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Shape Fluctuations of Interacting Fluid Droplets
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We study the thermally induced shape fluctuations of monodisperse emulsion droplets.

The very

small amplitude of these fluctuations is clearly resolved by diffusing wave spectroscopy and a theory
is derived to describe the measured data. We measure the dependence of the fluctuations on droplet
volume fraction ¢, thereby directly probing the interplay between droplet interactions and droplet
flexibility. The characteristic relaxation frequency of the fluctuations is found to decrease with

increasing ¢, while their amplitude increases.

PACS numbers: 68.10.-m, 05.40.4j, 82.70.Kj, 87.22.Bt

Interfaces between two fluids are subject to thermally
induced fluctuations, or capillary waves. Their amplitude
is controlled by the surface tension between the fluids I’
and is typically very small, of the order of 10 A. Never-
theless, for flat interfaces, capillary waves have been ob-
served using both light [1] and x-ray scattering [2]. The
interfaces of fluid droplets will also be subject to thermal
fluctuations, and these are of considerable importance.
The properties of dispersions of liquid droplets, or emul-
sions, are dramatically different from dispersions of solid
spheres as the volume fractions of the dispersed phase ¢
increases precisely because droplets are deformable, and
the thermally induced fluctuations are the precursors to
this deformation. Thus, the extra degrees of freedom in-
troduced by these thermal fluctuations may have impor-
tant consequences for the properties of emulsions as ‘¢
is increased. Unfortunately, however, the thermal fluc-
tuations even of individual liquid droplets are extremely
difficult to observe and have not been studied, and the
consequences of increased volume fraction on these ﬂuc—
tuations is completely unknown.

Thermal fluctuations of other fluid dlspersmns have
been studied; for example, thermal fluctuation of micro-
emulsions [3,4] have been observed with neutron spin
echo measurements, while those of liquid membranes
have been observed with x-ray scattering [5], and those
of vesicles have been directly observed with imaging
[6]. TIn all these cases, the surface tension is essentially
zero, so the fluctuations are controlled by the bending
energy and are a significant fraction of the size of the
structures, making them easier to observe. By contrast,
for a fluid droplet with a larger value of T, the amplitude
of the fluctuations is significantly reduced. The thermally
induced increase in the surface area of a fluid droplet
is AA =~ kpT /T, where kg is Boltzmann’s constant, and
T is the temperature. For a typical surface tension of
10 dyn/cm, the increased area is only about 40 A?; for
a 1 um radius droplet, the corresponding deviation from
sphericity is less than 0.1%. The relaxation time 7 of
these fluctuations is also short. If the viscosity of the
droplet is much greater than that of the continuous phase,
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the relaxation time is 7 = R%/I'; forp = 0.1 Pand R =~
1 um, 7 = 107%s. The combination of the very short
time scale and the very small amplitude of the thermal
fluctuations of emulsion droplets has, to date, precluded
their observation.

In this Letter, we report the first observation of the ther-
mal fluctuations of fluid emulsion droplets and present the
significant finding that shape fluctuations are strongly af-
fected by particle interactions. The relaxation frequency
exhibits a linear decrease with increasing ¢, while the am-
plitude of the fluctuations exhibits an unexpected increase
with ¢. Despite the very small amplitude of the fluctua-
tions, we are able to measure them by exploiting two recent
innovations. In order to have well-characterized dynamics,
we use highly monodisperse emuision droplets [7,8]. To
measure the minute length scales, we use diffusing-wave

-spectroscopy (DWS), an extension of traditional dynamic

light scattering to the multiple scattering limit which al-
lows fluctuations on very small length scales to be probed
[9]. We accomplish these measurements by generalizing
DWS to account for fluctuations of the scattering form fac-
tor, in addition to the more familiar phase fluctuations.

Our samples are emulsions of silicone oil in water,
stabilized with sodium dodecylsulphate. We use the
technique of fractionated crystallization to yield highly
monodisperse droplets with a mean radius of R = 0.7 um,
with an rms deviation of less than 5% [7]. The surface
tension of the interfaces is 9.8 dyn/cm. We perform
our DWS measurements in the transmission geometry
using an expanded beam from an Ar* laser, which gives
ko = 16.3 um™ for the incident wave vector in water.
The detected light is collected from a point on the exit
side of the 5 mm-thick sample cell. The transport mean
free path [* is determined independently by a static
transmission measurement [9]. This information allows
us to determine the dynamics of the individual emulsion
droplets [10].

We might expect the dynamics of emulsion droplets
to be the same as those of hard spheres. This is indeed
the case for an emulsion made of a high viscosity oil,

= 1000 cP. This is illustrated in Fig. 1, where the open
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circles represent (Ar2(z)), the mean square displacement of
an individual droplet. The data follow the curve predicted
for hard spheres, shown by the solid line. By contrast,
an emulsion made from a lower viscosity oil, » = 12 cP,
exhibits distinct additional dynamics, as shown by the solid
circles in Fig. 1. At early times, the data fall significantly
higher than those expected for solid spheres; at later times,
the data merge. Similar behavior is observed for all ¢;
Fig. 1 shows the data for ¢ = 0.35. These additional
dynamics result from the shape fluctuations; for the higher
viscosity oil, the relaxation time 7 is so long that any shape
fluctuations are masked by the large displacements that
occur during 7.

To describe these new dynamlcs quantitatively, we
must generalize the formalism for DWS to include fluctu-
ations in the scattering amplitude, in addition to the phase
fluctuations which result from translational motion. The
analysis of the correlation _function measured by DWS re-
quires the calculation of the contribution of diffusive light
paths comprised of a large number of scattering events;
these are all represented by an angle-averaged scattering
event [9]. Thus, to include the amplitude fluctuations, we
write the normalized field correlation function for this g-
averaged, single-scattering event as

(b*(g,bg,0)),
*(q,06(g.00,

Here, the time dependent scattering amphtude is b(g,1),

and the brackets with the subscript ¢ denote an ensemble
and g average. Throughout we assume that the amplitude
fluctuations are independent of the translational motion of
the droplets; furthermore here we neglect spatial correla-
tions. The amplitude fluctuations contribute an additional
correlation function which is assumed to consist of a sum
of a constant portion and a much smaller fluctuating por-
tion. Performing the ¢ average, we obtain

gi(r) = <exp{—iq'Ar(t)}> Y
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FIG. 1. Inverted correlation functions of monodisperse emul-
sions. The data are the sum of the mean square displacement

and a term related to the correlation function of the fluctuating
scattering amplitude. The solid points are for an emulsion with
an oil viscosity of 12 cP, while the open points are for an emul-
sion with an oil viscosity of 1000 cP. The additional dynamics
due to the shape fluctuations of the lower viscosity droplets are
apparent. The solid line is the theoretical prediction for rigid
spheres; it agrees well with the data for the viscous droplets.
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where oy is the time independent total cross section, and
Ao (1) is the correlation function of the fluctuating portion
of b(g,t), ensemble and ¢ averaged In addition, we
have used the relationship, (%), = 2k31/1*, where [ is the
scattering mean free path [11].

To calculate the correlation function for a diffusive
path of length s, consisting of n = s/I scattering events,
we take the product of Eq. (2) n times [9]. Since
Ao(t) <« o0y, the first term can be approximated as an
exponential, exp{[Ac(t) — Ao (0)]/o0}; this ensures that
the contribution of a single diffusive path is still linear in
s, and allows the standard DWS analysis to be retained.
Thus, the total DWS correlation function is a sum over
the contributions of all paths, weighted by the probability
that a photon follows the path, P(s)

gi(t) = f P(s) CXP[ 3];2

3* Ao(0) — Ao (s)
I %o )]ds' )

Although we have neglected the effects of spatial corre-
lations as ¢ increases, for the case of the relatively large
particles used here, Eq. (3) can be generalized to include
them. A g-averaged structure factor must be included to
retain the form with (Ar?(z)) [12]; however, because the
shape fluctuations are not spatially correlated, the factor
I”/1 within the square brackets must be evaluated in the
limit of zero ¢. Since P(s) is known [9], this equation
can be solved in exactly the same manner as is done for
DWS from solid particles. The effects of the amplitude
fluctuations are contained in the second term in the square
brackets. It is clear from Eq. (3) that DWS probes the rel-
ative fluctuations of the cross section. Their contribution
increases from zero at : = 0, like (Ar3(z)), but saturates
at long times. It is also clear why very small fluctuations
can be detected; the signal arises from the sum of » inde-
pendent amplitude fluctuations. These minute fluctuations
would not be detectable without the advantage of the mul-
tiple scattering.

We note that this derivation is independent of the na-
ture of the amplitude fluctuations, not only shape fluctua-

x((Ar2(t)> +

tions, but other phenomena, such as rotational motion of
_ aspherical particles, can also result in a similar contribu-

tion. Moreover, the DWS data can be inverted and the
translational and amplitude contributions separated. The
scaled form of the theory [10], which appears in Fig. 1 as
the solid curve, aliows us to take into account the effects
of hydrodynamic and particle interactions on the trans-
lational dynamics. . We therefore can obtain separately
the fluctuating cross section, as influenced by interactions.
We plot R?’Ac(t)/o0o for ¢ = 0.35 in Fig. 2; we multi-
ply the normalized fluctuating cross section by R? to give
the correlation function of the fluctuations of the droplet
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FIG. 2. Correlation function of the fluctuations of the droplet
radius for an emulsion with ¢ = 0.35. The solid line 1s the
theoretical prediction.

radius.
ponential decay.

Similar behavior is found for all other droplet volume
fractions. Surprisingly, the shape of the correlation func-
tion is independent of ¢; all the data can be scaled onto a
single master curve. This behavior enables us to quantify
the effects of particle interactions on shape fluctuations
in terms of the required ¢-dependent scalings that col-
lapse the data. We find that the characteristic frequency
of the decay decreases with increasing volume fraction;
as shown by the open triangles in Fig. 3, the decrease is
approximately linear in ¢. By contrast, we find that the
amplitude of the shape fluctuations increases significantly
with ¢; this is shown by the solid circles in Fig. 3.

To describe the correlation function of the fluctuating
shape quantitatively, we expand the instantaneous radius
of the drop in spherical harmonics [13]. Each independent
deformation mode creates an excess area given by kpT /2T,
Together with the conservation of volume, this condition
determines the amplitude of the expansion coefficients.
Each mode relaxes independently with an exponential
decay rate w; that must be calculated in the overdamped,
or low Reynolds number, limit [14,15]. We obtain
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FIG. 3. The ¢ dependence of the characteristic frequency
(open triangles) and the fluctuating amplitude (solid circles).
Both quantities have been reduced by their extrapolations to
zero volume fraction. The solid line is a fit to a linear decay,
with a coefficient of 0.78; the dashed line is a fit to a simple
model which attempts to include the effects of interactions
between the droplets.

We note that the data exhibit a distinctly nonex-
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W = e (8)
In general, w; depends on the viscosities of both fluids
[16]; here we have assumed that the viscosity of the
oil is much greater than that of the water. Note that
asymptotically w; ~ I, reflecting the fact that the dynamics
are driven by surface tension; by contrast, w; ~ [°, when
the dynamics are driven by the interfacial rigidity [13].
The scattering cross section for each mode is calculated
within the Rayleigh-Gans (RG) approximation [3],

glr = 7 fo ﬂsinO(l + cos? 9)[3,,(x)1* de, (6)

where x = 2kyR sin(6/2), and where we have omitted an
optical constant which is canceled in the normalization by
oo. The coefficients g; depend only on kyR and become
negligible when [ > koR, since the length scale of the
features described by such modes is much smaller than
the wavelength of the radiation. This behaviof sets a
natural cutoff mode [/, for the expansion; we find that
the series converges for /. = 20. Because of their large
mismatch in index of refraction, the RG approximation
is not strictly valid for these droplets, and Mie theory,
suitably generalized to treat nonspherical scatterers, should
be used instead. However, the average cross section oy
calculated within the RG approximation differs by less than
0.5% from that calculated from Mie theory. Moreover,
the value for g, estimated by differentiating the scattering-
intensity pattern calculated with Mie theory is within
10% of the RG value. Thus, we conclude that the RG
approximation is sufficiently accurate.

" These expressions apply only to an isolated droplet,
However, since we find the shape of our data to be in-
dependent of ¢, we can describe interactions by insert-
ing two ¢-dependent scaling factors Ao (¢)/Ao(0) and
w(¢)/w(0) in the right sides of Egs. (4) and (5). The
solid line through the data in Fig. 2 illustrates the fit
so obtained for ¢ = 0.35. The agreement is excellent.
The nonexponential decay clearly reflects the contribution
of the different modes. The fit is noticeably poorer if
fewer modes are included; this is true at all ¢. Quanti-
tative agreement between the theory and the experiment
should be obtained when the ¢-dependent characteristic
frequency w(¢) and amplitude Ao (¢) are extrapolated
to zero volume fraction. Our extrapolated value of w(0)
is identical to the predicted value of I'/yR = 1.2 MHz.
Similarly, the extrapolated value of the amplitude ra-
tio R2Aa(0)/oo is 70 A2, while the predicted value is
(kgT/4mToo)S 21 + 1)g/[I(1 + 1) — 2] = 52 A% The
remaining discrepancy may reflect the error introduced by
the RG approximation.
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The ¢ dependence of both the frequency and the
amplitude must reflect the consequences of the interac-
tions between the droplets, and these are not, as yet,
well understood theoretically. The normalized character-
istic frequency is well represented by a linear behavior,
w(d)/w(0) =:1 — 0.78¢. The most likely origin of this
behavior is the ¢ dependence of the effective viscosity
of the emulsion. A similar linear form was recently pre-
dicted (for the / = 2 modes only), but the predicted coef-
ficient is 1.4 [17]. However, this theory was restricted to
the case of equal viscosities of the oil and water, which
may account for the discrepancy.

The increase of the amplitude of the shape fluctuations
with ¢ is more surprising. It may reflect the effects of
collisions between the droplets, which become increas-
ingly likely as ¢ increases; because the droplets are flex-
ible, these collisions may result in additional deforma-
tions. If these are relatively localized, a large number of
spherical harmonics will be required to describe the defor-
mation, and a nonexponential relaxation will result. We
therefore model the consequences of collisions by intro-

ducing a contribution to the amplitude proportional to the

fraction of the droplets that, at any instant, are colliding
with a neighbor. This fraction we estimate as ¢g(2, ¢),
where g(2, @) is the pair correlation function at contact.
The dashed line through the data in Fig. 3 is a fit of
Ao (¢)/Aa(0) to the functional form 1 + C¢g(2, @) with
g2,¢) =1 — ¢/2)/(1 — ¢)* as holds for hard spheres
[18]. Good agreement is found with C = 0.2, suggesting
that droplets in collision deform an extra amount that is
about 0.2 times the deformation exhibited by an isolated
droplet. We emphasize, however, that while this model
gives reasonable agreement with the data, it is nevertheless
only a crude approximation. More generally, it should be
possible to regard these increased shape fluctuations as the
consequence of the osmotic pressure of flexible spheres.
The expression | + Cdg(2, @), with C = 4 and g(2, ¢) as
given above, is in fact the ratio of the full osmotic pres-
sure of a hard-sphere suspension to the kinetic part nkgT,
where n is the number density [18]. This observation sug-
gests that Ag(¢)/Ac(0) may be related to the reduced os-
motic pressure of the suspension of flexible droplets. Fur-
ther theoretical work is clearly required to determine the
underlying physics of this surprising behavior.

The flexibility of fluid droplets is one of their most
distinguishing features; it controls many of their unique
properties. The shape fluctuations studied here directly
probe this flexibility. Moreover, as the volume fraction
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increases, these shape fluctuations can lead to significant
modifications of the properties of the interacting droplets.
In particular, they may make a significant contribution
to the onset of an elastic shear modulus, which occurs
as ¢ is increased sufficiently to permanently deform
the droplets. The increasing effects of interactions on
the shape fluctuations may provide new insight into this
important problem. Finally, the techniques reported here
may provide a new method for probing the stability of
emulsions: shape fluctuations may be a critical precursor
of coalescence, one of the key mechanisms by which
emulsions are destroyed.
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