
always incipiently unstable and will rearrange with arb
trarily small strains. This rearrangement will cause an im
balance of the forces on the neighboring droplets, which
turn will cause them to move, thus causing a propagation
these rearrangements. As a result, the shear will cause
droplets to move, or slip, relative to each other, reducin
the compression of the facets. After this rearrangeme
the net forces on each interior droplet will again sum t
zero, while the forces on the droplets at the surfaces w
both oppose the osmotic pressure and provide the restor
force that leads to the shear modulus. Since this rest
ing force results from a rearrangement of the initial force
whose magnitudes are themselves set by the osmotic p
sure, it will itself be proportional to that same force an
hence will scale withP. Moreover, since the droplets are
packed in, and cannot move macroscopic distances, i
reasonable to expect this force to scale with the appli
strain. As a result, the strain in the emulsion will not b
affine; instead the droplets will slip or rearrange instea
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of deforming, reducing the shear modulus. We note th
this picture is somewhat suggestive of the modulus pr
dicted for random systems under an extensional pressu
the modulus has an important contribution which varies a
the pressure [20].

If this spring-rearrangement picture is correct, a com
pressed emulsion would be a particularly unusual soli
It becomes a solid solely because of the compression
forces that result from the osmotic pressure; however,
supports a shear by shifting to a state of lower position
energy, thus requiring less deformation of the droplet
In this case, it is not clear whether the modulus is a trul
causal quantity that obeys the Kramers-Kronig relation
even though the experimentally measured modulus is li
ear in strain [9]. The essential conclusion of this pape
is the experimental observation of the scaling of the she
modulus and its similarity with the osmotic pressure. Thi
behavior will serve as a critical test of the validity of any
proposed theory.
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