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PREFACE 

This volume contains the papers presented at the NATO Advanced 

Research Workshop on Localization and Propagation o[ Classical Waves in 

Random and Periodic Media held in Aghia Pelaghia, Heraklion, Crete, May 26-

30, 1992. 

The workshop's goal was to bring together theorists and experimentalists 

from two related areas, localization and photonic band gaps, to highlight their 

common interests. The objectives of the workshop were (i) to assess the state

of-the-art in experimental and theoretical studies of structures exhibiting 

classical wave band gaps and/or localization, (ii) to discuss how such structures 

can be fabricated to improve technologies in different areas of physics and 

engineering, and (iii) to identify problems and set goals for further research. 

Studies of the propagation of electromagnetic (EM) waves in periodic 

and/or disordered dielectric structures (photonic band gap structures) have been 

and continue to be a dynamic area of research. Anderson localization of EM 

waves in disordered dielectric structures is of fundamental interest where the 

strong ei-ei interaction efFects entering the eIectron-localization are absent. 

Also, in analogy to the case of electron waves propagating in a crystal, classical 

EM waves traveling in periodic dielectric structures will be described in terms of 

photonic bands with the possibility of the existence of frequency gaps where the 

propagation of EM waves is forbidden. The potential applications of such 

photonic band gaps are very interesting. Ir has been suggested that the 

inhibition of spontaneous emission in such gaps can be utilized to substantially 

enhance the performance of semiconductor lasers and other quantum electronic 

v 



devices. Photonic band gap materials can also find applications in frequency

selective mirrors, band-pass filters, and resonators. In addition, it has been 

proposed that Anderson localization of light near a photonic band gap might be 

achieved by weak disordering of a periodic arrangement of spheres. 

This book contains papers summarizing the "state-of-the-art" of the 

photonic band gap and classicallocalization areas of research. The coHection of 

the papers is roughly balanced between theory and experiment. It contains 

chapters that present latest research results appropriate of an advanced research 

workshop, as weH as ones that review a particular field, with the goal of 

providing the reader with a sufficient overview and extensive references for a 

more detailed study. The book is divided into three parts representing the 

various topics discussed at the workshop. Part I covers those topics that are 

primarily related to the localization of waves in disordered media. Part 11 

provides an up-to-date experimental and theoretical review of the photonic 

band gap field. It also discusses the potential applications of the photonic band 

gaps. Finally, Part 111 covers the more mathematical aspects of the wave 

propagation in disordered media and in addition some specific topics are also 

glVen. 

The workshop was made possible through the generous support of the 

NATO Scientific Affairs Division, Brussels, Belgium and the Ames Laboratory, 

operated by the U.S. Department ofEnergy by lowa State University under 

Contract No. W-7405-Eng-82. I would like to thank the organizing 

committee, E. N. Economou, S. John, and A. Lagendijk for their valuable help 

on the organization of the program and the workshop. I would like to express 

my appreciation to Rebecca Shivvers, who prepared the conference materials 

and edited the manuscripts for this book. Finally, I wish to express my deepest 

appreciation to all the participants for making this a lively and enjoyable 
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workshop. 
C. M. Soukoulis 
Physics Department 
Ames Laboratory 
lowa State University 

Ames,lowa 50011 U.S.A. 
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THE LOCALIZATION OF LIGHT 

SajeevJohn 

Department of Physics 
University of Toronto 
Toronto, Ontario, Canada M5S lA 7 

ABSTRACT 

I present a theoretical overview of photon localization in disordered and 
periodic structures. Some possible new directions are suggested. 

1. INTRODUCTION 

Wave propagation in strongly scattering media is a subject with a long and 
diverse history. The quantum mechanical wave nature of ordinary matter on the mi
croscopic scale is based on an analogy with the scattering and interference of classical 
waves. Yet it is only recently that the analogy has been reversed and the possibil
ity that phenomena normally associated with quantum mechanical de-Broglie waves 
might be observed with classical waves has been fuHy explored. Electromagnetism is 
the mediator of fundamental interactions in condensed matter physics and quantum 
optics. The localization of photons in analogy with the localization of electrons1 is a 
fundamental alteration of these interactions. It opens the door to a number of new 
physical phenomena which are only beginning to be explored theoretically and ex
perimentally. In this article, I review the underlying physics of photon localization in 
disordered and periodically ordered dielectric materials. In addition, I discuss areas 
of current activity within the field and suggest some possible new avenues for basic 
research. 

Light localization2 is an effect which arises entirely from coherent multiple scat
tering and interference. It may be understood purely from the point of view of 
classical electromagnetism. In traditional studies of electromagnetic wave propaga
tion in dielectrics, scattering takes place on scales much longer than the wavelength 
of light. Localization of light, much the same as electrons, occurs when the scale of 
coherent multiple scattering is reduced to the wavelength itself. This is an entirely 
new and unexplored regime of optical transport with both fundamental and practical 
significance. Unlike its electronic counterpart, a photon in lossless dielectric media 
provides an ideal realization of a single excitation in a static random medium at 
mom temperature. It is not hampered by the inevitable presence of electron-electron 
interactions and electron-phonon interactions which occur in the study of electron 
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localization. High resolution optical techniques off er the unique possibility studying 
the angular, spatial and temporal dependence of wave field intensities near a local
ization transition. From a fundamental point of view, photon localization offers the 
most direct experimental test of our understanding of transport in strongly scattered 
media. On the practical side, multiple scattering spectroscopy is already proving to 
be a valuable tool in studying the hydrodynamics of colloids, suspensions and other 
dense complex fluids. In the field of medicine, multiply scattered electromagnetic 
waves already provide a valuable noninvasive probe of biological tissue. 

Light localization which occurs at a purely classicallevel, also has fundamental 
consequences at the quantum level. This is most easily seen in the extreme limit of 
a dielectric exhibiting a complete photonic band gap in frequency in analogy with 
the electronic energy band gap of a semiconductor. Such a microstructure consists of 
a periodic array of high dielectric spheres of diameter (and lattice constant) compa
rable to the wavelength of light. Strictly speaking, in such a structure there are no 
allowed electromagnetic modes in the forbidden frequency range. However, as in a 
semiconductor an impurity placed within the material will introduce localized modes 
into the gap. In this photonic analog of a semiconductor, an impurity atom with a 
transition frequency in the localization regime will not exhibit spontaneous emission 
of light, but instead, the emitted photon will form abound state to the atom! Both 
the classical electrodynamics which leads to localization and the concomitant alter
ation of quantum electrodynamics suggest new frontiers of basic research spanning 
the disciplines of condensed matter physics and quantum optics. 

2. ANALOGY BETWEEN PHOTONS AND ELECTRONS 

In the case of electron localization, nature provides a variety of readily available 
materials. Localization is more often the rule than the exception. This is easily seen 
from the Schrodinger equation for an electron with effective mass m*: 

(1) 

A random potential V(x) can trap electrons in deep local potential fluctuations when 
the energy E is sufficiently negative. As the energy increases, the probability of 
finding another nearby potential fluctuation into which the trapped electron can tun
nel increases. To quantify these ideas, consider V(x) to have a root mean square 
amplitude v"ms and a length scale a on which random fluctuations take place. The 
correlation length to the disorder adefines an energy scale eil == 1i2 /(2m*a2 ). For 
example, in an amorphous semiconductor a is the interatomic spacing, eil plays a role 
analogous to the conduction band width of the semiconductor, and the zero of energy 
corresponds to the conduction band edge of the corresponding crystal. In the weak 
disorder limit v"ms ~ eil, a transition takes place as the electron energy is increased 
to about - ~'!.s/ eil in which successive tunnelling events allow the electron to traverse 
the entire solid by a slow diffusive process and thereby conduct electricity. This tran
sition energy has been termed a mobility edge by N.F. Mott.3 At higher and higher 
energies the scale on which multiple scattering takes place grows larger and larger 
than the electron's de Broglie wavelength and the electron traverses the solid with 
relative ease. Ir the disorder is made strong VrmB ~ eil, the mobility edge moves into 
the conduction band continuum (E > 0) and eventually the entire band may be en
gulfed by states exhibiting Anderson localization. Since disorder is a nearly universal 
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2 Efluc'( x) 
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Fig. 1 In the case of photon localization, ~: ffluct (x) plays the role of the scattering 

potential. Unlike the picture for electrons, the eigenvalue ~: fO is always higher 
than the highest of the potential harriers in the case of a real, positive dielectric 
constant. 

feature of real materials, electron localization is likewise an uhiquitous ingredient in 
determining electrical, optical and other properties of condensed matter. 

In the case of monochromatic electromagnetic waves of frequency w propagat
ing in an inhomogeneous hut nondissipative dielectric medium, the classical wave 
equation für the eledric field aIIlplitude E may be written in a form resembling the 
Schrödinger equation: 

(2) 

Here, I have separated the total dielectric constant f( x) = fO + ffluct (x) into its average 
value fO and a spatially fluctuating part ffluct(X). The latter plays a role analogous 
to the random potential V(x) in the Schrödinger equation, and scatters the electro
magnetic wave. For the case of a lossless material in which the dielectric constant 
€( x) is everywhere real and positive, several important observations concerning the 
Schrödinger equation-Maxwell equation analogy are in order. First of all, the quan
tity €OW 2 / c2 which plays a role analogous to an energf eigenvalue is always positive, 
thereby precluding the possibility of elementary bound states of light in deep nega
tive potential weHs. It is also noteworthy that the laser frequency w multiplies the 
scattering potential €f1uct(x). Unlike an electronic system, where localization was en
hanced by lowering the electron energy, lowering the photon energy instead leads to 
a complete disappearance of the scattering mechanism itself. In the opposite, high 
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frequency limit, geometrie ray optics becomes valid and interference corrections to 
optical transport become less and less effective. In both limits the normal modes 
of the electromagnetic field are extended, not localized. Finally, the condition that 
fO + ffluct > 0 everywhere, translates into the requirement that the energy eigenvalue 
is always greater than the effective potential I ~: ffluct(x)l. Unlike the familiar picture 
of electronic localization (Figure 1), what we are really seeking in the case of light is 
an intermediate frequency window of localization within the positive energy contin
uum and which lies at an energy higher than the highest of the potential barriers! It 
is for this simple reason that ordinary dielectrics appearing in nature do not easily 
exhibit photon localization. 

It should be pointed out here, that in the above analogy I have emphasized sim
ilarities more than actual differences. The vector nature of the electromagnetic wave 
equation (2) makes it even more difficult to localize light than the above analogy 
would suggest. The polarization density term V . E has no analog in the electronic 
case. Even in the absence of scattering, this term leads to a difference between the 
microscopic dielectric constant fO and the average macroscopic dielectric constant 
which is measured on scales comparable to the electromagnetic wavelength A. This 
latter subtlety, however, does not alter the subsequent discussion of scattering and 
localization provided that Ein equation (2) is interpreted as the coarse-grained elec
tric field which is the spatial average of the true microscopic electric field in which 
polarization effects on scales smaller than A have been incorporated. 

Independent Scatterers 

The underlying physics of the high and low frequency limits in the case of photons 
can be made more precise by considering scattering from a single dielectric sphere. 
Consider aplane wave of wavelength A impinging on a small dielectric sphere of radius 
a <: A of dielectric constant f a embedded in a uniform background dielectric fb in 
d = 3 spatial dimensions. The scattered intensity I seatt at a distance R from the 
sphere can be a function of only the incident intensity 10, the dielectric constants f a 
and Eh and the lengths R, A and a. In partieular [seatt must be proportional to the 
square of the induced.dipole moment of the sphere which seales as the square of its 
volume '" (ad )2 and by conservation of energy must fall off as l/Rd-l with distance 
from the scattering center: 

(3) 

Since the ratio Iseatt/ 10 is dimensionless, it follows that ft(A, f a , fb) = 12(fa , fb) / Ad+1 

where 12 is another dimensionless function of the dielectric constants. The vanishing 
of the scattering cross section for long wavelengths as A -(d+1) is the familiar result for 
why the sky is blue. This weak scattering is the primary reason that electromagnetic 
modes are extended in most naturally occurring three-dimensional systems. For a 
dense random collection of scatterers, this behavior remains evident in the elastic 
mean free path f. which is proportional to Ad+l for long wavelengths. This general
ization of Rayleigh scattering to d spatial dimensions is also applicable to anisotropie 
dielectrie scattering systems. For example, a layered random medium in which scat
tering is confined to directions perpendicular to the layers would be described by 
setting d = 1. Alternatively, a collection of randomly spaced uniaxial rods4 in which 
scattering is confined to the plane perpendicular to the axis of the rods would be 
described by setting d = 2. A consequence of the scaling theory of localization, which 
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applies to electrons in disordered solids as weH as electromagnetic waves in disordered 
dielectrics, is that in one and two dimensions, all states are localized but with local
ization lengths 6oc, which diverge due to Rayleigh scattering in the low frequency 
limit, behaving as 60c '" f in one dimension and 60c '" f exp( 7f) in two dimensions. 

It is likewise instructive to consider the opposite limit in which the wavelength 
of light is small compared to the scale of the scattering structures. For scattering 
from a single sphere it is weH known that for .A <t:: a the cross section saturates at a 
value 211"a2 • The factor of two includes the rays which are weakly diffracted out of 
the forward direction near the surface of the sphere. This is the result of geometric 
optics. For a dense random coHection of scatterers, it is useful to introduce the not ion 
of a correlation length a. On scales shorter than a, the dielectric constant does not 
vary appreciably except for the occasional interface where the physics of refraction 
and diffraction apply. The essential point is the elastic mean free path never becomes 
smaHer than the correlation length. This classical elastic mean free path f plays 
a central role in the physics of localization. Wave interference effects lead to large 
spatial fluctuations in the light intensity within the disordered medium. However, 
if f ~ .A, these fluctuations tend to average out to give a physical picture of essen
tially noninterfering, multiple scattering paths for electromagnetic transport. When 
f --+ >'/211" interference of multiple scattering paths drastically modifies the average 
transport properties and a transition from extended to localized normal modes takes 
place. If one adopts the most naive version of the loffe Regel5 condition 211"f/.A ~ 1 
for localization, with .A being the vacuum wavelength or even an effective medium 
wavelength of light, it foHows that extended states are expected at both high and 
low frequencies. However, as depicted in Figure 2, for strong scattering, there arises 
the distinct possibility of localization within a narrow frequency window when the 
quantity .A/211" ~ a. It is this intermediate frequency regime which we wish to analyze 
in greater detail. 

1* 

/ 

I 
I 

/ 
/ 

>..12.". 

)../217" 

Fig. 2 The classical transport mean free path e* plays the role of the step length in 
the photon's random walk through the seattering medium. If the scattering mi
crostructures have a single characteristie length seale a, then >. ~ a and >. <t:: a 
are weak scattering regimes of Rayleigh scattering and classical geometrie optics, 
respectively. For low refractive index eontrast na/nb, all states are extended (up
per curve). For na/nb?.2, e* '" ),,/211", when >'/211" ~ a suggesting an intermediate 
frequency window of localization (lower eurve). 
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I will refer to the aforementioned criterion for localization as the free-photon 
loffe-Regel condition. This particular result is based on perturbation theory about 
free photon states which undergo multiple scattering from point-like objects and a 
disorder average is performed over all possible positions of the scatterers. In effect, 
statistical weight is evenly distributed over all possible configurations of the scatterers 
and the medium has an essentially Hat structure faetor on average. 

The first correction to this picture is to associate some nontrivial structure to 
the individual scatterers. The theory of Mie resonances for scattering from dielectric 
spheres immediately teIls us this can have profound consequences on the elastic mean 
free path. For instance, for spheres of radius a, of dieIectric constant Ea embedded 
in a background dieleetric Eh, and for a ratio Ea/Eh ~ 4, the first Mie resonance 
which occurs at a frequency given by w/c(2a) ~ 1, yields a scattering cross section 
0' ~ 611"a2 • For a relatively dilute collection of spheres of number density n, the 
classical elastic mean free path becomes e '" ';tT = ~i. Here I have introduced the 
voIume filling fraction f of the spheres. Extrapolating this dilute scattering result 
to higher density, it is apparent that for a filling fraction f ~ 1/9, the free-photon 
loffe Regel condition is satisfied on resonance. It is tempting to increase the density 
of scatterers to further decrease the mean free path. However, the fact that the 
cross section on resonance is 6 times the geometrical cross section indicates that a 
given sphere disturbs the wavefield over distances considerabIy larger than the actual 
sphere radius. The existence of the resonance requires the "spheres of influence" of the 
scatterers do not overlap. Indeed, for higher densities the spheres become optically 
conneeted in this sense and the mean free path increases rather than decreases. From 
the single scattering or microscopic resonance point-of-view, the free photon criterion 
for localization is a very delicate one to achieve. This conclusion has been borne out 
in the initial experiments by A.Z. Genack and M. Drake6 on light scattering from 
randomIy arranged dieIectric spheres. 

The Localization Criterion 
The resolution of this dilemma is obtained by a careful reconsideration of the 

criterion for Iocalization, introduced by Thouless for electrons. This criterion reduces 
to the loffe-Regel criterion provided that the phase space availabIe for propagation is 
that of free photons. However, when the scattering microstructures cause a change 
in the overall photon density of states, significant modifications of the free-photon 
10ffe-RegeI criterion follow. 

In the scaling theory of Iocalization, the localization critical point is defined by 
a condition of the form 

p(w)D(w)l* ~ 1 (d = 3) 

Here p( w ) is the photon densi ty of states at frequency w, D( w) is the classical diffusion 
coefficient for light in a multiple scattering medium and e* is the classical transport 
mean free path. H the scattering microstructures do not significantly alter the photon 
density of states from its form in vacuum Pvac(w) = ~ (~)2, then the Iocalization 

criterion becomes (~e*)2 ~ 1 as suggested by loffe and Regel. Here, we have used 

the fact that D(w) '" cl*. More generalIy, we may interpret the faetor 411" (~)2 as 
representing the total phase space avaiIable for propagation of a photon of frequency 
w. The general criterion for localization is then given by 

(phase space) x (l*)2 = 411" 
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In the event the phase space is reduced by some form of resonant scattering, it 
is apparent that localization may occur even if l,* is considerably longer than the 
vacuum wavelength >.. This point is most graphically illustrated in the case of the 
photonie bandgap. 

Coherent Scatterers and the Photonie Bandgap 

The approach based on independent, uncorrelated scatterers overlooks one of the 
most important avenues for phase space reduction. In a sense it is the fundamental 
theorem of solid state physics: certain geometrical arrangements of identical scatterers 
can give rise to large scale or macroscopic resonances. The most familiar example 
is the Bragg scattering of an electron in a perfectly periodie crystal. Such an effect 
is not given the required statistical weight by a disorder average which improperly 
averages over all positions of the scatterers. 

Consider, for instance, a fiuctuating dielectric constant f( x) - 100 == ffluct (x) = 
fl(X)+ V(x) where fl(X) = 101 L:ö eiÖ'% is a perfectly periodic Bravais superlattice and 

V(x) is a small perturbation arising from disorder. Here G runs over the appropriate 
reciprocallattice and its value for the dominant Fourier component U Ö is chosen so 

the Bragg condition k· G = (1/2)G may be satisfied for a photon of wavevector k. 
Such a structure is attainable, albeit in a low dielectric contrast regime, with charged 
polystyrene balls in aqueous suspension. These exhibit charge induced fcc and bcc 
superlattice arrangements as well as a number of disordered phases. Setting V( x) = 0 
for the time being, the effect of the periodic modulation of the photon spectrum may 
be estimated within a nearly-free-photon approximation. Unlike scalar electrons, 
there is a degeneracy between two possible optical polarization states. H the electric 
field vector is perpendicular to the plane defined by the vectors k and k-G (optical 
s-wave), the resulting photon dispersion is the same as for scalar wave scattering. H 
on the other hand the polarization vector lies in the plane of Bragg scattering, the 
scattering amplitude is diminished by a factor of cos B, where B is the angle between 
k and k-G (optical p-wave). The associated photon dispersion relations are depicted 
in Figure 3, with the gap for the optical p-wave being diminished by precisely I cos BI. 

The existence or near existence of a gap in the photon density of states is of 
paramount importance in determining transport properties and especially localization.2 

Such a possibility was completely overlooked in the derivation of the free-photon Ioffe
Regel condition which assumed an essentially free-photon density of states. In the 
vicinity of a band edge, the character of propagating states is modified. To a good 
approximation the electric field amplitude o~ the propagating wave is a linear su,!>e.!:
position of the free photon with wavevector k and its Bragg refiected partner at k-G. 
As w moves into the allowed band, this standing wave is modulated by an envelope 
function whose wavelength is given by 27r/q, where q is the.magnitude of the devi
ation of k from the Bragg plane. Under these circumstances the wavelength which 
must enter the localization criterion is that of the envelope. In the presence of even 
very weak disorder, the criterion 27rl/>'envelope '" 1 is automatically satisfied as the 
photon frequency ap~roaches the band edge frequency. In fact near a bandedge W c, 

>'envelope '" Iw - wc l- 2 • 

In the presence of a complete photonie band gap, the phase space avail~ble for 
photon propagation is restricted to a set of narrow symmetry related cones in k-space 
analogous to the pockets of electrons near a conduction band edge well known in 
semiconductor physics. The perturbative introduction of randomness in the position 
of the dielectric scatterers leads to a mixing of all nearly degenerate photon branches. 
In complete analogy with semiconductors, the band gap is replaced by a pseudogap 
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Fig. 3 In the case of coherent scattering from a periodic array of dielectric spheres, 
the phase space available for optical propagation is drastically modified from 
the vacuum. The dispersion relation exhibits a gap in any given direction of 
the wavevector k. The inner and outer dispersion branches describe p- and 8-

polarized Bragg scattering, respectively. For a large refractive index contrast, 
this gap persists over the entire surface of the fcc Brillouin zone, giving rise to a 
gap in the total photon density of states. The phase space for optical propagation 
near this gap is restricted to a narrow set of symmetry related cones in the nearly 
free photon approximation. 

consisting of localized states (Figure 4). Localization is favored here by the severe 
restriction of the phase spaee available for propagation. Photon loealization arises 
here not as the by-pcoduet of a high degree of uneontrolled disorder, hut rather 
as a result of a suhtle interplay between order and disorder. The true eriterion 
for loealization, in fact, depends strongly on the underlying statie structure faetor 
of the medium. What I have diseussed in detail are the two extreme limits of a 
structureless random medium for whieh the eriterion 27rej A ~ 1 applies and of a 
medium with nearly sharp Bragg peaks and a hand gap for whieh 27rej Aenvelope ~ 1 
yields loealization. It is invariahly the ease that a eontinuous erossover oeeurs hetween 
these eonditions as the strueture faetor of a high dieleetrie material evolves from one 
limit to the other. 
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Fig. 4 For a disordered lattice of coherent dielectric scatterers the photon density of 
states exhibits low frequency Rayleigh scattering and high frequency classical 
ray optics regimes. The photonie band gap however is replaced by a pseudogap 
of strongly localized states in analogy with pseudogaps in amorphous semicon
ductors. The existence of a localization window is highly sensitive to the static 
structure faetor of the dielectric material. 

In the strong scattering regime required to produce a significant depression of 
the photon density of states, important corrections to the nearly free photon pic
ture of band structure emerge. This was evident in initial experimental studies by 
Yablonovitch7 who observed a photonie pseudogap in the microwave regime. For a 
dielectric material with refractive index 3.5 containing an fcc lattice of spherical air 
cavities, a nearly complete photonic band gap is observed when the solid volume frac
tion f ~ .15. For a frequency range spanning about 6% of the gap center frequency, 
propagating electromagnetic modes are absent in all but a few directions. When the 
solid volume fraction is either increased or decreased from .15, the magnitude of the 
gap drops sharply. The existence of such an optimum in the sphere density illustrates 
a very fundamental principle concerning the origin of photonic band structures as 
opposed to electronic band structure. In an ordinary semiconductor, a band of al
lowed electronic states arises from a coalescence of individual atomic orbitals. In the 
propagation of light through a periodic dielectric, there is no precise analog of such 
atomic orbitals. Photons cannot be bound to a single dielectric sphere. Instead of 
bound states, one observes Mie scattering resonances when the diameter of the sphere 
is an integral multiple of the wavelength of light. A large photonie band gap arises 
when the density of dielectric spheres is chosen such that the Mie scattering resonance 
occurs at the same wavelength as the macroscopic Bragg resonance of the array. This 
principle may be illustrated by a simple example of one-dimensional wave propaga
tion through a periodic array of square weHs of width a and spaced by a distance 
L. Suppose the refractive index is n inside each weH and is unity outside. Then the 
Bragg scattering condition is given by ). = 2L, where ). is the vacuum wavelength of 
light. The analog of a Mie resonance in one dimension is a maximum in the refiection 
coefficient from a single weH and this occurs when a quarter wavelength fits into the 
weH: ).j(4n) = a. Combining these two conditions yields the optimum volume filling 
fraction f == ajL = Ij(2n). In analogy to the formation of an electronic band, the 
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photonic band gap is the direct result of the coalescence of Mie scattering resonances 
of individual spheres. 

Since the initial work on periodic dielectrics in three dimensions, considerable 
progress has been made in identifying and fabricating microstructures with a complete 
photonic bandgap. In addition to the synergy between microscopic and macroscopic 
resonances, connectivity of both the dielectric and void regions of the material appears 
to be an important contributing factor to the creation of a complete gap. The first 
theoretical demonstration of a complete gap for electromagnetic waves was given by 
Ho, Chan and Soukoulis.8 This was demonstrated in a diamond lattice of air spheres in 
a solid background. Subsequently, Yablonovitch and co-workers successfully demon
strated a complete gap for air cylinders drilled in asolid host with a gap to center 
frequency ratio of 20 percent. 

3. COHERENT BACKSCATTERING AND THE PHOTON. MOBILITY 
EDGE 

The analogy between electrons and photons suggests the fabrication of a new 
dass of dielectrics which are the photonic analogs of semiconductors. For the case of 
a periodic array of dielectric spheres, a photonic band gap arises. Positional disorder 
of these spheres alters this picture. As in a semiconductor, the band gap is replaced 
by a pseudogap of localized states. In this section, I review the process by which 
a propagating photon becomes localized and discuss experimental manifestations of 
this phenomenon from the standpoint of classical electrodynamics. 

In a disordered dielectric, a photon propagates by means of a random walk pro
cess in which the length of each random step is given by the dassical transport mean 
free path l*. On length scales long compared to l*, it is convenient to regard this as 
the diffusion of light in which the diffusion coefficient is given by D = tc.e*. Here c 
is some effective speed of light in the dielectric medium. Unlike a dassical random 
walker, light is a wave and this diffusion process must be described by an amplitudt1 
rather than a prob ability. That is to say, the interference of all possible classical diffu
sion paths must be considered in evaluating the transport of electromagnetic energy. 
In the case of optical waves propagating through a disordered dielectric medium, this 
interference effect has been vividly demonstrated by a beautiful series of experiments 
initiated by Kuga and Ishimaru, van Albada and Lagendijk, and Wolf and Maret. 9 

This is the phenomenon of coherent backscattering. In these experiments, incident 
laser light of frequency w enters a disordered dielectric half space or slab and the 
angular dependence of the backscattered intensity is measured. For circularly polar
ized incident light, the intensity of the backscattering peak for the helicity preserving 
channel is a factor of two larger than the incoherent background intensity. Coher
ent backscattering into the reversed helicity channel, however, yields a considerably 
reduced backscattering intensity. The angular width of the peak in either case is 
roughly {j8 f'V >"j(27rl). 

As shown in Figure 5, one possible process is that in which incident light with 
wavevector kj = ko is scattered at points Xl, X2,"" XN into intermediate (virtual) 
states with wavevectors kl , k2 , . •• ,kN -1 and finally into the state kN = k f which is 
detected. For scalar waves undergoing an identical set of wavevector transfers, the 
scattering amplitudes at the points X, ... , x N are the same for the path , and time 
reversed path -, (dashed line). To understand the interference of these two paths in 
greater detail, we utilize an argument originally given by Bergmann in the context of 
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Fig. 5 Coherent backscattering is the precursor to localization. For light incident on a 
disordered die1ectric, the scattering path (,) and the time reversed path ( -,) in
terfere coherently for small angles (). The result is a pair of peaks in the backscat
tered intensity lover and above the diffuse background intensity of reflected light 
labelled as I = O. The larger peak describes backscattering in which the incident 
photon helicity is preserved, whereas the smaller peak describes photons whose 
final helicity has been flipped during the multiple scattering trajectory. 

electron localization. Consider the path shown in Figure 6 with wave-vector transfers 
gj = kj - kj-1 (j = 1,2, ... , N). By time-reversing the sequence of transfers, it 
is apparent the corresponding intermediate states ki, k~, ... , kN -1 no longer lie on 
the energy shell for nonzero q. This is allowed since these are virtual states with 
a lifetime T = l/e and the energy shell is accordingly smeared by an amount h/T. 
For small q, the corresponding intermediate states differ in energy by an amount 
EN-j - Ei ~ ehq· kN-i(J = 1, ... , N - 1) where kN-j are unit vectors in the 
direction of prop~gation of the intermediate plane wave states. The resulting phase 
difference D.4> = kN-j . ql. Since the direction of intermediate states is random, it 
follows that after an N step random walk the accumulated root mean square phase 
difference D.4>rms ~ JN/3(ql). Therefore, only steps with N ;S 3/(lq)2 contribute 
to the backscattering peak at the angle defined by q. This accounts for the rapid 
decrease of coherent intensity for large q. 

At larger angles few paths contribute and the backscattered intensity decreases 
rapidly. A detailed derivation of the backscattered lineshape has been given by Akker
mans, Wolf and MaynardlO for scalar waves. This has been extended to electromag
netic waves by Stephen and Cwilich.10 

As shown by Mackintosh and John,lO these results are most transparent in the 
helicity representation. In addition to time reversal invariance, there is parity of the 
right and left hand circular polarization states. These symmetries may be broken by 
the Faraday effect and by natural optical activity respectively. Detailed lineshapes 
have been calculated and are shown in Figure 5. Depicted is the excess relative 
intensity with respect to the incoherent background. For instance, an intensity level 
of 1.0 corresponds to apreeise doubling of the light intensity in a partieular direetion 
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relative to the diffuse background level which is labeled with excess intensity 0.0. The 
angle e (measured in radians ) is the angle which the wavevector of the backscattered 
light makes with respect to the vector -ki, where ki is the incident direction. 

The arguments presented thus far for coherent backscattering enhancement have 
relied heavily on the existence of the free photon phase space or spherical energy 
shell. The occurrence of a photonic pseudogap or any other modification of the 
photon density of states from free photons will accordingly manifest itself in the 
backscattering lineshape. This is most easily seen in the case of weak disordering of a 
photonic bandgap crystal. Suppose that a backscattering experiment is performed on 
such a sampIe with radiation of wavelength short compared to the underlying lattice 
constant of the crystal. Bloch's theorem ensures that wk ~ wk+ä in the case of weak 

disorder whenever G is a reciprocal lattice vector of the original crystal. It follows 

.... 
~~----~kl 

Fig. 6 A typical path drawn in momentum space. Equality of scattering amplitudes 
requires that the wavevector transfers Qj be the same but in the reversed order 
for the time-reversed path. Corresponding states differ in energy by an amount 
EN-j - Ej ~ chq· kj , which leads to aphase difference (ßtP)rms ~ y'N/3ql. 

that the previous argument for loss of coherence for backscattering into the direction 
-ki + q (here ki is the incident wave vector) is no longer applicable. In particular, 
whenever q lies in the vicinity of a reciprocallattice vector, coherent enhancement 
persists, resulting in a satellite peak. The result, after ensemble averaging over the 
weak disorder, should be a ring of coherent intensity at an angle 0 ~ G/k over 
and above the diffuse intensity that arises from the ensemble average of the random 
speckle pattern. The occurrence of satellite structure in the backscattering profile 
has been pointed out by E. Gorodnichev et alY 

The incorporation of coherent backscattering into the theory of diffusion of wave 
energy leads to a simple renormalization group picture of transport (see Figure 7). In 
a situation where wave interference plays an important role in determining transport, 
the spread of wave energy is not diffusive at all in the sense that a photon performs a 
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elassical random walk. This presents a very complicated situation. Fortunately, there 
is a way of applying the concept of elassical diffusion here provided we make one major 
concession in our classical way of thinking: the diffusion coefficient is no longer a local 
quantity determined by a elassical mean free path and a speed of propagation, but 
depends on the macroscopic coherence properties of the entire illuminated sampie. 
In a random medium it is reasonable to expect that scatterers which are very far 
apart do not, on average, cause large interference corrections to the elassical diffusion 
picture. (The word average here is very important. Changes in distant scatterers 
can give rise to significant fluctuations about the average.) It follows there exists 
a coherence length ecoh~.e which represents a scale on which we must very carefully 
incorporate interference effects in order to determine the effective diffusion coefficient 
at any point within the coherence volume. To put it in other words, the possible 
amplitudes for a photon to diffuse from point A to point B within a coherence volume 
e10h interfere significantly with each other. Depending on the distance between the 
point A at which the photon is injected into the medium and the point B at which 
it is detected, the effective diffusion coefficient of the photon is strongly renormalized 
by wave interference. Another example is that of a finite size sampie of linear size 
L. By changing the scale of the sampie, the number of diffusion paths which can 
interfere changes giving rise to an effective diffusion coefficient D( L) at any point 
within the sampie which depends on the macroscopic scale L of the sampie. In the 
vicinity of a mobility edge, on length scales L in the range.e < L < {coh the spread of 
energy is subdiffusive in nature as a result of coherent backscattering which gives a 
significant wave int.erference correction to elassical diffusion. In this range, the spread 
of wave energy may be interpreted in terms of a scale dependent diffusion coefficient 
which behaves roughly as D(L) ~ ~(f). On length scales long compared to ecoh, 
the photon resumes its diffusive motion except with a lower or renormalized value 
~( e;Oh) of the diffusion coefficient. 

This physical picture is summarized by the scaling theory of localization which 
was obtained by Abrahams, Anderson, Licciardello and Ramakrishnan12 based on 
the ideas of Thouless. In three dimensions, this theory predicts that when the laser 
frequency w is elose to a mobility edge w*, the scale dependent diffusion coefficient 
may be written as 

D(L) ~ cl (~+~) (4) 
3 ecoh L 

and that ecoh '" Iw - w*I-1 diverges as w approaches w*. 
The relevance of this result to an optical transmission experiment in the absence 

of dissipation or absorption is depicted in Figure 7. Consider first the case in which 
the coherence length is short compared to the slab thickness. The time required for 
an incident photon to traverse the thickness L is given by T( L) = L2 / D( L). For 
.e$ecoh <t:: L, the average displacement R of the photon as a function of time is that 
of elassical diffusion R '" tl. In the case of incipient localization .e <t:: L <t:: ecoh, the 
diffusion coefficient has the value D(L) = ~(f). The transit time from one face of 
the slab to the other now scales as T(L) '" L3. In other words, the mobility edge 
regime is characterized by a critical slowing down of the photon which now traverses 
a distance R '" tl rather than that of a elassical random walker. 

Anomalies associated with incipient localization may appear in the total trans
mitted intensity through a disordered dielectric slab illuminated by a steady monochro
matic plane wave source. For the case of elassical diffusion, the transmission coefficient 
T defined as the ratio of the total transmitted intensity to the total incident intensity 
is given by the relation T = .e/ L, where .e is the elassical elastic mean free path. 
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Fig. 7 A simple physical picture describes optical transport near a photon mobility 
edge. On scales short compared to the coherence length €coh, the spread of 
electromagnetic energy is Bubdiffusive in nature due to coherent backscattering. 
On scales longer than €coh, the photon resumes its diffusive behavior on average 
except with a renormalized diffusion coefficient D ~ ci* 13 (l* I€coh)' 

This may also be written as T = !f. This then leads to a transmission coefficient 
T '" l2 1 (ecohL) for lSecoh < L and to a new scale dependence T '" f2 1 L2 in the 
incipient localization regime l < L < ecoh. Scale dependent diffusion of precisely 
this nature has been observed by Genack and Garcia13 in microwave scattering from 
a disordered collection of teflon and aluminum spheres. 

In the case of electrons, there is a conservation law which prevents their total 
number from changing. Photons, on the other hand, can be absorbed. Therefore, the 
discussion of photon localization is incomplete without the analysis of wave propaga
tion in a weakly dissipative disordered medium. By weak dissipation, I mean that the 
inelastic mean free path or typical distance between absorption events is large com
pared to l but nevertheless smaller than the sample size L. This may be introduced by 
means of a small imaginary part f2 to the dielectric constant f( x) = fO + ffluct (x) + if2. 

The optical absorption coefficient a is defined as the decay constant for the intensity 
from a source of intensity 10 : 1 = 10e-ax • This absorption coefficient describes the 
average absorption on scales long compared to the transport mean free path I. It 
should not be confused with the scattering length of the incident beam which may, 
in fact, be much shorter than 1. For radiation at frequency w, classical electromag
netic theory yields a = ..jWf2/D. The effects of coherent wave interference may be 
incorporated into this picture by means of the scaling theory of localization. For an 
infinite medium (L = 00), the diffusion coefficient vanishes as the coherence length 
diverges. If f inel > ecoh, it follows that the absorption coefficient increases in the same 
manner that the diffusion coefficient D(w) '" w - w* decreases as the mobility edge 
frequency w. is approached from the extended state side: a( w) '" ..j fd Iw - w* I. On 
the other hand, if the coherence length exceeds the ine1astic length, then linel acts as 

14 



a long distance cuttoff for coherent wave interference. In this case, there is a residual 
diffusivity given by D(w.) ~ f...3

l (-..L). Since linel = JD71nel and 71nel f'V 1/(€2w), it 
.t.mel 

1 

follows that the residual diffusivity D( w.) f'V €~. Substituting the value of the residual 
diffusivity into the expression for 0: reveals that the absorption coefficient exhibits an 

! 
anomalous scaling behavior with €2: o:(w.) f'V €~. The physical origin of the critical 
exponent t is the critical slowing down of the photon as it approaches localization. 
This leads to a greater probability of absorption. 

The above argument relies heavily on the idea that an absorbing medium causes 
phase incoherence in the fraction of light that continues to propagate without being 
absorbed. The degradation of phase information is associated with the linewidth of 
the actual absorption centers in the medium. An absorber may be regarded as an 
oscillator which is excited by photons but which, in turn, is coupled to vibrational or 
other low energy thermal excitations of the medium. The optical energy may either 
be degraded into heat by the oscillator or scattered back as light with a random phase 
determined by the heat bath to which it is coupled. In a more detailed microscopic 
picture of the absorption process such as this, the question of how precisely the 
phase coherence length is related to the absorption length arises. In the previous 
argument leading to the anomalous scaling behavior of o:(w*), we assumed that both 
ofthese lengths were the same and described the parameter linel. This, however, need 
not be true in general. In fact, the observation of mobility edge behavior would be 
greatly facilitated in real materials for which the phase coherence length over which 
renormalization of D takes place is larger than the absorption length. Nevertheless, 
we require that .'Jome finite phase coherence length exists in an absorbing medium so 
the absorption coefficient 0: remains finite as the frequency w approaches the mobility 
edge w •. 

The anomalies in absorption associated with localization are a general indication 
of enhanced coupling of the electromagnetic field to matter. This leads to some 
profound new phenomena in atomic physics which I now describe using the framework 
of quantum electrodynamics. 

4. QUANTUM ELECTRODYNAMICS OF LOCALIZED LIGHT 

When an atom or molecule is placed within a dielectric material exhibiting pho
ton localization, the usuallaws governing absorption and emission of light from the 
atom must be reexamined. This is most easily seen in the strong localization limit 
obtained for a dielectric exhibiting a complete photonic band gap. For a single excited 
atom with a transition energy hwo to the ground state, which lies within the band gap, 
there is no true spontaneous emission of light. A photon which is emitted by the atom 
finds itself within the classically forbidden energy gap of the dielectric. If the nearest 
bandedge occurs at frequency Wc , this photon will tunnel a distance 60c ~ c/lwo -wcl 
before being Bragg reflected back to the emitting atom. The result is a coupled 
eigenstate of the electronic degrees of freedom of the atom and the electromagnetic 
modes of the dielectric. This photon-atom bound state14 is the optical analog of an 
electron-impurity level bound state in the gap of a semiconductor. The atomic polar
izability, which is normally limited by the vacuum naturallinewidth of the transition, 
can grow sufficiently large near resonance, in the absence of spontaneous emission, to 
produce a localized electromagnetic mode from the nearby propagating band states 
of the dielectric. The fundamental weakness of the vacuum photon-atom interaction, 
as expressed by the fine structure constant 0: == 1~7' is completely offset by this nearly 
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unrestricted resonance. The alteration of the quantum electrodynamic vacuum by the 
dielectric host also appears in the spectroscopy of atomic levels. The ordinary Lamb 
shift of atomic levels is dominated by the emission and reabsorption of high energy 
virtual photons. Within a photonie band gap, this self-dressing is instead dominated 
by the real, bound photon. In general, this will lead to some anomalous Lamb shift. 
If this level lies near a photonie band edge, a more striking effect is predicted to occur. 
In this case, the atom is resonantly coupled to photons of vanishing group velocity. 
The resultant self-dressing of the atom is sufficiently strong to split the atomic level 
into a doublet. The atomic level is essentially repelled by its electromagnetic coupling 
to the photonie band edge. One member of the doublet is pulled into the gap and 
retains a photon bound state, whereas the other member is pushed into the contin
uum and exhibits resonance fluorescence. In the nearly free photon approximation to 
electromagnetic band structure, the splitting of a hydrogenie 2pt level is predicted to 
be as large as 1O-6 1iwo. This is analogous to the observed (Mollow) atomic level split
tings which occur when an atom is subjected to an intense external laser field. For 
a dielectric exhibiting photon localization, the same effect may be achieved without 
any external field. 

Additional new phenomena are expected when a collection of impurity atoms is 
placed into the dielectric. A single excited atom can transfer its bound photon to a 
neighboring atom by a resonance dipole-dipole interaction. For a band gap to center 
frequency ratio D.w/wo = .05, the photon tunnelling distance eloe is on the scale of 10a 
and the lattice constant a of the dielectric is on the scale of the photon wavelength. 
For impurity atoms spaced by a distance R = 10.A-1000.A, the suppression of dipole
dipole interaction suggested by Kurizki and Genack14 can be neglected. The matrix 
element M describing the hopping of abound photon from one atom to another is 
given roughly by M '" p,z / R3 , where the atomic dipole I-' ~ eao is given by the product 
of the electronic charge and the atomic Bohr radius ao. This can be approximately 
related to the transition energy nwo '" e2 / ao by writing M as (e2 / ao)( ao / R)3. For 
the case of a finite density of impurity atoms separated by R~lO.A, it follows that 
photonie hopping eonduction will oeeur through a narrow photonie impurity band of 
width '" (nwo)( ao / R)3 within the larger band gap (Figure 8). 

The occurrence of photonie impurity band suggests frontiers in the subject of 
nonlinear optics and laser physics. The strong coupling of light to matter suggests 
enhanced nonlinear effects whieh are highly sensitive to the impurity atom spacing. 
For example, when neighboring impurity atoms A and B are both excited, seeond 
harmonie generation may oecur by the transfer of the bound state from atom A 
to atom B. Since atom B is already excited, the transferred photon creates a vir
tual state which may then be emitted as a single photon of energy 2nwo outside 
the photon band gap. The transfer can take place by dipole I-' emission from atom 
A followed by a quadrupole Q virtual absorption by atom B. This process has an 
amplitude I-'Q / R4 • The resulting virtual excitation on atom B has odd parity and 
may then decay by a dipole emission process. The rate of spontaneous second har
monie generation is given by the square of the eorresponding amplitude and depends 
sensitively '" (ao / R)8 on the impurity atom spacing. Another significant question 
is that of laser activity within the impurity band when many photons are present. 
The impurity band defines a novel quantum many-body system in whieh the pro
cesses of spontaneous and stimulated emission of light are completely confined to and 
mediated by photonie hopping conduction between atoms. The intriguing possibility 
arises of a superfluid-like state of photons in which the hopping process causes macro
seopie occupation of a single extended mode of the impurity band. This is the analog 
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of Bose-Einstein condensation of excitons. In the context of the photonie impurity 
band, the "superfluid" order parameter is actually the atomic polarization operator. 
This spontaneously acquires a nonzero expectation value in the superfluid state. If a 
single classical electromagnetic mode is now introduced into the photonie bandgap, 
superradiance into this mode may also occur. Depending on the precise phase of the 
photonie hopping conduction, the superfluid and superradiant states may compete 
with each other or act synergetically. 
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Fig. 8 Quantum electrodynamics predicts the occurrence of a photon-atom bound state 
when an impurity atom with a transition frequency Wo is placed within the 
localization gap .!lw of the dielectric. For .!lw/wo = .05, the bound photon may 
tunnel a distance eloe =: 10a, where a = the dielectric lattice spacing, before 
being Bragg reßected and reabsorbed by the atom. For a collection of atoms 
spaced by a distance R <: eIoe, photons exhibit hopping conduction by means of 
the atomic resonance dipole-dipole interaction. This leads to the formation of a 
narrow photonie impurity band within the larger photonie band gap. 

5. DISCUSSION 

In closing, I discuss three areas of current and future activity in the field of 
photon localization. The first of these, which I have discussed already, is that of new 
physical phenomena. The second and perhaps most vital area at the present time 
is that of materials fabrication. Finally, I describe some potential applications and 
spin-offs from the first two areas of research. 

17 



(i) New Physical Phenomena 
One of the new effects I have described is the inhibition of spontaneous emission 

of light from excited atoms and the concomitant formation of photon-atom bound 
states. Unlike its counterpart in small metal cavities with reflecting walls, the photon
atom state occurs in an infinite medium in which the bound photon may tunnel many 
optical wavelengths from the atom which it dresses. Unlike traditional cavity quantum 
electrodynamics in which there is a waveguide (or other) cutoff to low frequency 
electromagnetic propagation, the photonic bandgap allows the propagation of lower 
frequency radiation which may be used to nonlinearly excite or probe the photon
atom bound state. It is straightforward to show that in the absence of nonradiative 
decay, the lifetime of the bound photon is on the scale of 1 minute per kilometer 
of absorption length of the host dielectric. This follows from the fact that near 
midgap, the fraction of time which the photon spends orbiting the atom is about 
10-7 compared to the time it spends in exciting the atom. The first goal in the study 
of quantum optical effects in the photonic band gap is the experimental realization of 
the photon-atom bound state. The crucial step here is the controllifetime broadening 
of this novel state by interaction with vibrational degrees of freedom of the solid host. 
For atoms in a dilute gas phase, this will involve Doppler cooling of the atoms in the 
void regions of the dielectric so as to minimize nonradiative relaxation associated 
with atom-solid collisions. The elimination of homogeneous line broadening from 
vibrational sidebands is more difficult for single impurity atoms embedded in the solid 
fraction of the dielectric microstructure. However, it may be possible to achieve long 
lifetime photon-molecule bound states within the solid fraction for certain aromatic 
hydrocarbon molecules. Such molecules are known to exhibit very high luminescence 
efficiencies in solids and may be candidates for the experimental observation of a 
single localized photon. 

Theoretical and experimental work are needed to develop ways of probing the 
isolated photon-atom state. A possible mechanism to initially excite the state is by 
stimulated or inverse electronic Raman scattering. Here, a probe beam of photons 
with frequency above the gap would electronically excite the photon bound state 
and undergo a Raman Stokes shift to frequency below the gap. The process could 
be enhanced by a stimulating coherent monochromatic beam at the lower frequency. 
The presence of the photon-atom bound state could then be detected by the optical 
analogue of photo-emission. Here, a low frequency probe beam could eject the bound 
photon by undergoing an anti-Stokes shift from below to above the gap. Again, the 
process can be coherently enhanced by means of a stimulating beam above the gap. 

In addition to localized modes arising from resonant impurity atoms and molecules, 
deviations from perfect periodicity of the host dielectric microstructures will induce 
exponentially decaying modes at frequencies within the gap region of the periodic 
system. Unlike the photon-atom bound states, these are classical or coherent states 
of the electromagnetic field. Such states can perform the function of a high quality Q 
optical cavity. The Q-factor may be estimated by taking the product of the optical 
frequency w and the finite lifetime T of a photon localized in such a mode. For an 
absorption length, labs = 1 km, T '" 10-5 sec. At optical frequencies, this translates 
into a quality factor of approximately 1010 per kilometer of absorption length. With 
fiber optic quality dielectric materials (tabs'" 103 km), this exceeds the Q factors 
which are readily attainable in metal cavities. 

A quantitative description of electromagnetic transport and the photon density 
of states in disordered dielectric microstructures is necessary to establish material 
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properties for large scale samples in which deviations from perfect periodicity are 
inevitable. For strongly disordered systems, a quantitative evaluation of the phase, 
group and energy transport velocities near a photon mobility edge starting from the 
full Maxwell equations are necessary to interpret recent experiments on optical trans
mission, absorption and time resolved propagation near the Anderson localization 
transition. This involves the theoretical description of vector waves interacting with 
a dense random collection of resonant dielectric scatterers. In the case of short range 
ordered dielectric microstructures, it is expected that strong localization of photons 
is accompanied by a pseudogap in the electromagnetic density of states analogous 
to the pseudogap in semiconductors such as amorphous silicon. A clear theoretical 
description of the relationship between the extent of ordering (as determined by the 
static structure factor) and the resulting modification of the density of states and 
transport properties are needed. These will establish the robustness of the photonic 
bandgap against disordering effects. 

In addition to disorder effects, new physical phenomena are expected if the host 
dielectric material has a Kerr nonlinearity. In this case, seH localized states or moving 
gap solitons are possible at frequencies within the photonic band gap. These gap 
solitons have been carefully studied for one-dimensional periodic bandgaps. They 
can be described theoretically in terms of a multi-component envelope function which 
satisfies an effective nonlinear Dirac type equation.16 

(ii) Materials Fabrication 

Although recent advances in reactive ion etching have led to the creation of 
photonic band gap materials on the optical scale, these samples have a relatively 
small number of unit cells and the localization length of the most strongly localized 
states is comparable to the overall sampie size. The creation of larger scale sampies 
by this type of engineering is both time consuming and expensive. The sampies once 
produced have few or no variable parameters. Although valuable for specific device 
applications, they are less useful for the study of fundamental physics because of this 
lack of variability. 

A possible solution to this problem is a careful study of structures which are 
thermodynamically favored. The basic criteria such a structure must satisfy are pe
riodicity, low absorption, and high refractive index contrast. A well-known system 
which satisfies the first two of these criteria hut not the third is polystyrene balls in 
water. Here, the refractive index contrast is 1.5 to 1.3 and is too small for any pho
tonic bandgap. On the other hand, Ti02 has a refractive index of 2.8. Monodisperse 
spheres and ellipsoids of roughly the required size (5000 Ä) are now commercially 
available. A self-assembling, thermodynamically favored periodic suspension could 
be produced if sUrface charges could be fixed onto these particles. This charging 
could be achieved by some polymer coating on the sUrface which naturally becomes 
charged in certain solutions or by ultraviolet flashing which creates electron-hole pairs 
across the Ti02 semiconducting gap. The retention of this surface charge with time 
appears to be the single obstacle which remains to be overcome in this scheme. The 
advantage of charged semiconductor colloidal suspensions of this type is that the lat
tice structure and lattice constant can be varied in situ by changes in temperature 
and pR of the solvent. Disorder can be controllably introduced by means of me
chanical agitation. Other candidates for "thermodynamically engineered" materials 
include porous silicon and low temperature molecular-beam-epitaxy-grown silicon, 
where periodic arrays of microvoid regions have recently been observed to occur. 
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(iii) Applications 

The applications of research into photon localization can be divided into two 
general categories. The first arises from the new physical phenomena and the second 
is one of spectroscopy, the ability to describe and interpret the detailed propagation 
characteristics of light in the multiple scattering regime. I discuss first those ap
plications associated with localized states. The applications of the second type are 
associated with multiply scattered extended states and are related to problems of 
current interest in other fields such as remote sensing and medical imaging. 

Despite the current scientific focus on the development of three-dimensional pho
tonic bandgap structures, many of the technological applications of localized, classi
cal electromagnetic modes are also available in two-dimensional bandgap materials. 
These include filters, oscillators, and two-dimensionallaser arrays. The advantage 
of these two-dimensional systems is they avail themselves to layered fabrication and 
thin films. Another quasi two-dimensional system which might be useful in the visible 
spectrum is a suspension of polydiacytelene rods. These are long hollow cylinders of 
diameter comparable to the wavelength of light in which nematic ordering can be 
induced. If these rods can be filled with a high refractive index material, the ap
proximate conditions for a two-dimensional photonic band gap or pseudogap may be 
achieved. 

A simple device application can be seen by the following argument. Whether in 
two- or three-dimensional systems, transmission of light through a slab of material 
containing a localization pseudogap may occur by the coupling of an external elec
tromagnetic wave to one of the localized states in the gap. Due to the high degree of 
coherent multiple scattering through this disordered system, the travel time through 
the slab is exponentially long in the ratio of the slab thickness to the localization 
length. Accordingly, the frequency width of the peak in transmission will be expo
nentially narrow. The effect is that of an ultra high resolution macroscopic filter in 
the visible spectrum. The device will also exhibit exponentially high contrast since 
the total transmission coefficient approaches unity if light couples to astate localized 
near the center of the slah hut exponentially decreases with the offset of the localized 
state from the slab center. 

Further applications of localized electromagnetic modes arise if the system de
scribed above is modulated by an external field. The long photon path through 
the medium arising from coherent multiple scattering implies that the transmission 
coefficient depends sensitivelyon the state of the material. Changing the phase re
lationships electro-optically or with a second optical pulse (which induces nonlinear 
changes in the refractive index) will alter the transmission through the sample. Such 
a device can function as a high speed optical switch or an optical transistor. 

In addition to localized states of the classical coherent electromagnetic field, sin
gle photon localization leads to important applications. From the viewpoint of appli
cations, the photon-molecule bound state acts as a very long-lived excited molecular 
state. This has important applications in photochemistry and catalysis. One example 
is the excited state of Ti02 which acts as a catalyst in the purification of water. The 
efficiency of this catalytic process can be greatly enhanced if the relevant photon is 
bound to the Ti02 molecule. 

Another possible application is in the formation of excimers. When a pair of 
impurity atoms or molecules is present in the bandgap material, abound photon can 
hop from one molecule to the other by means of the resonant dipole-dipole interaction. 
This provides an attractive pairing force between the molecules in the excited state 
which is absent in the ground state. An additional attractive force of this nature may 
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facilitate the development of current excimer lasers as weH as lead to the occurrence 
of entirely new excimer systems within a photonie bandgap material. 

The final application of photon localization research is that of spectroscopy of 
disordered systems. One of the most compelling of these is in the field of medical 
imaging. The development and refinement of this field is directly related to both ex
perimental techniques and formal mathematical methods which have been pioneered 
in the field of photon localization. In particular, we have derived a complete micro
scopic theory of electric field and light intensity autocorrelation functions in a multiple 
scattering medium including absorption and the crossover from ballistic to diffusive 
propagation. This is directly relevant to imaging tumors and other inhomogeneities 
in biological tissue. 

Current medical imaging techniques utilize radiation at opposite ends of the 
electromagnetic spectrum. Short wavelength radiation is employed in x-ray based 
tomography while long wavelength radiation is used in magnetic resonance imaging. 
Light offers a window of intermediate wavelengths with certain advantages over short 
wavelengths. Light is nonionizing and at low intensities does not represent a biological 
hazard. In addition, the existence of intrinsic, spatially localized, metabolicaHy active 
chromophores suggests that imaging with light should provide a valuable approach 
to the problem of metabolie imaging. The construction of spatial maps of optical 
absorption in the multiple scattering regime may be used for the visualization and 
functionallocalization of medically important metabolites. It is, therefore, likely that 
photon diffusion imaging, with the aid current research in photon localization, may 
be developed as a quick and inexpensive alternative to x-ray and magnetic resonance 
imaging as an early diagnostic tool. 
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PHOTON DIFFUSION, CORRELATION AND LOCALIZATION 

A.Z. Genack, I.H. Li, N. Garcia and A.A. Lisyansky 

Department of Physics, Queens College of CUNY, Flushing, NY 11367 

1. INTRODUCTION 

The gladsome current of our youth, 
Ere passion yet disorders, 

Steals lingering like a river smooth 
A10ng its grassy borders. 

Thomas Campbell (1774-1844) 

Because the transport of sound, light, radio and microwave radiation through the 

turbulent atmosphere are essential for communication, the propagation of classical waves 

in random media has long been of interest. This interest has intensified in the last 

decade with the realization of the fruitfulness of the analogy between classical and 

quantum waves in disordered systems. I Particularly important have been the predictions 

and observations of coherent backscattering,2,3 shorf9 and 10ng_rangel 0-20 intensity 

correlation, photon localization,21-27 and the photonic bandgap. 28 These effects are most 

clearly exhibited in strongly scattering sampies containing a high density of high index 

scatterers with size comparable to the wavelength X. Here we consider the quantitative 

analysis of a wide variety of phenomena in these complex sampies. Such studies of 

classical wave propagation promise to stimulate a deeper understanding of propagation 

and localization. On the one hand, the absence of interaction between quanta of 

classical fields, such as occur for electrons, simplifies the description of transport. On the 

other hand, the availability of tunable single frequency sources, short pulses and 

subwavelength spatial resolution as weIl as the ability to assemble collections of 

randomly positioned and movable scatterers make possible the statistical characterization 

of propagation in an ensemble of random sampies. 

In this chapter, we examine some of the key questions raised and follow up 

opportunities for exploration suggested by our previous studies which were reviewed in 

The Scattering anti Localization 0/ Classical Waves edited by Ping Sheng.29 In section 2, 

Photonic Band Gaps and Localization, Edited by 
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we give adescription of steady-state transport in which interfacial interactions are 

incorporated within the framework of the photon diffusion model. The self consistency 

of the model is demonstrated in aseries of optical experiments in which the interfacial 

scattering parameters are overdetermined. These results allow us to determine the 

regime of validity of the diffusion model and to obtain accurate values for the interfacial 

scattering parameters as weH as for the transport mean free path t. We also confirm 
a general relationship between spatial distributions and angular field correlation 

functions and show that angular correlation functions in transmission are consistent with 

diffusion theory. In Sec. 3, we compare microwave measurements of intensity correlation 

in random dielectric sampies with predictions of the Langevin approach and of the 

macroscopic random matrix method. Excellent quantitative agreement is obtained using 

the measured value of t. We also illustrate the role of long-range intensity correlation 
in the intensity distribution. In Sec. 4, we consider the impact of microstructure 

resonances upon propagation. Microwave measurements of the frequency dependence 

of the diffusion coefficient D and of t in collections of dielectric spheres provide the 

connection between steady state and dynamic measurements of transport. In Sec. 5, we 

discuss observations of an Anderson localization transition for microwave radiation in 

mixtures of aluminum and teflon spheres which is rounded by absorption. 

2. INTERFACIAL SCATTERING AND DIFFUSION 

Photon Düfusion 

In previous work, in a wedge sampie of rutile titania embedded in a polystyrene 
matrix, we found that measurements of the seale dependence of transmission T(L),s the 

time of flight distribution of transmitted photons T(t) , 6 and the cumulant intensity 

correlation function oftransmitted intensity as a function offrequency shift C(.1V)S,6 were 

weH described by functional forms given by the photon diffusion model. 29 

Notwithstanding the qualitative success of diffusion theory, t could not be accurately 
determined from these results. It could only be estimated from steady state 

measurements using assumptions regarding the coupling of the wave in and out of the 

sampie or from time and frequency domain measurements using assumptions regarding 

the nature of wave interactions with the sampie microstructure.3040 

In this section we use a set of optical measurements to provide a quantitative 

description of steady state propagation without making specific assumptions about the 

internal structure of the sampie. We provide a deseription of transport in a finite system 

utilizing the diffusion formalism with three interfacial coupling parameters and then test 

the consistency of the model by performing aseries of experiments in which these 

parameters are overdetermined. These parameters are the coherent penetration depth 

zp which is the distance from the input surface at which the incident wave is effectively 

randomized, and the extrapolation lengths Zb (in,OUI) beyond the input and output 
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boumlaries at which the intensity inside the sampie extrapolates 10 zero. Each of these 

lengths is varied independently by changing either the incident angle of the beam or the 

index mismatch at the sampie surface.40 

The distance Zb beyond the physica1 surface of a sampie with reflectivity R at 

which the intensity inside the medium appears to extrapolate to zero, in the absence of 

absorption, is given by,34,37 

(1) 

The solution of the Milne equation, which gives the result of transport theory in the 

absence of internal reflection, gives a factor of 0.7104 instead of the factor of o/a in Bq. 

(1).41 This correction will be used below in determining t from results in the case where 

R = O. 
The transmission coefficient is given by the expression,34,42 

(2) 

Measurements of T(L) were made on a weakly scattering, free standing, 0.0182 

rad wedge of sintered alumina which starts at a thickness of 40 ± 1 ",m using the 
arrangement shown schematica11y in Fig. la. The total energy of the incident, 

transmitted, and reflected light is measured using an integrating sphere as shown in Fig. 

Ib. A 3 mw He-Ne laser beam is focused to a 5 ",m spot on the sampie surface. The 
ratio of the transmitted light to the part of the incident beam which is not specularly 

reflected from the input surface gives the transmission coefficient. The absolute 

transmission could only be measured for the sampie in air. The wedge was fabricated 

by polishing a slab of 99.7% purity polycrystalline alumina with 0.97 solid fraction 

Lens 

Laser 

Integrating O"h'" 
Sam pie 

U 
PMT 

(a) (b) 

Lens 1 I 
Lens 2 

~ 
PMT 

Sam pie 

Figure 1. Schematic diagram ofthe experimental setup used to measure (a) the total transmission and (b) 

the intensity profile at the output of the sample. 
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provided by Valley Design Corporation. Electron micrographs of the material show 

random grains of average size 2 "m. The specular reflection coefficient near normal 
incidence is measured to be 7.2 %. The internal reflection coefficient at either interface 

can be changed by modifying the index mismatch at the surface by bringing that interface 

into contact with various liquids or air. Specular reflection vanishes when the sampie 

is immersed in a fluid with a refractive index of 1.70, which is elose to the index of 1.76 

of crystalline alumina. The transverse intensity profile at the output surface of the 

sampie is measured using the setup shown schematica1ly in Fig. lb. The intensity profile 

is imaged near the normal to the surface with an f /1.4, 5.5 cm focallength Nikon lens. 

The image is magnified 30 times and is recorded by scanning a photomultiplier tube with 

an affIXed 20 "m aperture in the image plane located 175 cm from the sampie. 
Measurements of the intensity distribution in reflection are made by looking at the 

backwards scattered light using a beam splitter placed before the focussing lens. Large 

fluctuations are observed in the speckle pattern. The results reported for the transverse 

intensity distribution I(p, L) are averages obtained by scanning the sampie at fixed 

thickness as the data is collected. Related intensity correlation functions were computed 

from measurements of intensity spectra for a fixed sampie as a function of detector angle 

with the imaging lens in Fig. 1b removed. The angular dependence of the intensity was 

also measured with the incident beam and the detector fixed while the sampie is rotated. 

Measurements of total transmission and reflection versus thickness for the sampie 

in air are shown in Fig. 2a. Within the experimental error of 1 % their sum is unity, 

indicating the low level of absorption in the sampie. For L > 100 "m, the inverse of 

T(L) is a straight line as shown in Fig. 2b, in agreement with the expression for T(L) in 

Bq. (2). Fitting Bq. (2) to the linear portion of the curve for T(Lr1 gives zp = 24.8"m 
and assuming that z,,(/II) ... Z/OUI), we get z" = 190.9 pm with standard deviation of 0.1 pm 

and 0.3 "m respectively. To check whether Zb(ÜI) ... Zb(ord), we measured the relative 

transmission versus thickness in cases where either the input or output surface is index 

matched. The sum z,,(ÜI) + Zb(ord) obtained from the slopes of T(Lr1 for the two cases are 

the same within the experimental error of 2%. We will therefore assurne their 

equivalence for the moment and denote their value by z". From measurements of the 

variation in intensity with the angle at which laser beam enters the integrating sphere, 

we estimate that the relative transmission is uncertain to 0.5 %. In addition uncertainties 

of 1 "m in the thickness of the thinnest part of the sampie results in uncertainties of 1 
"m in Zp and 1.5 "m in z". 

To find t, we measure the transmission with the sampie immersed in index 
matching fluid so that R = O. Although the absolute transmission could not be 

measured directly in this case, from the x-intercept of the linear fit of T(Lt1 to the data, 

we obtain Zb = 22.3 ± 1.5"m. Using Bq. (1) for the index matched case and ineluding 

the Milne factor 0.701,gives t = 31.4 ± 1.5 pm. Using this value for t and the value 
of Zb in air in Bq. 1, gives R = 0.81 at the samplelair interface. 

Scattering parameters may be obtained independently from measurements of the 

angular dependence of total transmission. Within the framework of the present simple 
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Figure 2. (a) Sca1e dependence of the total transmission, reflection and their sum for the aJumina wedge 

in air. (b) The dots are the inverse of 7tL) given in Fig. 2a. The solid lines througb the transmission data 

in both (a) and (b) represent the fit of Bq. (2) to the data. The reflection data is fitted by 1 - T(L). 
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diffusion model, we expect that the longitudinal penetration depth varies with angle of 

irrcidence 8 as Zpcos8ro where 8r is the angle of refraction in the random medium, whereas 

the surface extrapolation length remains the same. We have then, 

(3) 

A measurement of T(8) for the index matched alumina sample of L = 640 /-Lm is shown 

in Fig. 3. In this case 8 = 8r • The solid line is a plot of Bq. (3) using the values of zp 
and Zb found from measurements of T(L) for the case 8 = O. 
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Figure 3. Transmission through an index-matched alumina sampIe of L = 640 J.'m as a function of the angle 

between the incident beam and the normal to the plane of the sampIe. The solid line is calculated from Eq. 

(3). 

Another independent test of diffusion theory is given by the comparison of the 

intensity profile at the output face obtained using diffusion theory and the values of the 

scattering parameters above with the measured intensity distribution. 3,42-44 The 

normalized intensity profile measured for L = 640 /-Lm and L = 89 /-Lm in air and the 

calculated distribution using the parameters found above are shown in Fig. 4. Intensity 

measurements are shown along a line going through the center of the distribution which 

is taken as the origin in the figure. 

We find good agreement with diffusion theory for samples in air whenever L ~ 

150 /-Lm. For thinner samples, diffusion fails to describe I(p; L) even at thicknesses which 
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Figure 4. The dashed lines are the experimenta1ly determined intensity profiles at the output surface for 

samples with L = 640 p.m and 89 p.m. The solid lines are the predictions of diffusion theory. 

are considerably larger than t. In contrast, T(L) is seen in Fig. 2 to conform to the 

predictions of diffusion for L ~ lOO"m. The reason for this difference is that [(P, L) 

is measured using a lens to collect light in the forward direction. Light that has not been 

fully randomized is more sharply peaked in the forward direction. This portion of the 

light, which also has a narrower distribution in the transverse direction, has a larger 

Fresnel transmission coefficient at the output surface and therefore makes a 
proportionately greater contribution to the measured l(p; L) than light that has been 

more completely randomized. On the other hand, the total transmission in sampies in 

which L is several times larger than t is relatively insensitive to the angular distribution 

oflight at the output surface. Though the transmission coefficient depends strongly upon 

the orientation at which the light strikes the output surface, the probability is high that 

photons which have reached the output surface will eventually emerge from that surface, 

even if only after several reflections. 

The intensity distributions in reflection for parallel and perpendicular 

polarizations as weil as the prediction of diffusion theory using the parameters found 

above from measurements of total trarismission are shown in Fig. 5. The difference in 

the intensity profile for different polarizations cannot be described within the framework 

of diffusion theory. Moreover, the distributions for either polarization are narrower than 

the prediction of diffusion theory. In transmission no appreciable difference was 

observed in the intensity profile for both polarizations at thickness for which the 
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diffusion model accurately described I(p, L). We conclude, therefore, that diffusion 

theory does not accurately describe distributions in reflection. Considerable caution 

must therefore be used when interpreting measurements of coherent backscauering or 

angular, spectral or temporal correlation functions in reflection. 
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Figure S. Intensity profiles in reflection for parallel and perpendicular polarizations for an alumina sampie 

of L = 640 "m. The solid lines represent the predictions of the diffusion model. 

The validity of the photon diffusion model is also tested in measurements of 
intensity of microwave inside a sampie contained in a copper tube.39,42 We find that the 

integrated intensity at a given depth is accurately given by diffusion theory even within 

a mean free path of the output surface. 

Wave Correlation 

We have shown above that the surface intensity distribution in transmission is 

given by the photon diffusion model. The undedying wave nature of propagation in 

random media is seen in intensity fluctuations that result from the random phases and 

amplitudes of partial waves reaching a point. Here we examine various angular 

correlation functions of the far field which reflect the wave properties associated with 

corresponding surface intensity profiles. We show that these wave and particle aspects 

ofpropagation are Fourier transform pairs and demonstrate these results experimentally. 
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We consider the field-field correlation function, Ik"k" == <E(kb)·E·(kb,»,of 

monochromatic light scattered in the direction kb with light scattered in the direction kb •• 

The field at points Pa and Pb of the input and output surfaces and in the far field of the 

transmitted speckle pattern can be expressed respectively as sums of partial waves as 

folIows, 

(4a) 

(4b) 

(4c) 

where A(kJ is the Fourier amplitude of the incident wave, P(Pa, Pb) is a propagation 

factor between points on the input and output surfaces of the sampIe, !(Pb,kb) is a 

coupling factor between the field at Pb and the detected field in a direction kb. The 

phase difference associated with propagation to and from points Pa and Pb relative to the 

center of the distribution on the a and b surfaces are ka'Pa and kb'Pb respectively. We 

assurne that fluctuations in propagation and coupling factors are uncorrelated. The 

short-range correlation in the propagation and coupling factors over which we integrate 

can be expressed as, 

Here, P(Pa, Pb) == < 1 P(Pa, Pb) 12 > is the intensity propagator from Pa to Pb' Since it 
depends only on the difference P = Pa - Pb' it can be expressed as Io(p). g(kb , kb·) == 
<f{p",kb}f(Pb' kb.) > , gives the influence upon the correlation function of the angular 

intensity distribution and is independent of Pb' Using Eqs. (4) to express the field as, 

E(kJ - f f f A(k a> exp(i ka• pa> pCp a' pJ exp( -ikb• pJ!(P b' kJ dka dp a dp b' 

and using Eq. (5) to calculate the correlation function of this field with a field produced 

by shifting each of the incident Fourier components by llka and detecting the field in a 

direction shifted by llkb from the initial direction of detection gives the result, 
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where [(Pa) is the intensity distribution on the input surface. Since g(kb, kb,) changes 

slowly over the experimental range, its variation will be neglected below. This neglect 

is further justified in the comparison with experiments below because the intensity 

spectra used in the calculation of correlation functions are normalized by the average 

of all spectra to simplify the interpretation of these results. 

In the case, tMca = 0, we find when we sum over Pa in Bq. (6), 

(7a) 

where [(Pb) = S [(PJP(Pa, Pa + p)dka, is the intensity distribution on the output face. 

Bq. (7a) shows that the field correlation function of the transverse component of the 

wavevector and the intensity distribution of the transverse displacement on the surface 

are a Fourier transform pair. This is essentially the van Cittert-Zernike theorem.45 

In the case, tMca =Mb == M, we find, 

[k"k., oe f P(P) exp(i /1k· p) dp , (7b) 

where P(p) == P(Pa, Pa +p) which is independent of Pa' The condition tMca =tMcb can be 

achieved by rotating a slab without changing the direction of the incident and detected 

beams. The correlation function in the case that M a = tMcb9,14,31,33,46 has been called the 

"memory effect" because it allows one to determine the incident beam direction by 

measurements ofthe wave transmitted through a random medium. Bq. (7b) implies that 

measurements of the intensity correlation function in this case yield the intensity 

propagator. 

These results are compared to experiment in Fig. 6.47 The output intensity 

distribution for a wide and a focussed beam at the input of a 280 f'm thick slab is shown 
in Fig 6a. The normalized cumulant intensity correlation function versus detector angle 

in the output plane for these two cases ,C(/18) = < öl(8)öl(8 + tl8) >, is shown in Fig. 

6b. The intensity spectra are normalized by the average of all spectra, which is the 

angular intensity distribution, so that the öl are fractional fluctuations form the average 

intensity. In the absence oflong-range intensity correlation, C(/18) is given by factorizing 

the fields and is the amplitude square of the field correlation function. The narrower 

correlation function in Fig. 6b corresponds to the broader intensity distribution in Fig. 

6a. The solid line in Fig. 6b is the complex square of the Fourier transform of [(Pb) for 

each of the cases shown in Fig. 6a. This demonstrates that the connection between 

surface intensity distributions and the angular correlation functions in the transmitted 

wave is given by Bq. (7a). Since [(Pb) for the case of tight focussing corresponds to the 

diffusion propagator, this confirms that angular correlation measurements are consistent 

with diffusion theory. The cumulant intensity correlation function versus rotation angle 

of the sample, /18, for wide and focussed beams are shown in Fig. 6c. These results give 
the same correlation functions as that shown in Fig. 6b for the tight focussing case, 

demonstrating that the corresponding distribution is the diffusion propagator and 

confirms Bq (7b). 
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Equivalent relationships to Eqs. 6 and 7 are found which relate intensity 

distributions in time and field correlation functions with frequency. The equivalent of 

Eq. (7b) was demonstrated experimentally by showing that the correlation function 

between monochromatic fields at w and w', corresponding to the case in which the 
incident and detected fields are shifted by the same amount ~w, is the Fourier transform 
of the transmitted picosecond pulse, corresponding to the temporal intensity propagator, 

1 ... .,. oe I T(t)exp(i~wt)dt. 6 

3. WNG-RANGE INTENSITY CORRELATION 

Intensity Correlation 

In Refs. 17 and 18, we reported the observation of long-range intensity correlation 

of microwave radiation in randomly positioned polystyrene spheres contained in a copper 

tube, but calculations of spectral and spatial correlation in the presence of absorption 

had not been carried out. A detailed comparison with recent calculations of Pnini and 

ShapirolS and of Kogan and Kavehl6 is now made.48 Excellent agreement is found. We 

also demonstrate the connection between long-range intensity correlation and departures 

of intensity statistics from negative exponential behavior. Because the field is coherent 

throughout the sampie, these results for the intensity correlation and distribution allow 

us to study the microscopic origin of the statistical description of conductance in 

mesoscopic systems. 

The random sampie within the copper tube, shown schematically in Fig. 7, is 

analogous to an electronic resistor. The corresponding dimensionless conductance is the 

product of the number of modes in the tube, N = Ak2 , where A is the cross-sectional 

area of the tube and k is the magnitude of the wavevector, and the transmission 

---{> 
incident 
radiation 

plastic 
tube 

. . . . l+-Z--+: 
:4 L---iI>: 

diode 
detectors 

Figure 7. Schematic diagram of the experimental setup used to measure microwave intensity at the output 

and inside a sample of Ih-in polystyrene spheres. 
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coefficient tlL, g = Nt/L. The results given below indicate that even in the presence 

of absorption, the degree of correlation between two typical points on the output surface 

is approximately l/g. Whereas the transverse extent of the wave in a slab is of order L, 

the confinement of the microwave radiation by the highly reflecting walls enhances the 

degree of long-range intensity correlation as compared to its value in a slab bya factor 

of L2 /A. 29 This makes it possible to study intensity correlation as a function of space and 

frequency even in the case of locally weak scattering. The waveguide geometry used 

here also has important computational advantages. Because modes are completely 

mixed in this geometry, it is possible to carry out a macroscopic matrix calculation for 

the amplitude of the correlation function in which the difference between short and long

range correlation is clearly manifested. In this geometry, the analysis of correlation 

measurements is simplified because the spatial and spectral variations of the correlation 

functions on the output surface factorizes. 

We consider a waveguide which has N modes at a given frequency w. 

These modes, or linear combinations of them, define N channels which form a basis for 

describing incoming and outgoing radiation from a random medium inside the 

waveguide. We denote by Tba the transmission coefficient from channel a on the left of 

the disordered region to channel b on the right. In the present study, a mode is 

launched down a copper tube and the intensity is detected at points on the output face 

of the disordered region. Therefore, the incoming channel a corresponds to a waveguide 

mode, whereas the outgoing channel b corresponds, roughly, to regions of area (AIN) 

= A 2 on the output face, where A is the cross sectional area of the tube. 

Perfect mixing of channels by the scattering medium implies that the ensemble 

average of Tba , (Tba) , does not depend on a or b. The correlation matrix, Cab•a •b• = 
(oTbaoTw )/(Tba)2, is then the sum of three distinct terms,12.14 

The leading contributions to the coefficients ÄJo Ä 2 and Ä 3 were calculated in 

Ref. 12. Using the results of these references to calculate higher order corrections 
gives,48 

A- -1- 2 
1 

2 
Ä -

2 3go 

14 

45gt 

(9a) 

(9b) 

(9c) 
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where go is the leading contribution to the average conductance. The results above are 

for a fixed frequency in the absence of absorption. However, it is of interest to study 

correlation between Tba at frequency w and Tb'a' at frequency w' in the presence of 

absorption. Since the frequency shift ~w and absorption do not affect the perfect mixing 
of channels, the structure of Bq. (8) is not changed. The coefficients of the Krönecker 

deltas in Bq. (8), however, do depend upon the frequency shift ~w, and the inverse 
absorption rate r = lira and become functions of r~w and rr, where r = L2 /D. These 

coefficients may be written as products of frequency independent functions Ai and 

frequency form factors Fi: 

(10) 

where, Fj(go,rr,O) = 1 and Ai(go. 0) are given byeq. (9). 

In the limit of large goand strong absorption (go, rr ~ 1), the form factors F) and 

F2 on the output face of the sampIe are given by,15-20 

F -2 

F -) 

V&.4 + Tl cosh(2&.) -

cosh(2-y J - cos(2-y J &.2 

V&.4 + {/ -Y. sinh(2-yJ - -y_sin(2-yJ - &.sinh(2&.) 

cosh(2-y J - cos(2-y J Tl/ 4 

(11a) 

(llb) 

where &.2 == rr, [32 == r~w, and -Y~ == 1/2 <V&.4 + [34 ± &.2). F) is obtained within the 

field-factorization approximation, and decays as a result of the randomization of phase 

with frequency shift,4-6,l1 whereas F2 results from the diffusion of short-range intensity 

fluctuations which arise in the field factorization approximation. 13-20 The role of internal 

reflection at the sampIe interfaces, which is small in this sampIe, is neglected here.49 

Measurements of intensity correlation of microwave radiation are made in a 

random sampIe of )h-inch polystyrene spheres at a volume fraction of 0.56 in a 7.3 cm 

diameter copper tube. Small air bubbles occupy 4.5 % of the volume of the spheres. 

The intensity is detected by two Schottky diodes with parallel antenna separated by 2.5 

cm at the output surface of sampIes of variable length. Because the diode junction is 

microscopic compared to the microwave wavelength, Iocal measurements of intensity can 

be made. This is confirmed by our observations of negative exponential intensity 

statistics in reflection from weakly scattering sampIes. The most likely intensity value 

can be near zero, as is observed in this case, only when the transverse dimensions of the 

area over which the flux is detected is negligible compared to the wavelength. The 

random configuration of spheres inside the tube may be changed by tumbling the tube. 
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Figure 8. (a) Autocorrelation function for points at the output of a 150 cm sampie of Ih-in polystyrene 

spheres. (b) Crosscorrelation function for two points of the output of the same sample. The contribution 

of the first two terms in Eq. (8) to both correlation functions is shown. 
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Spectra are taken in successive static configurations as the frequency is swept between 

20 and 21.7 GHz. Each spectrum is normalized by dividing the measured spectrum by 

the average of all spectra recorded by the detector for the medium. This eliminates 

instrumental frequency variations from the spectra. We computed the autocorrelation 

function with frequency of 6,400 spectra taken with each of the diodes as weH as the 

crosscorrelation function with frequency of spectra in the two diodes for each of these 

configurations. These correlation functions for a sample of length L = 150 cm are given 

by the points in Fig. 8. These data are fit by the expression, AIFI(~"') + A2F2(~"') + 
Const., using AI, A2, D and Const. as fitting parameters and using the value of the 

absorption length L. == (Lla.) = 34 cm at 20.8 GHz, determined from measurements 

of the variation of intensity inside the sample with displacement along the tube axiS. 39,42 

The variation with frequency of La, D and t in this sample is shown in the next section. 

The fit and the separate contributions of CI and C2 to the auto and crosscorrelation 

functions are shown as the curves in Fig. 8. The frequency variation of CJ is not 

inc1uded because it has not been calculated and in any case this term is smal1. We find, 

however, that including a constant in the fitting expression improved the fit. A frequency 

independent contribution to the correlation function might arise as a result of drift in 

the oscillator output or as a result of variations in the average opacity of different 

rea1izations of the sample. The fit to the autocorrelation function gives D = 3.5 X 1010 

cm2/s at 20.8 GHz. 

A Langevin calculation of the magnitude of the leading order term in the 

contribution of C2 to the crosscorrelation function, C X, for L > La gives, 15,16 

c x = (31/'/4)(l/A.f)(Llt). (12) 

We note that C x is essentially the inverse of the dimensionless conductance and is 

independent of absorption for L > La. This suggests that the approach to the 

localization threshold for extended waves is independent of absorption. The value of t 
in the present sample, determined from measurements of intensity inside the sample39,42 

at 20.8 GHz, is found to be t = 5.9 cm. Using this value in Bq. (12), gives C X = 0.043, 

in good agreement with the results shown in Fig. 8. In the absence of absorption, C X is 

4/3 the value for absorbing samples given in Bq. (12).16 Bquating this with the first term 

in Bq. (9b) gives, go = (2/31/')Ak 2t1L. Evaluating go in the present absorbing sample 

gives, go = 12. 

The sharp drop in the magnitude of CI as the separation is changed from zero to 

2.5 cm is consistent with the short-range of the field factorization contribution to the 

correlation function. 4,18 The contribution of CI to the auto and crosscorrelation functions 

at different sample lengths is shown in Fig. 9. The small length-independent 

contribution of CI to the crosscorrelation function is expected because CI depends only 

upon separation of the detectors. The contribution of CI to the autocorrelation function 

is very close to unity, but drops slightly as L increases in agreement with Bq. (9a). 
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The scale dependence of the eontribution of C2 to the auto and erosscorrelation 

funetions is shown in Fig.l0. The nearly linear dependenee of C2 in the erosseorrelation 

funetion is in accord with Eq. (11). Moreover, the contribution of C2 to the 

autocorrelation funetion is twice as large as its contribution to the erosscorrelation 

funetion. This is a consequence of the strueture of the C2 tenn, whieh for the ease a = 
a' and b = b', gives the factor (~t/Q' + ~bb') = 2. 

The eorrelation in intensity between a point on the output surface and points the 

interior of the sampie along the eylinder axis is observed to fa11linearly with separation 

of the points. 18 This long-range behavior has been found in recent caleulations by Kogan 

and Kaveh and by Pnini and Shapiro. 15,16 

Intensity Statistics 

In the limit in whieh the degree of correlation in the phase and amplitude of 

partial waves reaehing a point is negligible, the distribution of values of a given 

polarization component of a monocbromatie field must be a Gaussian by the central 

limit theorem.50 The corresponding distribution pO) of intensities nonnalized by the 

ensemble average value 1= 11 <I> is then a negative exponential, P(I) = exp(-I) with 

moments < pa > = n!. Inereasingly large departures from negative exponential statisties 

are found in the polystyrene sampie studied above as the sampie length inereases. 17 

Shnerb and Kaveh51 have recently proposed an expression for the intensity distribution 

in nonabsorbing random media whieh ineludes the lowest order correction due to the 

interference of partial waves associated with paths whieh intersect once in the medium. 

To this order, the moments of the distribution are given by, 

-" <I > - n! + n(n-l)n!S/2 (13) 

Using the Fourier-transform method, this yields the distribution,51 

- - -2-
P(I) - exp( -1)[1 + IhS(/ -41+2)]. (14) 

The physica1 significance of S ean be found by expressing the second moment of the 

intensity distribution in tenns of the variance, < P > = < (~I)2 > + 1 . Comparing this 

with the expression for the second moment given by Eq. (13), <P> = 2 + 2S, and 

identifying the variance, < (~Ti > ,with the value of the autocorrelation funetion at zero 
frequeney shift ca gives,S2 

S = Ih(Ca - 1). (15) 

From Eqs. (9a,9b), we find that, ca = 1 + Cx, to order 1/go' Thus, 

(16) 
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We study the connection of correlation to the intensity distribution and the 

adequacy of Bq. (14) by considering the intensity distribution of microwave radiation for 

the 150 cm long polystyrene sampie, compiled from the spectra used to compute the 

intensity correlation functions above. The measured intensity distribution is given by the 

points in Fig. 11. A fit of Bq. (14) to the distribution for 0.1 $; I$;8 using S as a 

fitting parameter is shown as the solid line in the figure. 52 The departure from negative 

exponential statistics can be seen in the deviation of the data from the straight dashed 

line. The fit gives S = 0.046 ± 0.001. This value may be compared to the values of S 

found from its connection to correlation, Bqs. (15,16). The magnitude of the 

-2 

-.......-
'-..... 
0-4 
0.... 

-6 

Figure 11. Natural logarithm of the measured distribution of polarized intensities for the sampie of Fig. 8. 

The curve through the dots is a fit of Eq. (14) to the data. The dash line gives the prediction of negative 

exponential statistics. 

autocorrelation function, as seen in Fig. 8a, is ca = 1.062 ± 0.015. Using eq. (15), this 

gives, S = 0.031 ± 0.010. A large uncertainty exists in the value of S obtained from C' 

because ca is the difference between two terms of order unity. Greater accuracy can 

be obtained from measurements of the crosscorrelation function. The results in Fig. 8b 

give C'" = 0.045 ± 0.004. Using Bq. (16), this gives S = 0.023 ± 0.002, wh ich is half the 

value obtained above from the fit of Bq. (14) to the intensity distribution. 

The source of the discrepancy can be found by determining the values of S which 

need to be used in Bq. (14) to give the nth moment calculated using the data in Fig. 11. 

These values, Sn, are plotted in Fig. 12. As n decreases, values of Sn approach the value 
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obtained from measurements of the intensity correlation function. To leading order in 

the expansion parameter lIg, S2 is given by 1hCX. The increasing discrepancy for higher 

values of n are due to terms not included in the derivation of Bq. (14).51 This indicates 

that the contribution of higher order corrections associated with multiple crossings in the 

sampie is greater for higher moments. The c10se connection between the intensity 

distribution and the degree of correlation suggests that for L > La P(l)is independent 

of absorption and depends only upon gas is the case for the degree of correlation. Thus 

the proximity of extended waves to the localization threshold appears to be independent 

of absorption. 
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Figure u. Calculated values of S using the experimentally determined nth moment and Bq. (14). 

4. MICROSTRUCTURE RESONANCES 

In the preceding sections we have seen that spatial and spectral, and hence 

temporal, transport measurements are weH described by the diffusion formalism. We 

now consider the connection between these measurements in terms of the fundamental 

bulk transport parameters in space and time, t and D. This may be succinctly expressed 

by introducing an additional phenomenological parameter, the transport velocity v, 
defined by the relation, D = Vavt .35 For point scatterers, v is the phase velocity vp and 

varies slowly with frequency. For scatterers comparable in size to the wavelength, 

however, both v and vp are frequency dependent as a result of resonances with the 
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scatterers. 35,36 It is presently an open question as to whether v and vp differ in the low 
density limit. 35,53·55 

The transport and phase velocities may be readily distinguished, however, in the 

case illustrated schematically in Fig. 13. of a collection of metallic boxes containing 

random holes. The mean free path is essentially the box size since this is the distance 

travelled before the transport direction is randomized. Thus, the transmission through 

the sampie is independent of the size of the holes except insofar as the holes influence 

the reflectivity at the sample's surface. The transit time, however, does depend upon the 

size of the holes because the mean dwell time of the wave in a box increases as the hole 

size is reduced. As a result, D and v depend upon the size of the holes and varies with 

frequency. In contrast, vp is independent of the hole size and frequency. 

Figure 13. Juxtaposition of metallic boxes with holes. 

Diffusive transport gives important clues to the nature of the localization 

transition. In the absence of microstructure resonances, spatial and spectral arguments 

lead to equivalent localization criteria. For localized waves, the reduced intensity at the 

borders of a block of a random sampie corresponds to weak coupling between equivalent 

blocks of the disordered sampie and to the exponential attenuation of the wave as the 

sampie size is increased by juxtaposing boxes. 56 This leads to the criterion for spatial 

localization that the dimensionless conductance is less than unity. 56,57 In the absence of 

inelastic scattering, the localization transition for point scatterers is predicted to occur 

when the level width equals the separation between levels of the block. 56 At this point 

coupling between adjacent blocks is suppressed. This leads to the spectral criterion for 

localization that the Thouless number 0, which is the ratio of the level width to the level 
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spacing, is less than unity.S8 In the absence of microstructure resonances g = o. 
However, in the presence of such resonances, these quantities may differ. One can 

readily imagine a structure, such as that in Fig. 13, in which t >- A, but in which 0 ( 1. 
The question then arises as to whether gor 0 is the appropriate sca1ing parameter of the 

localization transition or indeed whether there is a single scaling parameter that 

describes all aspects of transport. It should be noted that the intensity distribution must 

be influenced by 0 since it is the macroscopic resonant structure of the sampIe that leads 
to large transmission fluctuations that are characteristic oflocalized waves. Certainly the 

degree of correlation is a measure of the proximity to the localization threshold. Bq. 

(12) and the measurements of the previous section suggest that the calculated and 

measured amplitude of ce is 1/ g . However, a hidden assumption in the calculation is 

that the mean distance in which the phase of the wave is randomized is t, the distance 
in which the direction of the wave is randomized. This may not be the case if the 

scatterers are not point scatterers. The experimental verification that C' =: 1/g can only 

be taken as definitive if it is carried out over a broad frequency range in which the 

values of g and 0 differ significantly. Preparatory work for such a study is described 

here. 

A fuH study of transport in the case in which the wave may be in resonance with 

the microstructure of the sampIe requires the evaluation of both vand vp• To find v, it 
is necessary to determine both t and D. t can only be obtained once interfacial 

interactions are properly taken into account in phenomena that can be described by the 

photon diffusion model. It cannot be accurately determined, therefore, from a single 

measurement of transmission or from measurements of distributions or correlation in 

reflection. On the other hand, D can be reliably obtained from measurements of 

spectral correlation functions or from pulsed measurements in transmission. As long as 
L > Zb' spectral correlation functions and the time of fight distribution are not 

significantly influenced by internal reflectivity. To find vp' it is necessary to determine 
the fraction of the time the wave spends in the high and low refractive index portions 

of the sampIe. This can be found from adetermination of the absorption rate in the 
random sampIe and in the bulk material of the scatterers. The results below are not yet 

the complete set of experiments that are needed to resolve all the questions posed 

above, but they do show that these issues can be settled experimentally. 

We have studied the frequency dependence of microwave propagation in two 

sampIes in which sphere resonances are clearly exhibited. The first is the sampIe of 

polystyrene spheres which we have discussed in the previous section. The region near 

the first Mie resonance of the spheres is investigated. The second type of sampIe is a 

mixture of nearly spherica1, o/a-inch diameter particles of 90 % alumina supplied by Coors 

Ceramics Inc. and hoHow polypropylene spheres of the same diameter. The index of 

refraction of the solid spheres is 3.0 and the frequency range near the second Mie 

resonance is explored. By varying the volume fraction f of alumina spheres, it is possible 
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to find the density range in which the independent scatterer model adequately describes 

propagation and to discover the filling fraction and frequency at which the strongest 

scattering occurs. This sampIe was also chosen to allow us to investigate the source of 

the small optical diffusion coefficient measured near the second Mie resonance of 

anatase titania spheres with index of 2.2. 59 

The results for polystyrene spheres is shown in Fig. 14. The absorption 

coefficient, Ol = liLa = lI(DTa)ln, which is shown in Fig. 14a, and the extrapolation 

length on the output surface Zb at each frequency are determined by fitting the 

expression for the intensity inside the sampIe versus distance, L - z, from the output face, 

I(z) oe sinh[Ol(L - Z + Zb)], to measurements inside the sampIe of length 150 cm .39,42 

The values of f and of the reflection coefficient R at 18.5 Ghz are determined from 

measurements of Zb at the output surface and of the relative transmission through the 

sampIe with and without additional copper plates with a variety of holes on the output 

face of the sampIe. These measurements give i = 6.5 ± 0.3 cm and R = 0.13 at 18.5 

GHz. 39,42 We expect that the value of R does not display strong resonant behavior over 

the K band for this high density sampIe. We will, therefore, use the value of the R at 

18.5 GHz over this frequency range. The frequency dependence of the transport mean 
free path is then found by solving the relation,39,52 

Zb = (lI20l)ln[(1 + 0.710li(l+R)/(I-R»/(l - 0.710li(I+R)/(I-R»], (17) 

using the measurements of the frequency variation of Zb and Ol. The results are given in 

Fig 15b. 

The frequency dependence of D, shown in Fig. 14c, is found using the procedure 

outlined in the previous section for fitting the autocorrelation function using spectra with 

a narrow frequency range and the values of the absorption coefficient in Fig. 14a. From 

the ratios of the data in Figs. 14c and 14b, we obtain the transport ve1ocity, v = 3DIf 

shown in Fig. 14d. A broad dip in the value of v is observed with a minimum transport 

velocity of v "" 1.8 X 1010 cm/s. This is comparable to the phase velocity in the high 
index medium and hence considerably less than the phase velocity in the coHections of 

spheres in air. The absorption rate is obtained using the data in Figs. 14a and 14c using 

the relation, lITa = D0l2• 

In Fig. 15 we show the frequency and density dependence of the diffusion 

coefficient in the alumina sample.36 Quite surprisingly, sharp sphere resonances in these 

sampIes are observed up to f = 0.40. At f = 0.56,D is nearly independent of frequency, 

indicating the breakdown of the independent scatterer model. Though the diffusion 

coefficient is quite small in this sampIe, propagation is weH described by the photon 

diffusion model. The degree of correlation in the f = 0.30 sampIe at a length of 20 cm 

cm is never more than 0.03. 
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Localization 

In Ref. 29, we reported slight deviations from diffusive behavior in measurements 

of T(L) in mixtures of 'Ih-inch aluminum spheres and polystyrene spheres. These spheres 

were chosen to be near the first resonance at which Condat and Kirkpatrick25 had 

predicted that localization might be observed. Since the largest suppression in 

transmission occurred at the high frequency end of our K band microwave oscillator, we 

attempted to bring the spheres into resonance by increasing the diameter of the 

scatterers to 3/16-inch. Spatial and spectral measurements were made for various 

volume filling fractions f of aluminum spheres from f = 0.15 to f = 0.45. 

In strongly scattering sampies in which kt = 1 and g = 1, the extent of coherent 

backscattering increases as the thickness of the sampie increases because a larger 

fraction of paths leaving any point returns to the point. Transmission may then be 

described using an effective scale dependent diffusion coefficient D(L). 21-23,57 For 

localized waves D(L) -+ 0 as L -+ 00. For extended waves, the scaling theory of 

localization57 gives, D(L) = (vt/3)(t/Ü, where ~ is given by, 1I~ = lI~o + l/Lq, + l/L, 

where Lq, is the dephasing length, and ~o = t 2/(t-t c) is the coherence length in an 

infinite sampie in the absence of inelastic processes. At the mobility edge, t = t co ~o 

diverges and the effective diffusion coefficient is, therefore, Dc(L) = (vt//3)(l/L + 
lILq,). In the absence of dephasing or absorption, the transmission for L < ~o is given 

by T(L) = D(L)/vL = t//L2• This l/L2 falloff of transmission is a signature of the 

critica1 regime. 

For t < (, the wave is localized. Transmission then falls exponentially on length 

sca1es greater than the localization length. However, transmission also falls exponentially 
for extended waves for sampies thicker than the absorption length La _ Nonetheless, a 

rounded localization transition can be identified by the nature of the change in the 

character of transport and in the statistics of propagation when the interaction of the 

wave and medium goes through the Anderson localization transition as the density of 

scatterers is changed or as the frequency is varied. 

Such a transition is observed in mixtures of aluminum and teflon spheres. 26,27_ 

The sca1e dependence of transmission at 19 GHz in the f = 0.20,0.30 and 0.35 sampIes 

is shown in Fig. 16 and the frequency dependence of the attenuation coefficient in these 

sampIe is shown in Fig. 17. At f = 0.20, transmission falls as lIL for L < La, indicating 

that propagation is diffusive at this concentration. The absorption and diffusion 

coefficients are independent of frequency in the K band for this sampie. At f = 0.30, 

transmission falls initially as l/L2 , indicating that the wave is near the mobility edge. 

The attenuation coefficient becomes frequency dependent for f > 0.25. At f = 0.35, 

transmission drops exponentially for sampie thicknesses greater than the wavelength. 

The diffusion coefficient is smaller than could be obtained by renormalization of the 
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sca1e dependent diffusion eoefficient in the eritica1 regime over the length seales in which 

absorption is negligible. This behavior oceurs over a narrow frequeney range and the 

attenuation eoefficient is also enhaneed over the same narrow range. This eorresponds 

to a narrow window of localization21 which is hypothesized to lie between the long 

wavelength limit, in whieh effective medium theory is appropriate, and the short 

wavelength limit, in which propagation approaehes the geometrie opties limit. The peak 

scattering near 19 GHz presumably oceurs because of the proximity to both the first 

sphere resonance and the waveguide eutoff frequeney for typica1 spacing between 

spheres. 
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Figure 17. Frequency dependence of the absorption coefficient for three different mixtures of aluminum 

and teflon spheres: f= 0.20 (Il.),f = 0.25(e) andf= 0.35(0). 

Another indication of the eorrelated nature of transport ean be seen in the 

measurements of the fraetional eorrelation of intensity between a point at the output 

surfaee and interior points shown in Fig. 18 for the f = 0.20 and f = 0.30 sampies. 

Unlike the linear decrease in eorrelation with detector separation that is observed in the 

f = 0.20 sampie, whieh is eharaeteristie of diffusive transport,18 the eorrelation funetion 

for the f = 0.30 sampie drops abruptly over the same length seale on which T(L) 

decreases by a faetor of five. This indicates that this length eorresponds to the 
eorrelation length ~. 
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It was recognized in the early discussion of photon 10ca1ization by John21 that 

absorption becomes increasingly important as the localization threshold is approached. 

The renormalization of the diffusion coefficient as L increases leads to a shortening of 

the absorption length. It was assumed that D(L) would not be renormalized on length 

sca1es greater than the absorption length since partial waves following paths with greater 

excursions are unlikely to return to a point at the input before being absorbed. The 

attenuation length at larger length sca1es would therefore reflect the diffusion coefficient 

at L <= La = (D(La)Ta)'h. The peak in the attenuation coefficient as a function of 

frequency which we observed in random mixtures of aluminum spheres at f > 0.25 was 

attributed to an enhanced attenuation coefficient associated with a renormalized 

diffusion coefficient D(La). 22 

Recently Weaver60 and Yosefin61 have proposed that absorption does not cut off 

the renormalization of D(L). Indeed waves that return to a point along time reversed 

paths are in phase even though the probability of return is reduced byabsorption. That 

the phase coherence within a strongly absorbing static random sampie is not diminished 

by absorption is evidenced by the observation of nulls in the intensity distribution which 

can occur only if the intensity at such points does not fluctuate in time. We have also 

found that the degree of long-range intensity correlation and the intensity distribution 

in the polystyrene sampIe are in sensitive to absorption. It therefore appears that the 

closeness to the mobility edge of extended waves is not influenceQ by absorption. It 

should be noted however that absorption plays a more significant role for localized 

waves than for extended waves. For example, large values of intensity occur when the 

incident frequency is resonant with a localized state near the center of the sampIe. 62 

Because the transit time through the sampIe is exponentially long for such states, 
however, such large fluctuations are most strongly suppressed byabsorption. 

If we assurne, nonetheless, that absorption does not cut off the renormalization 

flow, the anomalously large and frequency dependent exponential attenuation found in 

the aluminum-teflon mixtures would be due to renormalization of D(L) even for L > 
La. The attenuation length would then essentially be the localization length, though it 

may be modified somewhat byabsorption. Thus, the peak in the attenuation coefficient 

remains a signature of the localization transition. These results support the conclusion 

that photons in the system under study are localized regardless of whether 

renormalization is or is not cut off by absorption. Evidence of localization is also found 

in the small value of the diffusion coefficient as inferred from measurements of C(..:;lv) 

and in values of the intensity variance which becomes as large as 2.4 at 19 GHz for f = 
0.35. To study the role of absorption, it will be useful to investigate cooled sampIes in 

which absorption is weak and to examine the spatial variation of intensity in the medium 

at fixed times following pulsed excitations. 

6. CONCLUSION 

On balance, the progress made in the study of photon diffusion, correlation and 
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localization supports the hope that all fundamental questions regarding the character of 

wave propagation in random media can be addressed experimentally. That many major 

issues are not yet resolved will surely serve to stimulate research in the coming years. 

Among the important questions that will be addressed in future research are the 

connection between intensity correlation and localization, the influence of absorption on 

localization, the relationship between spatial and temporal aspects of transport in the 

diffusive and localized regimes, the time of flight distribution and intensity distribution 

for localized waves, the number of parameters needed to fully describe wave 

propagation, the value of the critica1 exponent, and the relationship between various 

localization criteria. 
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1. INTRODUCTION 

Quite recently we reported [1] on a very small transport velo city VE entering the 
diffusion eonstant D of light according to, 

1 
D = äVEl. (1) 

Here l is the transport mean freepath. In a particular case we measured a factor 
of ab out six lowering of the diffusion constant. The decrease turned out to be due 
to a small velocity rather than a small transport mean free path. The last feature is 
antieipated near the Anderson mobility edge, at whieh the eorrelation length e diverges 
and the transport mean free path vanishes according to l", l/f 

The surprising conclusion that the velo city is responsible for the low diffusion con
stant emerged from eareful steady-state transmission experiments giving a direct value 
for the transport mean free path. Recent measurements [2] of the frequency-frequency 
intensity eorrelation function confirmed the extremely small velo city that can be asso
ciated with the propagation of the diffusive eomponent of light in a random dielectric 
medium. 

From the theoretieal side we have pointed out [1] [3] that the ineorreet handling of 
eonservation laws, so-called Ward identities, ean be held responsible for the fact that 
this interesting phenomenon was not predicted earlier. These identities were originally 
developed for electron-impurity scattering and were then simply taken over for classieal 
waves. For the first time we indicated that the notion of an "energy-dependent" poten
tial in the classieal wave equations generates extra terms in the equation of eontinuity. 
These terms are dynamic in originand are not present in the steady-state limit. 

Such terms are also present in the case of multiple elastie eleetron-impurity scatter
ing. However, the above mentioned Ward identities demonstrate unambiguously that 
these extra terms eaneel all together for an energy-independent potential. Translating 
this electron-impurity result straightforwardly to classical wave seattering would lead 
us to the erroneous eonclusion that VE would always be of the order of the phase veloe
ity. In this paper we diseuss briefly under what eonditions the transport velo city equals 
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the phase velocity, and when not. We present some exact solutions for scalar classical 
waves (waves obeying the scalar wave equation, thus ignoring polarization), among 
which are the "scalar" Mie sphere, the "scalar" reflector, and the point scatterer. 

2. SOLUTIONS OF THE SCALAR WAVE EQUATION 

The main theoretical results of Refs. [1] and [3] can be summarized by the following 
expression for the transport velocity, in units of Co, 

1 1 
v E( E) - - ----,:-:--....,.. 

- vp 1 + n51(E) 
(2) 

The dynamic vertex correction is, in terms of the single-scatterer t-matrix tpp/( E), with 
complex phase <1>(0, E), 

5 (' ) = _ 8Retpp(E) J dO du 8<1>(0, E) 
1 E 8( E2) + do' 8 E (3) 

The phase velo city is given by, 

Retpp(E) 
1 - n ----"-"'--'---'-

E2 (4) 
1 

and n is the number density of the scatterers. The second term in Eq. (3) is a scattering 
contribution; without this term VE would be equal to the strongly anomalous group 
velo city [4]. It is understood that the t-matrices are evaluated on the energy shell: 
p = p' = lEI, but derivation is to be performed at constant momenta. In principal this 
requires knowledge of the off-shell t-matrix, which is usually not given by textbooks, 
because it is more difficult to calculate. One suitable approximation that circumvents 
this difficulty is the replacement of the partial derivatives by total derivatives, thereby 
including some derivatives with respect to momenta. This approximation for 51 will be 
referred to as the Wigner approximation and is denoted by "W. This quarttity turns 
out to be (proportional to) the Wigner delay time [5] in three dimensions. 

Let us make a comment on this approach. The Ward identity for electrons proves 
that 51(E) = 0 in that case [6]. On the other hand, one knows that the Wigner delay 
time (proportional to 5W ) does not vanish. Thus, the Wigner approximation for 51(E) 
does erroneously suggests that dynamic vertex corrections are also present for electron
impurity scattering. We anticipate that such corrections would only come in if the 
scattering object is given internal degrees of freedom which can scatter the electrons 
elastically with considerable delay. The concept of an energy-dependent or "optical" 
potential also arises after having integrated out (resonant) internal degrees [7] and is 
very similar to the energy-dependent potential that is inherently present in the scalar 
wave equation. 

We will next present an exact calculation of 51. In view of the Schrödinger equa
tion, one can identify in the scalar wave equation an "energy" E 2 and a "potential" 
V(r, E) = [1 - €(r)]E 2 == g(r)Vo(E). These concepts can be translated straightfor
wardly to monochromatic scattering properties among which the scattering amplitude. 
We apply the identity, 

(5) 

to Eq. (3). The derivatives at "constant potential" in 51 must cancel by the Ward 
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Figure 1: Transport velo city (bold) and phase velo city vp (dashed dotted) for scalar 
Mie spheres with packing fraction 25 % and an index of refraction m = 2.73. The 
dotted line is the Wigner approximation. 

identity for potential scattering. We conclude that 51 is essentially given by derivatives 
of the on-shell t-matrix with respect to potential, rather than energy. Hence, 

5 (E) = [_ 8Re tpp( E) 2E J dfl dO' 8~( 0., E)] dVo 
1 8Vo + do. 8Vo X dE2 (6) 

Using results from time-dependent scattering theory, we are able to prove the validity 
of the following equivalent representations [8]: 

(7) 

We introduced l.,p~ > as the normalized continuum eigenfunction at frequency E. Fur
thermore, O'abs is the cross-section for absorption. The first equality relates the vertex 
correction 51 to the "potential energy" within the dielectric scatterer, energy not sub
ject to propagation. It shows that the transport velo city relates to the dweil time [9] in 
the potential region rat her than the delay time. The second equality is very convenient 
for numerical purposes. The equivalence of the energy inside the dielectric and absorp
tion arguments, expressed in Eq. (7), was already noticed numerically by Bott (10). 
In our paper Ref. (3) absorption and charging arguments were successfully introduced 
heuristically for vector scatterers. They are seen to become exact for scalar scattering. 

There has been some confusion about the existence of a third term in Eq. (3). It 
has even been argued that this term will cancel the whole effect [11]. We confirm the 
existence of a third contribution indeed. It can be cast into the form, 

Ll5(E) = _ 41r '" 8ReG(E,p) I E(E ) 
E L..J 8E2 m ,p 

p 
(8) 

It can be demonstrated straightforwardly that we are in fact dealing with a effect that 
is second-order in density (and thus part of 52)' To this end let l. = l/nO'scat be the 
scattering mean free path. If we assume for simplicity that -ImE(E,p) = E/l.(E) 
does not depend on p (which is exact for point scatterers [12]), the integral can be 
pedormed in a1l orders of the density. The result reads, 

A C(E) = !~ (~) O( 3) = n 2 dO':cat 
uo 4 dE2 12 + n 4 dE2 q.e.d . 

• 
(9) 
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This conclusion can be generalized for non-point scatterers using the identity (5). 

For the "scalar" Mie sphere with on-shell t-matrix, 

41ri 00 

tpp,(E) = -- L(2n + 1) Pn(cosO)b~(x) 
E n=O 

Eq. (7) can be rearranged to, 

51(E) = Vm x ~ m 2 
- 1 Qabs 

8 mx mi 

(10) 

(11) 

Here Vm = 41ra3 /3 and m + imi is the index of refraction; bn is the Van de Hulst coef
ficient for the TE mode of the vector Mie sphere [13], and x = Ea the size parameter. 
Figure (1) shows the corresponding exact solution for the transport velo city, as weIl as 
the Wigner approximation for an index of refraction m = 2.73. The latter is given by 
[3], 

w 3 ~ (dßn Imbn ) 5 (E) = Vm x - L..,(2n + 1) - - -
2x2 n=O dx x 

(12) 

In the resonant regime the Wigner approximation is very accurate. This justifies its use 
in calculations invoking the vector nature of light [1] [3]. At low frequencies, resonant 
behavior is absent and phase and transport velo city coincide. The choice m = 1/2.73 
in figure (2) corresponds to a "repulsive dielectric". 

We next demonstrate that the transport velocity is directly related to the phase 
velo city if resonant behavior is absent. To this end we consider two models for which 
an exact solution is at hand. The first model is the scalar point scatterer [12] which 
has t-matrix, 

(13) 

where a > 0 by causality [5J. Due to its pointlike nature it does not depend on the 
momenta so that the Wigner approximation is exact. Using Eq. (3) we obtain the 
convenient result that, 

1 1 
(14) 

This is a manifestation of the conjecture that transport and phase velocity coincide if 
no energy is being stored. If the t-matrix above is given a finite resonant frequency [14], 
phase and transport velo city no longer coincide, the latter being always less than unity. 
This is already known for 25 years [4] [15] . Nobody realized that this well-documented 
transport velocity also describes the propagation of diffusing classical waves. This 
makes it an observable quantity, rat her than some artificial velocity obeying causality. 

Another model is the ideal "scalar" reflector, obtained by letting m = 00 in the 
t-matrix (10). Since there are no waves inside the barrier, we deduce 51 = o. Conse
quently VE = l/vp • Figure (3) demonstrates the results. It is inferred that VE < 1, but 
Vp > 1. We also displayed the results when the s-wave is incorporated (as opposed to 
light scattering starting with p-waves!). There is a cut-off frequency at which the phase 
velocity diverges and the transport velo city vanishes. Below this cut-off only evanes
cent waves are present and the density-of-states is small. We encounter a fascinating 
similarity to waveguides, where the group velo city vanishes at the cut-off frequency. 
Since scattering is absent there, transport and group velocity coincide. 
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Figure 3: The transport velo city (hold) for perfectly reflecting spheres (m = 00) with 
packing 20 %. The Wigner delay time (dotted) approaches the causality threshold [5] 
1/(1 - f) = 1.25. At low frequency the s-wave dominates and has a frequency cut-off 
at which vE vanishes and vp diverges. 
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3. CONCLUSIONS 

We have demonstrated a strong decrease of the transport velocity of light, by def
inition the speed at which the incoherent (diffusive) light propagates, near resonances 
of scattering. In this case a lot of energy is temporarily stored inside the (dielectric) 
scatterer. The only assumption in our theory is the restriction to lowest order of the 
density. 

Alternatively (or equivalently), one can attribute the decrease to an enormous dwell 
time of the wave in the scatterer. Since the dweil time of the wave in the same region 
without scatterer is negligible to the one with scatterer if resonant scattering takes place, 
we expect beforehand that this delay must be very accurately given by the Wigner phase 
delay time. This is indeed seen to be the case numerically. 

Our results completely agree with the semi-classical approaches by Brillouin and 
Loudon for an oscillator. If resonant behavior is absent, the transport velo city is 
located somewhere between the phase velo city vp and cUvp • 

This work is part of the research program of the "Stichting voor Fundamenteel 
Onderzoek der Materie" (FOM) and was made possible by financial support from the 
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). 
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INTRODUCTION 

In recent years there has been growing interest in studies of the 
propagation of classical waves in random media. 1,2 The revival of interest 
in the longstanding problem of multiple scattering of classical waves was 
initiated by the discovery of the importance of quantum interference 
effects for the transport properties of electrons in disordered systems.3 
While some of the features assoclated with electron localizatlon, such as 
enhanced coherent backscattering, have been detected in light scattering 
experiments4 as weil, the localization of electromagnetic waves or other 
classical waves In random systems has not been established beyond 
doubt. The question of localization of classical waves has attracted 
attention for two reasons. First, the properties of classlcal waves such as 
light waves, microwäves, and acoustic waves in random media are of 
fundamental interest for their own sake. Second, classical waves can serve 
as a model system for testing the theory of Anderson localization of 
electrons experimentally in a clean way, without the compl1cation of 
strong inelastic scattering and other effects of electron-electron and 
electron-phonon interaction. On the other hand, It is harder to localize 
classical waves, mainly due to the fact that at low frequency the effect of 
disorder tends to average out in this case, whereas electrons at low energy 
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are trapped more effectively, even by a weak random potential. Existing 
theories predict localization of classical waves under certaln 
circumstances.5-8 However, there is no concluslve experimental ev1dence 
yet, although the recent experiments by Genack and collaborators provide 
strong indlcations for the existence of localization of light. 9 

The outstanding problem in classlcal wave localization Is to find the 
optimal conditions for its realization. It has been suggested that an 
intermediate frequency window of localized states separates the low
frequency extended states characterized by Raylelgh scattering from the 
high frequency extended states described by geometrie optics. Theories 
based on the weak scattering limit and on the Coherent Potential 
Approximation (CPA) predict frequency intervals within whlch localization 
should be observed.7,8 These predlctions are based on extrapolation of 
results obtained in the weak disorder regime. In addition, it was recently 
recognized that considerable care must beexercised in transforming the 
results of the theory of localization of electrons to the case of classical 
waves. 1O,11 In particular, the Amsterdam group 10 presented experimental 
results for the diffusion coefficient D and the transport mean free path C. 

These results demonstrated that in a strongly scattering random dielectric 
medium, the low values of the diffusion coefficient D=c(ro){/3 were caused 
by extremely small values of the transport velocity c(ro) and not by the 
sma1l9 values of r. which signify strong localization.9 It is, therefore, 

possible that in a random media the transport velocity can be very much 
lower than the phase velocity. To explain this discrepancy, the 
Amsterdam group1O presented a treatment ofthe transport velocity based 
on the low-density approximation of the Bethe-Salpeter equation. They 
argued that thelr approach confirmed the observed smallness of the 
transport velocity. However, Barabanenkov and Ozrin,ll as weIl as Kroha 
et alt ,12 also developed a theory based on the low-density approximation of 
the Bethe-Salpeter equation, with a generalized Ward identity for scalar 
waves. Their conclusion was the correct expression for the transport 
velocity coincides with the phase velocity. Therefore, the experimental 
data, from the Amsterdam group which indlcates a much sm aller 
transport velocity, remains to be explained. 

This somewhat difficult situation has led to suggestions of 
alternative pathways to localization. John13 has proposed that classical 
localization may be more easily achieved for a weakly disordered system of 
periodically arranged dielectric structures in the frequency regime near a 
band gap. The question of photonie band structure in periodic dielectric 
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structures is a fascinatlng subject (which was also a major theme of our 
conference) with potential applications in the telecommunication, 
information processing, optical storage, and sensor technology. 

In this paper we present a microscopic theory for the diffusion 
coefflcient and the tranport velocity in the low-density approximation, as 
well as a self-consistent theory of localization of c1assical waves, similar to 
the one developed for electron localization. 14- 16 There are important 
differences in the formulation of such a theory for c1assical waves as 
compared to the case of electrons. The most important is the equivalent of 
partic1e density is not conserved. Unfortunately, this fact has not been 
given sufficient attention in an earlier attempt7 to derive a self-consistent 
theory, as pointed out recently.lO The quantity conserved here is energy, 
not mass, leading to diffusion behavior of the energy density. Another 
difference is the scattering potential is energy dependent. As a 
consequence, a new phenomenon appears: The energy transport velocity 
entering the diffusion coefficient for a strongly disordered system may get 
appreciably renormalized,lO and consequently, diffusion coefficients can 
be quite small even far from the localization transition. Also, in previous 
versions of a self-consistent theory of localization 7 the single-partic1e 
quantities and the coupling constants were calculated in the low density 
or the weak scattering approximation. It is known from the electron 
transport problem15 how to improve upon this unnecessary simplification 
by calculating the noncritical quantities in CPA. 

PROPAGATION OF CLASSICAL WAVES: TRANSPORT VELOCITY 

We consider the propagation of classical waves in a random medium 
described by the wave equation for the scalar field \}1(r,t) 

a2 
[e(r) at2 - V2] \}1(r,t) = O. (1) 

Here, e(r) characterizes the randomly varying phase velocity c(r) = 1/'" e(r). 

In the approximation where the vector nature of the electromagnetic field 
is neglected, Eq. (1) describes the propagation of electromagnetic waves in 
a dielectric medium with spatially varying dielectric constant e(r). We will 
assurne the fluctuations of e(r) to be spacially uncorrelated. such that 
<e(r» = E and <EI (r)e dr'»= Wö(r-r'), where EI (r) = e(r) - E. 

The (unaveraged) Green's function of the wave equation (1), Fourier 
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transformed w.r.t. time. satisftes the Dyson equation 

with the "interaction potential" U(r.co) = -c.02(e(r) -1) and the free propagator 
RA [ 2 ]-1 GO given by its Fourier transform G: . (ro) = (ro ± iO) - k2 . 

The impurity averaged Green's function G~.A(ro) is given in terms of 
the mass operator };!.A{ro) by G~ =G:-1(ro)-};k' The one-particle properties 
are expected to be uncr1tical at the localization transition and hence. may 
be calculated in CPA, i.e .. in singIe-site-approximation4 •17 when };k(CO) = 
Io(co) is independent of the wave vector. 

The transport properties of the system can be extracted from the 
averaged two-particle Green's function cI>:.(q,O) = -(GR(k+,k:;ro+)GA(k~,k.;ro_}). 

where ro:t =ro±0/2, k:t =k±q/2, k~ =k'±q/2 and 0, q are the center ofmass 
frequency and wave vector. respectively. The long wavelength. low frequency 
behavtor of the classical wave system is not govemed by particle number 
conservation. in contrast to the electronic case, but by the conservation of 
energy. with e(o'Y /ot)2 being the energy density of the wave fleld. The 

quantlty"':: = (c: J L,· "':' •. (q,n) may be interpreted as an energy denSity 

correlation function. where the phase velocity Cph is deftned from the zero of 
the real part of the inverse of Gk(CO) as c!(ro) = l-Re};o(ro)/ ro2. ~: can be 

shown to have the diffusion pole structure 

i ~ ImG~(ro) 
c 

cI>:(q,O) = c(ro) n: iD(0)q2 (3) 

in the limit O. q-+O (c(co) and G~(co) will be deflned below). In the regime of 

localized waves. the diffusion coefficient D(O) vantshes identically. In the 
following we will calculate D(O) as a function of disorder and show that a 
localization transition takes place in the model of point scatterers in the 
regime co:: 27t/a for sufficiently strong coupling t. 

The starting point for a calculation of the averaged two-particle 
Green's function cI>::,.(q,O) is the Bethe-Salpeter equatlon 
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where r:.(q,O) is the sum of all irreducible diagrams of the four-point 

vertex function. We can write (4) as a kinetic equation with the help of the 
Ward identity 

I.: - I.~ = ~ r:,[G:, - G:,] + 2 f )2 [I.: + I.: + ~ r:,(G:, + GtA, )] (5) . . f. . . W + 0/2 • . f. . -

where I.:. = I.:. (w+), etc. Compared to the case of electrons, there is an 

additional (the last) term on the r.h.s. of (5), which has been missed in 
Ref. 7. This term arises because of the explicit frequency dependence of 
the perturbation U(r,OO) oe 002 in (2). 

Energy conservation is expressed by the equation 

0<1>:'., - q<l>~ = ic( w)~ ImG~ , 
cph 

(6) 

where the energy current correlation function corresponding to <1>:'., has 

been defined as <I>~ =c(w)~I.t,k,(k.q)<I>:,(q,O). Here we have introduced a 
cph 

renormalized velocity c(oo) characterizing energy diffusion. In the limit of 
small q, 0, c(oo) is given by 

(7) 

where G~ (w) = I.k G: (w), ro = ImI.~ / Im G~ is the irreducible vertex function 

calculated in CPA, and Co == 1 is the phase velocity in the homogeneous 

background medium. The renormalization of c is a consequence of the 
additional term in the Ward identity (5), which is of order Q, while energy 
conservation is already guaranteed by the n ~ 0 limit of (5). 

Equation (7) can be written in its more general form as 

where ko= OO/Cph or by using the small q and 0 dependendence of the Ward 

identity (Eq.(5)), the equation of the transport velocity is given by 

...5L=5>!!.[1 __ 1_ :Ja ReI.k (w)-~ L ~ rkk,(O,O)ImGk,(w) 
c( w) Co 2w uW • W k' UU • 
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(7b) 

which agrees with the expression given by Barabanenkov and Ozrin (Ref. 
11), but disagrees with Ref. 10, where the last tenn is missing. 

van nggelen and Lagendjik 18 have argued that the third tenn on the 
r.h.s. of Eq. 7b is of second-order in density. In order to obtain this result 
they have assumed that the Iml; which is proportional to Y.I:.I:' i s . 
independent of the momentum k, and that the upper limit of the 
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Flgure 1: The transport velocity c(oo). normaUzed to co. the phase velocity in the 

homogeneous background medium. is shown for E=5. Also shown 1s the 
effective phase velocity cph(OO) in the disordered system. c(oo) and Cph (00) 

co1ncide for ro<.<21C/a and for oo»21C/a. 

summation of the third tenn is infinite. However, Iml; may be weakly 

momentum dependent over a wide range. It always decays to zero at 
momenta inversely proportional to the size of the scatters. Thus, Iml; 
always introduces an upper cutoff to the k summation. The summation 
over k in this fmite range depends, in general, on the upper limit and is 
different than zero and therefore the third term is also of first order in 
density. 
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We have calculated Go (cl) and 1:0(00) in CPA and evaluated c(oo) in this 
approximation. The result is shown in Fig. 1. At low frequencies c(oo) is 
substantially smaller than one (for positive ~E), as already noted in Ref. 

1 
10, the limiting value as ro -+ 0 being gtven by c( ro) -+ .fi whereas at high 

frequency c(ro) -+ 1. The velocity of energy transport c(oo) and the phase 
velocity c p/o (ro) are seen to agree well. In fact, whenever the imaginary part 

of the mass operator L is small (e.g., in the limit of low density of 
scatterers), c and Cph coincide. This is seen immediately from (7) for the 

case of point scatterers, and was shown in Ref. (I 1) for general momentum 
dependent scattering within a low-density approximation. Therefore, one 
may conc1ude that the strong reduction of c(oo) w.r.t. Cph, as measured 

experimentally by van Albada et al. , 10 is purely an effect of resonant 
scattering: In the vicinity of resonances Iml: is always large even for small 
density and may cause the reduction of c(oo). However, the correct low 

density treatmentll •12 gives that the transport velocity and the phase 
velocity are renormalized in a similar way, even for finite scatterers. We 
believe that the main issue here is how to defme an energy density and an 
energy current density for scalar waves that satisfy the continuity 
equation. In addition, the low density limit must give a diffusion 
coefficient and therefore a transport velocity which is much lower than the 
phase velocity, and also agrees with the semi-c1assical approaches lO•18 of 
Brtllouin and Loudon. It has been correctly argued lO•18 that the transport 
velocity differs considerably from the phase velo city. In the presence of 
finite scatterers the formation of standing (resonance) waves inside the 
scatterers is responsible for the considerable delay of the scattertng and 
therefore the low transport velocity. As of now. no theory, even within the 
Boltzman low-density limit, has demonstrated this behavior. 

For c1assical waves the energy density UE is given by 

(8) 

while the corresponding energy current JE is 

(9) 

Of course, Eqs. (8) and (9) satisfy the continuity equation aUE/at + aJE/at 

= O. However, in order to study the diffusive motion of the scalar waves, 
one needs the solution of a transport equation, which is derived from the 
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Bethe-Salpeter equation (see Eq. (4)). Equation (4) has been written down 
assuming that the energy density is given by 1 'I'(x.t) 12 for classical waves 

too. This is the case for electrons but not for c1assical waves as one can 
c1early see from Eq. (8). 

LOCALIZATION EFFECTS 

Let us turn to localization effects now. Employing the techniques 
developed for the case of electron transport,14.15 one may derive an 
equation of motion for 4>JE from the Bethe-Salpeter equation (4), which 
relates back to 4>EE, and hence, allows to derive the diffusion form (3) for 
4>u. In the approximation for the irreducible vertex 'Ykldq) employed in the 
case of electron transport, 14.15 

the diffusion coefficient D(O) is found to satisfy the selfconsistency 

equation 

where 

A( A)2 
{ } _ ~( • A) Im 0" Im 0". ('. A) 

Kz -~kq ( ,)2 k q. 
U' z+ k+k 

(ll) 

In CPA the bare diffusion constant is given by 

For simplicity, we will in the following consider an idealization of a 
real system, such as dense packed dielectric spheres of random size 
scattering classical waves. For example, light: A system of point 
scatterers distributed statistically throughout the system. Then, the only 
length scale characterizing the system is the mean spacing of neighboring 
scatterers a. In the two limits of wavelength A. of the incident wave small 
or large in comparison with a, one expects effective medium theory to 
work well, whereas for A. = 2x/ro". a localization of waves should occur for 
sufficiently large scattering strength. In the model of point scatterers, e(r) 
is given by e(r)-1=(~eV8)~;::IB(r-r;), with NI the number and nl = NI/V = 
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l/ad the density of scatterers (d is the spatial dimension). The point 
scatterers may be thought of as an idealization of spheres of dielectric 
materials of volume V s and dielectric constant 1 + Ae embedded in a 
matrix with e = 1. The two parameters characterizing the model may be 
chosen as the average dielectric constant e = 1 + (Vs/ad)Ae and the average 

separation of scattertng centers a. 

We have solved (10) numerically for 0(0). using the CPA results for 

Go. 1:0. c(co) and 0 0 , It is easily shown that in CPA the parameter a can be 
absorbed into the rescaled frequency aco. so that the only relevant 

parameter in the model is the average dielectric constant e. 

In Fig. 2. we present the mobility edge trajectory separating 
extended from localized states. Notice that the model correctly describes 
the underlying physics. In particular. there are only extended states for 
all frequencies co when e is less than 2.7. In addition. for low (Rayleigh 

scattering) and high (geometric optics) frequencies. as expected. there are 
only extended states for any value of e. In Fig. 3. the dc diffusion 
coefficient 0(0) for spatial dimension d=3 is shown as a function of wave 
frequency co for e =5. For values e ~ 2.7 (corresponding to energy velo city 
c(O) ::; 0.6). D(O) is found to be zero within a frequency window centered at 

aco "" 2. One may define the localization length ~ by ~2 = limn .... o (D~O». which 
-10 

characterizes the spatial extension of wave packets localized in the 
system. (~a)-1 is also shown in Fig. 3 as a function of co. D(O) is seen to 
vanish linearly as co approaches the critical frequencies COl.2. whereas 

~ oe lco - colll . Note that from (10) co 1.2 is independent of the 

renormalization of the transport velocity c(co). The critical exponents for 
D(O) and ~ found here. s=1 and v=l. are the same as those for the electron 

case. In dimensions d :52 c1assical waves are found to be localized for 
arbitrarily weak disorder. 

In the region where the wavelength is large compared to the size of 
the scatterers. Le .. where the approximation by point scatterers is 
appropriate. the description of the localization transition as a function of 
aco and e presented here Is expected to be semiquantitative. with the 

possible exception of a narrow critical regime. judging from the very good 

agreement of a slmilar theory for electron localization l4.15 with exact 
numerical results for finite systems. The predictions of the theory may be 
tested experimentally in systems with a sufficlently large relative 
difference of dielectric constants Ae. such that the disorder parameter e 
may be large even for small density. 
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CONCLUSIONS 

We have developed a self-consistent theory for classical waves, 

which presents the correct Ward identity for classical waves valid for all 

frequencies. It points out that the long wavelength, low frequency 
behavior of the classical wave system is not governed by particle number 
conservaton as in the case of electrons, but by the conservation of energy. 
It provides the correct low density approximation of the energy velocity 
and of the Boltzman equation. It also reveals that the energy velocity and 
the phase velocity are renormalized in the same way. Finally, it provides a 

CPA solution of the classical wave localization problem with results which 
agree well with more exact numerical predictions for the scalar use. 
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INTRODUCTION 

Anderson localization is known as the phenomena of a dramatic change in the 
transport properties of electrons when they are subject to a spatially random 
potential.[l] Electron waves are multiple scattered and as a consequence of interfer
ence, the diffusion constants vanishes. The dimension of the system plays a crucial 

role for the occurrence of Anderson localization. In one and two dimensions any de. 
gree of disorder will lead to a finite localization length, whereas in three dimensions 
first a critical mean-free path should be reached to enter the localized regime: 

A 
I< 271". (1) 

This is the loffe-Regel criterium, modified by Mott[2] (l is the mean-free path and A 
is the wavelength). 

It is quite dear that the concept of localization is much broader, in principle 
for any wave equation localized solutions can be obtained, when solved for a random 
medium. This has been recognized by several researchersj experiments have been 
suggested and ranges of experimental parameters have been put forward for which 
Anderson localization of dassical waves like sound and light is expected.[3]-[5] 
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Aprecursor of Anderson localization, enhanced backscattering as a result of inter
ference, was first reported by Kuga and Ishimaru[6], by van Albada and Lagendijk[7], 
and by Wolf and Maret[8]. It is weH understood as an interference effect between 
time-reversed paths. By a path we mean a sequence of scattering events starting and 
ending at the boundaries of the sampie. 

Experimentally, electron localization is studied through the electrical conduc
tance of a sampie, where an important aspect is the possibility to influence the in
terference by applying a magnetic field. In experiments with light one can not easily 
influence the interference, but in contrast to the electronic case, one can preform 
angular and time resolved transmission and reflection measurements. In this paper 
we will concentrate on the multiple scattered light reflected by a random medium. 

LIGHT SCATTERING FROM RANDOM MEDIA 

To study multiple light scattering the samples should consist of a random mixture 
of two nonabsorbing materials with a high contrast of refractive index. The particle 
size of the materials should be in the order of the wavelength to scatter most efficiently. 

One might think that as a consequence of the multiple scattering, the angular re
solved reflected diffuse intensity will be essentiallyangle independent, when averaged 
over the disorder. However at exactly backscattering the phase difference between 
time-reversed waves is always zero, and does not depend on the relative position 
of the scatterers involved. In this direction the interference contribution survives 
averaging over the disorder, and the backscattered intensity will be twice what it 
would have been without interference contributions. (In fact, this holds only for the 
copolarized component in the backscattered light). Moving away from the direction 
of exact backscattering, the phase difference between time-reversed paths increases 
and becomes a function of the positions of the first and last scatterers: the phase 
difference Ä~ = ?t . (fi - rj), with qt being the transfer wave vector k; + kJ• For 
angles larger than AI I ri - ~ I the interference averages out. The angular-resolved 
average intensity thus shows a narrow cone around the backscatter direction with its 
top at twice the background intensity. The width will be inversely proportional to 
the mean-free path of the sampie. 

There are however classes of light paths that behave differently: single scattering, 
and multiple scattering sequences that begin and end on the same scatterer, loops. 
The former class has no interference term, and the interference contribution of the 
latter is angle independent. These classes will contribute to the background only, 
and therefore lower the enhancement factor, which is defined as the top of the cone 
relative to the background. 

The contribution of loops will playa significant part only in very dense random 
media: for loops to contribute, the cross-section of the first scatterer and the distance 
between the first and the nth scatterer must still define a significant solid angle. The 
contribution of loops is thus negligible for large mean-free paths. For small mean
free paths an observation of loop diagrams can in principle be made by an observed 
reduction of the enhancement factor. 

The purpose of this paper is to get more insight in the magnitude of the angle
independent interference contributions to the backscattered light for sampies with 
large mean-free paths. Or put it differently, to find out which parameters of the 
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sampie and of the incident light are important in the description of the scattering 
that occurs in the interface layer between a random sampie and the surrounding 
medium. 

A theoretical treatment of the infiuence of the refractive index mismatch on 
enhanced backscattering was given by Lagendijk et al.[9]. These authors looked at 
the effect of finite internal reflectivity at the interface on the propagation of waves 
inside a strongly scattering medium. In this treatment only an overall reflectivity was 
taken into account, and was shown to result in a narrowing of the cone of enhanced 
backscattering. 

It is likely that surface roughness and particle size are also important parameters 
for the magnitude of the angle-independent contribution. In addition to the diffuse 
reflection, at a smooth interface a specularly reflected beam will also occur. At a 
certain angle of incidence we even observe a minimum for the p-polarized reflected 
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Figure 1: Difference backscatter cone. LI = 400J.lm L2 = 50J.lm, Ami = 30J.lm. 

light, corresponding to a Brewster minimum. The Brewster angle is the angle of 
incidence for which the Fresnel reflection for p-polarized light is zero. 

Since surface reflectivity is related with lower-order scattering it should some 
how affect the enhancement factor. 

MEASUREMENTS 

The experimental setup to measure backscattered light is standard. The sampie 
is illuminated through a beamsplitter, which then reflects the scattered light onto 
a detector. All scattering form components, other than the sampie will affect the 
enhancement factor and should be carefully avoided. A good test for the performaIlce 
of the setup is the measured enhancement factor for difference cones. Difference 
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Figure 2: Backscatter cones for different refractive index contrast at the interface of the 
sampie. 

cones are obtained from liquid sampies where the thickness can be varied.[lO] After 
subtracting the intensity patterns of slabs with thicknesses LI and L2( < LI), only the 
contributions of light that has been in the deeper part of the slab, L2 to 11, remains. 
In the "deep" part of the slab single scattering and loops are unimportant. Results 
from this difference technique indeed reveal an enhancement factor of 2.00 ± 0.02, 
see fig.1. 

To vary the scattering properties of the interface, we change the refractive index 
contrast by putting the sampie behind (wet) glass. We compare surfaces of different 
roughness, and monitor the enhancement factor as a function of incident angle. (Ac
cording to the Rayleigh criterium[ll] the surface roughness is essentially a function 
of the incident angle.) 
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Figure 3: Enhancement factor of the backscatter cone from a teflon sampie as a function of 
the angle of incidence. 
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In fig.2 backscatter cones are shown for an air/teflon interface and for a glass/teflon 
interface. We use a BK7-window with an index of refraction of 1.54, and Benzyl
Alcohol (n=1.54) as a matching fluid. The width of the glass/teflon cones is 1.23 
times the width of the air/teflon cone. This can be explained by taking internal 
reflectivity into account. The refractive index contrast between sample and window 
is lower than that between sample and air. Using 1.4 as the refractive index for 
teflon the calculation in ref.[9] agrees with the measured broadening. Interestingly 
the enhancement factor has also increased from 1.63(1) to 1.79(1). The higher de
tected intensity in the unmatched (sample-air) experiment is due to the fact that light 
which reaches the interface under large angles is (internal) reflected and then rescat
tered into all directions (including that of the detector). In the matched experiment 
it just leaves the sampie and is trapped in the glass-window. 

In fig.3 we plot the measured enhancement factors as a function of the angle of 
incidence on a teflon sampie. We use s-polarized light and measure the copolarized 
light by moving the detector parallel to the polarization of the incident light. Starting 
at normal incidence, the enhancement factor increases from 1.6 to 1.8, and than 
saturates. We conclude that this effect is most probably due to a blurred specular 
reflection. The observation of an angle independent enhancement factor of 1.8 in 
index-matched experiments supports this conclusion. 
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Figure 4: Transmission through a slab of 60 mean-free paths for different polarizations of 
the detected light. Left plot: smooth surface, Right plot: rough surface. Solid lines: diffusion 
theory, squares: p-polarized light, triangles: s-polarized light. 

Finally we present in fig.4 measurements of angular resolved transmission of 
incoherent light through multiple scattering media. The thickness of these sampies is 
in the order of 60 mean free paths, one had a rough surface (no specular reflection) 
and the other a smooth surface. We clearly see a difference for the p-polarized and 
s-polarized component of the transmitted light. The curve for s-polarized light for 
the rough surface is weIl reproduced by (scalar) diffusion theory, in all other cases we 
see deviation. The influence of the roughness of the interface is not that clear that 
we can draw strong conclusions from these two measurements. 
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It is clear that our new results call for a detailed theory describing the interface 
between a scattering and a non-scattering medium, including the effects of polariza
tion and angle-dependent reflection coefficients. We are presently working on this 
problem. 

SUMMARY 

We have studied in detail the enhancement factor of enhanced back-scattered 
light form random scattering media. We have varied the scattering properties of the 
interface between scattering and non-scattering media. Also we performed angular 
resolved transmission measurements. The experiments clearly show that the interface 
between the sample and surrounding medium has a great influence on the backscat
tered light. The refractive index mismatch between sample and surrounding medium 
affects both the shape and the enhancement factor, also the roughness of the inter
face is of importance. Transmission experiments show that the escaping probability 
depends on polarization, even for rough interfaces. This also should have its influence 
on the backscatter cone, but good experimental evidence has not yet been found. It is 
clear that more experimental and theoretical attention should be paid to investigate 
and describe the rough interface between a scattering and non-scattering medium. 
Further experiments on this subject are in preparation. 
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ABSTRACT 

We report the first observation of Faraday rotation of light in multiple scatter
ing media. We find that speckle patterns, generated by diffusive transport of laser 
light through turbid sampIes made of magneto-optically active glass micro-particles, 
are strongly modified by magnetic fields as high as 23 tesla. The intensity correlation 
function of the speckles, measured at various sampIe thicknesses and Verdet constants, 
decays in agreement with a simple model discussed. We also find that the coherent 
backscattering cone is substantially reduced by strong magnetic fields, again in qual
itative agreement with the model. The latter effect provides a unique way to destroy 
interferences between time reversed optical scattering paths and may be expected to 
affect light localization. 

INTRODUCTION 

Since the discovery of optical coherent backscattering from colloidal suspensions 
of microscopic latex spheres [1], multiple scattering of various types of classical waves 
in inhomogeneous media has been increasingly studied [2]. In particular, as enhanced 
backscattering of light results from constructive interference between time-reversed mul
tiple scattering sequences, the possibility of using photons to study phenomena relevant 
in electron transport - such as weak localization - has been widely explored in recent 
years. Situations of strong optical multiple scattering have been investigated [3, 4] with 
the goal to achieve optical Anderson localization [5]. Very small diffusion constants of 
light were reported and interpreted first as evidence for the approach of light local
ization [3] and later as caused by a small propagation velocity due to resonant Mie 
scattering [4]. The outstanding properties of laser beams (coherence, monochromacity, 
low divergence, high power density) and of optical detection techniques (photon count
ing, high angular and spectral resolution) have revealed very powerful and sometimes 
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crucial in these studies, and have allowed, in addition, to investigate novel correlations 
[6] in spectral [7], angular [8] and temporal [9, 10] intensity fluctuations. These ex
periments clearly illustrated many specific advantages of using photons as compared to 
electronsj but the fact that significant phase shifts between scattering paths of electrons 
can be easily generated by magnetic fields was considered a unique feature and powerful 
experimental tool in electronic systems. 

Golubentsev [11] and later MacKintosh and John [12] pointed out theoretically 
that coherent optical backscattering can be destroyed by Faraday rotation of the polar
ization, since the Faraday effect is known to break the time reversal symmetry of light 
propagation [13]. In addition, the Faraday effect is expected to affect the interferences 
between different scattering paths which give rise to optical speckle patterns. 

W-e report here the first experimental observation of Faraday rotation in the regime 
of optical multiple scattering. We observe (1) an almost complete change of the polar
ized speckle patterns in transmission through a diffusive slab and (2) a partial destruc
tion of the coherent backscattering cone, induced by a strong magnetic field (up to 23 
tesla). The field dependences of the intensity correlation function of the transmission 
speckle and of the angular cone shape agree with the prediction of a simple model 
we outline below. These experiments illustrate that interferences of multiply scattered 
light waves, in particular those between time reversed paths, can be significantly ma
nipulated by laboratory strength magnetic fields. This opens, we think, various new 
experimental possibilities in optical multiple scattering. 

FARADAY EFFECT IN MULTIPLE LIGHT SCATTERING - A SIMPLE 
MODEL 

In the Faraday effect, the magnetic field induces a difference of the refractive index 
between the right and left circularly polarized light components. The corresponding 
phase difference results in a rotation of the plane of linear polarization of light. For 
propagation through a homogeneous Faraday active material of thickness s, the rotation 
angle is a = V sB cos ep, V being the- so-called Verdet - or Faraday - constant and ep the 
angle between the fie1d jj and the direction S of light propagation. 

To describe the Faraday effect in multiple scattering, we consider diffusive trans
port of an incident plane wave of monochromatic light of wavelength A in asolid slab 
of thickness L containing Mie-scatterers. We restrict ourselves to the diffusive regime, 
that is L > 1*, 1* being the photon transport mean free path [14, 15]. In this sense 
scattering is a strong process, as most photons are scattered many times before leaving 
the sampie. We assume uncorrelated scattering paths, which is also known as "fac
torization approximation". This requires 1* > A, that is any localization effects [5] 
are small perturbations and correlations [6] are essentially short range. In this sense 
scattering is weak. The incident polarization is completely lost in the process of high 
order multiple scattering [16-19]. Therefore, as light propagation is coherent throughout 
the entire sampie, individual speckle spots have arbitrary, but well defined, polariza
tion states. The polarization change occurs graduallyon a length scale of order of 1* 
depending on the incident polarization state, on the particle size, and on the parti
cle shape [17, 19, 20]. As in high order multiple scattering all polarization states are 
scanned, we may introduce an effective average polarization decay length I; relevant for 
essentially all of the sampie, except for a small surface layer (of thickness 1*). In order 
to further simplify our model, let us make the rather unphysical assumption that the 
polarization state remains unchanged over a distance 1;, and then undergoes a sudden 
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change which depends on the local configuration of the scattering path. Because of 
the random nature of the scattering paths, the polarization change is arbitrary. Let 
us further assurne that the Faraday rotation of the polarization state on length scale 
1* is small, since this turns out to be the case in all our experiments. Then, the con
figurations of individual multiple scattering paths will not be significantly changed by 
the Faraday effect. For very small distances s < 1, 1 being the scattering mean free 
path [14, 15], a is given as above, since light propagation is straight. For longer paths 
(s> 1), s ::; 1;, the average increment dai due to the ith scattering event can be written 
as dai = IV B cos 'P(cos Gi); Gi is the angle between the first and the i th scattering step 
and 0 denotes the average over path configurations with fixed 'P, 'P being the angle 
between Band the first step ~. In this picture the average Faraday rotation accumu
lated along an ensemble of isotropie random paths with identical starting directions is 
finite and given by a = VB1*cos'P, since 1* == lE~l(cosGi) for N = s/1 ~ 1*/1 ~ 1. 
As polarization memory is lost within a sphere of radius 1; (which is of order 1*), the 
correlation length of the Faraday effect should be equal to 1* in this model. For s ~ 1*, 
'P arbitrarily changes for the consecutive steps of length 1*, and hence the total Faraday 
rotation at is expected to be a widely distributed function with zero mean (at) = 0 
and variance (a;) = s/l* . V 2 B21*2 /3 = s/l* . ar,. Therefore, the phases of a given cir
cular polarization component along the high order scattering paths should be randomly 
changed by a field B. This has the following consequences on speckle patterns and co
herent backscattering cones: (1) Polarization states - and hence intensities for a given 
polarization - of individual speckle spots are changed randomly and, in contrast to op
tically thin (transparent) materials, there is no field induced average rotation of the 
polarization of the speckle. (2) Because along each elementary step 1*, the field induced 
phase shifts on a given circular polarization state have opposite signs for the two time 
reversed waves, the constructive interference between the latter is destroyed and hence 
the coherent backscattering peak should decrease. 

Magnetic Field Correlation Function of Speckle Patterns 

Using the above simple arguments, we can calculate the cross correlation function 
Gl(B) = (E(O)E*(B))/(E2) of the total scattered field E, which is a measure of the 
degree of similarity of E(O) and E( B). We first consider Gl (B, s), the correlation 
function for a given polarization averaged over all scattering paths of equal length s. 
Since Faraday rotation is correlated over a length 1*, Gl (B, s) is the product of s / [* 

equal terms, describing the magnetic field induced decorrelation of E per step [*: 

(1) 

In order to obtain the total correlation function Gl(B), we simply have to sum over all 
Gl(B,s), as paths are independent. 

00 ( 1* ) Gl(B) ~ J P(s) Gl(B, s) exp - ;12 
/, a 

ds. (2) 

The exponential factor of the righthand side describes absorption with an absorp
tion length 3L~/I* along the path contour. The intensity weight P( s) of paths of length 
s depends on the sampie geometry and may be obtained from solving the diffusion 
equation. For transmission through an infinite slab of thickness L, one obtains with the 
help of the method of multiple images [21] 
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2 00 n27r2 sl* . n7r'YI* . n7r( L - 'YI*) 
P(s) = L :E exp( 3L2) SIll -L- SIll L . 

n=I 
(3) 

We thus obtain for La ~ 1* 

sinhbl*J(VB)2 + (...LF]sinh[E...] 
G (B) = 2 La La 

I sinh[Lv(V:l2 + (LF] sinhb 1: J' (4) 

'Y being of a coefficient of order 1. For thick slabs, GI (B) is rather insensitive to 
the actual value of 'Y. For negligible absorption (La --+ 00), this expression becomes 
GI(B) ~ exp(-V2B2L2/15) in the weak field limit (V2B2L2 ~ 1) and GI(B) ~ 

VBLexp(-VBL/.;2) at large VBL. Under the above approximations, the distri
bution of the scattered light fields in the transmission speckle is Gaussian [22] and, 
hence, GI(B) is related to the normalized intensity-intensity cross correlation function 
G2(B) = (/(0)/(B))/(1)2 by the Siegert relation G~(B) = G2(B)-1. 

Angular Shape of Coherent Backscattering Cones 

Within the framework of the simple model discussed above, it is easy to derive 
expressions for the angular dependence of the coherent backscattering cone in the pres
ence of Faraday effect. It has been shown [23, 16] that for scalar waves the angular 
dependence of the coherent enhancement a(q), i.e., the excess intensity ahove the in
coherent, diffuse, wide angle background can be written - very similar to the ahove 
expressions - as 

1 Joo sl* S q21*2 
a(q) = - P(s) exp(--) exp(-- . -)ds 

a(O) /. 3L~ 1* 3 ' 

where the incoherent background a(O) is given by 

00 1* 
a(O) = JP(s)exp(-~)ds. 

3La /. 

(5) 

(6) 

q denotes the external scattering vector, q = 27r() /).. and () the extern al scattering 
angle, both measured off backscattering. q21*2/3 can be considered as the average 
contribution of an element al step of length 1* to the mean square phase shift between 
time reversed scattering paths under variation of (). The phase shift induced by the 
Faraday effect between two time reversed waves travelling a straight segment of length 
[* is 2VI* B cos cp, since both paths contribute equal amounts of rotation, hut with 
opposite sign. The cp-averaged decrease of a(q) per single scattering step will thus 
he (cos(2V BI* cos cp))", ~ exp( -2V2 B2[*2 /3). As successive steps are uncorrelated, the 
total average decrease along paths of length s is ~ exp( -s/I* . 2V2 B21*2 /3). Since the 
phase shifts due to Faraday rotation are independent of the phase shifts due to variations 
of the external scattering angle, we may write for a(q, B) in the presence of a magnetic 
field 

1 Joo sl* s 
a(q, B) = a(O) P(s) exp( - 3L2) exp( - 31* . (q2/*2 + 2V2 B2l*2))ds. 

/. a 

(7) 
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Various expressions for a(q) have been given in the literature (see e.g., ref. [14,24]). 
They depend somewhat on the details of the description of light propagation near the 
sampie surface and, hence, differ at larger scattering angles (q ~ >'11"). Rowever, as 
P( s) cx S-3/2 in the diffusion approximation, the backscattering cone has a triangular 
shape around q = 0, whatever the form of P(s) at small s. As seen from Eq.(7) this 
singularity is rounded off both by finite absorption and by Faraday rotation in a finite 
magnetic field; this is because long scattering paths are more strongly absorbed, and 
also acquire larger Faraday rotation, than short ones. Note that, because the inco
herent wide angle scattered intensity (to which Eq.(7) is normalized) decreases in the 
presence of absorption just like the coherent part, the coherent enhancement remains 
1 under absorption; the enhancement factor with respect to the incoherent wide angle 
background will be 2. On the other hand, the enhancement factor lowers as a function 
of the magnetic field, as B does not act on the incoherent scattered intensity, but does 
so on the phase between time reversed paths. 

EXPERIMENTAL 

Sampies 

In our experiments we used a commercial, rare-earth doped paramagnetic Faraday 
rotator glass (FR5 from Roya Optics,Inc., Japan). Bulk glass sampies which were a gift 
of the Societe Maris deI Four, Instruments Optiques, Paris, were milled to a powder. 
The grain diameter had a broad distribution between 0 and 60 Jlm with its maximum 
at 2.6 Jlm and an average diameter of ab out 22 Jlm. For the transmission experiments, 
the powder was suspended in glycerol at volume fractions {! between 0.25 and 0.4 and 
sandwiched between two windows. The sampie diameter was 6 mm, the thickness L was 
varied between 0.7 mm and 1.3 mm. For the backscattering experiments, the powder 
was mixed with paraffin and a macroscopically homogeneous sampie made by briefly 
melting the paraffin. Sampies were free-standing cylindrical pellets of about 10 mm 
diameter and ab out 2 mm thickness without windows. Sampies were cooled down to 
temperatures T between 30 J( and 90 J( using an optical cryostat in order to obtain 
a larger Faraday rotation. Note that in these sampies the scatterers are the carriers of 
the Faraday effect. This contrasts to our model where Faraday rotation occurs in the 
medium surrounding the scatterers. 

Setup 

The experimental setups for measurements of transmission speckle patterns and 
backscattering cones are shown in Figure I. Sampies were illuminated using a mono
mode Ar+ laser operated at wavelengths >. of 457.9 nm or 514.5 nm. A beam diameter 
of ~ 1.5 mm and ~ 2.5 mm was used in transmission and reflection, respectively. 
The polarization state of the incident beam was linear or circular. The sampie was 
supported by a metallic cooling finger and emerged in a 1 bar helium heat exchange 
gas atmosphere. The cooling power of the cryostat was about 6 W, the laser power 
impinging on the sampie varied between 30 mW and 100 mW. One of the two inde
pendent (linear or circular polarized) transmission speckle patterns was selected by a 
corresponding analyzer and speckle patterns of about 600 independent speckle spots 
were recorded using a pe based 512 x 512 pixel video imaging· system of 8 bit reso-
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Figure 1. Experimental setup to measure transmission speckle patterns (top) and coherent 
backscattering (bottom) in magnetic fields up to 23 Tesla. 1) Laser, 2) Beam expander, 3) 
Beam splitter, 4) Polarizer, 5) Optical cryostat and sampIe, 6) Lens, 7) Video camera, 8) 
pe, 9) Solenoid producing a horizontal magnetic field parallel to the incident laser beam, 10) 
Motor. 
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lution. Backscattering cones were monitored using a semi-transparent wedge-shaped 
beamsplitter and focusing the scattered light with a 330 mm focal distance lense onto 
the video system. The backscattering speckles were averaged out by motor-driven ro
tation of the sampIe about an axis normal to its surface. A resistive polyhelix magnet 
was used to generate magnetic fields of up to 23.5 T. The Faraday rotation of unmilled 
glass sampIes was measured at both wavelengths as a function of T and B, giving, for 
example, a Verdet constant Vbulk of 26.2 0 T- I mm-I at ,\ = 514.5 nm, T = 77 J( 

and B < 8 T. The Faraday rotation tends to saturate in higher fields, particularly at 
lower temperatures, and we corrected the measured multiple scattering data for this 
experimentally determined field dependence. 

Exhaustive tests were performed to check the mechanical and thermal stability 
of the setup and sampIe, which turned out very critical for the transmission speckle 
measurements. We require a reproducible speckle pattern after a complete field sweep 
and measurement cycle, which takes typically about 20 min. The sam pIe dis placement 
perpendicular to the laser beam during a field cycle, as caused by magnetic forces on the 
cryostat and temperature variations of the magnet bore, was always less than 50 flm. 

The resulting small translation of the pattern could easily be corrected by the video 
system. Magnetostriction was measured to be less than ,\/1000 for sampIe lengths of 
about 1 mm, corresponding to rms phase changes sm aller than 271"/1000 for a typi
cal scattering path. Displacement of scatterers due to paramagnetic forces was found 
negligible as tested by measurements of GI (B) in high field gradients in the off-center 
region of the solenoid. The Voigt constant of the bulk material was found to be less 
than 0.5 0 mm-I in 10 T. 

RESULTS 

Transmission speckle intensity correlation function 

Figure 2 shows the same section of a speckle pattern monitored at B = OT and 
B = 23.5T. An almost complete change of the pattern is observed, which is fully re
versible on return to B = OT. We calculated G2(B) by multiplying pixel by pixel the 
speckle pattern at OT with the one at field B, averaging over all (2.56 * 105 ) pixels and 
dividing by the square of the average intensity. In Figure 3 we plot this function for 
three different cases out of about 40 measured. These data are compared to a sampie 
of similar optical thickness (white paper) but with no Faraday effect. The small decay 
in the latter case is due to the independently measured Faraday rotation of the win
dows. All data were corrected for this effect. The correlation decay of the sampIes is 
found quadratic in B for small fields changing into a negative exponential [25] for higher 
fields. It increases for lligher volume fractions, thicker sampies (Figure 4) and higher 
Verdet constant which was varied by changing temperature (Figure 5) and wavelength 
(Figure 6). The correlation function is independent of the incident and detected polar
ization as shown by comparison with measurements using circular polarizers (Figure 7). 
All these observations qualitatively agree with our model. 

In order to make the comparison of our data with Eq.( 4) more quantitative, we 
need values for [* and La. We determined [* and La by absolute transmission measure
ments as folIows. The diffuse transmitted intensity 1(L) was measured for sampIes at 
thicknesses L between 0.6 mm and 1.9 mm, as shown in Figure 8. In the presence of 
absorption, the solution of the diffusion equation for an infinite slab yields for La ~ 1*; 
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Figure 2. Intensity plots of transmission speckle patterns of a magneto-optical active multiple 
scattering sampIe in B = 0 T (left) and B = 23 T (right). The section shown corresponds to 
a solid angle of ~ 0.1 ° by 0.1 o. 
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Figure 3. Magnetic field dependence of the speckle intensity correlation function for three 
sampIes ,(0) L = 1.22 mm,e = 0.25, (6) L = 0.76 mm,e = 0.30, (0) L = 0.76 mm,e = 0.25 
in comparison to a (<» paper screen (V ~ 0). Incident and detected polarization were 
linear. Open or closed symbols correspond to a field sweep up or down, respectively. .x = 
514.5 nm, T = 77 [(. The small decay of the paper sampIe is due to Faraday rotation of the 
windows (continuous line: from measured Faraday effect of the windows without diffusor). 
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Figure 4. Field-field correlation function G1(B) for different sampIe thicknesses L, A = 
'514 nm, (! = 0.25, T = 77 J(. The continuous lines correspond to a fit of Eq.(4) with Ev 
as the free parameter, taking into account the experimentally determined field dependence of 
the Verdet constant. We find (0) Ev = 2.26, (.) Ev = 2.13, (0) Ev = 2.53. The different 
data fall on a single curve when plotted vs. B2 L2, as suggested by Eq.( 4). 
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Figure 5. G1(B) at different temperatures, far A = 514 .. 5 nm, (! = 0.3 and L = 0.76 mm. 
(6) Ev = 2.25, (0) Ev = 2.20, (+) Ev = 2.20. The data fall on a single curve when plotted 
vs. B 2V 2 as suggested by Eq.( 4). The saturation of the Faraday rotation at high fields is 
most clearly visible in the data at 30 J(. 

89 



1.00 

.75 

§ 
0.50 

A=457.9nm 0 
.25 

000 

o ~~~~~~~~~~~~~~~~~ 
o 5 10 15 20 25 

Magnetic Field B [Tesla] 

Figure 6. G1(B) at two different wavelengths, (! = 0.3, L;= 0.76 mm, T = 30K. The data 
reflect the larger V-values at A = 457 nm. (0) Ev = 2.20, (0) Ev = 2.27. 

1.00 

.75 

eil 
'-& .50 
(!J 

.25 

O~~-L~~LL~~~~LL~-L~~~ 

o 5 10 15 20 25 

Magnetic Field B [Tesla] 

Figure 7. Correlation function G2( B) measured for (0) circular and (0) linear incident po
larization. A = 514.5 nm, T = 77 K, (! = 0.4, L = 0.76. (0) Ev = 2.14 and (0) Ev = 2.15. 
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Figure 8. Angular-integrated transmission of slabs of various thieknesses. e = 0.3, A = 
514 nm. The unealibrated transmission data (0) were ealibrated by sealing them such that 
the point at L = 1000 p.m superimposes on the absolute measurement (.). Continuous line: 
Fit of Eq.(8). 

I(L) = 10 
sinh[tJ' 

(8) 

10 was determined using a nonabsorbing suspension of polystyrene spheres with known 
1*( = 26.1 ± 2 p.m) and L = 1 mm, with transmission I( L)/ 10 = 51* /3L [15]. By fitting 
the data shown in Figure 8 to Eq.(8), we obtain for our Faraday sampIes 1* = (72 ± 
10) p.m and La = (270 ± 30) p.m [26]. 

In our experiment, the Faraday effect oeeurs inside the seatterersj thus it would 
seem natural to simply use V = eVbulk as the effective Verdet eonstant V. in Eq.( 4). 
This eorresponds to a single passage of light through a seatterer. However, the reeent 
observation of very low effective propagation speed of light due to Mie resonances or 
internal reflections inside the scatterers [4] may suggest longer average internal light 
pathsj this effeet also would give rise to larger v.,-values. Unfortunately, in eontrast to 
the ease of spherieal seatterers, this effect eannot be ealculated for our randomly shaped 
particles. We determined therefore the effeetive light speed VE in some of our sampIes 
by a photon time-of-flight experiment. We used a frequeney-doubled Nd:YAG laser 
with a pulse width of about 4 ps at A = 532 nm. The light was foeused onto the sampIe 
and the delayed and broadened transmitted pulse was reeorded using a Hamamatsu 
Synerosean streak camera. We measured the pulse shape for 4 sampIes with e = 0.3 
and L varying between 0.9 mm and 1.9 mm. One example is shown in Figure 9. We 
determined the diffusion constant D = vEl* /3 by fitting the data to the time dependent 
solution of the diffusion equation: 

T(t,L) = exp[-:!-] ~ ( ((2m - I)L - 2,/*)2 
---,-,47-1 ~ exp[- ] 
(47rDt)2 m=-oo 4Dt 

-exp[- ((2m -1)L)2]) 
4Dt 

(9) 

Ta = 3L~/(/*VE) is the absorption time which dominates the exponential decay of T(t, L) 
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Figure 9. Photon time-of-fiight measurement. Dashed-dotted line: incident laser pulse. Con
tinuous line: delayed and broadened light pulse after passage through a sampIe with thickness 
L = 1455 pm., (l = 0.3. Dotted line: Reference measurement on a colloidal suspension of 
polystyrene spheres, L = 2 mm, 1* = 108 pm. 

at long times. Using [* and La as given above we deduce VE = Co/(2.5 ± 0.5), Co 
being the vacuum light speed. In order to check experimental reliability, we performed 
similar experiments on suspensions of 0.8 pm polystyrene spheres at {l = 0.023 with 
no absorption (La> 20cm), and with La = 308 pm adjusted by adding appropriate 
amounts of an absorbing dye (Rhodamine 6G) to the suspension. These measurements 
revealed a 11 % reduction of the effective speed in both cases, which is consistent with 
Mie scattering theory. 

In addition, we have observed the light transmitted through individual FR5-
particles using polarization microscopy. The light was found strongly depolarized, the 
depolarization being essentially independent of the orientation of the particles. This 
qualitative observation also argues for the importance of internal reflections in our 
sampies. 

Taking into account the refractive indices of glycerol (ng = 1.47) and FR5 (n, = 
1.70) and the volume fraction (l of FR5, the above speed reduction translates into an 
effective Verdet constant Ve exceeding PYbuik by a factor: 

(~) -ng (1 - e) 
Ev = Ve/ eYbulk = = 2.9 ± 0.9. n,·e 

On the other hand, fitting of 40 data sets at A = 514.5 nm to Eq.(4) with Ev as the 
only free parameter consistently yields an average value of Ev = 2.20 ± 0.21. Examples 
are shown as continuous lines in FigsA, 5, 6, 7. The agreement between fits and data 
is remarkably good over the entire range of parameters explored - perhaps with the 
exception of the lower curve in Figure 6 (which actually represents the largest disagree
ment we observed). The fact that Ev is independent of the varied parameters means 
that Gl (B) essentially scales with B2V (B)2 L2, since absorption in our sampIes only 
weakly affects the functional form of Gl(B, V, L). It appears, thus, the measured corre
lation function G2(B) agrees quite weIl with our model and the Faraday rotation in this 
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Figure 10. Angular dependence of the scattered light intensity in the vicinity of backscat
tering, normalized to the flat background at 0.330 , for one of our sam pIes at T = 30 K, 
>. = 514.5 nm, (! = 0.4 in different magnetic fields. Dashed line according to Eq.(5), see text. 

type of sampIes is more than doubled because of internal reflections inside the scatterers. 

Coherent backscattering cones 

The coherent backscattering data reported below were measured with the incident 
and detected light having the same circular polarization. Video images of the intensity 
scattered into a solid angle of about 0.60 by 0.60 around backscattering were obtained 
by averaging 255 individual pictures. The angular dependence of the scattered inten
sity was obtained by searching for the pixel position of the maximum intensity and 
consecutive azimuthally averaging by summing over pixels at constant distance from 
this position. Intensities were normalized to the intensity at the largest angle scanned 
by this procedure. The latter intensity is very elose to the incoherent background, be
cause the detected angular range is much larger than the cone width at half height. 
Because of (unavoidable) diffuse stray light, which essentially adds to the incoherent 
background, experimental enhancement factors at B = OT were smaller than 1, ranging 
from 0.4 to 0.8. In Figure 10 cones obtained at three magnetic field values are shown. 
A field induced decrease of the cone height at backscattering (0 = 0) is clearly visible. 
The observed field effect becomes weaker at larger scattering angles. These observations 
qualitatively agree with the simple model outlined above, and with the predictions of 
Golubentsev [11] and MacKintosh and .lohn [12]. 

In order to make the comparison more quantitative, we have determined l* from 
measurements of the radial intensity profile around a smalllaser spot on the sampIe [27], 
and La from a thickness-dependent transmission experiment as above. We find [* = 
117 p.m and La = 310 p.m. The dashed-dotted line in Figure 10 represents the expression 
(Eq.4) of Akkermans et.al. [23], which is a solution of Eq.(5), using 'Y = 5/3, the above 
values for [* and La, and adjusting the amplitude at backscattering. The agreement 
with the experiment is good at small angles, indicating that this expression gives a 
fair estimate of the cone shape in the angular range where the diffusion approximation 
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is valid. A similar conclusion was drawn earlier from measurements on monodisperse 
spherical polystyrene latex sampIes [14, 28]. At larger scattering angles, the data fall 
weIl below the scalar wave theory [23]. This could be due to the use of identical circular 
polarization of the incident and detected beam: one may expect that the light scattered 
at wider angles (which is dominated by contributions from low order scattering paths) 
has more intensity of opposite helicity than estimated by a scalar wave theory, as 
backscattering flips the helicity. 

Figure 11a shows the field dependent decrease of the enhancement at backscat
tering in comparison with a measurement (Figure 11 b) on a reference sampIe with 
negligible Faraday rotation, but having a similar cone width. As Eq.(5) and Eq.(7) 
have the same functional form, we can use the solution for the angular dependence of 
a(q, B = 0) [23] to calculate the field dependence of a(q = 0, B). Figure lla shows a 
fit of this solution to the data, using the above values for 1*, La, " Ev, f! and the ex
perimental field dependent Faraday rotation. The only fit parameter is the coefficient 
a in the term exp(-3~.· (aVB1*)2). We find a = 0.9 as compared to .,fi predicted 
by Eq.(7). In view of the simplicity of our model, the scattering of our data points, 
and having neglected corrections due to internal reflections [29], the agreement between 
data and model appears good. 

CONCLUSIONS 

Our observations of the magnetic field induced decay of the intensity correlation 
function of transmission speckle patterns and of the destruction of the coherent back
scattering cone illustrate that the Faraday effect in the optical multiple scattering regime 
can be understood in terms of a random walk of the field induced polarization changes 
on top of the light diffusion through the disordered medium. The quantitative agree
ment with the simple model discussed suggests the possibility to measure the Faraday 
effect of powders and ceramies, even in the presence of absorption. 

In addition, our observations illustrate that it is possible to affect coherent back
scattering and hence weak localization of light by laboratory strength magnetic fields, 
provided a properly choosen magneto-optically active material is used. This novel effect 
seems the only experimental way so far - to our knowledge - to generate significant phase 
shifts between time reversed optical scattering paths. In this sense it resembles the mag
netic field induced phase shift on the electronic wave function in the Aharonov-Bohm 
and related effects, despite of the different - and much weaker - coupling mechanism 
of the field to the light wave. We think that Faraday rotation may become of im
portance in various optical multiple scattering studies, perhaps even in the search for 
light localization. Achallenge in this kind of new experiments is to evaluate how much 
the interferences between time reversed waves contribute to the diffusion constant - as 
compared to the classical "Drude-type" value - in the generally highly concentrated 
sampIes of strongly correlated scatterers. The results reported here suggest that the 
contributions of these interferences could be determined, at least in principle, by using 
the Faraday effect. 
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Figure 11. Backscattered intensity (at q = 0) normalized to the incoherent wide angle 
background (a) as a function of Vi,ulk(B). B for the sampIe as specified in Figure 10. Dots are 
data, the continuous line is a fit to Eq.(7), see text, the dotted line indicates the measured 
field dependence of Vbulk. (b) as a function of B, for a reference sampie with negligible Faraday 
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ABSTRACT 

Tbe statistics of the depolarization of light by multiple scattering is a complex problem in the regime 
ofMie scattering. Nevertheless, the correlation functions (Stokes intensities) can be entirely determined by 
studying the loss of memory of both initial linear and circular polarizations as a function of the thickness of 
a slab (L) in units of the transport mean free path (/*). 

These multiple scatterings of light have been simulated by a Monte Carlo algorithm in the 
approximation of independent paths and large spheres. We find that, contrary to what is observed for 
Rayleigh scatterers, the depolarization rate is about twice as large for the linear incident polarization as for 
the circular one. Also, the mechanism of depolarization is more complex than envisaged previously, since 
the most probable intermediate states are elliptical rather than linear or circular. 

Tbe randornization of the wave vector and helicity of light can be readily seen by the geometrical 
picture fumished by the Poincare representation. Tbe polarization states are projected on a sphere, with the 
linear states located on the equator, the circular ones on the poles ,and the elliptical ones on the 
hernispheres. Tbe depolarization process is seen as the spreading-out of the polarization state cloud around 
the incident state. 

These studies lead to new concepts of specific characteristic lengths, which are associated with the 
vectorial nature of the fields, enrlching the standard concept of transport mean free path introduced in tbe 
context of scalar multiple scattering. 

I. INTRODUCTION 

The multiple scattering of waves in randorn media is well-known so far within four 
major approximations: i) scalar waves, ii) point-like scatterers, iii) independent Feyman 
paths, and iv) weak concentration of disorder. If the scattering is elastic, the wave 
interferences are not destroyed by the sampie averaging. If the system presents time
reversal invariance, the weak localization effect is then observed through the coherent 
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baek-seattered eone.1 The eonsequenees of this residual interferenee phenomenon ean be 
observed in various physical systems, among them, electrons diffusing in impure metals 
(mesoseopie scale) or light diffusing in turbid suspensions. 

For the ease of light, the polarization must be taken into aeeount because of the 
vectorial nature of the field. This is a diffieult problem for the following reason: during the 
sueeessive multiple scatterings, the transverse electrieal field is transformed by the Mie 
scattering amplitudes and in each step the electric field must be projected onto the 
scattering plane. This transformation can be simply described by the product of the 
complex 2x2 (Jones) matriees in the local scattering frame.2 The difficulty occurs when 
this transformation is projected in the laboratory frame, to take into account the 
geometrieal boundary condition. 

For point-like scatterers (Rayleigh scattering) a great simplification occurs, since for 
ineident linear polarization, the scattered light remains linearly polarized and it is only 
parametrized by the emerging wave vector. This is expressed by a ·real 3x3 matrix in the 
lab. frame.3-5 The multiple Rayleigh scattering of n-th order ean be treated5 analytically 
by a system of recurrent equations. Its solution yields the depolarization degree as weIl as 
the various correlation functions for polarization. 

The simplest experimental configuration for measuring the polarization correlation is 
the slab geometry confining the scatterers. The incident and emerging wave vectors of the 
plane waves are perpendicular to the slab planes or equivalently parallel to z for 
transmission or anti-parallel for reflection. For this geometry, the incident and emergent 
electric fields are in the x-y plane and several symmetries are present: rotation around the z 
axis and refleetion by aplane containing this axis. Remarkably, for this simple geometry, 
only three parameters are necessary to characterize entirely the random medium. 
Following the notation of reference 6, these parameters are called aJo a2 and a4' Theyare 
the elements of the diagonal Mueller matrix acting on the incident Stokes vector.6 They 
have a simple physical meaning: aj describes the total transmitted or reflected intensity, 
la21 and la41 (divided by aj) are the polarization degree for incident linear and circular 
polarization, respectively. Therefore, when the absolute value of the multiply scattered 
intensity is not relevant, only two measurements are necessary for characterizing the 
medium, leading to a'2 = a~aj and a'4 = a/ aj. 

The scattering by Mie particles, with a ~ A., where a is the sphere radius and A. the 
wave length, is different from Rayleigh scattering. In this case, the characteristic lengths 
of the multiple-scattering medium must be scaled by the transport mean free path, as was 
observed in the coherent backscattering experiments.? By measuring the time-correlation 
of the intensity in a reflection experiment, it was observed8,9 that the rate of decorrelation 
is reversed in the regime of large spheres. For point-like scatterers, the circular 
polarization decreases faster than the linear one. It is just the opposite for large spheres, 
the circular polarization is more persistent than the linear one. Moreover, the eharacteristie 
length for the randomization of the helicity of circular polarized light is greater than the 
transport mean free path t* . 

Several problems remain in the context of the multiple scattering of eleetromagnetic 
field and call for a deepening of the analysis. For a very large number of scalar wave 
scatterings, corresponding to thick slabs for instance, the general frame of the theory is the 
diffusion equation. This leads to a well-known distribution function for the length of the 
Feyman paths pes). This "pure" diffusion regime corresponds to complete depolarization 
of the light. But the approach to the diffusion regime, or still, the cross-over between the 
single scattering and the "pure" diffusion regime, that we call intermediate regime, raises 
important problems. What are the polarization decays for the two basic incident polarized 
light - linear and circular - and how do they depend on the particle size and shape? More 
precisely, is the approach to complete depolarization state for large spheres given as an 
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effective Rayleigh regime, in the space scale t* instead of the mean free path t1 What are 
the effects of the boundary conditions on the correlation functions1 

To progress in the understanding of this complex problem, we have written a 
complete computer program based on the Mie scattering and a Monte Carlo algorithm for 
generating the independent sequences of scatterings. The correlations for polarization can 
be obtained in transmission or reflection, through a slab of variable thickness, for different 
incident polarization states. Contrary to what is observed for Rayleigh scatterers, the 
circular polarization is more persistent than the linear one. The depolarization rate is about 
twice as large for the linear incident polarization than for the circular one. Also, the 
mechanism of depolarization is more complex than envisaged previously by the helicity 
flip model.8 The partial polarization of light is elliptical rather than linear or circular. It is 
better represented on the Poincare sphere, the space of the Stokes parameters, rather than in 
the k, space where the trajectories are described. Our results fit weH the experimental 
data.10 

The paper is divided as foHows. In section 11, a brief review is presented of Mie 
scattering, Stokes intensities and Poincare sphere. In section III, the multiple Mie 
scattering is introduced using the Jones formalism. The consequences of the 
approximation of independent paths are briefly discussed in the context of polarization 
statistics and the distribution of the polarization states is obtained analytically on the 
Poincare sphere. The description of the Monte Carlo simulation program is given in 
section IV. Results and discussions of the multiple scattering correlations are reported in 
section V. 

11. SINGLE MIE SCATTERING, STOKES 
INTENSITIES AND POINCARE REPRESENT ATION 

The scattering of polarized light by a sphere of arbitrary size can be calculated exactly 
and it is known as Mie scattering. Aplane electromagnetic wave with electric field, Eo, 
propagates toward the positive z with wave vector k, in an isotropic, homogeneous and 
non-absorbing medium with refractive index nm. It is then scattered by a sphere of radius a 
and refractive index ns ' located at the origin of a coordinate system. If ns is real, the 
scattering is elastic and the scattered wave propagates in the direction k', with Ikl = Ik'l. 
The plane containing the directions k and k' is called the scattering plane. In spherical 
coordinates, at the position r, so that p » ko. (p = kr), the scattered electric field Ea is 
nearly transverse (far-field approximation). The electric field components parallel and 
perpendicular to the scattering plane, direction 9 and «I» ,respectively, where «I» is the 
azimuthal angle and 9 the angle between k and k', are given by: 

'eJ'p _l!:!!:. Es - p J(9,«I»)Eo , 

where j =...f-i and J is the Jones matrix given by the product: 

o ][ cos«l» 
S.L (9) . -sin«l» 

Sin! ]. 
cos" 

(2.1.1) 

(2.1.2) 

The second matrix, «I» dependent, projects Eo on the parallel and perpendicular directions of 
the scattering plane. The first one, e dependent, is diagonal, reflecting the spherical 
symmetry of the scatterer and its elements are the parallel and perpendicular scattering 
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amplitude SIJO) and S.L (0), respectively, found in references 6 and 11. We notice that 

from the Mie theory, the equality SIJO) = S.L (0) means that forward scattering does not 

change the incident polarization state and that SIJ1C) = -S.L (1C) means that the backward 

scattering reverses the helicity of the incident polarization state. The intensi~ and 
polarization are given by the Stokes intensities i = IEx l2 + IEyI2, 1 = IEx l2 - IEyl ,u = 
2Re(ExEy*) and v = 2Im(ExEy*)' and obey the Stokes sum rule i = q2 + u2 + v2. A 
geometriCaJ. representation for the polarization states is provided by the Poincare 
representation. 11 In this representation q = icos(2x)cos(2V), U = icos(2x)sin(2v) and v = 
isin(2x), where V is the inclination angle of the ellipse (of the electric field) with respect to 
given axes and tanX is the ratio between the semimajor and semiminor axes of the ellipse. 
The positive and negative values tanx stand for left- and right-handed polarizations. On 
the Poincare sphere the north and south poles represent left- and right-handed circular 
polarization, respectively. The northem and southem hemispheres represent left- and 
right-handed elliptic polarizations and the equator represents linear polarizations. 

The differential scattering cross section can be written as: 

where f(Eo,l/) = (qocos21/) + uoSin21/)/io' The differential scattering cross section is 
dependent on 0 and 1/); moreover it is parametrized by the incident Stokes intensities. For a 
circular polarized incident wave (qo = Uo = 0), the differential cross section and the Stokes 
intensities are independent of the azimuthal angle 1/). From O'c/O,I/),Eo), one gets the 
scattering cross section O's by integrating over the solid angle dOcosOdcIV(41C). 

We emphasize that the Mie scattering is anisotropic and changes the polarization of 
the incident wave which, in general, becomes elliptically polarized. This scattering is 
govemed by two parameters, the size parameter kIl and the relative refractive index m = 
n/nm' Fixing m, three regimes are identified, i) Rayleigh for kIl « 1, ii) intermediate for 
ka - 1 and iii) large spheres for ka »1. This is apparent from the variation of the 
function (in percent): 

Max[IISIJO)12 - IS.L (0)121] 

F(kIl) = 100 Max[ISIJO)12 + IS.l (0)12] , (2.3) 

where Max takes the maximum of its argument when 0 varies from ° to 1C (Fig. 1). This 
function points out the difference between the parallel and perpendicular scattering 
amplitudes. For the Rayleigh regime, the scattering amplitudes are well-known and F(kIl) 
has a maximum value of 50%, while, for large spheres, a good approximation is to 
consider ISIJO)12 - IS.L (0)12. This illustrates quantitatively which regime must be 
considered in a particular situation. For kIl = 6.5, F(kIl) is less than 0.5%, which justifies 
the approximation of a large sphere, where the dependence on I/) and Eo is neglected on Bq. 
(2.2). This approximation will be used in the numerical simulation. Anisotropy is 

characterized by: <cosO> = 4!ros f~ dO sinO f~1t dl/) O'd (0,1/) cosO and t*/t = n* = 
1/(1 - <cosO». 
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Flgure 1. Variation of F (Eq. 2.3) as a function of /ca for relative refraction index m = 1.19. Rayleigh 
regime is observed for /ca « 1, the intermediate one for /ca - 1 and the large sphere regime far /ca » 1. 
Inset: The square of the parallel and perpendicular Mie amplitudes far /ca = 6.5, m = 1.19 and n* = 12.6. 

III. MULTIPLE MIE SCATTERINGS 

To study the multiple scattering of light by a disordered sampie, let us consider a fIXed 
laboratory coordinate system (x,y,z) and random distributed spheres of radius a in a stab 
parallel to the x-y plane placed between z = 0 and z = L. Moreover. the far-field 
approximation is assured by Id > > 1, where I is the mean free path. The light source and 
the receivers are far away from this region and detection is performed in the direction of 
the ineident light either in transmission or in reflection. A partial field trajectory is 
obtained by considering aplane electromagnetic wave, with electric field Eo• propagating 
along the positive z axis and then scattered by a sphere. A new coordinate system is 
considered (xJoYJoZ1) with origin at the center of this sphere and directions Xl = X']1 =] 

and 1.1 = 1.. In the frame (x1,Y1,Zl)' the scattering angles are ab +l and at Tl for the 
scattered wave vector k 1 and in the far field approximation the scattered electric field is 
given by Bq. (2.1.1). Let us consider a second sphere at this position. Again, at the center 
of this sphere we consider a new coordinate system (x2,Y2,Z2) with x2 = 8]0]2 = fl and 1.2 

= k1. The partial field is scattered along k2 and this procedure is repeated until the partial 
field meets the n-th and last sphere of this sequence. For the last scattering, we impose the 
angles an and +n are such that 8n = x, +n = ± ] and kn = ±%. In the laboratory frame the 
multiply scattered partial field by the v-th sequence is given by: 

By the choice of the angles of the last scattering, we impose that the photon emerges from 
the medium along the z direction, with a wave vector either parallel or anti-parallel 
(transmission or reflection) to the incident one. 
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The transmitted and reflected electric field of the sampIe ~ is given by the summation 

E(J.1) = I:.v~1Ev/-{M. For a large number of independent sequences v, by virtue of the 
centrallimit theorem, the real and imaginary parts of the superposed photon field ElJ.1}x = 
IElJ.1}xlexpljcjl(J.1)x) and ElJ.1}y = IElJ.1}ylexpljcjl(J.1)y') are Gaussian variables,12 Thus, in polar 
representation, the modules I ElIJ\1 and I ElJ.1}y I are distributed following the Rayleigh 
probability density12 and the phases cjlü1)x and cjlÜ1)yare uniformly distributed in the interval 
[0,2n],12 The phase difference cjl(J.1) = cj><J.1)x - cjl(J.1)y is also uniformly distributed in the 
physical interval [-1t, n]. 

Consider now an ensemble of sampIes ~,. The ensemble averaged Stokes intensities 
are related to <IElJ.1}xI2>e' <IElJ.1}yI2>e and <ElJ.1}xElJ.1}y*>e where <"'>e = T.J.1!f:1 ... /N, with 
N > > 1. A standard approximation is to consider that the phases are random in the product 
ElJ.1}IElJ.1}m *, (with [,rn = x,y), since they come from independent paths. The mean intensity 
is the summation of the intensities of the M sequences of the sampIe ~ and summation over 
N sampIes divided by NM. This is equivalent to consider the intensities of one sequence 
per sampIe, but NM sampIes. This equivalence simplifies the calculation because each 
scattered partial field can be considered as a photon field. This is possible for the 
calculation of the first moment of the physical quantities, but not for the higher moments 
which must obey Gaussian statistics. This point will be detailed in section V. 

The ensemble average makes the system invariant by the symmetries of the sampIe. 
For a slab and perpendicular incidence and detection, these symmetries are: i) rotation 
around the incident wave vector and ii) reflection by aplane containing this vector. The 
averaged Stokes intensities are: 1 = <be = a1io' Q = <q>e = a2qo' U = <u>e = a3uo and 
V = <v>e = a4vo ' where a3 = ±a2 ' the sign plus for transmission and minus for 
reflection.6 

The degree of polarization is defined as: 

P _ ~Q2 + U2 + vz _ 
- J2 - (3.2) 

where we have used the Stokes sum role for the incident polarized light. For incident 
linear (vo = 0) and circular (vo = ±io) polarized light, P is given, respectively, by la21/al 
and la41/a I ' hence only two parameters are necessary to characterize completely the 
scattering medium. 

A Hermitian matrix can be constructed from the Stokes intensities. This is called the 
coherence matrix:12 

1 [ 1 + Q 
C="2 U-jV 

U+jV ] 
1- Q , (3.3) 

The eigenvectors are orthogonal and the eigenvalues are real. In the eigenvector basis, the 
eigenvalues are independent intensities, and the phase difference of the electric fields is 
also independent and uniformly distributed, by virtue of the central limit theorem. The 
basis which diagonalizes C is the basis that preserves the symmetry of the wave 
polarization and slab. For linearly polarized light, this basis is the lab. frame (x,y,z), since 
U = V = 0, following the centrallimit theorem. The amplitudes IExl and IEyl are obtained 
from the Rayleigh distribution: 12 

(3.4) 
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wbere Ix = (I + Q)/2 and ix = IExI2. Tbe joined probability density is tbe product of tbe 
distributions of the independent variables: 

(3.5) 

For linearly polarized incident ligbt, we notice tbat U = V = 0 and the polarization degree 
is merely P = IQI/I. The distribution for i and q as variables is: 

. 1 -2(i - qP) 
Pjl,q,cj» = 1tP(l- p2) exp{(I(l_ P2)/ . (3.6) 

This distribution is parametrized by the mean total intensity and by the polarization degree, 
and it is completely equivalent to tbe distribution obtained recently in reference 13. In 

terms of tbe variables u = cos~ and v = sin~, one bas a new distribution, 
wbicb leads to tbe expected mean values <i>e = I, <q>e = IP , <u>e = <v>e = 0, and to 
tbe variances CJ( = CJi = P(l + p2)/2 and CJl = CJ/ = P(l - p2)/2, where CJi = <x>i -
<x2>e. Tbe variances ofthe Stokes intensities are not all independent and for any incident 
polarization, tbey must satisfy the relation: 

(3.7) 

wbicb comes from the Stokes sum rule. 
Still considering linearly polarized incident ligbt, tbe distribution can be transformed 

to tbe Poincare variables i, 2X and 2'1' and it reads: 

. icos(2x)exp{-2i[l - Pcos(2X)cos(2'J!}J/(I(l - p2))J 
Pjl,2x.2'1') = 1tJ2(l- p2) (3.8) 

Using tbe reduced intensities q/i, u/i and v/i, tbe polarization states are projected onto a 
spberical surface of tbe Poincare representation, and one obtains tbe distribution of the 
Poincare angles by integrating over tbe intensity i. The probability to bave a polarization 
state in tbe interval [2x. 2X + d(2X)] and [2'1', 2'1' + d(2'1')] is given by: 

1- p2 
Pd2x.2'1')d(2X)d(2'1') = 4rr.[l _ Pcos(2X)cos(2'1')]2 cos(2X)d(2X)d(2'1') , (3.9) 

wbere cos(2xJd(2X)d(2'1') is tbe surface element of tbe Poincare spbere. For totally 
depolarized emerging ligbt from the slab (P = 0) tbe polarization states are uniformly 
distributed on tbe spbere. Within this representation, one can geometrically see that a 
quasi-circular state (located around the pole) is less probable to occur than a quasi-linear 
one (located around tbe equator). Tbis distribution leads to tbe first moments and to tbe 
second moments: 

u v 
~> e = '->e = 0 , I I 

(3.10) 
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Let us consider circular incident polarization. The basis which diagonalizes the 

coherence matrix is (x + jY)N2, (x - jyJN2. Spanning the Stokes intensities in this basis, 
one sees that v plays exact1y the same role as q for incident linear polarization in the lab. 
frame. The distribution of the Stokes intensities is then given by replacing q by v in Bq. 
(3.3). The distribution of the Poincare angles is then given by: 

Pe (2x.2'1')d(2X)d(2\jf) = 41t[1 _ Psin(2X)J2 cos(2X)d(2X)d(2\jf) , (3.12) 

while the angle 2'1' is uniformly distributed (rotation symmetry around the v/i-axis). 
For P = 0, Bq. (3.7) yields the same function as the distribution for linearly polarized 

incident light, but the approach to this regime is drastically different. The distribution of 
polarization states on the Poincare sphere preserves the symmetry of the incident 
polarization state. For linearly polarized light the intensity is invariant by a reflection on a 
plane containing the electric field and by reflection on a plane parallel to it. Circular 
incident polarization is invariant by a rotation around the propagation direction. The first 
and second moments are obtained by interchanging the intensities q and v in Bqs. (3.10) 
and (3.11), respectively . 

The statistics of the depolarization of light is completely determined by the knowledge 
of Pd2x.2'1') and Pe (2x.2'1'), but these distributions are parametrized by the polarization 
degree P which is known only for Rayleigh scatterers but not in general. Moreover, the 
polarization degree depends on the thickness of the slab. 

For non-Rayleigh scatterers, the polarization degree was studied numerically by the 
radiative transfer theory.14 Although this approach takes into account the phase difference 
between the electric field components, it does not furnish the absolute phase for a given 
scattering sequence. Moreover, the intermediate regime L - t* is poorly described by this 
theory. The numerical simulation based on the Monte Carlo algorithm is more flexible. 

IV. MONTE CARLO SIMULATION 

To simulate sequences of Mie scatterings in a slab of length L, we have used a Monte 
Carlo method. The spherical Bessel functions, needed to calculate the Mie coefficients, 
have been obtained using the Lentz algorithm,15 and the coefficients were obtained as 
described in reference 16. The Newmann functions and the Legendre polynomials are 
obtained from adapted algorithms found in reference 17. 

The distance that a photon travels without suffering a collision is given by the 
distribution exp(-r/t)/t. The distance t = lI(tpccrs) is the mean free path, where tpc is the 

concentration of spheres and crs is the scattering cross section. We are interested on the 
dependence of physical quantities as a function of the reduced slab length Ut* . In practice, 

this is generally performed by fixing L and varying tpc. In our simulation, we consider t 
ftxed, such that kt = 1000, corresponding to weak concentration, justifying the far field 
approximation, and we vary L. Therefore, the electric fields of each Mie scattering are 
calculated within the far-field approximation. 

In the slab, the photon history starts at the origin of the laboratory frame (x.Y.z). It 
propagates along the z axis until z' > o. This distance is genera ted following the 
exponential distribution. If z' > L, the photon leaves the slab without suffering a collision 
and the electric field is calculated on the plane z = L. On the other hand, if 0 < z' < L, a 
sphere of radius a is present and the electric field is calculated at this position. A new 
coordinate system (xJrYJrZj) is considered, just as described in seetion 11. The scattering 
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angles O} and 4I} are generated by the Mie distribution and a new distance '} by the Poisson 
distribution. This new position (0J.4IJ.'}) is then calculated in the lab. frame. If its z
component is greater than L the photon is transmitted, if it is negative, the photon is 
reflected. In both cases the field is calculated on the boundary of the slab. We notice that 
after every scattering the field is normalized. If the photon does not escape the slab, new 
angles are chosen foHowing the Mie distribution and a new distance is generated. This 
process is repeated successively till the moment a sphere lies outside the slab. The last 
scattering is not random, the photon is forced to escape perpendicularly to the plane of the 
slab. A weight is then assigned to each sequence. This weight is the probability for a 
photon to be scattered in the direction 9' and 41' that are the calculated angles for the photon 
to leave the slab perpendicularly. In transmission, the multiply scattered electric field is 
calculated in the lab. frame (x,y,z) but in reflection, it is calculated in the frame (x,y,z),. 
This frame is obtained by an improper rotation ofthe lab. frame (x ~ x, y ~ -y, z ~ -z). 

An important step of the method resides in the choice of the scattering angles 9 and 41. 
We emphasize that the complete Mie distribution is not separable (Bq. (2.2». Even worse, 
it is parametrized by the incident field. Generating this distribution numerically, by the 
rejection method, is very time consuming. For large spheres, the distribution takes a 
simpler form. It is independent of both 41 and of the incident field. Therefore, the angle 41 
can be chosen foHowing a uniform distribution and the angle 9 is given by the approximate 
large sphere Mie distribution [lS/J9)12 + IS.l (9)12V(2crs). This simplification has already 

been used in previous simulations.18-20 In this case, the angle 9 can be generated by the 
cumulative function (the integral of the large sphere Mie distribution). This method is very 
efficient, since a single random number is needed for each 9. The values of the cumulative 
function can be tabulated as weH as the values of the scattering amplitudes. The tables are 
divided in intervals of 10 in 9 and data are obtained from these tables by linear 
interpolation. 

We emphasize here that the numerical study of the distribution of polarization states 
on the Poincare sphere is done by considering the summation over the partial fields and 
then the intensity is calculated for each sampie. On the other hand, the polarization degree 
is obtained considering one sequence per sampie since only the mean values of the Stokes 
intensities are necessary. The polarization degree for incident linearly polarized light is 
scaled by Ut* as shown in reference 20. 

v. POLARIZATION MEMORY: RESULTS AND 
DISCUSSION 

1. Transmission 

The polarization degrees for incident linear and circular polarization were obtained by 
our numerical simulation for the following values ka = 6.5, m = 1.19 and k!= 1000 

leading to /lt* = 12.6 and cr/M2 = 2.41. The experimental counterpartlO corresponds to 

Avac = 514.5 nm propagating in water (nm = 1.33) and polystyrene (ns = 1.58) spheres of 
mean radius 400 nm in a slab of L = 1 mm leading to ka = 6.5, m = 1.19 and the 
concentration in volume is varied to alter the ratio Ut*. The results of the simulation and 
experiment are plotted in Fig. 2. 

For very thin slabs (Ut* < < 1), P(Ut*) is dose to one. This means that the photons 
cross the slab with trajectories which are very dose to a straight line, since each single 
scattering is strongly peaked forwards (Fig. 1 inset). This does not alter significantly the 
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incident polarization state. For L - 21*, the transmission coefficient is elose to 50%. Tbis 

value happens because a photon needs, in average, a distance t* to turn its direction of rr/2, 
(/* is a gyration radius) and then they can either be transmitted or reflected with equal 

probability. L:: 31* is a limiting value for the dominant effects of the boundaries. Tbis 
value can be understood in the following way: by subtracting t* from each boundary, the 
trajectories still have at least one gyration radius for an "isotropization" of k. When L > 31* 

the degree of polarization decreases exponentially with Ut*. A characteristic 
depolarization length can then be assigned to the incident circular and linear state from the 
fitted curves (ae bLA*): 

PL{L/l*) - e-0.716U!* and Pc{L/l*) - e-0.358U' . 

These characteristic lengths are: 

I**linear = 1.39/* and 1** circular = 2.79/* , 

so that t** circula,ll**linear = 2.00. 
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Flgure 2. Degree of polarization in transmission for Iinearly and circularly incident polarized light 
polarization as a function of IJ/.*, for at least 10000 outcoming photons, with the parameters ka "" 6.50 
Id = 1000 and m = 1.19. The simulation data are fitted, for LA* > 2.5 by P(U!) = ae bLA* with a = 1.84 
and b = -0.716 for incident linear polarization and a = 1.68, and b = -0.358 for incident circular 
polarization. The experimental data are found in reference 10. 

To emphasize the strong difference between the Rayleigh and the Mie regime, we 
have plotted the variable ö = P L - Pe as a function of Ut*. The Rayleigh expression of ö is 
obtained from the simple expression of the basic parameters a'2 and a'4 as a function of the 
number of scatterings n for large n,5,21 convoluted with the standard distribution P(s/ /L) of 

the diffusion theory: 

PdL/I) - e-1.07U! and PC(L!l) - e-2.08Ut . (5.3) 
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The most striking difference is the change of sign for Ö showing the non universal behavior 
of the multiple scattering regime (Fig. 3). These results are reported in Table 1 where the 
characteristic lengths for the different regimes are collected. 

The change of the sense of the inequality between PL and Pe can be understood in a 
simple way:8 in the Rayleigh regime, isotropy of the scattering weights equivalently the 
forward- and backscattering. For incident linear polarization both scattering modes 
preserve the linear polarization and maintain the polarization degree at a high value. The 
situation is reversed for circular polarization since the backscatterings flip the helicity of 
the incident polarization, hence PL > Pe. For Mie or large spheres, the scattering is 
strongly peaked forwards and the randomization of the azimuthal angle q, affects 
considerably the linear polarization while the circular one is almost preserved, 
hence PL < Pe· 

Table 1. Differences of the characteristic lengths for scalar and vectorial fields and 
for Rayleigh and Mie regimes. 

Characteristic 
Length 

Rayleigh 
Mie 

Ö 

0.4 

0.2 

0 

-0.2 

-0.4 

-: 

0 

I'· .... " 

o 
o 

o 

Scalar 
Fields 

t* 

~ 
o 

o 
o 0000 

00 000 

00 0 
o 

0 0 000 

Vectorial 
Fields 

Linear 

0.9351 
1.391* 

00°0°0<> 000 00 
o 

o 00 

• Mie 

2 4 u,* 6 8 10 

Circular 

0.481t 
2.791* 

Flgure 3. a = PL - Pe as a function of lil* for the Rayleigh and Mie regimes. Contrary to the point-Iike 

scatterers 8 is negative for large spheres. 
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2. Reflection 

For the same values of the parameters /ca, Id and m, the polarization degree is obtained 
in the reflection geometry and represented in Fig. 4. The main resuit is the non-vanishing 
asymptotic value of Pe for Iarge Ut* (up to 50), exhibiting a strong persistent degree of 
polarization for very thick slabs. This result was previously reported8 for indirect 
measurements of the depolarization by dynamical correiation function or by numerical 
solution14 of the radiative transfer equation. Indeed, it originates from the dominant 
weight of the short Ioops for the reflection geometry (in the diffusion theory pes) - s·31l, 
see, for exampIe, reference 22). We stress that, like in references 8 and 14, we have not 
taken into account the contribution of the reversed sequences, which gives rise to the back
scattering cone. 

0.1 

o (1 0 

c PL 

0D0C'DO o[b 
U o Cl oCb o°rtol:] OD 

[] 0 0 l or 
C' 'iOcqf1 U 1 III 

o PC 
0.01 

0 .1 10 

U/· 

Flgure 4. Polarization degree as a function of Ul* in reflection. The parameters are the same as in Fig. 2. 
For incident circular polarization. the degree of polarization converges asymptotically to a value around 
0.25. The polarization memory of circular polarized light is then observed in the Mie regime. 

For thinner slabs L - t*, Pe has a maximum. This situation corresponds to slabs 
where the ftrst Ioops of gyration t* can be put within the thickness. The degree of circular 
polarization remains high, since the helicity is almost preserved along these Ioops. When 
L < t*, these Ioops are inhibited and onIy the very rare (but efficient) backscattering 
collisions subsist. Conceming the linear polarization, the degree is always very weak by 
efficient cp-randomization, previously mentioned. 

It may be concluded that the diffusion theory is not the appropriate context for the 
analysis of these resuIts: both the boundary effect and the anisotropy of the scattering 
(t* = 12.61.,) provide features which must be handied by other considerations. 
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3. Poincare Sphere 

Adescription of depolarization processes is given by the complete distribution of the 
polarization states. A useful geometrical picture of the two depolarization modes, one 
associated with the randomization of the direction of the electric field and the other 
associated with the randomization of the helicity of the wave, is given by the Poincare 
representation. The polarization state of each outcoming recomposed field is projected 
onto the Poincare sphere of unit radius with axes qli, u/i and vii. The Poincare clouds are 
shown in the plane-sphere representation of Pig. 5 for several slab lengths in transmission. 

Por very thin slabs, the polarization states on the Poincare sphere are concentrated 
close to the incident state, respectively, on the equator for linear polarization and on one of 
the poles for circular state. As the slab thickens, the polarization states for the linear 
incident mode migrate towards east and west and to the north and south indicating that the 
depolarization is caused by the randomization of direction of the electric field and helicity. 
This can be seen more quantitatively by the variation of the first and second moments of 
the reduced Stokes intensities as a function of P (Eqs. 3.10 and 3.11). Por Ul* - 3, this 
distribution converges to the diffusion law, where the states are uniformly distributed on 
the sphere. Por the incident circular polarization state, the distribution is independent of 
the angle 2'1'. This rotation symmetry around the axis v/i reflects the fact that each Mie 
scattering is independent of the azimuthal angle cI>. This distribution migrates towards the 
equator as L increases. Por Ut* - 3, one hemisphere is almost filled. This distribution 
starts populating the opposite hemisphere for larger values of L. Por Ut* > 6, the 
distribution is practically uniform on the sphere. 

An advantage of the Poincare representation is the possibility to exhibit clearly the 
important difference between the processes of depolarization through Rayleigh and Mie 
regimes. Now we consider the intensities of each scattering sequence (not the recomposed 
field). Por Rayleigh scatterings, the linear polarization is completely destroyed in a few 
scatterings by transitions on the equatorial circle. Also, the incident circular polarization is 
flipped to the opposite helicity in few scatterings. A good approximation is to consider the 
equator line (cI>- or 2'1'-depolarization) and the v/i-axis (helicity or 2X-depolarization), both 
as one manifold on the Poincare sphere. Hence, the mechanism proposed recently8 
describes correctly the Rayleigh regime. Quite different is the polarization process for the 
Mie oe large sphere scatterings. Here, it is seen as the spreading-out of the polarization 
state cloud around the incident state. The implied phase space is actually of two
dimensional nature on the Poincare sphere and the elliptical polarization is largely 
dominant. A theorical approach founded on renormalization methods is in progress. 

The enhanced factor 2 for the incident circular polarization can be explained 
tentatively by exploring the rotation symmetry around the vii axis on the Poincare sphere 
for circular incident polarization. Linear polarization can be written as a sum of right- and 
left-handed circular polarization with equal amplitudes. The right and left-handed circular 
polarizations are represented on the Poincare sphere as the south and north pole, 
respectively. As the slab becomes thicker, the two circular distributions migrate towards 
the equator, so the diffusion distribution will be reached about twice as fast as for a single 
circular state. The reasoning that two linear states dephased of 7rI2 form a circular state 
cannot be applied, because the rotation of the sphere around q/i or u/i is not symmetrie and 
a composition rule is not easily found. Por Rayleigh particles, this argurment cannot be 
applied since there is no continous filling of the elliptical states. 
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Flgure 5. Plane-sphere of the Poincare representation for different thickness of slabs. These figures have 
been generated by the recomposition of about 625 partial fields and at least 625 transmitted polarization 
states have been plotted. The parameters are the same as in Fig. 2. Linear and circular incident 
polarization states correspond to the left and right columns. Slab thicknesses of L = 1,3 and 61* correspond 
to the first, second, and third rows, respectively. 
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VII. CONCLUSION 

The numerical approach of the complex problem of the polarization correlation is 
based on the exact Mie scattering amplitudes and on a Monte Carlo algorithm for 
generating independent sequences of multiple scattering. In the intermediate regime of 
non-zero polarization degree, the Mie, or large spheres, multiple scattering is quite 
different from the point-like or Rayleigh scattering. Two important results have been 
obtained with this numerical simulation in the Mie regime: 

i) The rate of depolarization is different for circular and linear incident 
polarization. In the large-sphere regime they differ from the Rayleigh regime, since the 
helicity of circular polarization needs more scatterings to be randomized. Contrary to what 
was claimed in reference 21, the difference between the circular and linear polarization 
degree (the parameter ö) is not strictly positive. 

ii) The depolarization process is given by a continuous and progressive covering of 
the Poincare sphere as a function of the polarization degree, which is a function of the slab 
length. Contrary to reference 13, elliptical states are the most probable ones and they are 
important in the depolarization process, especially for incident circular polarization. The 
helicity flip modelS is oversimplified. 

The present study pushes towards aseparate class of "universality" for Mie and 
Rayleigh scatterings. 
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INTRODUCTION 

The scattering of a coherent light source, such as a laser, from any random medium 
invariably results in a far field scattering pattern consisting of light and dark regions, called 
a speckle pattern. If the scattering medium changes in time, as for example will happen if 
the scattering particles move, then the speckle pattern also changes in time, reflecting this 
motion. The analysis of the intensity fluctuations of a single speckle spot can provide 
information about the dynamics of the scattering medium, and this form of light scattering 
is called dynamic light scattering (DLS), or quasielastic light scatteringi. The traditional 
DLS experiment entails the measurement of the temporal autocorrelation function of the 
intensity fluctuations of a speckle spot, and for singly scattered light, the time constant of 
the decay of this correlation function can be related to the dynamics of the scattering 
system through knowledge of the scattering wave vector, q. This is a weIl developed form 
of light scattering spectroscopy, and traditional DLS has found many applications in the 
study of the dynamics of a wide variety of systems. 

If the light is multiply scattered, the far-field scattering pattern is still comprised of 
speckle spots, and these still fluctuate in time again reflecting the dynamics of the 
scattering medium. The temporal correlation function of the intensity fluctuations can be 
measured in the same fashion as is done for traditional DLS. However, the interpretation 
of this correlation function is more difficult, and, until recently, has limited the 
applicability of DLS to singly scattered light. 

In the limit of very strongly multiply scattered light, the interpretation of the 
measured temporal correlation functions of the scattered intensity again becomes relatively 
straightforward. T~~ form of dynamic light scattering is called diffusing-wave 
spectroscopy (DWS). - It is based on the approximation that the pr0tPagation of light in 
very strongly scattering media can be described as a diffusion process. The development 
of DWS has, in large measure, been stimulated by the progress made in our understanding 
of the propagation of classical waves, such as light, through strongly scattering random 
media. The observation of an enhancement of the light backscattered from strongly 
scattering media, an~ tRe identification of this enhancement as a manifestation of the weak 
localization of light,' provided much of the initial stimulus for this research. In part, a 
focus of much of the subsequent work has been the search for strong localization of light. 
This has proven to be very elusive. The fundamental reason for this difficulty is that, while 
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light can be scattered very strongly in many media, the scattering is still not sufficiently 
strong to result in the localization of light. Physically this is reflected in the very ~e% 
contribution made by any effects of interference of the light within the medium itself. ' 
Instead, the dominant contribution of interference effects arises from the interference of the 
light after it has exited the medium. The propagation of the light within the medium is 
instead very well described by the diffusion approximation, which completely ignores any 
interference effects. Thus, one of the most important conclusions of much of this work is 
that the diffusion approximation for the propagation of light in strongly scattering media is 
quite adequate in alm ost all cases. Diffusing-wave spectroscopy exploits this 
approximation, taking advantage of the generality of these results. Instead of addressing 
the nature of the propagation of light through random media, DWS seeks to obtain new 
information about the scattering medium itself. 

There have been several detailed ~iriu~~ions about the theoretical underpinnings of 
DWS that have recently been published.' , Consequently, only a short review of the 
underlying theory is presented here. Instead, we concentrate our attention on adescription 
of one key limit that DWS must address: media that not only scatter light very strongly, but 
are themselves strongly interacting. In particular, we are concemed with very strongly 
interacting colloidal systems. Because DWS exploits the very strong multiple scattering of 
light to probe the dynamics of the system, it is ideally suited for the study of highly 
concentrated suspensions. However, a correct interpretation of the DWS data for these 
suspensions requires knowledge not only about the effects of the multiple scattering of 
light, but also about the consequences of the high particle concentration, and the 
concomitant strong particle interactions, on the multiple scattering of the light. The effects 
of these interactions must be incorporated into the theory of DWS to make it a generally 
useful technique. The effects of particle interactions on DWS have been developed in a 
somewhat ad hoc, but completely correct way, and have been used to s~~cr~sfully study 
the dynamics of colloidal suspensions as a function of volume fraction.4, , They have 
also been treated in a very formal way theoretically, 5 which yielded results in agreement 
with the simpler approaches. In this paper, our goal is. to present a physical derivation of 
the theory for DWS from very strongly interacting particles. Dur results are in agreement 
with the predictions derived previously on more formal theoretical grounds, and also 
provide a more detailed account of the underlying physics behind the more ad hoc 
approaches that have been presented in the past. In addition, we present a discussion of the 
description of the dynamics of the particles when time dependent hydrodynamic 
interactions become observable. These eff~c\~only become important at short times, but it 
is exactly here that DWS is most suitable.' Thus they must also be considered. In this 
paper, they are considered in a somewhat formal fashion, representing the initial steps 
required in order to perform more detailed calculations. 

The remainder of this paper is structured as folIows: In the next section, we present 
a very brief account of the method for describing the average structure of a suspension of 
interacting particles, using the static structure factor. We follow this by a description of the 
dynamics of interacting particles in terms of their dynamic structure factor. Here we 
outline a possible method for formally calculating the time dependent hydrodynamic 
interactions that can be probed with DWS. We then discuss the derivation of the theory for 
DWS, beginning with a discussion of noninteracting particles to illustrate the methods 
used. This is followed by the generalization to interacting particles. A very brief 
concluding section finishes the paper. 

STRUCTURE OF INTERACTING COLLOIDAL SUSPENSIONS 

The colloidal suspensions that are most amenable to study with DWS are comprised 
of particles that are typically greater than about 0.1 Jim in diameter up to several microns in 
diameter. These particles are large enough to provide sufficient scattering of the light, yet 
small enough to remain suspended by their Brownian motion. These colloidal particles 
will be noninteracting if there exist no correlations between either the positions or the 
velocities of neighboring particles. The particles will always be noninteracting if the 
volume fraction, t/J. is sufficiently low that the particles are, on average, much farther apart 
than the extent of any potential interaction between them. Mowever, as the volume fraction 
increllses, the particles begin to interact with one another. The simplest case to consider 
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is that of hard spheres, where the particles interact by a very short range repulsion due to 
volume exclusion: two particles can not occupy the same volume of space. This potential 
interaction has the shortest possible range, and is completely unavoidable. For hard sphere 
colloids, volume fractions of tfJ ~ 0.01 are sufficiently low that particle interactions are 
generally negligible and the suspension can be viewed as a completely random dispersion 
of particles. 

As the volume fraction increases, the positions of the particles become more 
correlated. This is because no two particles can occupy the same volume. As a 
consequence, there is a stronger likelihood of finding two particles separated by a particle 
diameter. These correlations can be described in real space by the two-particle correlation 
function. However, here it is more convenient to describe them in momentum space in 
terms of the particle structure factor, S(q), defined as 

(1) 

where q is the wave vector, rj is the position of the i th particle, and N the number of 
particles in the system. The brackets represent an ensemble average over all possible 
configurations of the system. 

The correlations between the particles introduce an important new length sc ale into 
the description of the system. This new length scale is the correlation length, ;, over which 
the particles are correlated. Particles within a correlation volume, ~, are correlated, and 
the light scattering from them must reflect this fact. Particles separated by a distance 
greater than ; are no longer correlated. 

The structure factor of the particles reflects the correlations in their positions due to 
potential interactions between the particles. Hard sphere interactions are always present 
because volume exclusion is unavoidable. These interactions have the shortest range. 
There are other types of potential interactions with longer ranges. For example, Coulombic 
interactions result from the presence of charges on the surface of the particles and 
counterions in the solvent. If the density of counterions is low, then the range of the 
Coulombic interactions can be quite large. This will tend to keep the particles separated 
from one another by distances much greater than their diameters. This will lead to longer 
range positional correlations, which will be reflected in the particle structure factor. 

DYNAMICS OF INTERACTING COLLOIDAL SUSPENSIONS 

Diffusing wave spectroscopy is ultimately sensitive to the motion, or dynamics, of 
the scattering particles, and thus it is essential that we also consider the description of the 
dynamics of strongly interacting particles. For example, for a suspension of colloidal 
particles there is always one important type of dynamic correlations. This is due to the 
hydrodynamic interactions between the particles and arises because of the viscosity of the 
fluid. When one particle moves due to its Brownian motion, it establishes a flow field in 
the fluid. This fluid flow will cause the neighboring particles to move as weIl. Hence, the 
particle velocities can be correlated. In contrast to the potential interactions reflected by 
the structure factor, hydrodynamic interactions result solely from the motion of the 
particles. As such, they are not reflected in the structure factor, which is an ensemble 
averaged description of the system.18 However, since DWS probes the dynamics of the 
colloidal particles, it is sensitive to hydrodynamic interactions, and they must also be 
considered. 

The dynamics of strongly interacting particles can be described in terms of the 
dynamic structure factor,18 which is the time dependent form of Eq. (1), 
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I (~ -iq·[r·(t)-r '(0))) S(q,t)=- ~e I J 
N .. 

I,J 

(2) 

As t~O, S(q,t)~S(q), the static structure factor. Diffusing wave spectroscopy probes the 
very earIy time motion of the scattering particles. Thus, in order to interpret the DWS data, 
we require a short time expansion of the dynamic structure factor. We seek a form that, at 
least formally, will inc1ude all hydrodynamic interactions. To this end, we first express the 
first derivative of the dynamic structure factor,19 

aS(q,t) _ I L(itd ' (') (0) -iq.[r;(tl)-rj(O)]) ------ tq·v· t v· ·qe 
at N .. 0 1 J 

I,J 

(3) 

Typically, when using the Smoluchowski equation to describe the partic1e 
dynamies, the hydrodynamic interactions are approximated as instantaneous,20 even at 
"short times." Within this approximation. on short-time scales we define an apparent 
diffusion coefficient,18 

where 

DO 
Dapp(q) = -H(q) 

S(q) 

H(q) =_I_L(Djj(RN)eiq.rij) 
DoN .. I,J 

(4) 

(5) 

with rij = ri - r i.!. and where DiiRN) is the diffusion tensor for a configuration of particles 
denoted by RN. The self diffusion case is obtained for q ~ 00. so that 

(6) 

where D; is usually called the short-time self-diffusion coefficient. 
We are interested in the behavior at even shorter time scales. on the order of 

tB ~ tR. where tB = mJ,o is the Brownian relaxation time, and tR is the structural 
relaxation time scale. or the time sc ale on which the configuration of particles changes 
appreciably.18 We wish to describe the dynamics at times equal to and shorter than what is 
usually called "short times" in the description using the Smoluchowski equation. Thus. we 
are interested in the leading terms when one goes to times shorter than those at which Eqs. 
(4) and (6) are valid. These deviations from Eqs. (4) and (6) arise from retarded 
hydrodynamic interactions. Diffusing wave spectroscopy is sufficiently sensitive to probe 
these effects.16, 17 and thus we must inc1ude them here. 

The dynamies of the suspended. interacting particles are governed by coupled 
Langevin equations.21 

(7) 

Here. ; .. (t - t';RN ) are time-de,Pendent friction tensors which depend on the 
configur~{ions. denoted by RN =trl' .... rN}. The forces Fj(t) arise from potential 
interactions with neighboring partieles and FiR(t) denotes the stochastic forces with 
properties given by 
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(8) 

(9) 

It should be noted that the averages in Bqs. (8) and (9) are calculated by freezing the 
positions of the particles. Moreover, the process being described here by the Langevin 
equation, Bq. (7), is a non-Markov process, and therefore the random forces described in 
Bq. (9) are not delta functi~n correlated as is no~ally the case.22 Following earlier work 
by Mazur and Bedeaux,2 Bonet Avalos et az2 showed that the velocity Uj(t) of a 
particles consists of a rapidly fluctuating part, ur(t), the "Brownian component" of the 
velocity and a systematic part, uf(t), 

Uj(t) = ur (t) + uf (t) (10) 

where 

t 

uf (t) = - J dt'~~ij (t - t';RN ). Ff (t') 
-00 J 

(11) 

Here, J1 .. are the mobility tensors, which are the reciprocals of the friction tensors, and Ff (t'r& the fluctuating hydrodynamic drag force21 exerted by the fluid on particle j. The 
Brownian component of the velocity, ur (t), has the stochastic properties, 

(12) 

(ur(t)UjB(t'») = kBTJ1 .. (t - t';RN ) = DIJ .. (t -t';RN ) 
F -IJ -

(13) 

Taking the time integral of the last equation, we obtain the usual expression for the time
dependent diffusion tensors 

00 

J dt( ur (t)u7 (0») F = lljj (RN) 
o 

(14) 

Retuming to the exact relation in Bq. (3), we now introduce approximations which 
restriet the results to short times. The fIrst approximation is to replace ri(t) - rj(O) in the 
exponent by ri(O)-rj(O)=ru. This approximation is reasonable because the particle 
confIguration changes much more slowly than the time scales over which the motion is 
measured, since t« 'fR. The second approximation is to split the total ensemble average 
into a "fast" velocity average and the usual confIgurational average, 

(15) 

where Bq. (13) has been used and Ci = q/q. Ifthe upper limit in the integral were t = 00, we 
would obtain the usual short-time apparent diffusion coeffIcient as 
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(16) 

where Eq. (14) has been used. Equation (16) agrees with Eqs. (4) and (5). 
Returning to M. (15), we can therefore introduce a time-dependent apparent 

diffusion coefficient,24 

1 ~(A cof N A ikr .. ) Dapp(q,t) = Dapp(q) - k k· d-rQi/ -r;R ). ke IJ 
NS(q,t) .. 

I,} t 

(17) 

The leading term for -r ~ 00 of 12ij( -r;RN ) is proportional to -r-3j2 • Ignoring the 
dependence of the diffusion tensors on the configuration, the second term in Eq. (17) is 
proportional to -r-lj2 and independent of the interactions on the system. This result has 
already been obtained by Pusey and Tough.24 Using the more usual expresVfns by van 
Saarloos and Mazur,25 the leading time dependence is still proportional to -r- ,but there 
will be a prefactor, which will be determined by the type of interactions, the particle 
volume fraction, among other parameters describing the system. This prefactor will also be 
different for collective and for self-diffusion. This power-Iaw behavior is the well known 
"long-time" tail in the velocity correlation function, that results from the hydrodynamic 
interactions between any particle and the surrounding fluid. 26-28 This power-Iaw behavior 
also persists to higher particle volume fractions. 17 Finally, we note that the fact that -r ~ 00 

here refers still to the short time limit for time sc ales much less than -rR. It is on these time 
sc ales that the power-Iaw behavior will be observed. Formally, the second term in Eq. (17) 
reflects the first correction due to the time dependent nature of the hydrodynamic 
interactions. 

We can also express the apparent diffusion coefficient in terms of the mean square 
displacement of the particles, as is often done in interpreting DWS data. This can only be 
done in the limit that q~ooin Eq. (17), when we can interpret the apparent time dependent 
diffusion coefficient as the time dependent self diffusion coefficient.18 Then we have for 
the mean square displacement, 

t 

(tJ.r2 (t») = 6 f dt'Dapp(q ~ oo,t') 
o 

(18) 

Thus, the first term of Eq. (17) is proportional to the "short-time" self diffusion coefficient, 
and gives 6Dft, while the second term will be proportional to ,1/2. 

We can now expand the dynamic structure factor at short times, similar to the 
expression in Eq. (4), but now including the time dependent hydrodynamic interactions, 

(19) 

At somewhat longer times, if the transient hydrodynamic interactions are not considered, 
this takes the more familiar form, 18 
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These re sults , while formal in nature, form the basis required for further detailed 
calculations of the time dependent hydrodynamic interactions. These interactions have 
generally been considered to be instantaneous in most theoretical treatments to date. This 
has not presented a severe problem, as traditional dynamic light seattering can only resolve 
motion on relatively longer length scales, at time seales much greater than TB. At these 
time scales, all of the time dependence of these effects has decayed away, and need not be 
considered. It is only with the advent of DWS, with its power to resolve motion on 
extremely short length seales, that these effects must be considered. 

DIFFUSING WA VE SPECTROSCOPY FROM NONINTERACTING PARTICLES 

Before discussing the consequences of particle interactions, we briefly review the 
theory of DWS from noninteracting systems. This will allow us to outline the procedure 
followed without the complications of the particle interactions. We will then discuss the 
modifications that must be made to account for the effects of the particle interactions. In 
DWS, just as in conventional DLS, we measure the temporal fluctuations of the intensity in 
a single speckle spot of the scattered light, or a in single spatial coherence area. To 
parameterize these fluctuations, we determine the normalized temporal autocorrelation 
function of the scattered intensity, 1 

t _ (/(t)/(0») 
g2 ( ) - (/(0)/(0»)' (21) 

where I(t) is the intensity in the speckle at time t, and the brackets represent an ensemble 
average, which for an ergodic system, is equivalent to an average over time. Rather than 
calculating the intensity autocorrelation function directly, it is more convenient to calculate 
the-normalized field autocorrelation function, 

t _ (E(t)E * (0») 
gl()- (E(O)E*(O») 

(22) 

where E(t) is the seattered field in the speckle spot. The normalized field autocorrelation is 
related to the normalized intensity correlation function by 

g2 (t) = ßgf (t) -1 (23) 

where ß is a constant dependent on the optics used in the experiment and reflects the 
number of speckle spots measured at the detector. 

For concreteness, we consider a colloidal suspension made up of identical, spherical 
particles, suspended in a fluid. In the limit of very low concentration the self diffusion 
coefficient of these particles is given by the Stokes-Einstein relationship, 

D = kBT 
o 6lrTla' 

(24) 

where kB is Boltzmann's constant, T is the temperature, Tl the viscosity of the fluid and a 
the particle radius. It is also convenient to define a characteristic time seale for diffusion of 
these particles by To = l/kg Do' where kO = 2rcn/A, with n the index of refraction of the 
medium and A the wavelength of the light in vacuum. This is the time it takes for a particle 
to diffuse by roughly the wavelength of light, and sets a characteristic time scale for 
diffusion. 

To properly analyze the data obtained with DWS requires the calculation of the 
autocorrelation function of the multiply scattered light.4,5 To calculate this, the photons 
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are divided into separate, diffusive paths. The distribution of these paths, and the 
probability that a photon will follow a path of length, s, is determined though the use of the 
diffusion equation for the light. The contribution of each path to the total correlation 
function is calculated, taking advantage of the long length of the path, and the concomitant 
large number of scattering events.29 Then the total correlation function is determined by 
summing the contributions of all possible paths, weighted by their probabilities. Since the 
scattering particles in each path are completely uncorrelated, we need consider only the 
contribution of an individual path, and then add these contributions, assuming that all 
interference that contributes to the final signal comes only outside the sampie, at the 
detector. 

The contribution to the total correlation function of a path consisting of n scattering 
events is given by its normalized correlation function, 

(25) 

where the normalized scattered field from an nth order path is given by 

E\t) TIn iq ··r .(t) --= e J J 

En(o) j=l 
(26) 

where ()j is the scattering wave vector of the lh scattering sequence in the path, from the 
particle at position rj. This is simply the sum of all the phase factors from each of n 
scattering sequences. However, since all the scattering particles are uncorrelated with each 
other, and since the scattering wave vectors are uncorrelated with the particle positions, 
when calculating the total correlation function for the paths, the only nonzero contributions 
are those from the particles in the same scattering sequence. Thus the normalized 
correlation function of the path is 

n (TIn -iq ··Ar .(t») gl (t) = e J J • 

j=l 

(27) 

where Ari(t) = ri(t) - ri(O). The phase factor in the exponent is the sum of all the 
individual phase factors of each scattering event in the path. The angular brackets reflect 
the ensemble average, which now also includes an average over different possible paths, all 
comprised of n scattering events. Since the number of scattering events is large, we 
approximate each event by an average scattering event, and neglect the conservation of 
momentum at each step. The scattering events are independent, so we can replace the 
summation in the phase factor by a product to obtain, 

gr (t) = (e -iq.Ar(t»): (28) 

where the subscript q refers to an average over all scattering vectors, weighted by the 
scattering probability or form factor. This term is nothing more than the phase factor for a 
single scattering sequence, but averaged over q. At short times, we can use a cumulant 
expansion and bring the ensemble average to the exponent. Furthermore, for each 
scattering event the scattering vector is independent of the particle's mean square 
displacement, and each can be averaged independently, giving, 
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(29) 

where again the subscript q indicates an average over scattering vectors. Finally, we 
identify the path length as s=nl, where 1 is the seattering mean free path of the light. Then, 
we use the relationship,2 

(30) 

for (q2), where 1* is the transport mean free path, the distance over which a photon must 

~vel ~efore its direction is randomized. For noninteracting, diffusing particles, 
ll.r2(t)) = 6Dot and we can further simplify the expression by introducing the 

c aracteristic time seale, 't'o = 11 k6Do, where we obtain 

(31) 

The autocorrelation function does not depend on the seattering length, I, but only on the 
transport mean free path, 1*. This allows the diffusion equation for the light, which also 
depends only on 1*, to be used. The expression in Eq. (31) has a simple physical 
significance: The fIrst part of the exponent, 2tl'fO, reflects the decay of the correlation 
function due to a single seattering event, but averaged over all seattering vectors, weighted 
by the form factor of the particle. The additional quantity, sll*, reflects the effects of the 
multiple seattering. In following this diffusive path, the light is scattered through n*=sll* 
randomizing steps. It is only steps of order 1* that can lead to decay of the correlation 
function, as a single scattering step, I, is insufflcient to change the direction of the light. 
Thus the decay rate of the total path is increased by a factor of n*, because the light 
undergoes this number of randomizing events. Physically, this correlation function reflects 
the time it takes for the total path length to change by a wavelength. This change results 
from the cumulative motion of a large number of particles. Thus long paths decay more 
rapidly since they are scattered from a larger number of particles, and each individual 
particle must move a shorter distance, and hence take a shorter time, for the cumulative 
path length to change by a wavelength. By contrast, shorter paths decay more slowly as 
the light is scattered by fewer particles and each individual partic1e must move a relatively 
larger distance, and hence take a larger time, before the total path changes by a wavelength. 
We note, however, that the correlation function for each path has a linear dependence in the 
exponential on both the path length, s, and on time, t. 

To obtain the full autocorrelation function, we sum over the contributions from all 
paths, 

(32) 

where P( s) is the probability that the light travels a path of length s. With this expression, 
we implicitly assume that each path is uncorrelated with other paths and thus simply add 
the contributions of the different paths. The quantity pes) depends explicitly on the 
geometry of the experiment, but can be determined by the use of the diffusion equation for 
light. The method of its determination can be physically understood by considering what 
happens to a very narrow pulse of light incident on one side of the seattering medium. This 
light must travel roughly 1* into the medium before it has seattered a sufflcient number of 
times that its transport becomes diffusive. The pulse exiting the other side will reflect the 
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distribution of paths followed by the diffusing photons. Some of the photons will follow 
very short paths and will exit the sampie after a short time. Many more of the photons will 
follow longer paths and will be delayed before they exit. Some photons will follow very 
long paths and will exit much later. Thus, the pulse that exits the other side of the sampie 
will exhibit a considerable amount of dispersion. Since the speed of light in the medium is 
known, the dispersion in time of the transmitted pulse direct1y reflects the distribution of 
paths the light takes in passing through the medium, allowing P(s) to be determined. 

The diffusion equation can be used to actually calculate the path distribution, P(s). 
The diffusion equation is solved for the geometry of the experiment. Since it is a partial 
differential equation, the boundary and initial conditions must be specified. The simplest 
boundary conditions to choose are absorbing boundaries, so that any diffusing photon 
ceases to diffuse when it leaves the sampie and can not re-enter the sampie. While this 
choice is adequate, and provides the simplest results, more suitable boundary conditions 
are to assurne that there is no flux of diffusing photons into the sampie at the boundaries.30, 
31 This assumption leads to more complex boundary conditions as well as more complex 
expressions for the autocorrelation function, but these provide a better description of the 
data. As initial conditions, we choose adelta function in time, a distance 1* into the 
sampie, on the side that the laser is incident. We then solve the diffusion equation to obtain 
the flux of diffusing photons emitted from the sampie at the detector, and use the 
transformation, s=ct to .obtain P( s). In fact the solution for the autocorrelation function is 
actually somewhat simplified by recognizing that Eq (32) is the Laplace transform of P( s), 
so that we need only obtain the solution to the Laplace transform of the diffusion equation 
to obtain the autocorrelation function direct1y. 

The correlation function measured with DWS can be calculated direct1y for several 
experimentally relevant geometries by solving Eq. (32). We do not discuss these solutions 
in detail here, but refer to other papers where this is done.4, 5,11,12 Here, we simply quote 
the results. We consider only the case where the light is transmitted through the sampie, 
which we take to be a slab of infinite extent and of thickness, L. Then, if the incident laser 
is focused to a point on one side of the sampie, and the scattered light is collected from a 
point on the other side of the sam pie, on the same axis as the incident light, the normalized 
field correlation function is given by, 

where 

gl(t)= j [A(S)Sinhs+e-S(I-~~)lds 
L~ 
I*V 1'0 

[ 
4sl* ( 41*)] 2/* 2/* - 2sl* S 1--

A, = hL'-I) lie 3L +(sinhHJL"CoshS} 3L 

( ) (2SI*)2 (2SI*)2 . 
sinh s + licosh s - li 

(33) 

(34) 

While complicated, these expressions are readily evaluated, and provide excellent 
agreement with the data. 

DIFFUSING WA VE SPECTROSCOPY FROM INTERACTING PARTICLES 

In developing an expression for the temporal autocorrelation function of the 
intensity fluctuations of the light scattered from strongly interacting particles, we wish to 
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maintain as much of the simplicity of the derivation for noninteracting particles as is 
possible. In particular, we wish to again use the diffusion equation to describe the 
propagation of the light, and we wish to again express the correlation function in terms of a 
Laplace integral over the weighted contribution of paths. For interacting particles, 
however, the scattering from some of the particles is strongly correlated with that from 
other particles. Thus, we can no longer consider the contribution of each path to be totally 
uncorrelated with the contribution of allother paths. Moreover, even within a single set of 
paths, we must consider the possible correlations of different scattering particles. Thus we 
begin by considering the scattered electric field for an nth order sequence, 

(35) 

Here, each path is assumed to consist of n distinct scattering events, 1, 2, ... n, with the 
subscript a denoting the scattering event. The ath scattering event in the kth path is from a 
particle at position r~, and the scattering wave vector is q~ and b(qa) is the scattering 
form amplitude from a single particle. Because of the strong interactions between the 
particles, many individual paths are strongly correlated with one another. In particular, 
paths following very nearly the same sequence of scattering events are correlated, resulting 
in some volume of correlated paths following a route through n scattering sequences. 
Thus, to calculate the correlated field, we must sum over the paths k, reflecting the number 
of paths within this correlated volume. Then, the normalized correlation function for nth 
order scattering sequences is, 

(36) 

where i andj are indices which sum over distinct paths that are correlated with one another, 
and the brackets again indicate an ensemble average, which in this case also includes the 
average over all sequences of n scattering events. We consider the numerator of the 
expression in Eq. (17), which is the unnormalized field correlation function, 

G{'(t) = (~EF(t)EJ * (0») = (~Ii: b(qf)b(q1)e -iQrrf(t)+iQ1or1(O)) (37) 

I,j I.) a.ß 

We assurne that all the particles are identical and therefore have the same form amplitude 
factor. To simplify this expression further, we consider the scattering within a single 
scattering sequence. Since to remain fully correlated, the individual paths must follow very 
nearly the same route, we approximate the scattering wave vector~ within the same 
scattering sequence but of different paths as being equal, setting q~ = qk = qk. Moreover, 
we assurne that the scattering length is larger than the correlation length, I > ;, so that only 
one scattering event can occur within each correlation volume. Thus partieles from 
different scattering sequences are not correlated in time and terms with a::F- ß average to 
zero, removing the summation over ß in Eq. (37). Furthermore, the summation over i and j 
needs only to extend over the volume of the scattering sequence. This expression then 
simplifies to 
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(38) 

where F(q) is the particle scattering form factor. The indices i and j in the second 
summation now simply correspond to particle indices within the volume of a scattering 
sequence, or a single correlation volume. We can thus move the form factor outside of the 
second summation and identify this summation in terms ofthe dynamic structure factor, 

(39) 

where N~ is the number of particles within the correlation volume of the scattering 
sequence. 

The correlations extend only over the region contained within ~, and only a single 
scattering sequence occurs within this volume. Thus, the particles in different scattering 
sequences are separated by distances greater than ~ and hence are statistically independent. 
We therefore make the further approximation that the total correlation function is the 
product of independent contributions from the n scattering sequences. This approximation 
is similar to that made in the derivation of the correlation function for the case of 
noninteracting particles in that it ignores the detailed conservation of momentum along the 
whole path, but should nevertheless be a reasonable approximation for long paths where n 
is large. To calculate the contribution from each of the independent scattering sequences, 
we note that the static structure factor multiplied by the form factor represents a properly 
intensity-weighted, q-dependent contribution to the correlation function. Thus the total 
contribution of this independent scattering volume is the sum over q of these contributions, 
and the unnormalized field correlation function of the nth order scattering sequences is, 

(40) 

Since at t = 0, S(q,t) = S(q), and we have for the normalized correlation function for ntb 
order scattering sequences, 

n [J dqqF(q)S(q,t)r 
gl (t) = n 

[J dqqF(q)S(q)] 
(41) 

To proceed, we use the short time expansion for the dynamic structure factor 
discussed earlier. For simplicity, we begin with the simpler form, in Bq. (20), which does 
not explicitly include the time-dependent hydrodynamic interactions. Then we have, 

n t _ S(q) [
f dqqF(q)S(q)[I- q2 Do H(q)t]jn 

gl ( ) - f dqqF(q)S(q) 
(42) 

Expanding this, we have 
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n ) [1 1>ot I dq q3 F(q )H(q )ln 
81 (t = - I ' dqqF(q)S(q) 

(43) 

which we can approximate as 

(44) 

Here, we have introduced the notation 

(45) 

To use the diffusion approximation for the light propagation through the medium, we must 
express the number of scattering sequences in terms of the path length, and we must 
describe the light propagation in terms of the transport mean free path. Since n=sll, we 
have 

s 1* 
n=--

1 * 1 
(46) 

and from the definition of the transport mean free path,2 

(47) 

Thus, finally, the expression for the normalized field correlation function for the 
contribution from n scattering sequences is 

-D s[Hh t 
0 1* [S] 

8r(t) = e 3 (48) 

We note that this form has exactly the same dependence on s, 1* and t as does the same 
contribution for the case of noninteracting particles. Thus, this form can be used directly in 
Bq. (32), and the same results hold for the case of interacting particles. Moreover, these 
results are in agreement with those obtained previously by MacKintosh and lOhn,15 Fraden 
and Maret,13 and Qiu et al.14 

Finally, we can, at least formally, use our more exact expression for the expansion 
of the dynamic structure factor, Bq. (21). To so this requires making the substitution, 

(49) 

in Bq. (48). From the expression for Dapp(t), Bq. (17), the first term, which corresponds to 
the limit where the transient hydrodynamic interactions no longer contribute, would yield 
exactly the same results as the simpler case above, Eq. (48). The second term in the 
expression would include the leading contributions of the hydrodynamic interactions, and 
for DWS measurements, these would be averaged over the form factor times q3. Note that 
the S(q) in the denominator of the second term in Bq. (17) would cancel with the S(q) in the 
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integral in Eq. (49). The important physics for the DWS measurements is that, unlike 
traditional DLS, they average the dynamies over q3F(q). The additional factor of q3 
ensures that the average is dominated by the contributions at higher q. This tends to 
emphasize the contribution of self-diffusion for larger particles, greatly simplifying the 
interpretation of the results. 

CONCLUSIONS 

Our goal in this paper has been to present a physical pieture to describe the 
quantities measured by DWS from interacting particles. We have considered a simple case 
by way of example: identical.colloidal particles, interacting solely as hard spheres, where 
all the scattering is from the particles themselves. We describe the correlations of the 
particle positions in terms of their static structure factor, and the dynamies of the particles 
in terms of their dynamic structure factor. We show that the presence of the correlations 
between the particles requires that the correlations between some of the diffusive light 
paths be retained, unlike the case of noninteracting particles. However, if this is done, the 
correlation function then is expressed in terms of the dynamic structure factor. This can be 
formulated in a manner that is analogous to the case of noninteracting particles, allowing 
all the results derived for that case to be applied, with simple substitutions. 

We have also presented some discussion of the dynamies of the interacting particles 
at very short time scales. This is required because DWS can probe the particle dynamies at 
much shorter time, and length, scales than has heretofore been possible. When the 
scatterers are colloidal particles, hydrodynamic interactions greatly affect their dynamies. 
Furthermore, at very short time scales, we must consider the time evolution of these 
hydrodynamic interactions. Wehave presented formal expressions for these, for 
interacting particles. Unfortunately, the evaluation of these formal expressions is quite 
difficult. However, the feasibility of making measurements of these effects using DWS 
provides greater incentive for their evaluation. 
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INTRODUCTION 

The possibility for study of localization effects in optically-disordered systems has 
spurred a renewed interest in the study of light scattering from dense random media, 
as evidenced by the numerous contributions to this volume. For several years, strong 
photon localization has been anticipated in composite materials possessing sufficiently 
high density of scatterers with sufficiently high cross sections for scattering photons.! 
Unfortunately, no unambiguous observation of strong photon localization in the visible 
or infrared wavelength range has yet been reported. Recent work has, however, indi
cated strong photon localization in the microwave regime for a randomly disordered 
system.2 The difficulty in achieving localization of visible light arises from the lack of 
suitable materials possessing dielectric contrast sufficient to cause a localization tran
sition in a completely random system. The conventional approach has been to rely 
on random suspensions of particles with large single-scattering Mie resonances, large 
cross-sections obtained for certain ratios of particle size to wavelength.3 Determination 
of the optimal situation for realization of strong photon localization may be the most 
pressing theoretical challenge of classical wave localization.4 Of particular interest is 
one theoretical approach that finds the presence of order underlying the disorder , such 
as in a disordered optical superlattice (e.g., a colloidal crystal), will be beneficial in 
achieving photon localization.5 

Experimental searches for strong photon localization have taken several routes 
in hope of observing non-diffusive photon transport. Toward this end, a complete 
understanding of photon transport in such optically dense systems is needed as well 
for the extended states in the diffusive regime. Measurements of photon transport in 
dense systems of relatively weak scatterers are presented here to highlight some of the 
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factors that influence photon transport in dense (but not localizing) optically-disordered 
systems. 

METHODS FOR PHOTON TRANSPORT MEASUREMENT 

Observations of coherent backscattering (CBS) comprise most of the experi
mental work on photon localization to date; time-resolved techniques have also been 
applied with success. The advantages of each method are offset, of course, by certain 
disadvantages. CBS can be observed from nearly any sampIe surface using relatively 
inexpensive lasers, but primarily short path lengths are sampled because of the reflec
tion geometry. Time-resolved work is easiest in transmission because of the long total 
path lengths (transit times) involved, but is made difficult by sampIe absorption and 
intense reflection. 

Coherent Backscattering 

Nearly all of the experimental evidence of photon localization comes from the 
observations of CBS made over the past few years. Observations of CBS, discussed in 
the context of weak localization of light, were first reported in 19856,7 from concen
trated colloidal suspensions of sub-micron latex spheres in water.8 Ensemble averaging 
of light backscattered from static suspensions was also found to exhibit CBS.9,10 Theo
retical work ensued to describe the observed features of CBS: peak shape,ll polarization 
effects,12 and changes in shape arising from truncated pathsP The differing contribu
tions from long and short light paths to CBS were clarified experimentally with a novel 
difference technique14 and via termination of light paths with absorbing dye.15 Lab
oratory reviews of CBS have recently been published by the Amsterdam and CNRS 
groups.16-18 

Observed features of CBS include an angular width inversely proportional to kf 
(the photon wavevector and transport mean-free-path length), an enhancement over the 
incoherent backscattering by nearly a factor of two, and a rounding of the predicted 
triangular shape caused by finite angular resolution or absorption. The observed shape 
was found to be in good agreement with theories based on random-walk theorylO,ll and 
summation of ladder and maximally-crossed diagrams}9 

Study of CBS in the time domain becomes possible when time resolution of several 
picoseconds is available. The angular dependence of enhancement in backscattering of 
light pulses from latex suspensions has been demonstrated using a streak camera having 
15 ps resolution.20 Short paths contribute most of the angular breadth of the CBS peaks 
observed to date; longer paths should make only narrow angular contributions to the 
peak. Direct observation of the time evolution of the CBS peak has been reported using 
a light-gating technique based on second-harmonic generation. 21 

Pulse Time-of-Flight 

Our early experiments demonstrated that time-of-flight transmission measure
ments of short laser pulses could be used to determine optical diffusion coefficients 
precisely.22 Time-resolved transmission can be used to measure the diffusion coefficient 
of light directly in terms of temporal delay and pulse shape (temporal distribution of 
diffusion paths). This method permits probing of the random medium on length scales 
from 10 up to 106 mean-free-path lengths in low absorbance sampIes and provides 
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Figure 1. Time-Resolved Pulse Transmission Intensity Series. 
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The displayed data were obtained by injecting 0.5785 firn light into a 10% solution ofO.135 firn diameter 
polystyrene spheres. Curves are offset vertically and norrnalized by peak height for clarity. 

a quantitative means for separation of elastic scattering and absorptive effects. The 
precision of this approach offers the possibility of detecting small departures from sim
ple diffusion. Recent developments question the appropriateness of applying D = cl* /3 
without regard to possible renormalization of the velocity of energy transport;23,24 these 
are discussed in detail elsewhere in this volume. 

Improvement of time resolution by nearly two orders of magnitude over our ear
lier instrument22 has been obtained by application of a synchronously pumped cavity
dumped dye laser and high-speed sampling techniques, thereby permitting study of 
smaller and more absorptive samples.25 Similar resolution has also been demonstrated 
with excellent sensitivity by time-correlated single photon counting.26 Additional res
olution may be obtained by application of cross-correlation or Kerr gating techniques, 
limited only by the shortness of available laser pulses. In principle, these nonlinear 
optical techniques offer the highest temporal resolution and, in addition, the highest 
sensitivity with the use of conventional photomultiplier tubes and photon counting. 

Transport parameters have been obtained using a time-resolved transmission tech
nique optimized for fluid samples.25 Pulses (10 ps duration, Avac = 0.5785 pm) from 
a synchronously pumped dye laser were injected into each sampie through an optical 
fiber; transmitted pulses were detected with a biplanar phototube and digital sampling 
oscilloscope for various values of effective sam pie thickness s, the distance between the 
launch point of the light (fiber tip) and the output window (See Fig. 1). Two param
eters, the diffusion coefficient and an absorption parameter ,,(, as in I(t) = e--yt ID(t), 
were extracted from observed pulse shapes for all s by least-squares fitting of the solu
tion of the diffusion equation with boundary conditions representing our experimental 
geometry.22 Figure 2 shows the corresponding fit of the model to the data in Fig. 1 
using the same diffusion coefficient and absorption parameter for each distance. 

The time-of-flight approach has been applied to a thin, dense sampie of titania, 
where the diffusion coefficient D was reported to be nearly a factor of three lower than 
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Figure 2. Pulse Transmission Data with Corresponding Diffusion Model Fits. 
The diffusion model contains two physically significant parameters: the diffusion coefficient, D, and 
the absorption parameter, '"(. The injection point to exit window distance, s, is indicated next to each 
curve. 

that expected classically.26 Similarly, transmission of femtosecond pulses have explicitly 
demonstrated failure of the diffusion approximation at short length scales.21 

Speckle Autocorrelation Spectroscopy 

The speckle observed in transmission can be used, in principle, to extract the same 
information about photon transport as is obtained from pulsed experiments. The scale 
dependence of the correlation frequency of intensity fluctuations transmitted through 
a small apert ure in far field as laser frequency is swept was first examined by Genack.28 

The length dependence of the spectral correlation of intensity fluctuations in a coherence 
area was introduced to establish photon diffusion in titania sampies with i < IJLm.28 

This work was extended to confirm the relationship between speckle fluctuations and 
pulse propagation.29 We also applied this technique, with a sam pie and experimen
tal configuration well-characterized by pulse transmission measurements, to evaluate 
its utility in determining transport in thin or absorptive sampies where time domain 
measurements become difficult.30 Suitable care in executing and interpreting speckle au
tocorrelation spectra is required as the effects of intrinsic absorption and finite apert ure 
are important. Long range intensity correlations have been observed subsequently in 
the visible31 and in the microwave regime32 using this technique. Frequency-dependent 
speckle autocorrelation and pulse transmission have become widely used for determin
ing the optical diffusion parameter in dense random media. 

Additional Methods 

Length dependence of cw transmission can also be used to determine the 
transport mean-free-path length; for systems exhibiting diffusive transport with in
significant absorption the total transmission is proportional to i* / L, where L is the 
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sampie thickness. The dependence of transmission on L is modified in the presence of 
significant absorption.28,33 The total transmission approach has been used to establish 
photon diffusion in titanium dioxide sampies having mean-free-path lengths less than 
one micron28 and has also been used to demonstrate the departure of the transport 
scattering cross section from simple density scaling discussed below.16 

Multifrequency phasefluorometry, conventionally used to determine excited 
state lifetimes, has recently been extended to the determination of transport mean-free
path lengths.34 In this technique, the photon time-of-flight through the random medium 
is measured as a phase-shift induced on the Fourier components of the ultrashort light 
pulse, and the transport parameter is extracted via the diffusion approximation. 

FACTORS INFLUENCING PHOTON TRANSPORT MEASUREMENT 

Correlation Effects 

Photon transport in the diffusive regime can be characterized by the transport 
(or moment um-exchange) mean-free-path length, 

l* = (na*t1 , 

where n is the number density of scatterers and 

J da . 
a* = dn (1 - cos B) dn. 

(1) 

(2) 

da / dn is the differential Mie cross section for scattering into dn at an angle B, derived 
from Maxwell's equations for an isolated uniform dielectric sphere.3 Equation (1) is 
accurate only in the limit of dilute scatterer concentration, however. As n increases, 
spatial correlation among scatterers leads to phase correlation among scattered waves 
and weakens the effective cross section for scattering below that of an individual scat
terer. 

Correlation effects may be introduced17 by replacing a* with 

a: = J ;~ S(B)(l - cosB) dn, (3) 

where S( B) is the static structure factor obtained from an appropriate radial distribution 
function, g(r), by 

S(q) = 1 + n J [g(r) - 1] eiq.r d3.r. (4) 

q is the scattering vector of the elastically-scattered photon of wavevector k and is 
related to the scattering angle by q = 2ksin(B/2). 

A systematic study of photon transport in well-characterized aqueous colloidal 
suspensions of mono disperse latex balls has been conducted over a range of densities 
spanning the dilute regime to the high-density regime, where correlations among par
ticles become important.25 Photon transport parameters were obtained for suspensions 
of 0.087,0.135, and 0.198 11m diameter (d) latex balls with volume fractions f ranging 
from ",0.1 to 20%, obtained by successive dilution from the 10% stock suspension or 
by centrifuging for higher density. 

In addition, extinction mean-free-path lengthst , .e, were obtained from the same 
sam pies for comparison with .e*. A computer-controlled variable thickness cell was used 

te = (nO')-l, where 0' is given by Eq. (2) or (3) without the (1- cos B) momentum-exchange factor. 
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in the usual extinction configuration to measure the relative intensity of transmitted, 
unscattered light with variation of sampie thickness x: 1 = 10 exp( -x I l). Extinction 
data were obtained primarily with Avac = 0.5145 pm from an argon ion laser because 
of its inherent stability and ease of operationj extinction measurements obtained using 
Avac = 0.5785 pm from the picosecond laser were observed to agree with the previous 
data after scaling for wavelength. 

Observed values of l'" and l are shown in Fig. 3 over the accessible range of scatterer 
densities. To facilitate comparison of different ball sizes, dimensionless densities n' 
have been introduced as the number of scatterers per cubic wavelength, nA3 , where 
n = (61 'Ir) f I J3 and A is the wavelength in water. In all three sampies, as the density is 
increased, departures from n-1 scaling of the mean-free-path lengths become apparent. 

The hole correction modeP5 provides the easiest introduction of particle correla
tions. Equation (4) can be evaluated analytically for the hole correction distribution 
function given by g(r) = 0, r< dj = 1, r ~ d. Good agreement with our observations 
is obtained for the larger diameter balls. Unfortunately, the hole correction model 
begins to diverge for f higher than about 10% for the 0.087 pm balls, arising from 
physically-inadmissible negative values calculated for S(O) at small angles. The same 
limitation of the hole correction model was previously noted in an analysis of extinction 
measurements from similarly dense systems.35 

The Percus-Yevick g(r) can be used to provide a better approximation.17 An exact 
solution of the Percus-Yevick integral equation for g( r) for hard spheres is available36 

and has been used here for evaluation of Eq. (4).37 The resulting corrections are shown 
as the curved lines in Fig. 3 which increasingly deviate from the n-1 scaling as density 
is increased. Agreement is favorable with both transport and extinction observations. 

The experimental data have been reduced by least-squares fitting of straight lines 
in the dilute limit, with slope of -1 representing n-1 scaling, thereby removing possible 
systematic errors such as incorrectly-reported scatterer size. The observed high den
sity values are reported relative to these best-fit lines as correlation correction factors 
r( n') = lcl l and shown in Fig. 4 for comparison with theoretical values. Correlation 
effects are capable of doubling observed mean-free-path lengths from the expected Mie
based lengths at the highest densities studied. Spatial correlation is observed to affect 
extinction more strongly than transport. The angular dependence of S(O) is such that 
it deviates from unity mostly at small angles, deviating more strongly with increasing 
density. This angular dependence is somewhat similar to that of the factor (1 - cos ()) 
already present in Eq. (2); each term serves to suppress the forward scattering con
tribution to the overall cross section. Thus, the correlation effect is correspondingly 
weaker for O'~ than O'c. 

For n' < 1 correlation effects on transport are relatively unimportant. Significant 
correction factors for extinction lengths can arise at lower values of n' however, espe
cially for larger ball diameters. For a given actual density, say f = 10% (indicated by 
the arrows in Fig. 4), correlation effects are always stronger for smaller scatterers. 

Previous studies17,16 of CBS of light from colloidallatex suspensions have employed 
a comparison of observed backscattering widths with calculated l*. Correlation effects 
have been clearly observed in CBS at high densities16 and have been included in the 
evaluation of transport calculations as described aboveP We have shown by direct 
measurement of l* that this approach is indeed valid for these disordered systems. 
Clearly, correlation effects in photon transport cannot be ignored in the dense random 
systems currently being explored in localization studies, and in fact may tend to mask 
its observation. 
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Figure 3: Observed Transport and Extinction Mean-Free-Path Lengths. 
Departure from Mie theory without correlation correction (straight line) increases with increasing 
scatterer density. The correction from Percus-Yevick (PY) theory (solid curves) is compared to the 
Hole Correction (HC) model (dashed curve) for the 0.087 Jlm scatterers. 
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Figure 4. Correlation Correction Factors. 
Departure from simple n- 1 scaling of the path lengths is presented as the ratio of the observed to 
expected values, derived from best-fit n-1 scaling at low density. Percus-Yevick (solid curves) and Hole 
Correction (dashed curves) factors are shown for comparison. The arrows indicate scatterer densities 
of lO%. 
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Figure 5. Coherent Backscattering Cone N arrowing with Increased Surface Reflectivity. 
Actual angular range was ±8 mradj reduced here for clarity. Sampie was 2.01/Jm polystyrene balls, 
10% volume fraction in water. INSET: Experimental geometry used: a, linear polarizerj b, beamsplitterj 
c, quarter-wave platej d, partially-silvered mirrorj e, sampie cello 

Surface Reftectivity 

Recently the effects of surface refiections on photon transport measuremeilts in 
disordered systems have been considered.38-41 Refiection from the sampie surface of 
a photon attempting to escape a random medium has the effect of relaunching it and 
thereby increasing the average path length of photons injected into the sampie. Photon 
transport measurements that are sensitive to the total photon path are thus infiuenced 
by the presence of strong surface refiectivity, typically encountered for large incidence 
angles, abundant after multiple scatterings. The severity of this effect was first noticed 
in the optical memory effect and accounted in large part for discrepancy with existing 
theory.38 Subsequently, theoretical work considered the effects of surface refiections on 
CBS, pulse transmission, and frequency- and time-dependent speckle correlations.39-41 

The magnitude of these e:ffects on CBS and their infiuence on transport parameter 
determination are reported here for observations in the presence of strong surface re
fiections. 

The phase difference associated with a multiply-scattered path relative to its con
jugate path is ticp = (ki + k I) . R, where ki,1 are the initial and final photon wavevectors 
and R is the separation between initial and final scatterers. In the diffusion approxi
mation, the rms distance between first and last scatterers is R '" & for path lengths 
s. For elastic multiple backscattering, phase coherence will be maintained (smali ticp) 
within an angle given by Ock& < 1. Longer paths thus predominately contribute to 
CBS within much smaller angles than low-order scattering. Surface refiectivity, which 
serves to reinject photons into the random medium, lengthens the average photon path 
and results in a narrowing of the CBS cone. 

CBS measurements were made in a standard 45° beamsplitter geometry16 using a 
polarized 5 m W ReNe laser and photon counting. A quarter-wave plate and linear po
larizer were used in front of the sampie as shown in the inset of Fig. 5 to eliminate single 
scattering and to select the helicity-preserving part of the multiply-scattered intensity 
in the backscattering direction.15 The CBS peak shape calculated for scalar waves has 
been shown to be in good quantitative agreement with helicity-preserving CBS for vec
tor waves such as lightP This experimental configuration facilitates comparison with 
the scalar wave calculations of Refs. 39 and 40. 
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Figure 6. Effects of Surface Reflectivity on Transport Parameter kR* Obtained from CBS. 
Open symbols indicate the rising value ofkl* obtained from Eq. (5) where surface reflectivity is ignored; 
the relatively flat closed symbols result when surface reflectivity is incorporated using Eq. (6). The 
solid curve shows the model of Ref. 39; the dashed curve, Ref. 40. 

Surfaee reflectivity was varied by enclosing the suspension in eells eonstructed of 
various partially-silvered mirrors. Mirrors were used having normal reflectivities in air 
of 0.1-0, 0.25, 0.36 and 0.46, whieh dropped eonsiderably in eontact with the aqueous 
polyball suspension. When averaged over all ineidenee angles and both polarization 
states, using a standard treatment42 for a silver mirror with a thin titania overcoat in 
eontact with water, the effective surfaee reflectivities, r, were ealculated and returned 
to 0.15, 0.30, 0.40, and 0.48, respectively. Reflections into the sampie from the exterior 
glass-air interface were limited to rv 300 from normal by geometrieal eonstraint, over 
whieh the reflectivity averaged over both polarizations does not deviate signifieantly 
from 0.04. 

The deerease in CBS eone widths arising from inereased surfaee reflectivity is 
evident in Fig. 5, where the width is seen to drop by rv 25% on ehanging from a glass 
eell to one with a half-silvered mirror. Previous studies have determined that the full 
width at half maximum FWHM rv 0.7 j(kC*) in a glass eelU6 Thus, elevated surfaee 
reflectivity clearly leads to overestimates in C* determined from CBS measurements. 
The CBS peaks were weIl fit by the following expression, derived for the ease of no 
surfaee reflectivity following Refs. 16,17: 

10(0) 1 1 {lI} 
(1 2 ) ( )2 2 - + - [1 - exp( -2o:zo)] + Zo a+v +u v a 

(5) 

u = kC*(l - eos 0) 

v (1 + seeO)j2 

kC* I sin 01, 

where Zo = .7104 is the loeation of the trapping plane used in the diffusion model. Very 
slight eone rounding owing to sampie absorption, finite sampie size, and finite angular 
resolution did not signifieantly impair the fitting proeedure. The resulting kC* parame
ters, indieated by the open symbols in Fig. 6, inerease with inereasing reflectivity. The 
parameters for the three ball sizes have been normalized by the average value of H* as 
determined below. 
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Corrections to CBS from surface reßections were first considered through evalu
ation of the Green function for the case of finite reßectivity in the context of scalar 
diffusion.39 Pl'evious evaluation of CBS lineshapes based on diffusion relied on the 
simplifying assumption of r = 0 with Dirichlet boundary conditions accompanied by 
placement of a trapping plane at a distance O.7104l* outside the sample surface,u 
Surface reflectivity introduces mixed-type boundary conditions, complicating the eval
uation of the Green function and necessitating reevaluation of Zo for each value of r 
selected. The foHowing model has been proposed for incorporating surface reßectivity 
into CBS:39 

1 1 {I 1 [fa-l ]} o - - + - 1 + -- exp -20:zo "}'.( ) - 1 + 2(f + zo) (0: + v)2 + u2 v 0: fa + 1 ( ), (6) 

where the reßectivity factor f is related to the average surface reßectivity by f = 
r / (1 - r). The transport parameters extracted from the experimental CBS peaks using 
this model, with Zo = 0.7104 throughout, are shown as solid symbols in Fig. 6. Clearly, 
this model accounts for the surface reßectivity and the transport parameter extracted 
from each cone remains constant, within the experimental noise, as the reßectivity is 
increased. 

An alternative approach to incorporate surface reßectivity, which circumvents the 
issue of associated boundary conditions, has been based on the idea of treating reßection 
as a simple reinjection of light.40 An important advantage gained is that a closed-form 
expression emerges based on the r = 0 results obtained previously. For CBS, the r = 0 
cone shape "}'o is modified in Ref. 40 to: 

"}' = (1 - rho/(1 - r"}'o). (7) 

The solid and dashed curves in Fig. 6 represent the values that would result from 
ignoring surface reßectivity, according to the two models above, Eqs. (6) and (7). These 
curves were constructed by evaluating each model at a given reßectivity and then 
by fitting Eq. (5), extracting the value of kl* that would be assigned were surface 
reßectivity ignored. Since the three resulting peak shapes are nearly identical, this 
procedure works surprisingly weH. The model of Ref. 39 provides the best agreement 
with our observations, deviating somewhat at higher reßectivity, possibly owing to 
the failure of Zo = 0.7104 to accurately represent the boundary condition. Further 
theoretical progress on this matter has been the subject of several recent papers.43,44 

Intensity and Polarization Statistics 

The speckle pattern formed by the interference of reßected or transmitted waves 
after propagating in random media can be described by the methods of statistics and 
is of great interest. Statistics are usually derived by considering waves comprised of 
random and statistically independent amplitudes leading to Rayleigh (negative expo
nential) statistics.45 In the multiple scattering regime, non-Rayleigh statistics have been 
reported in CBSIO and in microwave experiments46,33 with restricted geometry and cor
rections have been introduced for this geometry.47 Such studies have focused mainlyon 
scalar waves, but recently the vector nature of light has attracted attention in experi
mental studies.48,49 The study of polarization dependent ßuctuations of a single speckle 
spot has led to a new kind of statistics, termed microstatistics,48 which describes the 
polarization behavior of the many coherence areas comprising a speckle pattern. 

As the polarization vector of the incoming laser beam is rotated, the intensity 
modulation at any point in the speckle pattern (with no output polarizer) can be 
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Figure 7. Experimental Set-up for Polarization Microstatistics. 
SMC: Stepper motor controller, PD: Photodiode, >'/2: Half-wave plate. 

described by 
1(0) = acos2 (O - <p) + b (8) 

where 0 is the polarization angle.48 For each point in space this modulation can be 
represented by three parameters: amplitude a, baseline b, and relative phase <po 

Freund et al. examined microstatistics in reflection48 and hypothesized that the 
main parameter needed to characterize these statistics both in reflection and transmis
sion geometries is the depolarization ratio p. For long scattering paths involving point 
scatters, the additional parameters usually used to describe correlation of the scattered 
fields can be expressed in terms of the more easily determined p. Thus, the microstatis
tics of different sampIes, having different mean free pathlengths 1* but identical p, have 
been proposed to be similar, within this approximation.48 

To test further the suggestion that microstatistics is a universal function of p, 
thin alumina membranes known as Anopore membranes,t stacked to obtain higher p 
values and submerged in water for lower p values, have been used to span a wide 
range of depolarization. These membranes are available with thickness of 60 pm and 
nearly cylindrical pores of 0.1 pm or 0.2 pm in diameter with p = 0.75 and 0.90 in 
air, respectively. Details about the microstructure of these membranes can be obtained 
from Ref. 50. Extinction mean-free-path lengths were measured, as described in Ref. 25 
to be 1 = 33 and 22 ± 1 pm for the above membranes in water, respectively. 

Our experimental study aimed mainly to obtain microstatistics in transmission for 
a wide range of p values and compare the results for different sampIes having the same 
p.51 The experimental set-up used to investigate microstatistics for the scattered field 
in transmission is shown in Fig. 7. Typically 20 mW of 514.5 nm Ar+ laser radiation 
was incident on the sampIe with an illuminated area having a diameter of 6 mm. 
Polarization rotation was obtained by stepping a half wave plate with aresolution of 
1.8°. The scattered intensity was collected by moving an optical fiber (0.28 m from 
the sampIe) to different points in a two dimensional grid, where the average size of a 
coherence area in the speckle pattern was about 80 times larger than the core of the 
optical fiber, having a core diameter of 3.7 pm. The dark count rate was at least three 
orders of magnitude sm aller than the signal, detected with a cooled photomultiplier 
tube using conventional photon counting. Fluctuations in laser intensity were removed 
by normalizing the photon counter readings with the readings of a photodiode which 
averaged hundreds of coherence areas in the scattered field. 

Individual probability density distributions, the microstatistics, for these param
eters were obtained by sampling a large number of coherence areas ('" 2000-4000). 

*Anopore Inorganic Membrane Filter, Anotec Separations Ltd., U.K. 
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Figure 8. Typical Polarization-Dependent Intensity Modulations for a Sampie with Unity p. 
Each curve represents the intensity modulation at a different point in the speclde pattern, demonstrat
ing the range of parameters in Eq. (8). 

Representative samples of our raw data are plot ted in Fig. 8, where each curve was 
obtained at a different point in the speckle pattern. Modulation parameters have been 
norma.lized by the average intensity, e.g., a = a/ (I) for convenience. 

In Fig. 9, the amplitude probability density distributions are shown for samples 
with p = 0.044 ± 0.002 and p = 1.00 ± 0.02, where Jooo Pa (a) da = 1. It is seen clearly 
that as p-tO, the amplitude probability density distribution shifts toward the origin 
with a narrowing range of possible amplitude va.lues. i. e., a decreasing fullwidth for 
the distribution. For a sample with p=O, corresponding to no amplitude modulation, 
this distribution would be identica.lly zero except at the origin. 

A theoretica.l form for the amplitude probability density distribution for unity p 
has been derived by Freund et al.:4s 

(9) 

where K1 is the first-order modified Bessel function. This model, with no adjustable 
parameters, and the data obtained from the scattered intensity in transmission are in 
excellent agreement as shown in Fig. 9. 

The baseline statistics exhibit an asymptotic form Pb(b) '" exp( -ab) as shown in 
Fig. 10. The baseline statistics revert to negative exponentia.l statistics in the non
multiple scattering regime (a-t1 as p-tO). The analysis of the asymptotic decay of 
Pb(b) (0.5 < b < 1.5) observed for unity p shows that a ~ 3 ± 0.3 compared to a=4 
reported for the same interva.l of b in Ref. 48. For large va.lues of b, the asymptotic 
decay parameter for Pb(b) was predicted to be 4. This suggests that the theoretica.l 
predictions for the asymptotic decay of the baseline statistics might need some revision. 

Probability density distributions for the intensity of laser speckle both in trans
mission and reflection have been obtained with a set-up similar to that used for the 
microstatistics measurement. As a speckle pattern becomes depolarized, the individua.l 
coherence areas become "smeared" and the contrast of the pattern is reducedj the in
tensity statistics start to deviate from the expected negative exponentia.l statistics but 
can be retrieved by ana.lyzing the pattern with apolarizer. The intensity statistics for 
a completely unpolarized speckle obtained from a p = 1 stack of Anopore membranes 
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Figure 9. Amplitude Prob ability Density Distributions. 
Curves are shown for (a) p = 1.00 and (b) p = 0.044. The solid line in (a) is the theoretical model 
of Ref. 48. Different bin sizes used for (a) and (b) result from sampling different ranges with a fixed 
resolution. 

shows excellent agJ!eement with the expected result:52 

p,;,pol(J) = 4 J exp [-2J] , (10) 

where J = 1/(1). After insertion of apolarizer between the scattering system and the 
optical fiber of the detector (See Fig. 7), intensity distributions were found to be in 
excellent agreement with negative exponential statistics. The resultant fits of 

rlj0l(J) = exp [-(1 + h)J] , (11) 

summarized in Table 1, show that any possible departure from negative exponen
tial statistics for this highly multiple scattering system is limited to less than 1%. 
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Table 1. Fit Parameters for Negative Exponential Statistics of Polarized Speckle. 

# of analyzer 
membranes orientation 0: Eq. (11) 

1 11, .1 0.003, 0.008t 
2 11, .1 0.005,0.006 
4 11, .1 0.009,0.003 
6 11, .1 0.010,0.007 

tThe uncertainty in the determination of 0 is ±0.002. 
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Figure 11. Intensity Statistics for Unpolarized Speckle. 

The continuous curve is Eq. (10) (Inset: log plot). 
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Figure 12. Intensity Statistics for Polarized Speckle. 

The continuous curve is Eq. (11) (Inset: log plot). 
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CONCLUSIONS 

Results of several experimental probes of photon transport in highly-multiple
scattering random media have been presented. The effects of spatial correlations among 
scatterers on the transport mean-free-path lengths obtained from time-resolved trans
mission of picosecond laser pulses compare favorably to corrections introduced into the 
Mie formalism via a static structure factor. Transport parameters determined from 
CBS have been improved significantly by current theoretical models for sampies with 
high surface reflectivity. Finally, a new application of laser speckle to the study of 
dense random media has been discussed. The recent advances in this field, including 
improved understanding of photon transport probes, should facilitate the search for 
localization of light in disordered optical superlattices. 
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INTRODUCTION 

Light propagation in composite media can be studied particularly conveniently in 
porous media. Such materials have the property that one of the components (the material 
in the pore space) can be chosen in a wide variety of ways. For example, it can be a 
suitable liquid, or a mixture of liquids. In addition, the composition can be a function of 
time. Thus, one can, by varying the composition of the pore space continuously, investigate 
a large number of different media in a single experiment. 

In this paper, we discuss some basic concepts in light propagation in porous media, 
and illustrate by means of typical experiments how such media can be used conveniently for 
a range of both fundamental and applied investigations. 

BASIC CONSIDERA TIONS 

In the study of light propagation in porous media, the most convenient quantity to 
measure is the transmission. Intuitively, one might expect this quantity to be immeasurably 
small in most porous media. Consider, for example, natural sandstone. This is a 
mechanical aggregate of irregularly-shaped quartz grains, and has porosity cf> (i.e., pore 
volume divided by total volume) typically in the range 10% - 30%. Although the individual 
grains are transparent, a visual inspection of the composite rock suggests that it does not 
transmit light. Thus, it appears this most common naturally occurring optical composite is 
not amenable to study by visible light. 

We have demonstrated recently, however, that when a sandstone is saturated with an 
appropriate fluid, there is a measurable transmission of visible light through macroscopic 
distances. I Our study, which was carried out in the short-wavelength limit (A < < d, 
where A is the wavelength of the probing light and d is the typical grain size), leads to the 
following conc1usions about the transmission T (Unless otherwise specified, the transmission 
T in this paper is defined as the total emergent power integrated over the exit face of a slab 
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of porous medium corresponding to a collimated light beam incident normally at the entry 
face.): 

(i). The smaller the contrast Iln between the refractive indices of the grains and 
the pore-fIlling fluid, the greater the transmission T. 

(ii). The larger the grain size d (up to a certain limit), the greater the 
transmission T. 

(iii). The more ordered the structure of the porous medium, the greater the 
transmission T. 

It was also observed experimentally, and in numerical simulations, that the reflected 
power Rat the entry face (the total power diffusely reflected from the entry face) shows the 
following correlation: 

(iv). The smaller the grain size d or greater the contrast Iln, the greater the 
reflected power R. 

Observation (i) suggests that porous media can be made to transmit visible light by 
introduction of an index-matching pore fluid. Observation (ii) suggests how the 
measurement of transmission can serve as a diagnostic probe of typical grain or pore size 
in a porous medium. Observation (iii) can be further developed through experiments in 
which a porous medium with an ordered structure can be made disordered by partial 
saturation with a contrasting pore fluid. Observation (iv) provides a qualitative 
understanding of the phenomenon of light-guiding in porous media. 

DIFFUSIVE PROPAGATION IN POROUS MEDIA 

Under certain circumstances, to be identified below, the propagation of light in 
porous media can be described by the diffusion approximation. Consider a monochromatic 
point SOurce of light at the origin in a porous medium which is isotropie on a bulk: scale. 
The average speed of light in the medium is v = ein, where c is the velocity of light in free 
space and n is the appropriate effective refractive index of the medium. 

We fIrst assume there is no absorption in the medium. The propagation of light in 
the medium is then described by a photon "elastic mean free path" tel' defmed by the 
condition that a photon travels a distance t eb on average, before being scattered. It has been 
shown that, approximately, I 

(1) 

where r is an appropriate correlation length in the medium (assumed to be much smaller than 
the dimensions of the medium and much larger than the wavelength of light), eo is the 
average dielectric constant of the medium, &e is the dielectric contrast between the grain and 
the pore spaces, and k=21C~/A. is the wave number. We expect r to be typically of the 
order of d. Using this fact, and neglecting logarithmic corrections, we fmd a simpler form 
of Bq. (1): 
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(2) 

If we assume isotropic elastic scattering, then after N scatterings a photon will have 
been scattered, on the average, NI3 times in each of the three Cartesian directions. Thus, 

it will travel a rms distance r = (ei .fN73 in a time t = N (ei Iv, or 

r 2 = Dt 
(3) 

where 

(4) 

represents the photon diffusion constant. 
We expect to see diffusive behavior for sampie thicknesses L > > ( el. In thinner· 

slabs, the photons are expected to propagate ballistically. Another requirement for diffusive 
behavior is that (ei > > A. Ifthis condition is not satisfied, interference between the electric 
fields scattered from different scattering centers will influence the transmission. In 
summary, the conditions for diffusive propagation are 

(5) 

Next, consider how this picture is altered by weak absorption. The absorption mean 
free path (abS is defmed by the statement that a photon traveling a distance dx has a 
probability dxl (abs of being absorbed. Thus, the probability that a photon is not absorbed in 
distance x is exp( -xl (abs). N ow, what is the probability that a photon has been absorbed by 
the time it travels a distance r from the origin? This takes a time r/D, so that the total path 
length traveled is vr/D. When this path length equals (abs, the probability that the photon 
has not been absorbed is 11 e. We call this distance r ab.: 

(6) 

Unless r abs is less than the sampie thickness L, the transmission of light through a 
porous medium is little affected by absorption. 

CONTINUUM VIEW OF LIGHT DIFFUSION: ANALOGIES TO FLUID FLOW 

Just as light diffuses more easily in porous media with larger grain sizes, so also 
fluids flow more readily in porous media with larger grains (and hence, larger pores). This 
latter dependence can be seen from the following empirical relation for the permeability kr 
of a porous medium towards fluid flow:2 

(7) 

where Co is an empirical constant, and So is the specific surface area (the internal surface 
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area per unit bulk volume). Since So a tf', the permeability increases with increasing grain 
size. 

The correlation between light transmission and fluid flow has recently been observed 
in experiments carried out on sandstones of various pore sizes.' In the following, we 
further explore the formal basis of this analogy between light transmission and fluid flow in 
porous media. 

The permeability of a porous medium is defmed by the Darcy equation:3 

(8) 

where Jf is the fluid (mass) current density, ." is the fluid viscosity, andp is the pressure. 
In a diffuse photon field, the quantity analogous to the pressure is the diffuse intensity 

(or local energy density) U (see e.g., Ref. 4), which obeys the conservation law 

oU fOr -at =- v·Ju-a.U+Q, (9) 

where Ju is the energy current density, a represents the fraction of the local energy density 
which is absorbed per unit time, and Q represents any sources or sinks of energy in a given 

volume. The current density Ju may be assumed proportional to the local energy density 
gradient: 

(10) 

where D is the photon diffusion constant defmed earlier. (The minus sign appears because 
the photons diffuse in the direction of decreasing photon number, or energy, density.) 
Combining the preceding two equations gives 

D'Vl U-a. U+Q = au 
ot' (11) 

We now consider some limiting cases. In the steady state, with no sources or sinks, 
we get 

'Vlu - J(2u = o. (12) 

We identify K with the quantity 1/ r ab. defmed earlier in Bq. (6), so the above 
expression becomes 

a. 3 = 
D te1fabs ' 

In absence of absorption, with no ~ources or sinks, we get 

D'VlU = oU at 

which is simply the diffusion equation. We can now rewrite Bq. (10) as 
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(15) 

Thus, in analogy with Eq. (8), 

(16) 

is the "optical permeability" of the medium. The effective refractive index n is seen to be 
analogous to the viscosity .". 

To explore the connection further, we examine the scaling ofthe optical permeability 
kopt with grain size d. We compare this with the analogous scaling of the fluid permeability 
and the electrical conductivity of a porous medium consisting of non-conducting grains and 
a conducting pore fluid. Suppose that we expand such a medium isotropically, so that each 
linear dimension is increased by the same factor C. The electrical conductivity (1 is 
scale-invariant, and remains unaffected by this transformation. The fluid permeability kr 
will increase by a factor Cl, since the cross-section of each flow channel is increased by Cl, 
as is the Poiseuille flow through such a channel for a given pressure gradient and viscosity. 
Finally, the optical permeability kopt is expected to increase by a factor C, since kopt«@el 

and we expect that @el«C' Summarizing the discussion, we have 

a(C)«CO (17) 

(la) 

(19) 

and hence, for a given class of porous media, 

k~Pt/ k f = const. (20) 

As one example of the above relationship, we may combine Eqs. (2), (7) and (16) to obtain 
(assuming spherical grains of diameter d) 

(2l) 

CONNECTION TO ELECTRICAL CONDUCTIVITY FOR NON-TRANSMISSIVE 
GRAINSPACE 

In the context of the above discussion, porous media may be divided into two 
categories: (i) both the grain space and the pore space transmit light (e.g., sandstone, glass 
bead pack); and (ii) only the pore space transmits light. In the latter class, e.g., in some 
limestones, the grains appear milky white, indicating perhaps there is considerable scattering 
within a single grain so light transmission occurs essentially through the pore space. 

For such media, the scaling law (Eqs. 17-19) may be made somewhat more concrete 
by resorting to suitable models. As an example, we may consider the "shrinking tubes" 
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model,5 which was originally introduced in an effort to connect the electrical conductivity 
and the permeability of a porous medium. The model starts from a single cubic 
multi-dimensional network of pores, all of the same length a and initially of the same radius 
rp- Then, at each stage i, a particular pore is selected at random and its radius is shrunk 
by a factor x < 1. After a number of shrinkages, this process leads to a very wide 
distribution of pore radii - probably consistent with real porous media. On this basis, it has 
been shown that the electrical conductivity (f and the fluid permeability kr vary as power laws 
in the porosity 4>: 

(22) 

(23) 

where m is an index related to the shrinkage parameter x by 

m = ln (x2 ) (24) 

A similar argument can be made for the optical permeability. In a medium where 
the grain is full of internal defects that the photon mean free path inside the grain is very 
short (hut still much larger than the wavelength), essentially all the light trying to enter the 
grain is reflected diffusely back into the pore space. Assume, for simplicity, the pore space 
is a regular cubic network of pores, each of length a and radius rp (a > > rp). Thus, a 
photon travels a distance of the order of rp in the pore space before being reflected. Since 
the reflection is diffuse, the reflected ray may come off at any angle. Since the photon, on 
reflection, is equally likely to travel in either direction along the pore, there will be required, 
on average, about (alrp)2 = N reflections for a photon to travel the length a of apore. The 
time required to do this is 7 = (alrp)2 r Je', where c' is the speed of light in the pore. 
When the photon emerges from this pore, it is equally likely to go in any of six directions. 
Thus, by the usual random-walk argument, the photon requires 3p2 time steps 7 to travel p 

pore lengths away from its starting point in the x direction. Putting all these estimates 
together, we find the time required to travel a distance x = pa is about t = 3x2/rp c' or x2 

= Dt with D = c'r/3. Comparing this with Eq. (4), we find that the mean free path of a 
photon is of the order of rp-

Hence, the photon conductance (i.e., photon energy current per unit intensity 
gradient) varies as r/. (The extra factor rp comes from the cross-section, which converts 
a conductivity into a conductance.) By the same arguments used in the shrinking-tubes 
model, this leads to the relation 

k a: ,f,.3m/2 
opt 'I' , (25) 

and hence to the fact that the ratio 

(26) 

is independent of the porosity 4>. Hence, knowledge of any two of these three quantities can 
lead to an estimate of the third, as a function of 4>, at least in this shrinking tubes model. 

Finally, we examine the scaling of the optical permeability within the shrinking-tubes 
model. Suppose we expand each linear dimension of the medium by a factor C. This leaves 
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the porosity and the electrical conductivity unchanged, but increases /er by a factor CI and kopt 

by a factor C. Thus, R remains scale-invariant in this process. 

CONFINEMENT OF DIFFUSE LIGHT IN HIGH PERMEABILITY CHANNELS 

The formal analogy developed above between light transmission and fluid flow in 
porous media leads directly to the following experimentally testable prediction: In a porous 
medium made of grains of a given size, if there exists a channel of larger size grains, then 
light will tend to propagate preferentially through that channel (since it is the higher 
permeability path). 

This prediction is tested qualitatively in the experiment of Figure 1 where, in a 
continuous medium made of "small" spherical glass beads (refractive index ng1ass = 1.526) 

there is a layer of an intermediate-sized beads and a layer of large beads. These two layers 
are interconnected. The largest beads correspond to the highest permeability, the smallest 
to the lowest permeability. The dissimilar bead layers are simply deposited one above the 
other, without there being any artificial interfaces. In order to achieve light transmission 
over the macroscopic distances of the experiment, the entire medium is saturated with water 
(flwater = 1.336). 

a 

d= 1.00·1 05 mm 

Wmer·saturaled glass 

beau pack. bead 

uiamclcr d=O. 10·0. 11 mm 

b 

Glasslube In"ndescenllamp 

Figure 1. (a) A glass bead "reservoir" containing layers of different bead sizes, and an air-fi1led 
central glass "well" into which a light source can be lowered. The bead pack is saturated with water in 
order to achieve light transmission over macroscopic distances. (b) Photograph of the reservoir illuminated 
by a centrallight source (a 750 W tungsten-halogen lamp). 
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The results of the experiment [Figure l(b)] illustrate the analogy: the maximum light 
transmission occurs through the layer with the largest bead size (the highest permeabiIity 
layer). A somewhat weaker transmission occurs through the layer with the intermediate bead 
size (the intermediate permeability layer). Very little transmission occurs through the 
medium with the smallest beads, or the lowest permeabiIity medium. Note how the light 
passes from the high permeabiIity channel through to the intermediate permeabiIity channel. 
(There is no direct path to the latter channel from the source.) 

Apart from the analogy to fluid flow, the above experiment also illustrates the 
phenomenon of light-guiding in a porous medium. This will be discussed more generally 
in a following section. 

MORPHOLOGICAL VIEW OF LIGHT DIFFUSION: ORDER-DISORDER 
TRANSITIONS 

It was mentioned earlier that, in the short-wavelength limit, the transmission T is 
larger through an ordered mediom than through a disordered medium, all other things being 
the same. This behavior is seen in transmission through close-packed aggregates of spherical 
glass beads and though such packs of irregularly-shaped quartz grains of comparable size. 
The former exhibit a far greater transmission. We now describe numerical simulations and 
experiments that further explore the connection between short-wavelength transmission of 
light through a porous medium, and the degree of order in the medium. 

The degree of order in a porous medium may be discussed through the sketches in 
Figure 2. Figure 2(a) shows a periodic arrangement of spherical glass beads, and represents 
the highest degree of order. In Figure 2(b), this state is slightly disturbed, creating some 
disorder. Figure 2(c) shows adense pack of irregularly-shaped quartz grains, and represents 
a structure of yet greater disorder . 
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Figure 2. Illustration of ordered and disordered structures in porous media. 



The ideal arrangement in Figure 2(a) is difficult to materialize in practice. However, 
the difference in transmission between the cases in Figures 2(a) and 2(b) can be studied by 
means of numerical simulation calculations such as described in Ref. 1. It is found that the 
transmission T for the case (b) is higher. Thus, near perfect order, transmission may 
actually increase with the introduction of disorder, depending on how the disorder is created. 

The difference between the cases in Figures 2(b) and 2( c) can be studied conveniently 
through experiments, such as shown in Figure 3, which also serve to investigate the effect 
of time-dependent disorder in each individual medium. 
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Figure 3. Time-traces of the transmission through toluene-saturated glass bead and sand grain 
packs, as they dry in open air. The experiment proceeds from the fully saturated state to the fully dry 
state. Inset: The experimental setup. 

We now describe these experiments in detail. A 5 mm thick close-packed layer of 
glass beads (bead diameter = 250-300 j.tm) is kept fully immersed in toluene (1loo1uene = 1.496) 

in a compartment with porous wall. The transmission T of a He-Ne laser beam (red light; 
A = 0.63 j.tm) through the layer is monitored as a function of time, as the bead pack dries 
through natural evaporation. The behavior of the transmission can be understood through 
the following characteristic stages. During the ftrst stage, the bulk of the liquid is drawn 
into the porous cell wall, leaving the remaining liquid as a film adhering to the bead 
surfaces. The transmitted power decreases rapidly during this stage, as the contrast between 
the refractive indices of the beads and the pore space grows larger. In the next stage, the 
pore space dries more or less uniformly throughout the bead pack, and the transmission 
decreases monotonically but more slowly. We attribute the reduced transmission to an 
increase in disorder in the form of air/liquid interfaces in the pore space which contribute 
a great deal of surface area from which to scatter light. During the final stage, the 
transmission increases and then levels off. We attribute this increase to the gradual 
disappearance ofthe air/liquid interfaces (which, of course, must be absent when evaporation 
is complete), and hence to a transition from a disordered state back to a somewhat more 
ordered state. 
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Figure 3 also shows the results of the same experiment carried out in a elose pack 
of irregularly-shaped sand grains (made of mineral quartz, 1lquartz = 1.556) with a size range 
and refractive index similar to the glass beads. Since the sand pack, unlike the bead pack, 
is highly disordered to begin with, the removal of a small additional disorder (in the form 
of air/liquid interfaces) at the last stage does not appreciably increase the transmission. 
Hence, in contrast to the glass bead pack, the transmission through the sand pack decreases 
monotonically with time to its fully dry value. It is also noted that in the fully-saturated or 
fully-dry state, the glass bead pack has a far greater transmission than the sand pack. 

In summary, of the three configurations in Figure 2, the slightly disordered 
configuration has the highest value of the transmission T, and the random configuration has 
the lowest value. It is possible to cause a porous medium to pass to states of progressively 
increasing or decreasing order through the gradual introduction or removal of a pore fluid. 

DEPENDENCE OF TRANSMISSION ON SAMPLE THICKNESS: STUDY OF 
OPACITY REGIMES 

In a porous medium where neither the grain space nor the pore space absorbs light, 
the opacity is generally due to light diffusion, which is dependent on the pore size-scale 'po 
Under this condition, the transmission T has adependence on the thickness L of the sampIe 
slab. However, when the pore size 'p approaches the wavelength of light in a disordered 
medium, there is expected to arise another type of opacity: the localization opacity (see e.g., 
Ref. 7). In a simplified description of incipient localization of light (or of photons), we may 
view the pores and the grains as random waveguides near cutoff frequency and random 
resonators. Interference of light waves in this structure causes photons to be trapped in 
certain locations for a fmite time. Since these photons are nearly prevented from reaching 
the detector, they give rise to an opacity . The waveguide effect requires the refractive index 
contrast I:!.n between the pore space and the grain space be large (a ratio of perhaps 2 to 3 
between the two refractive indices for localization to occur1). When localization opacity is 
superimposed on diffusion, we expect the dependence of T on L to change. For this, and 
other reasons, it is useful to study the dependence of transmission on the sampIe thickness. 

For this experiment we look for a porous medium with pore sizes comparable to the 
wavelength of visible light. Such a medium is natural chalk, or porous calcite. Calcite is 
optically birefringent,8 with principal indices of refraction 1.49 and 1.67. Thus, for 
air-mIed pores, the refractive index ratio is about 1.5 which may or may not be large enough 
to cause localization. Since natural chalk is often heterogeneous on a millimeter scale, and 
may contain impurities, a preferable alternative for this experiment is the familiar chalkboard 
chalk [Figure 4(a)]. We note that the pore sizes here bracket the wavelength of red light, 
0.63 ILm. 

Figure 4(b) shows the dependence of the transmission T (normalized to the incident 
optical power To ; To = 10 mW) on the sampie thickness L for dry chalk. The graph 
indicates a dependence of the type Ta To exp(-xL), where the slope X of the graph is an 
opacity-like quantity. This is indicative most likely of a single source of opacity (i.e., 
diffusive opacity) in the range ofthe measurement. The lowest power measured is 1.0 nW, 
below which we reach the noise floor of the measurement setup. 

For comparison, we also show in Figure 4(b) the results for chalk sampies soaked 
(i.e., nearly fully saturated) in acetone (nacetone = 1.376). The exponential dependence is 
again observed. As expected, the transmission is higher, and X is lower. 
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Figure 4. (a) SEM photograph of the pore structure of chalkboard chalk, with 10 pm scale shown. 
(b) The transmission as a function of the sampie length for dry and acetone-wet sampies of chalk. Inset: 
The experimental setup. 
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LIGHT-GUIDING IN POROUS MEDIA 

The earlier observation of light confmement in high permeability channels is in fact 
a result of a "reflection" of diffuse light at the interface between two porous media with 
different values of the photon mean free path f el . As is evident from Eq. (2), this difference 
can arise due either to a difference in the pore/grain sizes (as in the above example) or to 
a difference in the pore fluid (as in the example below). Before describing an experiment 
that provides evidence for the latter case, we present a simple qualitative argument to support 
the concept of light-guiding in a porous medium. 

We consider an imaginary surface dividing two porous media with mean free paths 
fell and f el2 , with fell> f el2 • Then, by observation (iv) mentioned at the outset, a photon 
starting at this surface and traveling into Medium 2 has a greater probability of being 
reflected into Medium 1 than vice versa. The overall effect of this is to cause confmement 
of light in Medium 1. A formal theory of light -guiding in porous media can be developed 
from these initial considerations. 

Figure 5 shows the experiment supporting the idea of light-guiding in an initially 
homogeneous porous medium where a difference in f el is created by having different pore 
fluids. The sampie is again chalkboard chalk, but now a portion T' of the transmitted light 
T is observed through an aperture. Initially, the sampie is fully saturated with acetone. It 
is then allowed to dry by natural evaporation. The top and the bottom faces of the sampie 
are sealed against evaporation with transparent seals, so a cylindrical drying front gradually 
moves towards the axis ofthe sampie. The mean free path f el is longer inside the cylindrical 
front where the pores are acetone-filled, than outside, where the pores are air-filled 
[Cf. Eq. 2]. 

When the sampie length L is small (here 4 mm) compared to the width (1 cm), the 
light passing through the aperture is not much affected by the progression of the drying 
front. Thus, the dominant effect observed is the reduction of T' due to the drying of the 
central parts of the sampie. When L is comparable to the width (here L = 8 mm), the light 
intercepted by the aperture is dependent on the location of the drying front. Initially, as soon 
as the skin layer of liquid dries, there is a better index-matching to the free space so that 
more light escapes and T' decreases. Then, as the drying front moves inward, the light is 
guided more and more in narrower cylinders, so that T' increases. Eventually, the drying 
of the interior parts of the sampie causes T' to decrease to its fully-dry value. This 
experiment thus provides further evidence of light-guiding in porous media. 

SPEED OF LIGHT IN POROUS MEDIA 

The distribution of transmission times of various ray paths through porous media has 
been studied through numerical simulations, 1 examples of which are shown in Figure 6. The 
figure shows the distribution of transmission times for photons incident at the entry face at 
the same instant of time. These examples are for a pack of quartz grains, 2.6 mm thick, of 
various grain sizes, and saturated with various fluids. 

Figure 6 suggests some criteria for defining the "speed" of light: the first arrival 
time, the peak power, the steepest slope ofthe leading edge, etc. Clearly, as I1n decreases, 
all these definitions converge. For a given pore fluid, the smaller the grain size d, the 
smaller the speed of light. Referring back to observation (i) mentioned at the outset, we find 
that smaller the speed of light, the smaller the transmission T. In this way, the speed of light 
and the transmission in porous media are linked. A detailed analysis of the speed of light 
in random media may be found in Ref. 9. 
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Figure 6. Numerical simulation of the distribution of the transmission times for quartz grain packs 
of various grain sizes (indicated in the figures) , saturated with (a) toluene; (b) water; and (c) air. 
Normalization is such that for each saturating fluid, the area under a curve equals Tffo (1'0 = incident 
power). Tbe absolute normalization is arbitrary but is the same for each of the three sets of curves (from 
Ref. 1). 
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REMARKS 

We have discussed a variety of concepts and related experiments in light propagation 
in porous media. These are intended to serve as a general basis for the development of more 
detalled and more sophisticated theories and experimental designs. Future investigations in 
this field may also benefit from multi-wavelength and time-domain studies. 
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INTRODUCTION 

Sinee the diseovery of enhaneed backseatter (weak loealization) [1], light seat
tering in disordered media has drawn a lot of attention. In the pursuit of strong 
loealization, a lot of interesting phenomena were diseovered, such as fluetuations on 
the transmission of light through disordered slabs [2-7]. Recently, a new dass of 
disordered media have come into focus, "non-linear disordered media." By non-linear 
in this eontext, a non-linear response of the eonstituting partides of the disordered 
medium to the eleetro-magnetie field is meant, e.g., particles with a seeond-harmonie 
suseeptibility. Agranovieh and Kravtsov predicted interesting phenomena that eim be 
observed in non-linear disordered media [8]. They stated that enhaneed backseatter 
ean also be observed in the seeond-harmonie light generated in a non-linear disordered 
medium, although this is not yet experimentally verified. 

Apart from enhaneed backseatter, intederenee of multiple seattered waves mani
fests itself in the oeeurrenee of fluctuations on the transmission and refleetion of light 
in quenched disordered media. We present preliminary experimental results of the 
measurement of the fluctuations on the transmission of seeond-harmonie light gener
ated inside the medium as a function of ineoming and outgoing angles. There exists 
a short-range eorrelation in the fluctuating seeond-harmonie transmission patterns. 
As a non-linear medium, we used a thin layer of a non-linear erystal in a powder form 
(LiNb03 ). 
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Figure 1. Experimental set up for measurement of the short-range correlation function. 
The fluctuating signal is recorded as a function of the angle rotation of the sampie. Speckle 
is measured by rotating the PMT around the sampie. 

THEORY 

An important theoretical paper on correlations in the transmission of light 
through disordered media was written by Feng et al. [4]. We briefly summarize the 
result. The volume occupied by the random sampie is considered to be a waveguide, 
supporting N modes. The sampie will mutually couple these modes in a random 
manner, and intensity transmission coefficients TO/ß give the fraction of the power in 
the incoming mode 0 that is coupled into the outgoing mode ß. For the correlator 
C O/ßO/' ß' == (oTO/ßoTO/, ß') (tri angular brackets stand for averaging over the disorder ) Feng 
et al. [4] obtained the expression C = C(l) + C(2) + C(3) with 

C~~O/'ß' - D l (TO/ß)(TO/'ß' }c5~qo,~qpFl(ßqO/L), 
C~~O/'ß' - D2g- l (TO/ß}(TO/'ß,}[F2(ßqO/L) + F2(ß~L)], 
C~~O/'ß' - D3g-2(TO/ß}(TO/'ß')' 

where the D's are constants of order unity and where Fl and F2 are form functions. 
The magnitude of the C(lLpart is of order 1 if 0 = 0' and ß = ß', and decays 
exponentially with increasing ~q == qO/ - qO/, = ~ -~, ("memory effect"), and is 
zero if ~qO/ i= ~~, with q the transverse wave vector. The magnitude ofthe C(2Lpart 
is of order g-l (with g the dimensionless conductivity Nf/ L, where f is the mean-free 
path and L the sample-thickness) if either ~qO/ ur ~~ = 0, and shows the power-law 
decay with increasing ~q. Finally, the magnitude of the C(3Lpart is of order g-2 and 
does not depend on either ~qO/ or ~~. The results predict that if, in an experiment 
on a sampie with 9 :> 1, just one incoming mode is excited, the C(l) and the C(2) 
correlations will be present in the signal of just one outgoing mode and of the total 
transmission, respectively. If an incoming modes are excited by mutually uncorrelated 
signals and the total transmission is measured for different sample-realizations (we 
then have a situation analogous to that in an electronic conduction experiment) the 
C(3Lterm (Universal Conductance Fluctuations) would be found. 
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Figure 2. Fluctuating transmitted intensity (speckle) of second-harmonic light as a function 
of angle of rotation around the sampie. 

The short-range correlation function C(l) has been studied by varying the angle of 
incidence [5] and by varying the wave length [6,7], and good agreement between theory 
and experiment was found. In the present experiment, the short-range correlation is 
studied for second harmonie light generated by the scattering particles and the result 
is compared with the correlation that exists for linear scattering particles. 

EXPERIMENT 

The experimental set-up is shown schematically in Fig. (1). A Spectra Physics 
3800 Nd:YAG laser was used, giving 90 ps. pulses at 1064 nm. The beam was 
chopped and focused to 560 ",m on the sampie. The sampie was prepared by sus
pending LiNb03 powder, obtained through milling a single crystal, in chloroform. 
Particle sizes were between 0.1 and 5 ",m. The suspension was then spread on a 
transparent substrate, and after evaporation of the chloroform, its thickness was de
termined microscopically. A reference beam was split off and doubled in a LiNb03 

crystal. The infra-red contributions to the second-harmonic signals were blocked by 
absorption filters. Second-harmonic signals were divided by the reference signal to 
correct for power fluctuations on the fundamental beam. A photon counter was used 
to detect the second-harmonic light, giving about 25 cps. At each point the counts 
were accumulated for 5 sec., using digital lock-in detection to eliminate any contribu
tions of ambient light to the signal. The speckle patterns for the fundamental wave 
length were measured after replacing the photon counter by a photodiode. First, 
the existence of speckle in the second-harmonic and fundamental light was verified 
by rotating a detector around the sampie while measuring the transmitted intensity. 
Then, the fluctuating intensity in transmission was recorded as a function of the angle 
of rotation of the sampie. The sampie was rotated over an angle of 180 mrad for each 
scan. From these scans the short-range correlation in transmission was calculated. 
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Figure 3. 0: Measured eorrelation function of seeond harmonie light. 
b.: Measured eorrelation function of fundamental light. 

CONCLUSION 

The existenee of speekle in the seeond harmonie light is shown in Fig. (2)The 
measured eorrelation functions for both the seeond harmonie and fundamental light 
are shown in Fig. (3) for the same sampie of 65 J.'m thickness. The shown eorrelation 
functions are averages of three scans. The eorrelation function for the fundamental 
wave length is scaled to make the top of the fundamental and the seeond harmonie 
eorrelation function eoincide. 

In eonclusion, we have verified the existenee of speekle in the seeond harmonie 
light generated in a disordered medium with a non-linear suseeptibility. Seeondly, 
we find that the halfwidth of the short-range eorrelation function in transmission for 
the seeond harmonie light is half the halfwidth of the fundamental light. Further 
experiments will have to eonfirm these preliminary results. 
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PHOTON DIFFUSION AND INTERNAL REFLECTIVITY 

AA Lisyansky, I.H. Li, D. Livdan, N. Garcia, T.D. Cheung, and AZ. Genack 

Department of Physics, Queens College of CUNY, Flushing, NY 11367 

INTRODUCTION 

The particle diffusion model is widely used to describe the propagation of waves in 

multiply scattering random media [1-3]. It has been used to calculate the functional form of 

key aspects of electromagnetic propagation such as surface intensity profiles [2], which 

determine the shape of the coherent backscattering cone [4,5], angular correlation functions 

[6,7] the thickness dependence [8] and temporal distribution of refIection [9], and 

transmission [10], spatial [11-15], spectral [8,11-16], and temporal [17] correlation functions. 

Though qualitative agreement is obtained between experiment and theory, these observations 

do not give quantitative values for spatial transport parameters such as the transport mean free 

path ~, the distance in which the direction of propagation is randomized inside the medium, 

or for the coherent penetration depth zp [3], the distance from the surface at which the 

placement of a source of diffusive flux faithfully mimics the randomization of the coherent 

incident beam. Recently it has been realized that in order to ac hieve good agreement between 

theory and experiment and to extract microscopic scattering parameters from measurements, 

it is necessary to include reflection at the boundaries in the analysis of the experiment [18-

21]. In the present study we perform experiments which critically test the photon diffusion 

theory. We show, that with proper choice of boundary conditions, diffusion theory is in 

excellent agreement with measurements of the microwave intensity distribution inside the 

sample and of the optical intensity profile on the surface of the sampie. We also show that 

internal reflection can dramatically change long-range spatial and spectral intensity-intensity 

correlation functions. 
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In Sec. 2 we present calculations of the intensity distribution as a function of 

transverse, p, and longitudinal, z, displacements [(p,z) using diffusion theory and show how 

internal refleetivity can be incorporated in these calculations. The effeet of internal refleetion 

on the spatial and speetra1 intensity-intensity correlation functions is considered in See. 3. 

Comparison of optical measurements of [(p,z) and total transmission T(L) for a point source 

and of microwave measurements of [(z) and T(L) for a plane wave source with the predictions 

of the theory developed in See. 2 are reported in Sees. 4 and 5, respeetively. The excellent 

agreement between experiment and theory allows us to determine zp and f. From 

measurements of the diffusion coeffieient, we are able to determine the transport velocity v. 

INTENSITY DISTRIBUTION IN TUE PRESENCE OF INTERNAL REFLECTION. 

TUEORETICAL RESULTS 

We fIrst consider the propagation of the electromagnetic radiation through a slab of 

a random medium of infinite extent in the x, y directions situated between 0 < Z < L. We 

assume that we are in the weak scattering regime in which kl> 1, where k is the magnitude 

of the photon wave veetor, so that wave interference does not influence average transport. 

The intensity distribution inside a slab obeys the diffusion equation, 

(1) 

where a. is the absorption coefficient, D is the diffusion coeffieient and Q(r) is a source 

function. We replace the incoming coherent flux by a source of diffusive radiation at aplane 

z = zp' with a strength equal to the ineident flux. In this case, the source function has 

cylindrical symmetry with respect to the z-axis and can be written as Q(r) = Q(p)Ö(z-zp)' 

Since the source is assumed to He inside the sampIe, the only flux ineident from a boundary 

towards the interior of the slab is the refleeted part of the outgoing flux. This results in the 

following boundary conditions for Eq. (1) [20,21], 

[~[(r) - .!!...[(r)] = 0; 
zOI dz z=O+ 

[_1 [(r) + .!!...[(r)] = 0, 
zar dz 

z2L -

(2) 

where zO/.r = 2f(1 +RI,r)/3(1-RI.r) and RI and Rr are the refleetion coefficients of the left (input) 

and right (output) boundaries, respeetively. 
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Solving Eq. (1) with the boundary conditions, (2) we obtain, 

Here !C-(')..) = 1..2 + a? and P'}.y, r)(X) = sinh[k(A)x] + WO/, rcosh[k(A)x] and JO(X) is the Bessel 

function of zero order. 

For the case of coherent flux focused on the slab surface, Q(p) = qö(p)/p, where q is 

a constant, whereas for aplane wave incident on a slab, Q(p) = q. In the latter case we 

obtain a simplified expression for the intensity distribution, 

l(z) = a~ [( 1 +a2 zO/zor ) sinh(aL) +a(zO/+zOr)cosh(aL) r 
xlp~l)(Z)Pt)(L-ZP); z<zp 

p~/)(zp)Pt)(L-z). z>zp 

(4) 

U sing the relationship between the intensity and the flux of diffusing photons, and the 

boundary conditions given by Eqs. (2), the normalized transmitted flux can be expressed as, 

T(L) = JtransmilleiL) 1 - R I D zOr 
----::---- = -- J +(L 1 = --. 

Jincident q q 
(5) 

If absorption is weak, aL < 1 and WOI,r < 1, we have, 

T(L) = (zOr + zp) j(L + zOI + zOr)' (6) 

In the case of aplane wave incident on a weakly absorbing slab, zOl" corresponds 10 the 

length beyond the boundary at which the intensity extrapolates to zero. In the absence of 

absorption and reflection at the boundaries, diffusion theory gives zOl" = 21/3, whereas 

transport theory gives the Milne result, zOl,r = O.7104f [1]. We will incorporate this 

correction below in Sees. 4 and 5 when fmding the transport mean free path from the fit of 

Eqs. (3) and (4) to optical and microwave measurements, respectively. 
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LONG·RANGE INTENSITY CORRELATION FUNCTION IN RANDOM MEDIA 

WITH STRONGLY REFLECTING BOUNDARIES 

Internal reflection strongly affects the spectral and the spatial intensity-intensity 

correlation functions. We calculate these correlation functions for tube geometry assurning 

that the fluctuating part of the intensity BI = I - <1> satisfies the diffusion equation with a 

Langevin source [14,15] and with the boundary conditions given by Eqs. (2) [22]. We find 

that the fluctuations at the surface, which are usually neglected [14,15], become important 

when the surface reflectivity is large. As a result, the correlation function with frequency 

shift ~oo = 00 - 00', at points r1 and r2, Croro,(rj ,r2) = <1ro(r1)Iolr2», splits into surface and 

volume terms: 

(7a) 

(7b) 

(7c) 

where A is a cross-section of a tube, <1roro,(z» is the field-field correlation function [14,15] 

and I(z) is given by Eq. (4). In Eqs. (7 b,c), only terms corresponding to long-range 

correlation are taken into account. Equations (7) are general expressions for the dependence 

of the correlation function upon the separation and frequency. In the lintiting cases of low 

surface reflectivity or strong absorption, the surface term is small compared with the volume 

term and Eqs. (7) give the well-established results [14,15] for the correlation functions. But 

when internal reflectivity is strong, Zo :> L and zo(~0)/2D)1!2 :> 1, the surface term dorninates 

both the spectral and the spatial correlation functions, 

(S) 61tD 2 • 
C (z =L- z =L) "" _".....-_ 

dro 1 '2 eM~oo' 

As a result, the spectral correlation function falls-off as (~ootl rather than as (~oorl!2 as 

occurs in the case of low reflectivity and the spatial correlation function falls-off linearly 

instead of quadratically. We also find that the degree of correlation for the spatial correlation 

function is enhanced by a factor of Zo / L. 
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OPTICAL MEASUREMENTS 

Optical measurements of total transmission versus thickness for a random alumina 

wedge sample in air are shown in Fig. 1. For L > 100 pm, T(Lr1 is a straight line in 

agreement with the prediction of diffusion theory [Bq. (6)]. Fitting Eq. (6) to the linear 

portion of the curve gives zp = 24.8 ± 0.1 pm and zOr = 190.9 ± 0.3 pm. The mean free path 

can only be determined from the measurement of zOr once the reflectivity is known. To 

eliminate internal reflectivity at the boundaries, we have measured the relative transmission 

with the sample immersed in index matching fluid. These measurements are shown in Fig. 

1. Although in this case we do not measure the absolute transmission, from the x-intercept 

we obtain zOr = 22.3 ± 1.5 pm. Since zOr = 0.71041 in this case, we find 1 = 31.4 ± 1.5 pm. 

12 

10 

8 
I ,-... 
.....I 

6 '---' 
I-

4 

2 

0 
0 

Figure 1. Scale dependence of the inverse of the transmission coefficient for the alumina slab in air and in 

index matching fluid. 

An independent test of the adequacy of diffusion theory and the accuracy of values of the 

scattering parameters is whether the parameters found in measurements of transmission can 

be used to predict the surface intensity distributions using Eq. (3). A comparison of the 

measured I(p; L = 280 pm) for a sampie in air and in index matching fluid to the predictions 

of Eq. (3), using the values of Zo and zp found from the transmission measurements of Fig. 

1, is shown in Fig. 2. We fmd good agreement with diffusion theory whenever L ~ 150 pm. 
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Figure 2. Intensity profiles on the output surface for the L = 280 pm sampIe in air and in index matching 

liquid. The solid Iines are calculated from Eq. (3). 

MICROVA WE MEASUREMENTS 

The validity of the diffusion theory has also been independendy tested in 

measurements of the microwave intensity distribution inside and of the transmission through 

an ensemble of configurations of ~-in polystyrene spheres. These results allow us to 

determine f, R, and the transport velocity v without any assumptions regarding the nature of 

scattering. 

The medium is 150 cm long and is contained between 1!16-in-thick plastic disks in 

a copper tube of the diameter of 7.3 cm. The tubes are rotated in order to tumble the sampie 

to facilitate configuration averaging. Intensity measurements are made using Schottky diode 

detectors in the sampie without (R t ) and with additional reflecting copper plates placed in 

contact with the plastic disk at the output of the sampie. These plates contain regularly 

spaced holes of 0.50" (R2) and 0.25" (R3) diameter which cover approximately 55% and 42% 

of the plate area, respectively. Measurements were made at 18.5 Ghz. The intensity 

measurements are shown in Fig. 3. The curves in the figure are the fit of Eq. (4) to the data 

with zo, and (X as a fitting parameters. In order to obtain the mean free path, however, the 

reflection coefficient must be known. To determine the reflection coefficient we have 

measured the relative transmission for the three different reflectors. The reflection 

coefficients can, be obtained by comparing the values of zo, and of the relative values of the 

total transmission for two different reflectors using the following system of equations [23] 
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(i) 
Zo, 
Z v) 
0, 

(1 + R,(i) (1 - R,V\ 

(1 - R,(O) (1 + R,{J)' 

r (i) /l ;i)(L -) 

r{J) / J~)(L -) 

1 - R (i) , (9) 
l-R{J) , 

Here the indices i, j correspond to the reflection coefficients R(i,}). The comparison of data 

for any pair of reflectors allows us to find their reflectivities using Eqs. (9). Then, using 

values of zo, obtained from the fit of Eq. (4) to the data, we can determine the mean free 

path. Since there are three combinations of pairs of reflection coefficients to be used in Eqs. 

(9), we have three separate determinations of the mean free path. The average of which is 

found to be ~ = 6.5 ± 0.3 cm. The transport velocity is found from adetermination of the 

diffusion coefficient obtained by fitting the photon diffusion model to measurements of the 

intensity autocorrelation function with a frequency shift in the 18-19 Ghz range. The 

theoretical expressions for the correlation functions include the field factorization term and 

the leading order correction found using the Langevin approach [16,17]. The fit gives D = 
4.7 ± 0.3 x 1010 cm2/s at 18.5 Ghz. This gives v = 3D/~ = 2.16 ± 0.2 x 1010 crn/s. This 

value of v is 15% less than the effective medium approximation, indicating that microscopic 

resonances in the sampie retard energy transport even in the present high density limit. An 

independent check of the applicability of photon diffusion theory near the output surface is 

-----N 
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3 
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':::::"2 
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Figure 3. Intcnsity variation inside a sampie of randomly distributcd \-2-inch polystyrene spheres for three 

different reflectivities at the output of the sampie. Thc solid line is a fit of Eqs. (4) to the data. 
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obtained by relating intensity values at the sampie surface to the transmission for the three 

reflectors. From Eq. (5) it follows that the ratio between the total transmission and the 

intensity at the output boundary is independent of the surface reflectivity T(L)zOr /I(L -)=D/q. 

I(L -) is obtained from the extrapolation of the lines in Fig. 3 to L - Z = O. The consistency 

of our experiments with the predictions of diffusion theory can be verified by taking T(L), 

I(C) and zOr and checking to see if the ratio given above is constant for the three reflectors. 

Our results show that within 3% the ratio does not depend on internal reflection for the three 

output reflection conditions as predicted by diffusion theory. 

The results presented here show that diffusion theory gives a quantitative description 

of transmission through and of intensity inside a random media. These measurements allow 

us to determine the transport mean free path and the internal reflectivity. Comparison of 

these results with the value of the diffusion coefficient obtained from measurements of the 

autocorrelation function with frequency shift allows us to deterrnine the phenomenological 

transport velocity, which gives the connection between dynamic and static transport 

parameters. 
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INTRODUCTION 

The study of light propagation through turbid media has been an intensive field 
of research for many decades. Many aspects of the transport of light in such media are 
weIl described by the so-called radiative transfer equation. This transport equation, 
which was derived long ago by astrophysicists, is equivalent to a diffusion equation, 
as far as long-distance properties are concerned. This diffusive behavior can also be 
obtained by summing the dominant scattering processes, the so-called lad der diagrams. 

Near the boundaries of a diffusive medium, however, the diffusion approximation 
breaks down, for the simple reason that light undergoes too few scattering events. In 
the skin layers, i.e., when the distance to the boundary is of the order of a few times 
the mean free path, diffusive transport crosses over to free propagation, or vice versa. 
In practical situations, the optical index of the scattering medium is usually different 
from that ofthe surrounding medium (air or glass). This causes the additional problem 
of reßections at the interface. 

The aim of the present work is to discuss a microscopic description of the effects 
of intern al reßections on the diffuse transport of waves through thick slabs. We restrict 
the analysis to scalar waves, and to the regime where the mean free path is much larger 
than the wavelength. Indeed, internal reßections have effects which are of order unity, 
and thus overshadow many weak localization effects. 

THEORY 

We study the propagation of scalar waves in a slab with thickness L. It contains a 
small density of isotropie scatterers, which lead to a scattering mean free path l, much 
larger than the wavelength of light inside the medium, Ao. The optical index is equal to 
nu inside the diffusive medium (0 < z < L), and to nl == no/m outside (z < 0; z > L). 
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After averaging over the uncorrelated random positions of the scatterers, the mean 
amplitude Green's function inside the medium obeys the equation 

[d~2 - q2 + (ko + ;lr] G(z,Z'jq) = -6(z - z') (0< z < L) (1) 

where q is the transversal wavevector. 
We consider the scattering of a plane wave, with unit amplitude, and transversal 

wavevector q", incident from the left (z = -00). Throughout the following, the index 
a (respectively, b) will refer to the incoming (respectively, the outgoing) beam. 

The starting point of our analysis is the following observation. For L ~ 00, the 
solution of eq. (1) inside the medium (z, z' > 0) consists of a "charge" term and a 
"mirror charge" term 

G( z', ) = ~ [eiPlz-z'l + P - P eiP(z+z')] 
z, ,q 2P P + P (z > 0, z' > 0) (2) 

where p = Jk? - q2 and P = Jka - q2 + iku/l. The prefactor of the second term in 
eq. (2) is the Fresnel reflection amplitude. 

The diffuse intensity is of special interest. We restrict the analysis to the lad der 
approximation to the Bethe-Salpeter equation, which amounts to summing the ladder 
diagrams. Inserting the result (2) and neglectillg the oscillating cross terms, we are led 
to the following generalized Schwartzschild-Milne equation 

(3) 

f( r) represents the normalized diffuse intensity, scattered at a depth z = lr, arising 
from a normalized plane wave, incident under an angle (Ja' b = L/l is the optical 
thickness. The source term exp( -r / p,,,) describes the decay of the unscattered incoming 
beam entering the random medium at z = 0, expressing the Lambert-Beer law. Here 
p,,, = cos (J~ is related to the angle (J~ = arcsin( m sin (Ja) of the incoming beam inside the 
medium. The kernel M( r, r') has a bulk contribution MB, coming from the "charge" 
term in the expression (2) of the Green's function G, which is already present in the 
absence of internal reflections, and a layer contribution M[" which originates in the 
"mirror charge" term. For isotropie point scatterers, we find 

M(r,r') = MB(r,r') + ML(r,r') (4) 

MB(r,r') = 11 dp, e-1r-r'l!ll (5) 
o 2p, 

ML(r,r') = l dp, R(J-L)e-(r+r')!I, (6) 
o 2p, 

where R(J-L) = IJ-L - .JJ-L2 -1 + m-212/1J-L + y'J-L2 - 1 + m-2 12 is the intensity reflection 
coefficient at the angle such that p, = cos (J'. For the case m > 1 there are angles 
for which R = 1, describing total internal reflection. The layer kerne! ML decays 
exponentially away from the boundarYj it therefore represents a surface efIect, which is 
only important in the skin layers (z "-' l, and L - z "-' l). However, internal reflections 
lead, via the layer kerne! ML , to effects of order unity even in the limit where kul -~ 00. 

In the limit b ~ 00, eq. (3) has a homogeneous solution with the asymptotic 
behavior f 11 (r) ~ r + ru for large rand some ru, and a special solution that approaches 
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a constant, r s -+ Tl. Using this, we obtain the following prediction for the reflected 
intensity per solid angle element dnb 

(7) 

with 
R ) COS Oa TaTb 1000 T/ A (Oa,Ob = ---- rS(JLajT)e- /Jbdr 

41rm 2 JLaJLb 0 
(8) 

where Ta = T(JL,,) = 1- R(JLa). Equation (7) obeys a sum rule expressing conservation 
of flux in the z-direction. 

The diffuse transmitted intensity can be evaluated in analogy with eq. (7), 

dT(a -+ b) = AT(Oa,O,,) dnb = cos Oa TaTb rl(JLah(JLb) dnb 
b + 2ru 121rm2 JLaJLb b + 2ru 

(9) 

The above result exhibits the simple l/ L decay law, characteristic of diffusive, or Ohmic, 
behavior, which is present e.g. in the conductance of a one-dimensional conductor. 

The enhanced backscattering cone can also be evaluated. Restricting to the situ
ation of normal incidence (qa = 0), we set qb = Q/l. For a normalized incident plane 
wave, the diffusive intensity in the vicinity of the exact backscattering direction consists 
of AR + AC(Q) with 

(10) 

In the exact backscatter direction, the term involving lc(O) coincides with the back
ground contribution A'l. The factor 1/2 corrects for double counting of single scattering 
events. It holds that 

(11) 

and rc(rj Q) is the solution of the Milne equation (3), (4) with Q-dependent kernels 

M8(r,r'jQ) = 11 ~: Jo (Q1r - r'h!l- JL2/JL) e-1T-T'I//J 

ML(r,r'jQ) = l::Ju (Q(r+r'h!1- JL2 / JL )R(JL)e-(T+T')//J (12) 

where Ju(z) is the Bessel function of order o. 

THE REGIME OF LARGE INDEX MISMATCH 

In this section, we discuss an accurate approximate analytical scheme, which yields 
predictions concerning the behavior of physical quantities in the regime where the 
optical indices nu and nl are very different from each other, i.e., when their ratio m 
goes to zero, or to infinity. 

It will turn out that they provide satisfactory estimates for all quantities related 
to the long-distance physics of the problem over the entire range of values of the index 
ratio m, and especially for m > 1, i.e., in the usual situation where the refractive index 
of the random medium (a liquid or asolid) is larger than that of the outside (air). 

The analytical analysis now shows that physical quantities depend in leading order 
only on the mean Jlux transmission coefficient T 

T:= l2JL T(JL) dJL. (13) 
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This quantity depends only on the ratio m of optieal indices and it falls off for small 
and large m, aeeording to 7:::::: 8m/3 for m -+ ° and 7:::::: 8/3m3 for m -+ 00. 

As far as reflection and transmission properties are eoneerned, we obtain the simple 
expressions 

4 4,." 
TU :::::: 37' Tl (,.,,) :::::: 7' (14) 

As a eonsequenee, our predictions in the m -+ 00 limit are as follows 

(15) 

The estimate eoneerning transmission shows an interesting erossover phenomenon when 
the optieal thickness band the index ratio mare simultaneously large. Indeed b is to 
be eompared with the effective thiekness of the skin layers whieh grows as m 3 • 

The amplitude of the baekseattering eone at normal incidenee ean also be deter
mined analytically, for m -+ 0, or m -+ 00, in the regime where enhaneed baekseattering 
is dominated by long distanee effeets, i.e., for small values of the redueed wavevector 
Q. We find the following sealing form 

1 
'Yc(Q) :::::: 7/4 + Q/3 (16) 

This indicates in particular that the backscattering eone beeomes very narrow for a large 
index mismateh, with an inverse slope of the peak vanishing aeeording to 6.Q :::::: :':[. 

In Figure 1 we eompare the quantities 3To, Tl("" = 1) and 'Yc(O), obtained by 
numerieally solving the Milne equation, with their asymptotie behavior 4/7. For m 
not mueh larger than unity, Tl(1) and 'Yc(O) are already very dose to their asymptotie 
value. 
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Figure 1: The effective thickness of the skinlayer To and the related quautities TI and 
'Yc(0) as function of the ratio of optical indices m. Fullline: the asymptotie limit '1/7. 
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DISCUSSION 

We have presented the theoretical framework for the description of internal reflec
tions in diffusive media. In the limit of large index mismatch, the transport quantities 
only depend on a mean flux transmission coefficient T. This explains to some extent 
the success of a heuristic approach, initiated by Lagendijk et al. [1], where the effects of 
internal reflections are studied by means of an improved diffusion approximation. One 
common step of such studies consists in introducing a surface reflectivity R s , which 
represents the angular average of the ratio of the flux coming to the interface from 
inside the medium, to the flux reflected into the medium. The work by Zhu et al. [2J 
can be directly compared to ours. These authors consider the case of vector waves, 
which we can adapt to scalar waves by neglecting the polarization dependence of the 
reflectivities. We find that the quantity 1 - R s of ref. [2J coincides with T, defined 
in eq. (13), to leading order as m ---t 00. This implies their prediction for Tu reads 
Ti! ~ 4/(3T) - 1. The leading term is in exact agreement with our result (14), whereas 
the finite correction has the right sign, and takes a reasonable but incorrect value. 

The present framework can be used to evaluate other quantities concerning the 
diffusive transport of light, such as, e.g., various speckle correlation functions. The 
influence of internal reflections on the relative fluctuations in the angle-resolved reflected 
and transmitted intensities can be evaluated within the present framework. For thick 
slabs (b ~ TU)' and fixed incoming and outgoing directions, the speckle correlation 
functions will exhibit the same dependence w.r.t. the index ratio m as the average 
reflection and transmission, considered in this work. 

The case of vector electromagnetic waves can also be dealt with in a similar fash
ion. In the regime considered here (kol ~ 1), the propagation between scatterers will 
involve only nearly on-sheH transversal photons. However, for a moderate disorder, the 
longitudinal component of the electromagnetic field will also contribute to transport. 
This will also make the analysis more difficult. This effect has been studied in the 
closely related situation of resonant atoms [3J. 

Detailed derivations and furt her aspects of the work discussed here can be found 
in reference [4J. 
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INTRODUCTION 

A few years ago a new interest l - 9 in propagation of classical waves in ran
dom systems took place, mainly due to the possibility of weak3- 6 and strong1,2 

localization effects. Many of the ideas that were developed in solid state physics 
for transport of electrons in random materials föund8 ,lO their counterpart in op
tical waves. In the spirit of finding analogies between quantum (electron) waves 
and classical waves, it was generally assumed2,7,1l,12 that absorption for classical 
waves plays a similar role to inelastic scattering for electrons. It is the purpose 
of this paper to ex amine this assumption and to demonstrate that it is unjusti
fied. The role of absorption is fundamentally different from the role of inelastic 
scattering. The difference arises from the simple fact that absorption is an ampli
tude effect whereas inelastic scattering affects the phase of the wave. This leads 
to fundamentally different effects in almost all observed phenomena such as: trans
mission, coherent backscattering, spectral auto correlation function, renormaliza
tion of the diffusion constant near resonance and the optical Anderson transition. 

EFFECT OF ABSORPTION ON TRANSMISSION 

The most obvious and immediate difference between inelastic scattering and ab
sorption is manifested in the average transmission coefficient < T > for electrons and 
optical waves. An inelastic scattering event takes place over a distance Li = (DTi)1/2, 
where Ti is the inelastic scattering time and D is the diffusion constant (determined 
by elastic scattering due to disorder). Suppose now that we inject an electron on one 
side of the sampie and look for the signal on the other side. In mesoscopic regime 
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where Ti ~ T (where T is the elastic scattering time) 

< T >= R/L, (1) 

where R is the elastic transport mean free path. Thus Li does not affect < T >, 
because inelastic scattering simply adds random phases (we neglect corrections of the 
order T/Ti «: 1). 

We now turn to the analogous effect of absorption. Here La replaces Li, where 
La = (DTa)1/2 is the absorption length over which the wave is absorbed over the ab
sorption time Ta). This is an amplitude effect which reduces < T > by an exponential 
factor exp[-L/ La) for a slab of width L. In contrast to Eq. (1) we get 

R 
< T >= L exp[-L/La ). 

a 
(2) 

This simple example demonstrates that inelastic scattering events affect the phase, 
whereas absorption affects the amplitude of the wave. This is the starting point of 
our analysis and discussion of the role of absorption on interference, correlation and 
localization of classical waves. 

COHERENT BACKSCATTERING 

The shape of the coherent backscattering depends3 - 6 on the distribution of Feyn
man trajectories caused by multiple scattering. This shape was calculated for optical 
waves 13 and electrons14 • For electrons an inelastic scattering destroys the time re
versal symmetry over a distance Li. Thus, trajectories longer than Li contribute to 
the intensity of the reflected wave but destroy the constructive interference for such 
trajectories. Therefore, the maximum enhancement is less than a factor of two. For 
shorter Tj the time revers al symmetry breaks down for shorter trajectories and the en
hancement of the coherent backscattering is reduced until it is destroyed when Rj = R. 
On the other hand, absorption affects the coherent backscattering peak in a different 
way. Trajectories longer than La are simply cut down and do not contribute to the 
intensity of the backscattered wave. Nevertheless, the remaining shorter trajectories 
preserve the time revers al symmetry. This means that although the enhanced co
herent backscattering peak is very much broadened 15, it preserves the time reversal 
property that the maximum enhancement remains always independent of the degree 
of absorption. We now turn to more sophisticated phenomena in which again the role 
of absorption is very much different from inelastic scattering. 

SPECTRAL INTENSITY -INTENSITY 
AUTOCORRELATION FUNCTION 

The spectral intensity autocorrelation function C( b.w) =< I( w )I( w + b.w) > e was 
intensively measured 7,11,16,17 and analized1S - 22 for optical waves. The basic physics 
was first put forward by Thouless23 for electrons. The main idea is that it needs a 
change in the electron energy by b.Ee = h/tD in order to dephase the wave, where tD 
is the time it takes for electron to diffuse across the sample. Thus, if one measures 
the conductance G(EF) at the Fermi energy EF and the conductance at EF + b.Ee, 
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they will turn out to be uncorrelated. In other words, < G(EF )G(EF + .6.E) >e falls 
down 24 as .6.E increases with a half width .6.E1/2 = .6.Ee • Since the averaged time to 
diffuse through a random system is t D = L2 I D, it follows that .6.E1/2 = hD I L2, and 
the half width frequency is given by .6.wl/2 = .6.E1/2/h = D I L2. This argument holds 
only for a mesoscopic system for which Li > L. For short inelastic scattering times 
such as Li ~ L, the dephasing energy is .6.Ee = hlTi or .6.Wl/2 = Ti-I. For the case 
where both times tD and Ti are of the same order .6.wl/2 = t r} + Ti-I, which leads to 

(3) 

The main property to notice is that when L becomes larger than Li, 6.wl/2 saturates 
until it becomes independent of L(.6.wl/2 = DILD. We have now demonstrated 
that for the case of absorption one can not replace Li by La in Eq. (3). Without 
absorption the relation .6.wl/2 = D I L2 holds for classical waves as well as for quantum 
waves. It is simply the property of dephasing the wave due to its frequency change. 
The given phase acquired by a Feynman trajectory of length S is <I> = kS, where k 
is the wavenumber. Changing the frequency leads to .6.<I> = .6.kS. Using the fact 
that the averaged trajectory length is given by < S >= L 2 I C, it follows that when 
.6.wl/2 = D I L2 the phase is changed by 2cp. What happens when absorption is taken 
into account? For simplicity, let us consider a point source in an infinite disordered 
medium. The intensity at a distance R after a time t is given by 

(4) 

We see that including absorption changes the profile of the wave front. The effect of 
absorption is twofold. Firstly, it shifts the maximum of the intensity to much smaller 
times and secondly it narrows dramatically the width of the line shape. Without 
absorption the maximum of I(t) is at tm = R2 I D. For strong absorption (R ~ La) 
the maximum appears at t m = (RLa)1 D; the time now reduced by a factor Lai R. 
The width of the lineshape I(t) in the absence of absorption is very broad. This is the 
characteristic property of diffusion. The fall-off of I(t) goes like t-3 / 2 • In the case of 
absorption the width is much reduced and is given by .6.t = (RL a)I/2 Lai D. Thus .6.t 
is reduced by (Lai R)3/2 for R > La. We see that the amplitude effect of absorption as 
described by Eq. (4) changes drastically the lineshape of I( t), and hence the spectral 
intensity autocorrelation function becomes much broader. In particular, for a slab of 
width L the width of I( t) is given by 

La< L. (5) 

Since the half width .6.Wl/2 is approximately given by.6.wl/2 rv .6.e1, it follows that 

(6) 

We see that in contrast to electrons .6.wl/2 never saturates, it rather decays as L -1/2. 

This means that the intensity autocorrelation function C(.6.w) depends always on 
the width of the slab L, even for L a ~ L. This difference between C (.6.w) and 
< G(EF)G(EF + 6.E) >e arises from the fact that the inelastic scattering is a de
phasing effect, whereas absorption is an amplitude effect. This is demonstrated in 
Fig. 1, where we plot .6.wl/2 as a function of LI La. 
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A similar effect22 of absorption oeeurs for long-range intensity spectral eor
relations C2(Öw). The half-width ÖWI/2 is similar to that of the short range. 
Namely, without absorption ÖWI/2 '" DIL~ and absorption ehanges it to ÖWI/2 '" 
DI(LLa)1/2 La. ForÖw ~ ÖWI/2 the long-range eharecter results in power law behav
ior C2(Öw) = 1/(öW)1/2. This behavior is independent of absorption sinee Öw --+ 00 

eoresponds to short times where t < Ta, and in this regime diffusion is unaffeeted by 
absorption whieh did not yet take plaee. 

2 
LlL 

a 

Figure 1. The half-width ÖWI/2 as a function of LILa. The dashed eurve 
represents the half-width for eleetrons, where La is replaeed by Li. 

EFFECT OF ABSORPTION ON THE DIFFUSION CONSTANT 

We now examine the role of absorption on two different effects whieh ehange the 
diffusion eonstant. The first is effect in whieh the diffusion eonstant is drastieally 
redueed near the resonanee25 • The seeond effect is the weak loealization phenomenon 
and sealing prediction near the Anderson transition. 

We claim that the absorption does not affect D in both eases. The general ar
gument for this is as follows. From Eq. (4) it is clear that the absorption time Ta is 
deeoupled from D. In Fig. 2 we plot< R2 > as a function of t. Due to the presenee of 
absorption it deeays to zero exponentially for t > Ta. But if we renormalize it and plot 
< R2 > I < I>, this remains linear (see dashed line in Fig. 2) as a function of time 
and independent of absorption. This property is independent of the geometry of the 
boundary eonditions. The eonsequenees of the above eonclusion are very important. 
We now diseuss two eases. 
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Figure 2. The averaged square of the displacement < R2 > as a function of the 
time t. The dashed line represents < R2 > / < I > as a function of time. 

Effect of Resonances on the Diffusion Constant 

We have recently modified26 Boltzmann equation to include the delay time caused 
by a resonance scattering. The delay time being taken into ac count it leads to a 
reduction of the diffusion constant D according to the equation D = Do/(l + Td/T), 
where Do is the diffusion constant calculated on the basis of Boltzmann equation and 
T d is the scattering delay time. In Fig. 3 we plot the results of a detailed calculation 
26 which confirms the prediction first given by the Netherlands group25. 

1. 
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0 
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Figure 3. The diffusion constant as a function of kd, where k is the wave number 
and d is the radius of the scatterer. 
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We have then included the absorption time Ta in the calculations and have found 
that D is unaffected by the existence of absorption (up to corrections of the order 
Ta/T). This is important since it predicts that oscillatory dependence of D and its 
minima are not smeared out due to absorption. It is interesting to test this prediction 
experimentally. 

Effect of Absorption on the Localization Transition 

One of the important predictions of the scaling theory for the diffusion constant 
of electrons near the Anderson transition is that D = Do( C/ L), where Do = cf/3. In 
the presence of inelastic scattering L is replaced by LefJ , where LefJ is given by 

L - [L- 2 + L-2j-l/2 efJ - i . (7) 

For Li ~ L Eq. (7) predicts LefJ = Li and at finite temperatures we get a "min
imum diffusion constant" which is given by D = Do(C/Li). After the pioneering 
work of John1 , who mapped the scalar Maxwell equation to the Scroedinger equa
tion and predicted that optical waves may be localized. It was generally assumed 
that absorption plays the same role as inelastic scattering. In fact, it was gener
ally assumed that La replaces Li exactly at the Anderson transition and just above 
it LefJ = [L-2 + L-;;2 + e-2j-l/2, wheree is the correlation length. A detailed 
calculation27 demonstrates clearly that this assumption is incorrect, and in fact D 
is independent of La. Thus using the one-parameter scaling theory for optical waves 
leads to 

(8) 

even in the presence of absorption. The difference between the role of absorption for 
classical waves and inelastic scattering for electrons is demonstrated in Fig. 4. 

1.5 -.-----------------, 

0° 

o 
0.5 I/L 

o 
o 0.5 1.5 

1/kl 

Figure 4. A schematic plot of the diffusion constant as a function of the disor
der parameter l/kl. The dashed curve represents electrons, whereas the solid curve 
represents optical waves. 
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The logic behind this conclusion reHes on Eq. (4) and Fig. 2, which demonstrate 
that D is decoupled from Ta. It is correct that absorption cuts the long trajectories, but 
the wave that escapes absorption undergoes the same constructive interference (that 
leads to weak localization) independent of the part of the trajectories that were elimi
nated due to absorption. This is manifested by the existence of the enhanced coherent 
backscattering even in the presence of absorption with a maximum enhancement of a 
factor two due to the perseverance of time reversal symmetry for the trajectories that 
were not cut down. The prediction that D is unaffected by the presence of absorption 
is extremely important for experimental studies of the optical Anderson transition. 
In particular, Eq. (8) suggests a direct measurement of correlation length x and its 
critical behavior at the transition. 

SUMMARY 

We have demonstrated that absorption for classical waves is fundamentally differ
ent from inelastic scattering for quantum waves (electrons). Inelastic scattering affects 
the phase of the wave, whereas absorption is an amplitude effect. This results in a 
major different influence on the transport properties. In particular, the correlation 
frequency b.w1/2 for electrons saturates b.w1/2 '" Tj- 1 for L j < L, whereas b.w1/2 never 
saturates for classical waves, but is given by b.Wl/2 '" D j(LLa)1/2 La. The diffusion 
constant for electrons when L j < L depends explicitly on Li (due to weak localization), 
whereas for classical waves D is independent of La < L. This is especially important 
near the Anderson transition, where it turns out that absorption helps to observe the 
transition rather than presents an obstacle. 
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HIGHER ORDER INTERFERENCE EFFECTS IN THE REFLECTION 

OF COHERENT WAVES FROM RANDOM MEDIA 

M. Nieto-Vesperinas and J .A. Sanchez-Gil 

Instituto de Optica, C.S.I.C. 
Serrano 121 
Madrid 28006, Spain 

INTRODUCTION 

The propagation of classical waves from disordered media has been a subject of 
intense study in recent years.1- 3 This has been due to the discovery of coherent effects 
associated with multiple scattering, like the phenomenon of enhanced backscattering, 
related with the weak localization of waves, and found both in dense media4- 9 and 
rough surfacesjl0-13 and also with the prediction and observation of intensity cor
relations in light and other classical waves both reflected and transmitted in dense 
media.14- 24 

We study here the angular correlation of the speckle pattern of coherent scalar 
waves reftected from a random medium under two different directions of propagation 
of the incident wave. We consider a sampie so small that the wavefield diffusely re
flected has no circular Gaussian joint prob ability densityj namely, the factorization 
approximation is not valid. In this case, corrections to the so-called memory effect 
obtained under the factorization approximation have predicted the existence of long
range correlations both in reflected and transmitted waves.15,17,22,23 Also, we predict a 
new kind of long-range angular correlation of the intensity, different to the one stud
ied in previous works, and that has an analogy with the phenomenon of enhanced 
backscattering as it arises from constructive interference between waves travelling in 
paths in the random medium which are the reverse of each other. 

PHENOMENOLOGICAL MODEL 

We consider a plane wave with wavevector k" incident on a sampie of the random 
medium. The speckle pattern resulting from the wave reflected is considered at a 
generic scattering direction characterized by the wavevector k f. Then, we consider 
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another speckle pattern in the generic direction k' I produced on refiection of a second 
plane wave incident with wavevector k';. The intensity correlation function is then 
given by: 

C(k· k ·k'· k' ) = < c5I(k;,k/ )c5I(k';,k'/) > 
.. I, .. I < l(k;,k/ ) >< l(k'i,k'/) >' 

where 61 = 1- < I>, and < ... > denotes ensemble average. 

(1) 

The numerator of Eq.(1) is obtained as folIows: Let Alm be the complex am
plitude from the initial scattering point rl to the terminal scattering point r m. The 
incident and emerging wavevectors being k; and k / , respectively. In the multiple 
scattering model one must consider also the time-reversed path from r m to rl whose 
corresponding complex amplitude is Ami. Then the scattered field given by all of 
these pairs of paths is 

A(k;, k / ) = ~ L[AlmfXp[i(k; . rl - kl . rm)] + AmlfXp[i(k; . r m - k l . rl)]]. (2) 
I,m 

And the intensity of the refiected wave is therefore: 

l(k;, k/ ) = 10 + L IAlm l2 cos(k; + k/ ) . (rl - r m) + F(k;, k / ), (3) 
I,m 

where 10 = Elm IAlm 12• The second, diagonal, term of Eq.(3) leads on averaging over 
several realizations of the random medium to the effect of enhanced backscattering, 
and the third, off-diagonal, term is: 

which represents the speckle fluctuations and is zero on averaging. 
From Eq.(3) one obtains: 

< c5I(k;,k/ )c5I(k';,k'/) >= 

~ ~ < c5Ilmc5I;k > [cos[(k; + k / ) . (rl - r m) + (k'; + k'/) . (rj - rk)] + 
l,m.;,,1c 

cos[(k; + k / ) . (rl - r m) - (k'; + k'/) . (rj - rk)]] + 
L< F(k;,k/ )ljk > cos(k'; + k'/) . (rj - rk) + 
jk 

L < F(k';,k'/)llm > cos(k; + k/ ) . (rl - r m) + 
Im 

< F(k;,k/)F(k';,k'/) >, (5) 

where 11m = IAlml 2 and 611m = Ilm- < 11m >. 
The diagonal elements I = j, m = k, or 1= k, m = j, of the first term of Eq.(5) 

lead to: 

L < c5Ilm > [cos[(k; + k/ ) + (k'; + k'/)]· (rl - r m) 
I,m 

(6) 
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Equation (6) represents two peaks, centered at values: 

qi + ql = ±(q~ + q,), (7) 

where q represents the transversal component of k. An argument analogous to that 
used for the analysis of the enhanced backscattering lineshape (cf. e.g., Ref. 7 on 
using a continuous approach) gives a width of these peaks of the order of >'/1, where 
I isthe transport mean free path. For fixed q'i' q' I and qi, these two peaks represent 
enhanced long-range correlations (ELRC) around the two values of q, given by Eq.(7). 

Also, it is worth observing that on writing 

one can see that the term described by Eq.(6) arises from interference of terms of the 
form IA'mI2exp[i(ki-k'i)·r,]exp[-i(k/-k'/)·rm] and their time-reversed counterparts, 
and also ofterms IA'mI2exp[i(ki+k'/) .r,]exp[-i(k'i+k/) ·rm ] and their time-reversed 
counterparts. Observe also that the usual factorization approximation does not allow 
for this interference effect and, hence, leads to the memory effect (ME) only. In this 
sense, the ME is a "specular"phenomenon in ßki = ki -k'i and ßk, = k,-k'" and 
so is the time-reversed ME in ki + k', and k'i + k/' 

Concerning the other terms of Eq.(5), the averages in the second and third 
terms are zero, whereas the fourth term is zero for i = I, k = m, j' = I', k' = m', or 
i = m, j' = m', k = I, k' = I', and leads to the ME (terms with i = I', k = m', i' = I, 
k' = m) and its time-reversed (terms with i = m', k = I', i' = m, k' = I). 

The other long-range correlations, addressed in Ref. 17, should be included in 
the other surviving elements of Eq.(5). 

The ratio of the peak values of the ELRC and the ME is E'm < Ol,;" > /[E'm < 
1'm >]2. The ELRC effect should be observed in speckle patterns corresponding to a 
scattered field on reßection that does not have a Gaussian joint prob ability density 
for its random values at two pairs of arguments (ki,k,) and (k'i,k',), and hence, for 
which the factorization approximation does not hold. 

NUMERICAL RESULTS 

We have done a numerical experiment in which we have computed the corre
lation Eq.(l) in the numerical simulation of the scattering of electromagnetic waves, 
8 or p polarized from a one-dimensional random rough surface, of profile z = D(x), 
separating vacuum from a perfect conductor, (the surface thus being constant in the 
y direction). The plane of incidence is OXZ. It is well-known after Refs. 11-13 and 
25 the analogy of rough surfaces with dense media in producing multiple scattering 
effects like e.g., enhanced backscattering. 

Following the procedure of Refs. 12 and 13, we generate random profiles with 
Gaussian statistics, zero mean, r.m.s. height u = 1.9>', a Gaussian correlation func
tion of the random heights, and a correlation length T = 3.16>'. Each realization 
of the illuminated surface is sampled with 300 sampling points and has a length 
L ~ 30>'. This involves 10 sampling points per wavelength, which is accurate enough. 
Averages are made over 4000 realizations. Two Gaussian beams, (chosen instead of 
plane waves in order to get smoother results), of width W = L cos ()o/4, propagating 
in the directions ki and k'i, are incident at an angles ()o and ()~ with the OZ axis, 
respectivelYj namely, with the surface mean plane normal. Let () and ()' represent the 
angles of k, and k', with the OZ axis, respectively. 
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Figure 1 shows the function C(8), Eq.(l) for ki, k'i and k' I fixed at 80 = 2°, 
8~ = 5°, 8' = 9°. The peak at 80 = 6° corresponds to the memory effect and has 
a width of the order of >. cos 80 jW. On the other hand, the two additional peaks, 
predicted by Eq.(6) are also present at 8 ~ 12° and (J ~ -16°; they have a width >'jT 
approximately, as I is of the order of T in this case. 

The coherent effect addressed in this paper and the phenomenon of enhanced 
backscattering should be both special cases for the lower statistical moments of the 
refiected intensity of a general dass of coherent phenomena present in the moments 
of arbitrary order of non-Gaussian speckle patterns. 
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Figure 1. Angular correlation versus (J, with (Jo = 2°, (J~ = 5° and 8' = 9°. T = 3.16>' 
and a = 1.9>'. Broken line: s-polarization. Solid line: p-polarization. 
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DISORDERED FABRY-PEROT INTERFEROMETER: 

DIFFUSIVE WAVE SPECTROSCOPY 

Richard Berkovits 
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Ramat-Gan 52900, Israel 

INTRODUCTION 

A theoretical study of correlation phenomena in an optical Fabry-Perot Inteder
ometer (FPI) containing random elastic scatterers between the mirrors is presented. 
Among the correlation effects, we find a Lorentzian shaped correlation function be
tween incident waves of different frequencies. For an FPI which contains moving 
scatterers between the mirrors (for example, scatterers embedded in a liquid), we cal
culated the intensity correlations between different times. Generally, the calculated 
intensity correlations are much broader than the corresponding correlations for bulk 
systems. 

FABRY-PEROT INTERFEROMETER 

The study of double-barrier resonant-tunneling structures has a long and fruitful 
history.l Recently, the effects of elastic scattering, due to irregularities in the barriers 
or the presence of impurities between the barriers, have attracted much interest.2 ,3,4 In 
the context of electronic systems, one of the interesting realizations of these systems is 
the double-barrier quantum-weH device (DBQW). The DBQW is usually made from 
molecular beam epitaxy grown heterostructures. The effect of elastic scattering in 
this system is manifested by the temperature independent broadening of the resonant 
peak observed experimentally at low temperatures. 2 

Lately, Fertig and Das Sarma,3 and Leo and MacDonald4 have calculated the 
effect of elastic scattering on resonant tunneling, using the Born approximation up to 
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second-order impurity scattering, and found, among other effects, the broadening of 
the resonant peak. This broadening effects the conductance of the system, which is 
experimentally measurable. 

The optical analogy to the electronic DBQW is the well-known FPI. While the 
conductance of the DBQW is determined by all incoming and outgoing electronic 
waves, in the case of the FPI one is able to measure specific incoming and outgoing 
wave intensity transmission coefficients. Therefore, the FPI has, from the experimental 
point of view, a wealth of measurable features. Some of these features, such as an 
enhanced transmission peak due to weak localization in the mirror direction whose 
hight is exactly a factor of 2, the "memory effect" for angular correlations, and the 
extreme sensitivity of the transmission intensity to the motion of a single scatterer, 
were already discussed.5 

In this paper we will expand our previous discussion to include the subject of 
correlations between transmission coefficients of different frequencies. A further point 
of interest, which we shall refer to, is the application of the standard diffusive wave 
spectroscopy6 (DWS) to the FPI. For the case of scatterers suspended in a solution 
placed between the mirrors, the scatterers will execute a random Brownian motion. 
Measurement of the correlations between transmission intensities at different times 
should enable us to obtain useful information on the nature of the Brownian motion 
in the solution. 

FREQUENCY CORRELATION 

The correlation between incident waves of different frequencies (or wave vectors) 
is defined in the following way: 

(1) 

where T( ifa, q", ko) is the intensity transmission coefficient for a coherent wave incident 
onto the left of the FPI in a direction characterized by the transverse wavevector ifa, 
and leaving the device on the right in direction q" (see Fig. 1). Here (ifa)2 + k~ = k~, 
with ka being the z-component of the wavevector (similarly for q,,). The transverse 
wavevectors are quantized according to q~ = 21n ." where Lx is the width of the sampie 
in the x-direction (similarly for the y-directionj. ( ... ) denotes an ensemble average. 

It is possible to calculate the frequency correlations defined in Eq. (1) by using 
a diagrammatic expansion similar to the method used in Ref. 5 to calculate angular 
correlations. As in Ref. 5 we assume the FPI has resonant wave vectors k* = "'rI7r (d 
is the distance between the mirrors). The transmission coefficient of the mirrors T is 
chosen to be small ( i. e., T ~ 1) to ensure sharp resonance levels. Due to the presence 
of scatterers between the mirrors, the wave undergoes multiple scattering between the 
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mirrors characterized by an elastic mean free path leI. Up to first order in 1/k2D1el 
(where k2D = v'k~ - k*2), one may calculate the frequency correlation by taking into 
account the Feynman diagrams given in Fig. 2. Performing the explicit calculation, 
we obtain the following result: 

(8T(ia, %, ko)8T(ia', %', ko/») = 8ßf.,ßgb (T:*) 4 (2) 

IGko(ia)Gko (%)GkO,(ia , )GkO,(%1 )12IB(~qa, ~ko) + B(ia + % + ~ia, ~ko)12, 
where ~ia = ia l - ia , ~% = %' - %, and ~ko = kol - ko. The averaged Green 
function is given by: 

1 
Gko(iJ = (k~ _ q2 - k*2)2 - iko(1/1e/ + 1/1",)/2· (3) 

• 
Fig 1. (a) Schematic drawing of a Fabry-Perot interferometer (FPI). The incoming plane wave 

approaches the FPI in direction ia. It is transmitted through the mirror, undergoes multiple scat

tering due to the presence of scatterers between the mirrors, and part of it emerges on the other side 

of the FPI in direction %. 

The total path length inside the FPI, before the wave decays due to transmission, 
is Z", = d/2T. Our calculations assume multiple scattering within the FPI, i.e., Z", ~ leI. 
The correlation propagator B(q, ~ko) in Eq. (2) may be expressed in the following 
way: 

(4) 

where 'Y(~ko) = v'3~ko/lel. The first B dependence in Eq. (2) is the result of 
the diffusion propagator (see Fig. 2), while the second term is the result of the 
maximal crossed propagator, which results from the interference between time-reversed 
multiple-scattering paths. In the derivation of all the above results, we assumed that 
the wave vector difference is small, i.e., ~kolel «: 1. 

It would be instructive to consider the case of correlations between waves for 
which the incoming and outgoing directions are identical. Further simplification may 
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Fig 2. Feynman diagrams for frequency correlations: (a) the diffusion propagator, (h) the 
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Fig 3. The line shape of the frequency (wave vector) correlations CN(D..ko) as a function of the 

difference in the incoming wave vector D..ko (where ("'(lel)2 = 3D..ko) given in Eq. (5). 

be obtained by assuming that l!i'a + %1> I/lei' Under these conditions one may write 
the normalized correlations as: 

(5) 

As is shown in Fig. 3, the normalized correlation has a Lorentzian shape. This 
type of power-law decay for the first-orq,er (in k2D1el) correlation is quite different from 
the behavior of similar frequency correlations for bulk systems. It has been shown that 
the first order frequency correlations for bulk systems (such as a slab of width bigger 
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than a mean free path) decay exponentially.7 Only the second order correlations (which 
are usually of much smaller magnitude) exhibit a power-law decay. In Fig. 3 one can 
see that the line shape of the correlation is rounded for small frequency differences, 
and reaches its halfwidth at ßko '" (k2D/ko)21/1",. 

DIFFUSIVE WAVE SPECTROSCOPY 

Another correlation of interest is the correlation between transmission intensities 
at different times for an FPI which has moving scatterers. An example for such a 
system is an FPI where between the mirrors there are scatterers suspended in a solu
tion. These scatterers perform a random motion in the solution known as Brownian 
motion, which influences the transmitted intensity. By studying the autocorrelation of 
the transmitted intensity, one is able to study properties regarding the motion of the 
scatterers in the solution. This is known as diffusive wave spectroscopy. The Brownian 
motion ofthe scatterers is characterized by the time constant Ta = l/Dak~, where Da 
is the particle diffusion constant in the solution. Using the results of Stephen,8 we cal
culated the transmission intensity correlation between different times, and obtained: 

where ßt = t' - t, and 

where P2(t) = 3[1 - f(t)]/ f(t), and 

J(t) = Ta (1 _ e-1tl/r.). 
t 

(6) 

(7) 

One can see that P2(t) has a monotonous dependence on t, which may be written as 
P 2(t) rv Itl/Ta• The main difference, between the expression we have obtained for the 
frequency correlation (Eq. (2)) and the one we have obtained for DWS correlation 
(Eq. (6)), is that for the frequency correlation the correlation propagator B has an 
imaginary part, while for the DWS correlation B has no imaginary part. Therefore, 
the normalized time dependent correlation, for the same conditions as in Eq. (5), is: 

which has no Lorentzian line shape, although it still decays as a power-law with respect 
to ßt. As in the case of the frequency correlations, the DWS correlations decay much 
slower than for bulk systems.6 ,8 
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The FPI experimental set-up is especially suitable for the study of the motion 
of particles in a quasi-two dimensional liquid. By measuring the line shape of the 
correlation function of the transmitted intensity at different times for a liquid between 
the mirrors of an FPI, one can study different properties of the scatterer motion such 
as the diffusion constant of the particles D s, and the short and long time motions of 
the scatterers, 

In summary, we have discussed frequency and time dependent correlations for 
an FPI. We have shown these correlations are quite different from the equivalent 
correlations for wide samples. The first order correlations exhibit apower law decay 
as function of the frequency or time difference. The possible application of these 
correlations to the study of motions of particles in quasi-two dimensional solutions 
was also discussed. 

Many useful discussions with S. Feng on various aspects of FPI are greatfully 
acknowledged. 
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PHOTONIC BAND STRUCTURE 

ABSTRACT 

E. Yablonovitch 

Bell Communications Research 
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Red Bank, NJ 07701-7040 

The analogy between electromagnetic wave propagation in multi
dimensionally periodic structures and electron wave propagation in real 
crystals has proven to be a very fruitful one. Initial efforts were motivated 
by the prospect, of a photonic bandgap; a frequency band in 3-
dimensional dielectric structures, in which electromagnetic waves are 
forbidden, irrespective of propagation direction in space. Today, many 
new ideas and applications are being pursued in 2 and 3 dimensions, and 
in metallic, dielectric, and acoustic structures, etc. 

In this paper, we review the early motivations for this work which 
were derived from the need for a photonic bandgap in quantum optics. 
This led to aseries of experimental and theoretical searches for the 
elusive photonie bandgap structures; those 3-dimensionally periodic 
dielectric structures which are to photon waves, as semiconductor 
crystals are to electron waves. Then we describe how the photonic 
semiconductor can be "doped" producing tiny electromagnetic cavities. 
Finally, we will summarize some of the anticipated implications of 
photonic band structure for quantum electronics and for other areas of 
phySiCS and electrical engineering. 

INTRODUCTION 

In this paper we will pursue the rather appealing analogyl,2 
between the behavior of electromagnetic waves in artificial, 3-
dimensionally periodic, dielectric structures, and the rather more 
familiar behavior of electron waves in natural crystals. 

These artificial 2- and 3-dimensionally periodic structures we will 
call "photonie crystals". The familiar nomenclature of real crystals will be 
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carried over to the electromagnetic case. This means that the concepts 
of Reciprocal Space, Brillouin Zones, Dispersion Relations, Bloch Wave 
functions, Van Hove Singularities, etc., must now be applied to photon 
waves. It makes sense then to speak of photonic band structure and of a 
photonic reciprocal space which has a Brillouin zone approximately 
1000 tlmes smaller than the Brillouin zone of the electrons. Due to the 
periodicity, photons can develop an effective mass, but this Is in no way 
unusual, since It occurs even in I-dimensionally periodic, optically 
layered, structures. We will frequently leap back and forth between the 
conventional meaning of a familiar concept like "conduction band", and 
its new meaning in the context of photonic band structure. 

Under favorable circumstances, a "Photonic Bandgap" can open up; 
a frequency band in which electromagnetic waves are forbidden, 
irrespective of propagation direction in space. Inside a photonic 
bandgap, optical modes, spontaneous emission, and zero point 
fluctuations are all absent. Because of its promised ability to control 
spontaneous emission of light in quantum optics, the pursuit of a 
photonic bandgap has been a major motivation for studying photonic 
band structure. 

MOTIVATION 

Spontaneous emission of light is a major natural phenomenon, 
which is of great practical and commercial importance. For example, in 
semiconductor lasers, spontaneous emission is the major sink for 
threshold current, which must be surmounted in order to initiate lasing. 
In heterojunction bipolar transistors (HBrs), which are non-optical 
devices, spontaneous emission nevertheless rears its head. In some 
regions of the transistor current-voltage characteristic, spontaneous 
optical recombination of electrons and holes determines the HBT 
current grun. In solar cells, surprisingly, spontaneous emission 
fundamentally determtnes the maximum available output voltage. We will 
also see that spontaneous emission determines the degree of photon 
number state squeezing, an important new phenomenon3 in the 
quantum optics of semiconductor lasers. Thus the ability to control 
spontaneous emission of light is expected to have a major impact on 
technology. 

The easiest way to understand the effect of a photonic bandgap on 
spontaneous emission is to take note of Fermi's Golden Rule. Consider 
the spontaneous emission event illustrated in Fig. 1. The downward 
transition transition rate, w, between the filled and empty atomic levels 
is given by: 

w :::; 2x IvI2 p(E), 
Ii 

(1) 

where lvi is sometimes called the zero-point Rabi matrix element and 
p(E) is the density of final states per unit energy. In spontaneous 
emission, the density of final states is the density of optical modes 
available to the photon emitted in Fig. 1. If there are no optical modes 
available, there will be no spontaneous emission. 
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Flgure 1. A spontaneous emission event from a ßlled upper level to an empty lower level. 
The density of final states is the available mode density for photons. 

No Electro-Magnetic 
Modes 

k 

Flgure 2. Electromagnetlc wave dispersion between a pair of metal plates. The waveguide 
dispersion has a cut-off frequency below which there are no electromagnetlc modes. and 
there is nospontaneous emission allowed. 
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Before the 1980s, spontaneous emission was often regarded as a 
natural and inescapable phenomenon, one over which no control was 
poss1ble. In spectroscopy it gave rise to the term "naturallinewidth". 
However in 1946, an overlooked note by Purcell4 on nuclear spin levels, 
had already indicated that spontaneous emission could be controlled. In 
the early '70s, interest in this phenomenon was re-awakened by the 
surface-adsorbed dye molecule fluorescence studies5 of Drexhage. 
Indeed during the mid-'70s, Bykov proposed6 that I-dimensional 
periodicity inside a co-axial line could influence spontaneous emission. 
The modem era of inhibited spontaneous emission dates from the 
Rydberg atom experiments of Kleppner. A pair of metal plates acts as a 
wave-guide, with a cut-off frequency for one of the two polarizations, as 
shown in Fig. 2. Rydberg atoms are atoms in very high lying principal 
quantum number states, which can spontaneously emit in the microwave 
regton of wavelengths. Kleppner et al1 showed that Rydberg atoms in a 
metallic waveguide could be prevented from undergoing spontaneous 
decay. There were no modes available below the wave-guide cut-off. 

There is a problem with metallic waveguides however. They do not 
scale well into optical frequencies. At high frequencies, metals become 
more and more lossy. These dissipative losses allow for virtual modes, 
even at frequencies which would normally be forbidden. Therefore it 
makes sense to cons1der structures made of positive dielectric constant 
materials such as glasses and insulators, rather than metals. These can 
have very low dissipation, even all the way up to optical frequencies. This 
is ultimately exemplified by optical fibers which allow light propagation 
over many kilometers, with negligtble losses. Such positive dielectric 
constant materials can have an almost purely real dielectric response 
with low resistive losses. If arrayed into a 3-dimensionally periodic 
dielectric structure, a photonic bandgap should be possible, employing a 
purely real, reactive, dielectric response. 

The benefits of such a photonic bandgap for direct gap 
semiconductors are illustrated in Fig. 3. On the right side of the figure is 
a plot of the photon dispersion, (frequency versus wave-vector). On the 
left side of Fig. 3, sharing the same frequency axis, is a plot of the 
electron dispersion, showing conduction and valence bands appropriate 
to a direct gap semiconductor. Since atomic spacings are 1000 times 
shorter than optical wavelengths, the electron wave-vector must be 
divtded by 1000 in order to fit on the same graph with the photon wave
vectors. The dots in the electron conduction and valence bands are 
meant to represent electrons and holes, respectively. If an electron were 
to recombine with a hole, they would produce a photon at the electronic 
band edge energy. As illustrated in Fig. 3, if a photonic bandgap straddles 
the electronic band edge, then the photon produced by electron-hole 
recombination would have no place to go. The spontaneous radiative 
recombination of electrons and holes would be inhibited. As can be 
imagmed, this has far-reaching implications for semiconductor photonic 
devices. 

One of the most important applications of inhibited spontaneous 
emission is likely to be the enhancement of photon number state 
squeezing, which has been playing an increasing role in quantum optics 
lately. The form of squeez1ng introduced by Yamamoto3 is particularly 
appealing, in that the active element producing the squeezing effect 1s 
none other than the common resistor, as shown in Fig. 4. When an 
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JI'Igare 3. On the rlght side fs the electromagneUc dispersion, with a forbidden gap at the 
wave vector of the pertodlclty. On the left slde fs the electron wave dfspersion typlcal of a 
d1rect gap sem1conductor, the dots represenUng electrons and holes. Since the photoruc 
bandgap straddles the electrontc band edge, electron-hole recombinaUon into photons fs 
1nhlbited. The photons have no place to go. 
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JI'Igare 4. In a good quality metalllc resfstors, the current flow fs quite regular, producing 
neglJgible amounts of shot no1se. 
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electr1cal current flows, it generally carries the noise assoc1ated with the 
gra1niness of the electron charge, called shot noise. The corresponding 
mean square current fluctuations are: 

(2) 

where i is the average current flow, e is the electronic charge and M is 
the noise bandwidth. While Eq. (2) appUes to many types of random 
phySical processes, it is far from universal. Equation(2) requires that the 
passage of electrons in the current flow be a random Poissonian process. 
As early as 1954, Van der Ziel8 , in an authorltative book called Noise, 
pointed out that good quality meta! film resistors, when carrying a 
current, generally exhibit much less noise than given by Eq. (2). 
Apparently, the flow of electrons in the Fermi sea of a metallic resistor 
represents a highly correlated process. Far from being a random 
process, the electrons apparently sense one another, producing shot 
noise far below Eq. (2); (so low as to be difficult to measure and to 
distinguish from thermal or Johnson noise). Sub-Poissonian shot noise 
has the followmg meaning: Suppose the average flow consists of 10 
electrons per nanosecond. Under random flow, the count in successive 
nanoseconds could sometimes vary from 8 to 12 electrons. With good 
quality meta! film resistors, the electron count would be 10 for each and 
every nanosecond. 

Yamamot03 put this property to good use by drlving a high 
quantum efficiency laser diode with such a resistor as shown in Fig. 5. 
Suppose the laser diode quantum efficiency in the cavity mode were 
1000Al. Then, for each electron passing through the resistor there would 
be one photon into the laser cavity mode. A correlated stream of photons 
are produced whose statistical properties are unprecedented since 
Einstein' s photo-electr1c effect. If the photons are used for optical 
communication, then a receiver would detect exactly 10 photo-electrons 
each nanosecond. If 11 photons were detected. 1t would be no mere 
random fluctuation. but would represent an intentional signal. Thus. 
information in an optical communications signal could be encoded at the 
level of individual photons. The name photon-number-state squeezing is 
associated with the fixed photon number per unit time interval. 
Expressed differently. the bit-error rate in optical communication can be 
diminished by squeezing. 

There is a limitation to the squeezing. however. The quantum 
efficiency in into the lasing mode is not 100%. The 4n: steradians outside 
the cavity mode can capture a significant amount of random spontaneous 
emission. If unwanted electromagnetic modes captured 50% of the 
exc1tation, then the maximum noise reduction in squeezing would be 
only 3dB. Therefore it is necessary to minimize the spontaneous 
recombination of electrons and holes into mo des other than the lasing 
mode. If such random spontaneous events were reduced to 1% allowmg 
99% quantum efficiency into the lasing mode, the corresponding noise 
reduction would be 20dB. weH worth ftghting for. Thus we see that 
control of spontaneous emission is essential for deriving the full beneftt 
from photonnumber-state squeezing. 
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Figure 5. A high quantum efficiency laser diode converts the correlated flow of electrons 
from a low-shot-noise resistor into photon-number-state squeezed light. Random 
spontaneous emission outside the desired cavity mode limits the attainable noise 
reduction. 

Figure 6. The face-centered-cubic Brillouin Zone in reciprocal space. 
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We have motivated the study of photonie band strueture for its 
applieations in quantum opties and optieal eommunieations. Positive 
dieleetrie eonstants and fully 3-dimensional forbidden gaps were 
emphasized. It is now clear that the generality of artlfieial, multi
dimensional, band strueture eoneepts allows for other types of waves, 
other materials, and various lower dimensional geometries, limited only 
by imagination and need. 

SEARCH FOR THE PHOTONIC BANDGAP 

Having deeided ereate a photonie bandgap in three dimensions, we 
need to settle on a partleular 3-dimensionally periodie geometry. For 
eleetrons, the 3-dimensional erystal struetures eome from nature. 
Several hundred years of mineralogy and erystallography have classified 
the naturally oeeurring 3-dimensionally periodie lattiees. For photonie 
bandgaps, we must ereate an artifieial strueture using our imagination. 

The faee-eentered-eubie (fee) lattiee appears to be favored for 
photonie bandgaps, and was suggested independently by Yablonoviteh1 
and John2 in their initial proposals. Let us eonsider the fee Brillouin 
Zone (BZ) as illustrated in Fig. 6. Various speeial points on the surfaee of 
the BZ are marked. Closest to the eenter is the L-point oriented toward 
the body diagonal of the eube. Farthest away is the W-point, avertex 
where 4 plane waves are degenerate, (whieh will eause problems later 
on). In the eubie direetions are the familiar X-points. 

Consider a plane wave in the X-direetion. It will sense the 
periodieity in the eubie direetion, forming a standing wave, opening up a 
forbidden gap as indieated by the shading in Fig. 7. Suppose, on the 
other hand, the plane wave is going in the L direetion. It will sense the 
periodieity along the eubie-body-diagonal. and a gap will form in that 
dlreet10n as weIl. But the wave veetor to the L-potnt Is about 14% smaller 
than the wave-veetor to the X-point. Therefore, the gap at L is likely to 
be eentered at a 14% smaller frequeney than the gap at X. If the two 
gaps are not wide enough, theyare unlikely to overlap In frequency. In 
Fig. 7 as shown, the two gaps barely overlap. This is the main problem in 
aehieving a photonie bandgap. It is diffieult to ensure that a eommon 
frequency overlap is assured for all possible direetions in reeiproeal 
spaee. 

The lesson from Fig. 7 is that the Brillouin Zone should most 
c10sely resemble a sphere in order to inerease the likelihood of a 
eommon frequency overlap in all direetions of spaee. Therefore, let us 
look at the two eommon Brillouin Zones in Fig. 8, the fee BZ and the 
body-eentered-eubie (bee) BZ. The bee BZ has pointy vertiees whieh 
make it diffieult to aehieve a eommon frequency overlap in all direetions. 
Likewise most other eommon BZ's deviate even farther from a spherieal 
shape. Among all the eommon BZ's the fee has the least pereentage 
deviation from a sphere. Therefore, up until now all photonie bandgaps 
in 3 dimensions have been based9 on the fee lattiee. 

The photonie bandgap is different from the idea of al-dimensional 
stop band as understood in eleetrieal engineering. Rather, the photonie 
bandgap should be regarded as a stop band with a eommon frequency 
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Figure 7. The forbldden gap (shadedl at the L-point 15 eentered at a frequency -14% lower 
than theX-point forbldden gap. Therefore 1t 15 d1fIleult to ereate a forbldden frequency 
band overlapping all points along the surfaee of the Brtllouln Zone. 

Bee Fee 

Figure 8. Two eOInmon Br1llouin Zones for body-eentered and faee-eentered euble. The fee 
ease dev1ates least from a sphere. favortng a eommon overlapping band in all direeUons of 
spaee. 
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overlap in all 4x steradians of space. The earliest antecedent to photonie 
band structure, dating lO back to 1914 and Sir Lawrence Bragg, is the 
Dynamical Theory of X-ray Diffractlon. Nature gives us face-centered
cubic crystals and X-rays are bona fide electromagnetlc waves. As earlyas 
1914, narrow stop bands were known to open up. Therefore, what was 
missing? 

The refractlve index contrast for X-rays is tiny, generally 1 part in 
104 • The forbidden X-ray stop bands form extremely narrow rings on the 
facets of the BZ. As the index contrast is increased, the narrow forbidden 
rings open up, eventually covering an entire facet of a BZ and ultlmately 
all directlons in reciprocal space. We will see that this requires an index 
contrast ~ 2 to 1. The high index contrast is the main new feature of 
photonie band structure beyond dynamical X-ray diffraction. In addition, 
we will see that electromagnetlc wave polarizatlon, which is frequently 
overlooked for X-rays, will play a major role in photonie band structure. 

In approaching this subject, we adopted an empirical view-point. 
We decided to make photonie crystals on the scale of microwaves, and 
then we tested them using sophistlcated coherent microwave 
instruments. The test setup, shown in Fig. 9, is what we would call in 
optlcs a Mach-Zender interferometer. It is capable of measuring phase 
and amplitude in transmission through the microwave scale photonie 
crystal. In principle, one can determine the frequency versus wave
vector dispersion relatlons from such coherent measurements. Later on 
we used a powerful commercial instrument for this purpose, the 
HP8510 Network Analyzer . The philosophy of the experiments was to 
measure the forbidden gap in all possible internal directions in 
reciprocal space. Accordingly, the photonie crystal was rotated and the 
transmission measurements repeated. Due to wave vector matching 
along the surface of the photonie crystal, some internal angles could not 
be accessed. To overcome this, large microwave prisms, made out of 
polymethyl-methacrylate, were placed on either side of the test crystal 
in Fig. 9. 

Early on the question arose, of what material should the photonie 
crystal be made? The larger the refractlve index contrast, the easier it 
would be to find a photOnie bandgap. In optics however, the largest 
practlcal index contrast is that of the common semiconductors, Si and 
GaAs, with a refractlve index n= 3.6. If that index was inadequate, then 
photonie crystals would probably never fulfill the goal of being useful in 
optlcs. Therefore, we decided to restriet the microwave refractlve index 
to 3.6, and the microwave dielectric constant to n2 = 12. A commercial 
microwave material, Emerson & Cumming 5tycast 12 was particularly 
suited to the task, since it was machinable with carbide tool bits. Any 
photonie band structure that was found in this material could simply be 
scaled down in size and would have the identical dispersion relations at 
optlcal frequencies and optlcal wavelengths. 

With regard to the geometry of the photonie crystal, there are a 
universe of possibilitles. 50 far, the only restrictlon we have made is 
toward face-centered-cubic lattlces. It turns out that a crystal, with an 
fee BZ in reciprocal space, as shown in Fig. 6, is composed of fee 
Wigner-5eitz unit cells in real space as shown in Fig. 10. The problem of 
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Figure 9. A homodyne detection system for measuring phase and amplitude in 
transmission through the photonic crystal under test. A sweep oscillator feeds a IOdB 
splitter. Part ofthe signal is modulated (MOD) and then propagated as aplane wave 
through the test crystal. The other part of the signal is used as local oscillator for the 
mlxer (MXR) to measure the amplitude change and phase shift in the crystal. Between the 
mlxer and the X-Y recorder is a lock-in amplifier (not shown). 

a b 

Figure 10. The Wlgner-Seitz real-space-unit-cell ofthe fcc lattice is a rhombic 
dodecahedron. (a) Slightly oversized spherical voids are inscribed into the unit cell, 
breaking through the faces, as illustrated by dashed circles. (b) W-S cell structure 
possessing a photonic bandgap. Cylindrical holes are drilled through the top 3 facets of the 
rhombic dodecahedron and exit through the bottom 3 facets. The resulting atoms are 
roughly cylindrical, and have a preferred axis in the vertical direction. 
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ereating an arbitrary fee dieleetrie strueture reduees to the problem of 
filling the fee w-s real-spaee-unit-eell with an arbitrary spatial 
distribution of dieleetrie material. Real spaee is then fJJ.led by repeated 
translation and close-paeking of the W-S unit eells. The deeision before 
us is what to put inside the fee Wigner-Seitz eells. There are an infmite 
number of posslble fee lattiees sinee anything ean be put inside the 
fundamental repeating unit. The problem before us is: What do we put 
inside the fee W-S unit eell in Fig. 10? In X-ray language, we had to find a 
"Form Faetor" for the W-S unit eell whieh would produee a exystal with a 
photonie bandgap. 

This question provoked strenuous diffieulties and false starts over a 
period of several years before finally being solved. In the first years of 
this research, we were unaware of how diffieult the seareh for a photonie 
bandgap would be. A number of fee exystal struetures were proposed, 
eaeh representing a different ehoiee for fJJ.ling the rhombie 
dodeeahedron fee W-S eells in real spaee. For example the vexy first 
suggestion l , was to make a 3-dimensional "checkerboard" as in Fig. 11. 
in whieh eubes were inseribed inside the fee W -S real spaee eells in Fig. 
10. Later on, the experiments II adopted spherieal "atoms" eentered 
inside the fee W-S eell eomposed of preeision Al203 spheres, n-3.06, 
eaeh -6mm in diameter. This strueture was tested at a number of fJJ.ling 
ratios from close-paeking to vexy dilute. Nevertheless, it always failed to 
produee a photonie bandgapl 

Then, we tested the inverse strueture in whieh spherieal voids 
were inseribed inside the fee W-S real spaee eell. These eould be easily 
fabrieated by drilling hemispheres onto the opposite faees of a dieleetrie 
sheet with a spherieal drill bit as shown in Fig. 12. When the sheets were 
staeked up so that the hemispheres faeed one another, the result was an 
fee array of spherieal voids inside a dieleetrie block. These were also 
tested over a wide range of filling ratios by progressively inereasing the 
diameter of the hemispheres. These also failed to produce a photonie 
bandgapl 

The typieal failure mode Is illustrated in Fig. 13. As expeeted, the 
"eonduetion band" at the L-point falls at a low frequeney, while the 
"valenee band" at the W-point falls at a high frequency. The overlap of the 
bands at L and W results in a band strueture whieh is best deseribed as 
"semi-metallie". 

The empmeal seareh for a photonie bandgap led nowhere until we 
tested a spherieal void strueture with oversized voids breaking through 
the walls of the W-S unit eell as shown in Fig. 10(a). For the first time, 
the measurements seemed to indieate a photonie bandgap, and we 
publishedll the band strueture shown in Fig. 14. There appeared to be a 
narrow gap, eentered at 15GHz, and forbidden for both possible 
polarizations. Unknown to us, however, Fig. 14 harbored a serious error. 
Instead of a gap at the W-point, the eonduetion and valenee bands 
erossed at that point allowing the bands to touch. This produeed a 
pseudo-gap with zero density of states but no frequeney width. The error 
arose due to the limited size of the exystal. The eonstruetion of crystals 
with -104 atoms required tens of thousands of holes to be drilled. Such a 
3-dimensional exystal was still only 12 eubie units wide, limiting the 
wave-veetor resolution, and restrieting the dynamie range in 
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Figure 11. A face-centered-cubic crystal in which the individual W-S cells are inscribed 
with cubes stacked in a 3-dlmensional "checkerboard" . 

8000 
atoms! 

Flgure 12. Construction of fee crystals consisting of spherical voids. Hemispherical holes 
are drilled on both faces of a dielectric sheet. When the sheets are stacked up. the 
henuspheres meet producing an fee crystal. 
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Ftgure 13. Typical semi-metalllc band structure for a photomc crystal with no photomc 
barulgap. An overlap exists between the conduction band at L and the valence band at w. 

Ftgure 14. The purported photomc band structure of the spherical void structure shown in 
F1g. IO(a). The rtght slopmg lines represent polarization parallel to the X-plane, whUe the 
left slopmg lines represent the orthogonal polarfzation which has a partial component 
out ofthe X-plane. The cross hatched region is the reported photonic bandgap. This ßgure 
faUs to show the crossmg ofthe valence and conduction bands at the W-point which was 
ßrst discovered by theory. 
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transmission. Under these conditions, it was experimentally difficult to 
notice a conduction-valence band degeneracy which occurred at an 
isolated point in k-space, such as the W-point. 

While we were busy with the empirical search, theorists began 
serious efforts to calculate photo nie band structure. The most rapid 
progress was made not by specialists in electromagnetic theory, but by 
electronic band structure theorists who were accustomed to solving 
Schrödinger's equation in 3-dimensionally periodic potentials. The early 
calculations l2- 15 were unsuccessful however. As a short cut, they treated 
the electromagnetic field as a scalar, much as is done for electron waves 
in Schrödinger's equation. The scalar wave theory of photonie band 
structure did not agree well with experiment. For example, it predicted 
photonie bandgaps in the dielectric sphere structure, where none were 
observed experimentally. The approximation of Maxwell's equations as a 
scalar wave equation was not working. Finally, incorporating the full 
vector Maxwell's equations, theory began to agree with experiment. 
Leung and Liu 16 were probably the first to publish a successful vector 
wave calculation in photonie band structure, followed by others17- 18 with 
substantially similar results. The theorists agreed well with one another, 
and they agreed well with experimentll except at the high degeneracy 
points U and particularly W. What the experiment failed to see was the 
degenerate crossing of valence and conduction bands at those points. 

The unexpected pseudo-gap in the fee crystal triggered concern 
and a search for a way to overcome the problem. A worried editorial19 
was published in Nature. But even before the editorial appeared, the 
problem had already been solved by the Iowa State group· of Ho, Chan, 
and Soukoulis. 18 The degenerate crossing at the W-point was very 
susceptible to changes in symmetry of the structure. If the symmetry was 
lowered by filling the W-S unit cell not by a Single spherical atom, but by 
two atoms positioned along the <111> direction, as in diamond 
structure, then a full photonie bandgap opened up. Their discovery of a 
photonie bandgap using a diamond "form factor" is particularly 
significant, since diamond geometry seems to be favored by Maxwell's 
equations. A form of diamond structure20 gives the widest photonie 
bandgaps requiring the least index contrast. n-1.87. 

More generally, the spherical void symmetry in Fig. 10(a) can be 
lowered by distortlng the spheres along the <111> direction, lifting the 
degeneracy at the W-point. The W-S unit cell in Fig. 1O(b) has great merit 
for this purpose. Holes are drilled through the top 3 facets of the 
rhombic dodecahedron and exit through the bottom 3 facets. The beauty 
of the structure in Fig. IO(b) is that a stacking of W-S unit cells results in 
straight holes which pass dear through the entire "crystal"l The "atoms" 
are odd-shaped, roughly cylindrical voids centered in the W-S unit cell, 
with a preferred axis pointing to the top vertex, <111>. An operational 
illustration of the construction which produces an fee " crystal" of such 
W-S unit cells is shown in Fig. 15. 

A slab of material is covered by a mask containing a triangular array 
of holes. Three drilling operations are conducted through each hole, 
35.260 off normal incidence and spread out 1200 on the azimuth. The 
resulting criss-cross of holes below the surface of the slab produces a 
fully 3-dimensionally periodic fee structure, with W-S unit cells given by 
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FIgure 15. The method of constructIng an fce latt1ce of the Wtgner-Seitz cells as shown in 
Fig. 1 O(b). A slab of material is covered by a mask consistIng of a triangular array of holes. 
Each hole 15 drilled through 3 tfmes. at an angle 35.260 away from normal. and spread out 
1200 on the azfmuth. The resultIng criss-cross ofholes below the surface ofthe slab. 
suggested by the cross-hatching shown here. produces a fully 3-dfmensionally periodic fcc 
structure. with unit cells as given by Fig. 1O(b). The drillIng can be done by a real drill bit 
for microwave work or by reactlve ion etehing to create an fce structure at optlcal 
wavelengths. 

U3 

FIgure 16. The Brillouin Zone of an fcc structure incorporatIng non-spherical atoms. as 
in Fig. 1O(b). Since the space lattlce 15 not distorted. th15 15 sfmply the standard fce 
Brillouin Zone lyIng on a hexagonal face rather than the usual cub1c face. Only the L
points on the top and bottom hexagons are 3-fold symmetry axes. Therefore they are 
labeled 1.:3. The L-points on the other 6 hexagons are labeled LI. The U3-Ks points are 
equivalent since they are a reciprocallattice vector apart. Likewise the UI-KIPoints are 
equivalent. 
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Ftgure 17. Frequency versus wave-vector, CJ)-VS- k, dispersion along the suIfaee of the 
Brtllouin Zone shown in Fig. 16, where e/a is the speed oflight divided by the fee eube 
length. The ovals and triangles are the experimental POints for s and p polarization 
respeeUvely. The solid and dashed lines are the ealeulations for s and p polarization 
respecUvely. The dark shaded band is the totally forbidden bandgap. The lighter shaded 
stripes above and below the dark band are forbidden only for sand p polarizaUon 
respeetively. 
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Ftgure 18. ConstrueUon of the non-spherieal void photonie erystal of Fig. 1O(b) and Figs. 
15-17 by reaeUve ion etehing. 
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Fig. 10(b)1 The drilling can be done by a real drill bit for microwave work 
or by reactive ion etching to create an fcc structure at optical 
wavelengths. 

In spite of non-spherical atoms in Fig. 10(b). the Brillouin Zone 
(BZ) is identical to the standard fcc BZ shown in textbooks. 
Nevertheless. we have chosen an unusual perspective from which to view 
the Brillouin Zone in Fig. 16. Instead of having the fcc BZ resling on one 
of its diamond-shaped facets as is usually done. we have chosen in Fig. 
16. to present it resting on a hexagonal face. Since there is a preferred 
axis for the atoms. the distinctive L.points centered in the top and 
bottom hexagons are 3-fold symmetry axes. and are labeled ~. The L
points centered in the other 6 hexagons are symmetric only under a 
360° rotation. and are labeled LI. It is helpful to know that the U3-Ka 
points are equivalent since they are a reciprocal lattice vector apart. 
Likewise. the U l-Kl points are equivalent. 

Figure 17 shows the dispersion relations along different meridians 
for our primary experimental sampie of normalized hole diameter d/a= 
0.469 and 78% volume fraction removed. (where a is the unit cube 
length). The oval points represent experimental data with s-polarization 
(.1 to the plane of incidence, 11 to the slab surface), while the triangular 
points represent p-polarization ( 11 to the plane of incidence. partially 1-
to the slab surface). The horizontal abscissa in the lower graph of Fig. 20. 
L3-K3-LI-U3-X-U3-L3 represents a fuH meridian from the North pole to 
the South pole of the BZ. Along this meridian the Bloch wave functions 
separate neatly into s and p polartzations. The sand p polarized theory 
curves are the solid and dashed lines, respectively. The dark shaded 
band Is the totaHy forbidden photonic bandgap. The lighter shaded 
stripes above and below the dark band are forbidden only for sand p 
polartzation. respectively. 

At a typical semiconductor refractive index. n= 3.6. the 3-d 
forbidden gap width is 19% of its center frequency. Calculations21 
indicate that the gap remains open for refractive indices as low as n=2.1 
using circular holes. We have also measured the imaginary wave vector 
dispersion within the forbidden gap. At mid-gap we find an attenuation 
of 10dB per unit cube length a. Therefore. the photonic crystal need not 
be very many layers thick to effectively expel the zero-point 
electromagnetic fteld. The construction of Fig. 15 can be implemented 
by reactive ion etching as shown in Fig. 18. In reactive ion etching. the 
proJection of circular mask openings at 35° leaves oval holes in the 
material. which might not perform as weH. Fortunately it was found. 21 
defying Murphy's Law. that the forbidden gap width for oval holes is 
actually improved. fuHy 21.7% ofits center frequency. 

DOPING TBE PHOTONIC CRYSTAL 

The perfect semiconductor crystal is quite elegant and beautiful. 
but it becomes ever more useful when it is doped. Likewise. the perfect 
photonic crystal can beco~e of even greater value when a defect2"2 is 
introduced. 

223 



Lasers, for example, require that the perfect 3-d translational 
symmetry should be broken. Even while spontaneous emission into all 4x 
steradians should be inhibited, a local electromagnetic mode, linked to a 
defect, is still necessary to accept the stimulated emission. In 1-
dimensional distributed feedback lasers,23 a quarter wavelength defect is 
introduced, forming effectively a Fabry-Perot cavity as shown in Fig. 19. 
In 3-dimensional photonic band structure a local defect-induced 
structure resembles a Fabry-Perot cavity, except that it reflects radiation 
back upon itself in all 4x spatial directions. 

The perfect 3-dimensional translational symmetry of a dielectric 
structure can be lifted in either one of two ways: (1) Extra dielectric 
material may be added to one of the unit cells. We find that such a defect 
behaves very much like a donor atom in a semiconductor. It gives rise to 
donor modes which have their origin at the bottom of the conduction 
band. (2) Conversely, translational symmetry can be broken by removing 
some dielectric material from one of the unit cells. Such defects 
resemble acceptor atoms in semiconductors. The associated acceptor 
mo des have their origin at the top of the valence band. We will find that 
acceptor modes are particularly well-suited to act as laser 
microresonator cavities. Indeed it appears that photonic crystals made of 
sapphire or other lowloss dielectrics, will make the highest-Q single-
mode cavities (of modal volume -1 1..3) covering electromagnetic 
frequencies above the useful working range of superconducting metallic 
cavities. The short wavelength limit in the ultraviolet, is set by the 
availability of optical materials with refractive index ?2, the threshold 
index18•21 for the existence of a photonic bandgap. 

Figure 20 is a < 1, i, 0> cross-section of our photonic crystal of Fig. 
10(b) and Figs. 15-17, cutting through the center of a unit cube. Shading 
represents dielectric material. The large dots are centered on the air
atoms and the rectangular dashed line is a face-diagonal cross-section of 
the unit cube. Since we could design the structure at will, donor defects 
were chosen to consist of a single dielectric sphere centered in an air
atom. Likewise, by breaking one of the inter-connecting ribs, it is easy to 
create acceptor modes. We selected an acceptor defect as shown in Fig. 
20 centered in the unit cube. It comprises a vertical rib which has a 
missing horizontal slice. 

The heart of our experimental apparatus is a photonic crystal 
embedded in microwave absorbing pads as shown in Fig. 21. The 
photonic crystals were 8-10 atomic layers thick in the < 1,1, 1> direction. 
Monopole antennas, consisting of 6 mm pins, coupled radiation to the 
defect mode. The HP 8510 Network Analyzer was set up to measure 
transmission between the antennas. Figure 22(a) shows the transmission 
amplitude in the absence of a defect. There is very strong attenuation 
(-10-5) between 13GHz and 16GHz marking the valence and conduction 
band edges of the forbidden gap. This is a tribute to both the dynamic 
range of the network analyzer, and the sizable imaginary wavevector in 
the forbidden gap. 

A transmission spectrum in the presence of an acceptor defect is 
shown in Fig. 22(b). Most of the spectrum is unaffected, except at the 
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Flgure 19. AI-dimensional Fabry-Perot resonator made of multilayer dielectric mirrors 
with aspace of one-half wavelength between the left and rtght mirrors. The net effect is to 
introduce a quarter wavelength phase slip defect into the overall periodic structure. A 
defect mode is introduced at mid-gap. 
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Ftgure 20. A<l.i.O> cross-sectional view of our face-centered-cubic photOniC crystal 
consisting of non-spherical "air-atoms" centered on the large dots. Dielectric material is 
represented by the shaded area. The rectangular dashed line is a face-diagonal 
crosssection of the unit cube. Donor defects consisted of a dielectric sphere centered on an 
atom. We selected an acceptor defect as shown. centered in the unit cube. It consists of a 
missing horizontal slice in a Single verUcal rib. 
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electromagnetic frequency marked Deep Acceptor within the forbidden 
gap. At that precise frequency. radiation "hops" from the transmitting 
antenna to the acceptor mode and then to the receiving antenna The 
acceptor level frequency. within the forbidden gap. Is dependent on the 
volume of material removed. Figure 26 shows the acceptor level 
frequency as a function of defect volume removed from one unlt cello 
When a relatively large volume of material is removed. the acceptor level 
is deep as shown in Fig. 22(b). A smaller amount of material removed 
results in a shallow acceptor level, nearer the valence band. If the 
removed material volume falls below a threshold volume. the acceptor 
level falls within the continuum of levels below the top of the valence 
band. becoming metastable. 

On an expanded frequency scale we can measure the resonator Q 
of the deep acceptor mode. which is Q-IOOO. as limited by the loss 
tangent of the Emerson & Cumming Stycast material of which the 
photonie crystal was made. 

The behavior of an off-center donor defect is shown in Fig. 22(c). 
In this case. the donor volume was only slightly above the required 
threshold for forming bound donor modes. Already two shallow donor 
modes can be seen in Fig. 22(c). When the donor is centered in the 
Wigner-Seitz unit cello the two modes merge to form a doubly 
degenerate donor level as in Fig. 23. Single donor defects seem to 
produce multiple donor levels. Figure 23 gives the donor level frequency 
as a function of donor volume. As in the case of acceptors. there is a 
threshold defect volume required for the creation of bound modes below 
the conduction band edge. However. the threshold volume for donor 
defects Is almost ten times larger than the acceptor threshold volume. 
Apparently this is due to the electric field concentration in the 
dielectric ribs at the top of the valence band. Bloch wave functions at the 
top of the valence band are rather easily disrupted by the missing rib 
segment. 

We have chosen in Fig. 23 to normalize the defect volume to a 
natural volume of the physical system. [A./2n]3. which is basically a cubic 
half-wavelength in the dielectric medium. More specifically. A is the 
vacuum wavelength at the midgap frequency. and n is the refractive 
index of the dielectric medium. Since we are measuring a dielectric 
volume. it makes sense to normalize to a half-wavelength cube as 
measured at the dielectric refractive index. Based on the reasonable 
scaling of Fig. 23. our choice of volume normalization would seem 
justified. 

The vertical rib with a missing horizontal slice. as in Fig. 20. can 
be readily microfabricated. It should be possible to create it in III-V 
materials by growing an aluminum-rich epitaxiallayer and 
lithographically patteming it down to a single dot the size of one of the 
vertical ribs. After regrowth of the original III-V composition and 
reactive ion etching of the photonie crystal. HF acid etching. whose24 

selectivity ~108. will be used to remove the Al-rich horizontal slice from 
the one rib containing such a layer. The re sonant frequency of the micro
cavity can be controlled by the thickness of the Al-rich sacrificiallayer. 
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Flgure 21. Experimental configuration for the detection of local electromagnetic modes in 
the vicinity of a lattice defect. Transmission amplitude attenuation from one antenna to 
the other is measured. At the local mode frequency the signal hops by means of the local 
mode in the center of the photonic crystal producing a local transmission peak. The signal 
propagates in the < 1,1, 1> direction through 8-10 atomic layers. 
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Figure 22. (a) Transmission attenuation through a defect-free photonic crystaI. as a 
function ofmicrowave frequency. The forbidden gap falls between 13GHz and 16GHz. (b) 
Attenuation through a photOniC crystal with a single acceptor in the center. The large 
acceptor defect volume shifted its frequency near mid-gap. The electromagnetic resonator 
Q was -1000, limited only by the loss tangent of the dielectric material. (cl Attenuation 
through a photonic crystal with a single donor defect, an uncentered dielectric sphere, 
leading to two shallow donor modes. 
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Figure 23. Donor and acceptor mode frequencies as a function of nonnallzed donor and 
acceptor defect volume. The points areexpertmental and the corresponding lines are 
calculated. Defect volume is nonnalized to [A/2n)3 where A is the mid-gap vacuum 
wavelength and n is the refractive index. A finite defect volume is required to bind a mode 
in the forbidden gap. 
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Flgure 24. An illustration of the properUes of the single-mode llght-emitting-diode. (SM
LED). whose cavity is represented by the small circle inside the rectangular photoruc 
cxystal. at left. The words monochromaUe and direcUonal represent the temporal and 
spatial coherence ofthe SM-LED output as explained in the text. The modulaUon speed can 
be > 1OGHz. and the differential quantum efficiency can be > 500Al. compeUtive with laser 
diodes. But there is no threshold current for the SM-LED as indicated by the L-I CUIVes at 
the bottom. The regular stream of photo-electrons. e. are meant to represent photon 
number state squeezing. which can be produced by the SM-LED if the spontaneous 
emission factor. ß. of the cavity is high enough. 
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Therefore, by doping the photonic crystal, it is possible to create 
high-Q electromagnetic cavities whose modal volume Is less than a half
wavelength cubed. These doped photonic crystals would be similar to 
metallic microwave cavities, except that they would be usable at higher 
frequencies where metal cavity walls would become lossy. Using sapphire 
as a dielectric, for example, it should be posslble to make a millimeter 
wave cavity with Q~109. The tdea is not to compete directly with 
superconducting cavities, but rather to operate at higher frequencies 
where the superconductors become lossy. Given the requirement for 
refractive index > 2, doped photonic crystals should work weIl up to 
ultraviolet wavelengths where diamond crystals and Ti02 are still 
transparent. 

APPLICATIONS 

The forthcoming availability of single-mode micro-cavities at 
optical frequencies will lead to a new situation in quantum electronics. 
Of course, microwave cavities containing a single electromagnetic mode 
have been known for a long time. At microwave frequencies, however, 
spontaneous emission of electromagnetic radiation is a weak and 
unimportant process. At optical frequencies, spontaneous emission 
comes into its own. Now we can combine the physics and technology of 
spontaneous emission with the capability for single mode micro-cavities 
at optical frequencies where spontaneous emission is important. This 
combination is fundamentally a new regime in quantum electronics. 

The major example of this new type of device is the single-mode 
light-emitting-diode (SM-LED), which can have manY of the favorable 
coherence properties of lasers, while being a more reliable, and 
threshold less device. Progress in electromagnetic microcavities, aUows 
all the spontaneous emission of an LED to be funneled into a single 
electromagnetic mode. 

As the interest in low-threshold semiconductor laser diodes has 
grown, e.g., for optical interconnects, its spontaneously luminescent 
half-brother, the light-emitting-diode has begun to re-emerge in a new 
form. In this new form, the LED is surrounded by an optical cavity. The 
idea is for the optical cavity to make available only a single 
electromagnetic mode for the output spontaneous emission from the 
semiconductor diode. In fact, the Figure-of-Merit for such a cavity is p, 
the fraction of spontaneous emission which is being funneled into the 
desired mode. What is new for this application is the prospective ability 
to make high P cavities at optical frequencies employing photonic 
crystals. The 3-dimensional character of the cavities ensures that 
spontaneous emission will not seek out those neglected modes which 
are found propagating in a direction away from the optical confinement. 

With all the spontaneous emission funneled into a single optical 
mode, the SM-LED can begin to have many of the coherence and 
statistical properties normally associated with above-threshold lasing. 
The essential point is that the spontaneous emission factor, p, should 
approach unity. (A closely related concept is that of the "zero-threshold 
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laser", in which the high spontaneous emission factor produces a very 
soft and indistinct threshold characteristic in the light output-versus
current input curve of laser diodes.) The idea is to combine the 
advantages of the LED which is thresholdless and highly reliable, with 
those of the semiconductor laser which is coherent and very efficient. 

The coherence properties of the single-mode LED (SM-LED) are 
Ulustrated in Fig. 24. In a laser, single mode emission is the result of 
gain saturation and mode competition. In the SM-LED,there is no gain 
and therefore no gain saturation, but the output is still single-mode, 
because only one mode is available for emission. Since a single spatial 
mode can always be mode converted into a plane wave, the SM-LED can 
be regarded as having spatial coherence. 

What about temporal coherence? The spectral linewidth of the 
SM-LED is narrower than the luminescence band of the semiconductor. 
All the radiation is funneled into the narrow spectral band determined 
by the micro-cavity Q. Thus SM-LED's have both spatial and temporal 
coherence as represented by words " directional" and " monochromatic" 
in Fig. 24. 

What about the modulation speed of SM-LED's in comparison to 
laser diodes under direct current modulation? Generally, the modulation 
speed depends on the carrier's lifetime. Since electron-hole pairs in 
laser diodes experience both spontaneous and stimulated recombination, 
they have an advantage. However, single-mode cavities concentrate zero
point electric field fluctuations into a smaller volume creating a stronger 
matrix element for spontaneous emission. Detailed calculations indicate 
that spontaneous emission can be speeded up by a factor -10 due to this 
cavity quantum electro-dynamic (QED) effect. On Fig. 24, we indicate 
that a modulation speed> 10GHz should be possible for SM-LED's. 

The same cavity QED effects can enhance the spontaneous 
emission efficiency of SM-LED's since the radiative rate can then 
compete more successfully with non-radiative rates. External efficiency 
should exceed 50%, but this can come most easily from intelligent LED 
design25 rather than cavity QED effects. 

Shown at the bottom of Fig. 24 is the light output versus current 
input curve of SM-LED's and laser diodes. SM-LED's can compete with 
laser diodes in terms of differential external efficiency, but the SM-LED's 
can have the advantage by not demanding any threshold current. Lack of 
threshold behavior makes the output power and the operating 
wavelength of an SM-LED relatively insensitive to ambient temperature. 
Combined with the inherent reliability of an LED, this should produce 
many systems advantages for the SM-LED concept. 

The final SM-LED property illustrated in Fig. 24 is photon number 
state squeezing, as suggested by the regular sequence of photo-electrons 
on the horizontal line. Stimulated emission is not required for these 
exotic squeezing effects. The critical variable is absolute quantum 
efficiency. If the quantum efficiency of the SM-LED is high, then these 
useful correlations will exist in the spontaneous output of the single
mode LED. This requires, most of all, a high spontaneous emission 
factor. ß. our overall Figure-of-Merit for microcavities. 
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There are many other applications for photoruc crystals, 
partlcularly in the microwave and millimeter wave regime. They are very 
imaginative and have gone far beyond our initial goals for using photonie 
crystals in quantum optics. 

CONCLUSIONS 

It is worthwhile to summarize the similaritles and the differences 
between photoruc band structure (PBS) and electronic band structure 
(EBS). This Is best done by reference to Table I. 

Electrons are massive and so the underlying dispersion relation for 
electrons in crystals is parabolic. Photons have no mass, so the 
underlying dispersion relation is linear. But as a result of the periodlcity, 
the photons develop an effective mass in PBS and this should come as 
very little surprise. 

Electrons have spin 1/2, but frequently this is ignored and 
Schrödinger's equation is treated in a scalar wave approximation. In 
electroruc band theory, the spin 1/2 is occasionally important, however. 
In contrast, photons have spin 1, but it is generally never a good 
approximation to neglect polarization in PBS calculations. 

Finally, we come to the accuracy of band theory. It is sometimes 
believed that band theory is always a good approximation in electronic 
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TABLE I. A summary of the differences and similarities between 
photonie band structure and electroruc band structure. 

Electronic Photonie 
Band Structure Band Structure 

Underlying 
Dispersion parabolic linear 

Relation 

Angular Spin 1/2 Spin 1 
Momentum scalarwave vector wave 

approximation character 

Accuracy approximate 
ofBand due to electron- essentially exact 
Theory electron 

interactions 



strueture. This Is not really true. When there are strong eorrelations, as 
in the high Tc supereonduetors, band theory Is not even a good zeroth 
order approximation. Photons are highly non-lnteraeting, so If anything, 
band theory makes more sense for photons than for eleetrons. 

The final point to make about photonie erystals Is they are very 
empty struetures, eonsisting of about 78% empty spaee. But in a sense 
theyare mueh emptier. They are emptier and quieter than even the 
vaeuum, sinee they contain not even zero point fluetuation withln the 
forbidden frequency band. 
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INTRODUCTION 

Electron waves traveling in the periodic potential of a crystal are 
arranged into energy bands separated by gaps in which propagating states 
are prohibited. 1 It is interesting to see if analogous band gaps exist when 
electromagnetic (EM) waves propagate in a periodic dielectric structure 
(e.g., a periodic lattice of dielectric spheres of dielectric constant ea 
embedded in a uniform dielectric background eh). If such a band gap or 
frequency gap exists, EM waves with frequencies inside the gap cannot 
propagate in any direction inside the material. These frequency gaps are 
referred to as "photonic band gaps." 

Photonic band gaps can have a profound impact on many areas in 
pure and applied physics.2•3 Due to the absence of optical modes in the 
gap, spontaneous emission is suppressed for photons with frequencies in 
the forbidden region.4 ,5 It has been suggested that, by tuning the photonic 
band gap to overlap with the electronic band edge, the electron-hole 
recombinatlon process can be controlled in a photonic band gap material, 
leading to enhanced efficiency and reduced noise in the operation of 
semiconductor lasers and other solid state devices,5 The suppression of 
spontaneous emission in can also be used to prolong the lifetime of selected 
chemical species in catalytic processes. 6 Photonic band gap materials can 
also fmd applications in frequency-selective mirrors, band-pass filters, and 
resonators. Besides technical applications in various areas, scientists are 
interested in the possibility of observing the localization of EM waves by the 
introduction of defects and disorder in a photOnic band gap material. 7-9 
This will be an ideal real1zation of the phenomenon of localization 
uncomplicated by many-body effects present in the case of electron 
localization. Another interesting effect is that. zero-point fluctuations, 
which are present even in vacuum, are absent for frequencies inside a 
photonic gap. Electromagnetic interactlon governs many properties of 
atoms, molecules, and solids. The absence of EM modes and zero point 
fluctuations inside the photonic gap can lead to unusual physical 
phenomena. 7- 12 For example, atoms or molecules embedded in such a 
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material can be locked in excited states if the photons to be emitted to 
release the excess energy have frequency within the forbidden gap. All the 
aforementioned ideas about new physics and new technology hinges upon 
the assumption of the existence of material with photonic gaps. 

To search for the appropriate structures, scientists at Bellcore 
employed a "cut-and-try" approach in which various periodic dielectric 
structures were fabricated in the microwave regime and the dispersion of 
EM waves were measured to see if a frequency gap existed. 13 The process 
tumed out to be time consuming and not very successful. After dozens of 
structures tried over aperiod of two years, they identified only one 
structure with a photonic band gap. This structure consists of a periodic 
array of overlapping spherical holes inside a dielectric block. The centers of 
the holes are arranged in a face-eentered-cubic (fee) lattice and the holes 
occupy 86% of the volume of the block. 

PLANE WAVE METHOD 

Stimulated by the experimental work, theorists became interested in 
the solution of the photonic band problem and in the search for structures 
with photonic band gaps. Early work in this area employed the "scalar wave 
approximation" which assumed that the two polarizations of the EM waves 
can be treated separately, thus decoupling the problem into the solution of 
two scalar wave equations. When we first became involved with the photon 
band problem, calculations had already been completed for the 
experimental structure in the scalar wave approximation. 14,15 The results 
showed the existence of a gap but the position and size of the gap were not 
in quantitative agreement with the experiment, indicating the need for a full 
vector wave treatment. It tumed out from subsequent calculations that the 
errors made in neglecting the vector nature of the EM wave are more 
serious than initially antieipated, and the sealar wave ealeulations aetually 
give qualitatively wrong results. 

The vector wave solution of Maxwell's equations for a periodic 
dielectric system was carried out independently by several groups shortly 
after the appearance of the scalar wave results. IB- 18 All of the methods 
employ aplane wave expansion of the eleetromagnetie fields and use 
Bloch's theorem to reduce the problem to the solution of a set of linear 
equations. In this article, we will concentrate mainly on the methods 
developed in our group. 

For EM waves with frequency 0>, the Maxwell equations can be 
written as 

V·D=O (la) 

V x H= -iO> 0 c (lb) 

VxE=iO>H c (lc) 

V·H=O (ld) 
and, 
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D(r) = e(r) E(r) Ue) 

where e(r) is areal and periodlc functlon of r and frequency independent in 
the range of frequency under consideratlon. We also take the magnetlc 
permeability ~ = 1. Since e(r) Is periodic, we can use Bloch's theorem to 
expand the H, E, and D fields, for example: 

H(r) = l: HK elK·r 
K 

(2) 

where K = k + G, with k belng a wave vector (in the Brillouin zone) that 
determines the propagation direction and wavelength of the EM wave, and 
G is a reciprocal Iattice vector. Equation (2) and the correspondlng 
expansions for E and D transform the Maxwell equations I(a)-(d) into 

K·DK=O (3a) 

ro 
KxHK= --DK c (3b) 

ro 
KxEK=-HK c (3c) 

K·HE=O. (3d) 

We can now eliminate the E field in terms of the H field, and get 

2 

LKxe~,(K'xHK')=- CtJ2 HK' 
K' C 

(4a) 

where K' = k + G', and eK,E' = e(K-K') = e(G-G') is the Fourier transform of 
the e(r). 

Using Eq. (3), we can also eliminate the H field in terms of E and 
obtain 

ro2 
KxKxEK+~ L eK,K' EK'=O. 

K' 
(4b) 

Equatlon 3(d) shows that H is transverse, so we can write: 

(5) 

where (XltX2, K ) forms an orthogonal triad. Equation (5) and so me vector 
algebra reduce Eq. (4a) to 

(6) 

where 
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Thus, Eq. (4a) can be reduced to a set of 2N linear equations where N 
Is the number of plane waves used to expand the electromagnetic fields. On 
the other hand, the E field Is not a transverse field in the present problem, 
thus Eq. (4b) reduces to a set of 3N linear equations. There Is an extra N 
roots corresponding to zero-frequency longitudinal wave solution which 
must be projected out of the problem to reduce the number of equations 
from 3N to 2N. The E field formulation offers some insights on the photon 
band dispersion in the long wavelength limit. However, it can be shown 
mathematically that it gives the same eigenvalues as the H field 
formulation. Thus, in this article, we will concentrate on solving the H 
field equations. 

Diagonalization of the Hermitian matrix M for each k-point solves the 
photon band problem, with the eigenvalues giving the square of the 
frequencies of the eigenmodes and the eigenvectors giving the components 
of the field intensities. This approach has the unique advantage of being 
applicable to all forms of periodic structures, irrespective of the shape and 
size of the "objects" under consideration. 

When we solved the photon band structure for the experimental 
structure of 86% air spheres in a dielectric matrix, we got a big surprisel 
While the calculated bands and the experimental results agree quite weIl in 
most regions of the Brillouin zone, there Is an essential difference between 
the calculated and the experimental results. Contrary to the results 
reported by experiment, the calculation showed that the structure does not 
have a photonie band gap. The photon band structure of the fee structure 
Is shown in Fig. 1, while the corresponding density-of-states (DOS) Is 
shown in Fig. 2. Even though the fee structure does not have a complete 
photonie gap for the lowest-lying bands, a very large depletion of DOS is 
found, called a "pseudo-gap." Actually, this result was also obtained earlier 
by two other groups, 16-17 although at that time we were not aware of their 
results. 

InitiallY' we thought our computer code was in error, and we 
investigated different ways to solve the problem to check the convergence 
and accuracy of our calculations (see Appendix). However, after careful 
examination, we are confident of the accuracy of our results, so the reason 
for the discrepancy must lie in the interpretation of the experimental data. 
Furthermore, we performed an analysis of the characters of the photon 
bands in the wavevector regions at the W point and near the K point in the 
Brillouin zone where the discrepancies occurred and found that these wave 
vectors lie on a reflection plane so that the modes can be divided into even 
symmetry modes which couples to p-polarized incident EM waves onlyand 
odd modes which couples only to s-polarized incident waves (see Fig. 2). 
Thus, if the photon bands are measured with s- and p-polarized waves 
separately as was done in the experiment, the calculations indicated gaps 
would be observed for the individual polarizations, but the top of the p-gap 
would coincide with the bottom of the s-gap. Detailed discussions with 
Yabolonovitch confirmed the above picture: due to the finite size of the 
experimental crystal, the experimental data did not have sufficient 
wavevector resolution and dynamic range for the experimentalist to resolve 
the overlap of the two gaps in the regions near W and K. 
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At this point, the existence of photonic gap matertals was sertously 
doubted.2 However, since we found that the method developed can solve 
the photon band problem so efficiently and so much faster than the 
expeIimental "cut-and-try" method, we used it to investigate whether other 
structures can succeed where the fcc air sphere structure has failed. 
Motivated by the geometry of the electronic semiconducting famlly of 
diamond, silicon, and germanium, the first structure we tried was the 
diamond structure. 19 As luck would have it, we found the most favorable 
structure for creatlng a photonic band gap. We inttially trted the diamond 
structure with dielectrtc spheres and a1r spheres centered on the lattice 
sites and found that both types of structures support full photontc band 
gaps. For example, Fig. 3 displays the photontc band structure calculated 
for an air sphere diamond lattice with refractive index contrast of 3.6 and 
air filling ratio of 81%. The density of states for a similar case, with 
cylindrtcal rods joining nearest neighbor sites in a diamond lattlce, are 
shown in Fig. 4. For a given fllling fraction and refractive index contrast, 
the frequencies of a selected structure are inversely proportional to the 
lattice constant. Thus, the size of the gap can be measured by a 
dimensionless quantity which is the ratio of the gap to the midgap 
frequency (gap/midgap ratio). For the case of air spheres on a diamond 
lattice in a dielectrtc matrix (refractive index contrast=3.6), the filling 
fraction of the dielectrtc can be optimized to yield a maximum gap/midgap 
ratio of 290Al, while for the case of dielectrtc spheres, the performance is not 
as good, the maximum gap achieved is only 14%. 

We were quite excited with our findings and communtcated them to 
Yablonovitch, who, very qulckly devised an ingenious way of constructlng a 
diamond lattlce. He noted that the diamond lattice is a very open structure 
characterized by open channels along the [110] directions. Thus, by 
drtlling cylindrtcal holes through a dielectrtc block, a structure with the 
symmetry of the diamond structure can be created. Since there are 6 sets of 
equivalent [110] directions in the lattice, there are 6 set of holes to be 
drilled. If the crystalis ortented such that the [111] surface Is exposed. then 
three sets of these holes will be slanted at angles of 35.26 degrees with 
respect to the normal [111] direction. The remaining three sets of holes 
have their axes parallel to the [111] surface and are harder to make on a 
thin film oriented in the [111] direction. Thus, in the end, the 
expertmentalist decided to abandon the second three sets of holes and 
construct a structure with only the first three set of holes (see Fig. 15, In 
the article by Yablonovitch in this book) which became the first 
expeIimental structure that demonstrates the existence of a photonic band 
gap.20 

We repeated our calculations for several vartations on the diamond 
lattice.21 One is the diamond lattice generated by 6 set of air cylinders or 
dielectric cyl1nders in the [110] directions. The other is a diamond rod 
lattice in which, instead of putting spheres at the lattice sites, we joined 
them together by nearest-neighbor rods. We also tested the efIects on the 
photon band gap when 3 sets of cylinders are omitted in the 6-cylinder 
diamond structure. The results are summartzed in Fig. 5. All of these 
structures exhibit photonic band gaps, with the best performance coming 
from a diamond rod lattice, which achieves a maximum gap of 30% for a 
refractive index contrast of 3.6. 

In summary, we have developed a method for solving the problem of 
the propagation of EM waves in a pertodic dielectrtc medium and from our 
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(b) Gap-to-midgap frequency raUos (l\oo/oog) as a funcUon of ftIling raUo for 
''material'' rods (solid c1rcles) and "air" (empty) rods (crosses) jOining nearest
neighbors sites in a diamond latUce. 

(c) Gap-to-mldgap frequency raUos for the case of 6- and 3-cylinder 
arrangements. Solid c1rcles and stars are 6 sets and 3 sets of "material" 
cylinders. respect1vely. while crosses and empty c1rcles are for 6 and 3 sets 
of "air" (empty) cylinders. respecUvely. 

In all cases the refracUve index of the material 18 chosen to be 3.6. 



calculations, discovered the fIrst structure to exhibit a photonic band gap. 
We have demonstrated that a systematic search for the structures that 
possess optimal photonic gaps can be conducted via theoretical 
calculations. Practical three-dimensional periodic arrangements of 
dielectric structures were proposed. These dielectric structures possess a 
full photonic gap, with refractive-index contrasts as low as l.9, and are 
much easier to fabricate than dielectric spheres arranged in a diamond 
lattice. While there is no simple explanation as to the exact conditions 
photonic band gaps appear, our fIndings suggest that the existence or not 
of ~aps is related with the connectivity of the hi~h dielectric material and 
the symme1:Iy of the resultin~ structure. We are quite excited about the 
future applications of photonic band gaps and the prospects of using our 
calculational techniques to design and help the fabrication of these 
photonic band gap materials. 
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APPENDIX: CONVERGENCE AND ACCURACY TESTS 

One important detail which has been left out in the above discussion 
on the plane wave method is the representation of eK, K' in Eqs. (4a) and 
(4b). There are actually two choices: one is to represent e(r) on a grid in real 
space, Fourier transform to obtain e K, K' in reciprocal space, and perform a 
matrix inversion to get Fik .. the other is to represent (I/e(r)) in real space, 

Fourier transform to obtain eik, and perform the matrix inversion to 

obtain eK K'. While the two choices produce the same results in the limit of 
an inflnite plane wave basis set for a fInite plane wave expansion, they give 
different answers when truncated to a fInite basis. We will refer to the fIrst 
choice as the Einverse method and the second choice as the (l/e) method. 
For many cases, we found that the two methods have different convergence 
behavior as the size of the plane wave basis is increased. For example, in 
the case of the fcc 86% air spheres structure, the dependence of the 
eigenvalues obtained by the two methods are shown in Fig. 6, where we plot 
the eigenvalues of some selected modes as a function of basis size. To 
obtain the results for some of the larger basis sets. we found it necessary to 
use an iterative solution of the matrix problem (the block Davidson schemel 
instead of the traditional diagonalization method we used for the smaller 
matrices. For the fIrst method. the eigenvalues increase as the number of 
plane waves is increased while the second method has just the opposite 
behavior. Thus, by solving the problem using two methods. we obtain an 
upper and a lower bound on the fully converged result. giving us a very 
good estimate of the convergence of our calculations. We also note that. in 
Fig. 6. the convergence of the second method is much slower than the first 
method, so that for moderate basis sets. there is a big difference in the 
numeric results one obtains from the two methods. In the two earliest 
vector wave photonic band structure calculations. I6.I7 one used the fIrst 
method and one used the second method. The difference in the numbers 
obtained from the two calculations initially caused some doubts about the 
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accuracies of the calculations. For the case of the fee 86% air sphere 
geometry, the einverse method converges much faster than the (l/e) 
method. We have examined many other geometries. We found that, in 
general, when the high dielectric material forms an interlinked, contlnuous, 
infinite network, the method we employed converges much better than the 
H method. We found that the structures with large photonie gaps belong to 
this elass of geometries. When the big dielectric constant material forms a 
discontinuous array of isolated scatterers, both methods have trouble with 
convergence. In this regime, the convergence of different bands are also 
quite uneven; for the same structure, some bands converge more rapidly for 
one method, while other bands behave in just the opposite manner. We 
also observed that results obtained by the (l/e) method are more sensitive 
to the sharpness of the boundary between the air region and UIe dielectric 
region in the photonie crystal. Most of the time, this sensitivity Is an artlfact 
of the method and does not reflect the real behavior of the system. 
Therefore, in most work in exploring the behavior of candidate structures, 
we employed the einverse method. However, near the point of transition 
between the two elasses of structures, that iS, when the Isolated scatterers 
get elose to touching each other, the second method seems to perform 
better than the first method. The case of dielectric spheres in a diamond 
lattice with nlling ratio elose to but less than 340/0 falls into this category. 
Sozuer and Haus22 were the first to point out that the results published in 
our fIrst paper overestimate the gap for non-touching dielectric spheres 
because these geometries are highly sensitive to the high Fourier 
components of the structure. Our original calculations did not contain 
enough plane waves to obtain converged results for sharp dielectric 
spheres. The unconverged results from the einverse method correspond to 
a system where the sharp boundaries are replaced by smooth ones. 
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1. INTRODUCTION 

When a quantum or a elassical wave propagates in a periodic structure in any number 
of spatial dimensions, the dispersion curves that relate the frequencies of the wave to 
the wave vector characterizing its propagation possess an infinite number of branches. 
These branches form bands that are separated by frequency gaps at points of symmetry 
in the corresponding Brillouin zones. In some cases an absolute gap occurs, viz. a 
frequency range in which no waves can propagate that exists for all values of the wave 
vector in the Brillouin zone, and gives rise to a gap in the density of states of the waves 
propagating through these structures. 

In recent years a great interest has arisen in the band structures of electromagnetic 
waves propagating in three-dimensional, periodic, dielectric structures. These band 
structures have been named photo nie band struetures. The reasons for this interest 
are both fundamental and practical. It has been suggested1 that if the three dimen
sional, periodic, dielectric structure is disordered in such a way that it remains periodic 
on average, it may be easier to observe in it the Anderson localization of light whose 
frequency is elose to an edge of an absolute band gap of the corresponding periodic 
structure than it would be in a disordered dielectric structure that is homogeneous on 
average. It has also been suggested2,3 that since electromagnetic waves with frequencies 
in absolute band gaps are totally absent, spontaneous emission is forbidden in situations 
in which the band gap overlaps the electronic band edge. The suppression of sponta
neous emission -can improve the performance of many optical and electronic devices. 
The absence of electromagnetic mo des in a certain frequency range can also modify the 
basic properties of mauy atomic, molecular,and excitonic systems.4 

Photonic Band Gaps and l..ocalization, Edited by 
C.M. Soukoulis, Plenum Press, New York, 1993 247 



The earllest theoretical studies of the photonic band structures of three-dimensional, 
periodic, dielectric structures were carried out on the basis of a scalar wave approx
imation for the electromagnetic field in these structures.2,s-s However, it was soon 
found that the band structures obtained on the basis of this approximation were not 
in agreement with those obtained on the basis of a fuUvector treatment of the elec
tromagnetic field.9,lo Since that time all calculations of the photonic band structures 
of three-dimensional, periodic, dielectric structures have been based on the fuU set of 
MaxweU's equations for electromagnetic waves in a material medium,u,12 

The object of the earliest investigations was finding structures that possess absolute 
band gaps.9-12 Subsequently, attention was directed toward the surface electromag
netic states that can exist at the planar surface of a semi-infinite, three-dimensional, 
periodic, dielectric structure formed, e.g. by cutting an infinite, three-dimensional, pe
riodic structure along some plane.13 In addition, the spatially localized defect modes 
that can arise in the vicinity of aperturbation of a periodic dielectric structure have also 
been investigated.14 Finally, quantum electrodynamic effects associated with the intro
duction of atoms and molecules into photonic band gap structures have been studied 
theoretically.IS,16 

In addition to these theoretical investigations of three-dimensional photonic band 
structures, several experimental investigations of the propagation of electromagnetic 
waves in three-dimensional, periodic, dielectric structures have been carried outI2,17,IS. 

Recently, the photonic band structures of two-dimensional, periodic, dielectric struc
tures, have begun to be investigated, both theoreticallyl9-23 and experimentally22-2s. 
The motivations for such studies are the same as for the corresponding studies of the 
photonic band structures of three-dimensional systems. In addition, two-dimensional 
periodic structures are often easier to fabricate than the three-dimensional structures 
that have been investigated until nowI2,17,IS. Moreover, the localization of light in a 
disordered two-dimensional structure that is periodic on average, whose frequency is 
elose to an edge of an absolute band gap of the corresponding periodic structure, may be 
easier to achieve than in the case of a disordered three-dimensional, dielectric structure. 

In this chapter we outline a theory of the calculation of the photonic band structures 
of dielectric structures that are periodic in two orthogonal directions, and infinite in 
a thitd orthogonal direction, and investigate how the results are changed when the 
dielectric structure is made finite in the direction normal to the plane in which the 
medium is periodic, and when a defect is introduced into an otherwise periodic, infinite, 
dielectric structure. In each case the treatment is based on the use of a position
dependent dielectric constant, and expansions of the electromagnetic field components 
in two-dimensional plane waves, an approach that had been found to be effective in 
earlier calculations of this type.26,27 

The outline of this chapteris as folIows. In Section 2 we present a method for the 
calculation of the photonic band structure for electromagnetic waves propagating in the 
Xlx2-plane in a dielectric medium whose dielectI·ic constant is periodic in the Xr and X2-

directions and is infinite in the x3-direction. Two polarizations of the electromagnetic 
field are considered, viz. H-polarization, in which the magnetic vector is parallel to 
the X3-axis, and E-polarization, in which the electric vector is parallel to the X3-axiS. 
In Section 3 we investigate the photonic band structure for electromagnetic waves in 
a dielectric medium whose dielectric constant retains its periodicity in the XI- and X2-

directions, but is no longer infinite in the x3-direction. Specifically, we assume that the 
dielectric medium occupies the region between two perfectly conducting plates at X3 

= 0 and X3 = d, and study how the photonic band structure of the electromagnetic 
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waves in this system depends on the distance d between the plates. In Section 4 we 
present a Green's function approach to the determination of the frequencies of the 
spatially localized electromagnetic modes that arise in an infinite dielectric medium 
whose dielectric constant is periodic in the Xr and x2-directions, when that periodicity 
is perturbed by an infinite linedefect whose axis is parallel to the x3-direction. Abrief 
discussion of some directions for further work in this field,in Section 5, condudes this 
chapter. 

2. PHOTONIC BAND STRUCTURES OF INFINITE TWO
DIMENSIONAL DIELECTRIC SYSTEMS19,20 

In this section we present a theory of the photonic band structure of a system that con
sists of a periodic array of infinitely long, parallel, identical dielectric rods, characterized 
by a dielectric constant Ea , embedded in a background dielectric material characterized 
by a dielectric constant Eb. The rods are assumed to be parallel to the x3-axis. The 
intersections of their axes with the X1x2-plane form a periodic two-dimensional struc
ture. In the present chapter this periodic structure will be assumed to be one of the five 
two-dimensional Bravais lattices. However, the generalization of the theory presented 
here to more complex, periodic, two-dimensional structures is straightforward. 

The sites of the two-dimensional Bravais lattice underlying the dielectric systems to 
be studied here are given by the vectors 

(2.1) 

where a1 and a2 are the two noncollinear primitive translation vectors of the lattice, 
while 11 and 12 run over all the integers, positive, negative, and zero, and are denoted 
collectively by l. The area of the primitive unit cell of this lattice or, equivalently, of 
the corresponding Wigner-Seitz cell, is 

(2.2) 

if a1 and a2 are defined in such a way that a1 is rotated into a2 by a positive rotation 
about the x3-axis through an angle smaller than 7r. 

It is convenient to introduce the lattice reciprocal to the one defined by the vectors 

{xlI(l)}. The sites of this lattice are given by the vectors 

(2.3) 

where the primitive translation vectors b1 and b2 are defined by the equations 

ai . bj = 27rbij i,j = 1,2, (2.4) 

while h1 and h2 run over all the positive and negative integers and zero, and are denoted 
collectively by h. If we write the primitive translation vectors a1 and a2 as 

(2.5) 

the primitive translation vectors b1 and b2 are given explicitly by 

.. _ /)( (2) (2)) b" _ ( / )( (1) (1)) b1 - (27r a c a2 ,-al , 2 - 27r ac -a2 ; a1 . (2.6) 

The dielectric constant of the systems we investigate is clearly position-dependent, 
and we denote it by E(xlI). Here XII = XIXI +X2X2, where Xl and X2 are unit vectors along 
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the Xr and x2-axes, respectively, is a position vector in the xIx2-plane. The dielectric 
constant f(xlI) is a periodic function of xII and satisfies the relation f(xlI+xlI(t')) = f(xlI). 
More important for the analysis that follows is that the reciprocal of the dielectric 
constant is also a periodic function of xII, f-I(xil + XII (l)) = cI(xlI). 

In this section we study the photonic band structures for electromagnetic waves 
propagating in these structures in a plane perpendicular to the axes of the dielectric 
rods, i.e. in the xIx2-plane. We consider two different polarizations of the electromag
netic waves. 

A. H-Polarization 

In this case we seek solutions of Maxwell's equations which have the forms 

H(x; t) 
E(x;t) 

(0,0, H3 (xlllw))exp( -iwt) 

(EI (xIIlw), E2(Xlllw), O)exp( -iwt). 

The Maxwell "curl" equations for the three non zero field components are 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

(2.8c) 

The equation for H3 , obtained by eliminating EI and E2 from these equations, can be 
written in the form 

~ (_1_ ÖH3) + ~ (_1_ ÖH3) + w2 H3 = 0 
<lxI f(XII) aXt aX2 f(XII) aX2 c2 . 

To solve Eq. (2.9) we expand the periodic function ct(xlI) according to 

1 ,,~oG- --- = ~ K,( G }e' II·XII 
f( xII) - 11 ' 

GII 

(2.9) 

(2.10) 

and H3(xlllw) in a form that satisfies the Bloch-Floquet theorem, dictated by the two
dimensional periodicity of the system being studied, 

H3 (Xlllw} = l:A(kll + GII)ei(kll+GII)oXII, 

GII 
(2.11 ) 

where kll = x1kI + X2k2 is the two-dimensional wave vector of the wave. When these 
expansions are substituted into Eq. (2.9) we obtain as the equation for the coefficients 
{A(kll + GII)} 

whieh has the form of a standard eigenvalue problem for a symmetrie matrix. 
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B. E-Polarization 

In this ease we seek solutions of Maxwell's equations whieh have the forms 

E(x; t) = (0,0, E3 (xlllw»exp( -iwt) 

H(x; t) = (H1 (xIIlw), H2 (xlllw), O)exp( -iwt). 

The Maxwell "eurl" equations in this ease are 

8H2 8H1 iw iw ... 
8X1 - 8X2 = --;D3 = --;f(XII)E3 

8E3 = _ iw H2 

8X1 C 

8E3 _ iw H 
8X 2 - C 1· 

(2.13a) 

(2.13b) 

(2.14a) 

(2.14b) 

(2.14e) 

The equation for E3 obtained by eliminating H1 and H2 from these equations ean be 
written in the form 

(2.15) 

To solve Eq. (2.l5) we again use the expansion (2.10) and write E3 (xlllw) in the 
form 

E3 (xlllw) = L B(kll + GII)ei(kll+GII)·XII. (2.16) 
GII 

The equation satisfied by the eoeffieients {B(kll + GII )} is 

(2.17) 

A more eonvenient equation is obtained if we make the replaeement 

B(k + G ) = C~kll + 9") . 
11 11 Ikll+GIII 

(2.18) 

The equation for the {C(kll + GII)}' 

.... ..... .... .... f.... ..... I ..... .... I w2 ..... ..... L Ikll + GllliC(GIl - G 1I)lkll + G II IC(kll + G 11) = 2"C(kll + GII), (2.19) 
_, c 
G II 

is a standard eigenvalue problem for a symmetrie matrix. 
If we denote by R the region of the x1x2-plane intereepted by the dielectrie rod 

whose axis intersects that plane at xII = 0, we ean write c 1(xlI) in the form 

where 

1 xII inside R 

o xII outside R. 

(2.20) 

(2.21a) 

(2.21b) 
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The Fourier coefficient ;'( GII) is then given by 

(2.22a) 

(2.22b) 

where the integration in the second line is over the entire Xlx2-plane. When we take 
into account the definition of the function S(xlI), Eq. (2.21), we obtain 

(2.23a) 

(2.23b) 

where f is the filling fraction, i.e. the fraction of the total volume occupied by the rods. 
It is given by f = aR/ac, where aR is the area of the region R, i.e. the cross sectional area 
of a rod. Although the result given by Eq. (2.23) is valid only for a structure consisting 
of nonoverlapping, identical, dielectric rods of arbitrary cross section, embedded in a 
different dielectric medium, the determination of the Fourier coefficients {;'( GII)} for 
more complex structures poses no significant problems. In some of these cases the 
integral in Eq. (2.22a) may have to be evaluated numerically, however. 

To illustrate the preceding results we consider the case in which the intersections of 
the axes of the dielectric rods with the Xlx2-plane form a tri angular lattice, for which 
the primitive translation vectors are given by 

~ ( ) ~ (1 V3) al = a 1,0 , a2 = a 2' 2 . (2.24) 

The primitive translation vectors of the reciprocallattice, obtained from Eq. (2.6), are 
then 

(2.25) 

The rods are assumed to have a circular cross section of radius R. The Fourier coefficients 
{;'( GII)} in this case are given by 

2. f + ~(1- f) 
Ea Eb 

GII =0 (2.26a) 

(2. _ ~) /J1 (GIIR) 
Ea Eb (GIIR) 

(2.26b) 

where the filling fraction is f = (27r/V3)(R2/a2), and J1(x) is a Bessel function. 
In Fig. 1a we present the photonic band structure for the case of E-polarization 

when Ea = 1, Eb = 13, and the filling fraction f = 0.8358. A total of 691 plane waves was 
used in solving Eq. (2.19) to obtain this result. An absolute band gap occurs in this 
band structure in the frequency range 0.450 < wa/27rC < 0.564. In Fig. 1 b we present 
the photonic band structure for the same dielectric structure, but now for the case of 
H-polarization. Again, a total of 691 plane waves was used in solving Eq. (2.12) to 
obtain this result. An absolute band gap occurs in this band structure in the frequency 
range 0.427 < wa/27rc < 0.536. Consequently, the tri angular lattice characterized 
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by the dielectric constants f a = 1 and lOb = 13, and a filling fraction f = 0.8358 
has a common absolute band gap in its photonie band structure for electromagnetic 
waves of E-polarization and of H-polarization propagating in a plane perpendicular 
to the rods, in the frequency range 0.450 < wa/27r'c < 0.536. The existence of this 
common absolute band gap was first pointed out by Meade et al.23 • There are sorne 
small quantitative differences between the band structures depicted in Figs. la and Ib 
and the corresponding results of Meade et al. This is because the convergence of the 
photonic band structure calculations for the tri angular lattice is slow, and we have used 
significantly more plane waves in our calculations than were used in the work of Meade 
et al. 
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Figure 1. a) The photonic band structure for E-polarized waves in a triangular lattice 
of infinite rods of circular cross section with f a = 1, lOb = 13, and f = 0.8358. The 
inset shows the first Brillouin zone for the triangular lattice with the symrnetry points 
indicated. b) The photonic band structure for H-polarized waves in a triangular lattice 
of infinite rods of circular cross section with f a = 1, lOb = 13 andf = 0.8358. 

Photonic band structures for other triangular lattices can be found in Ref. 20; those 
for square lattices can be found in Refs. 19 and 22. 

We end this section with a cautionary note. The safest way to demonstrate the 
existence of an absolute band gap in a photonic band structure is by calculating the 
photonic density of states and showing that a gap exists in it. This is because the exis
tence of an absolute band gap in the dispersion curves calculated along the symmetry 
direction in the irreducible element of the two-dimensional first Brillouin zone does not 
guarantee that the dispersion curves do not elose up the gap at some off-symmetry point 
or points. Densities of photonic states for several triangular lattices together with the 
corresponding band structures have been calculated in Ref. 20. In each case that the 
existence of an absolute band gap ~ould be inferred from the photonic band structure, 
a gap in the same frequency range was observed in the photonic density of states. 
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3. Photonie Band Structures of a Two-Dimensional Planar 
Waveguide Structure28 

The assumption, made in the preceding section, of a periodic, two-dimensional, dielec
tric structure consisting of infinitely long, parallel, identical, dielectric rods embedded 
in a background dielectric material with a different dielectric constant, is an idealiza
tion. This is because any periodic, two-dimensional, dielectric structure used in the 
experimental study of photonic band structures will, of necessity, be finite along all 
three coordinate axes. Indeed, the periodic, two-dimensional, dielectric structure that 
was employed in arecent experimental study22 of the propagation of electromagnetic 
waves at microwave frequencies through it, consisted of an array of identical, paral
lel, dielectric rods, of finite length, confined to the region between two parallel metal 
plates that are parallel to the rods. The electromagnetic waves propagated in directions 
parallel to the metal plates, and their electric vector was oriented parallel to the rods. 

In this section we study theoretically the photonicband structure for the propaga
tion of electromagnetic waves in dielectric structures of this type. We retain a degree of 
idealization in this study by assuming that the structures we investigate are of infinite 
extent in the directions parallel to the metal plates. In addition, in view of the compar
atively low frequencies of the electromagnetic waves used in the experiments described 
in Ref. 22 (GHz), in the present study we will model the metal plates by perfectly 
conducting plates. Of. particular interest will be the manner in which the photonic 
band structures for electromagnetic waves propagating in dielectric structures of this 
type change as the separation between the perfectly conducting plates changes. 

The physical system we consider in this section is depicted schematically in Fig. 
2. It consists of an infinite array of parallel, identical, dielectric rods of arbitrary 
cross section and characterized by a dielectric constant f a , embedded in a background 

Figure 2. A two-dimensional, periodic, structure consisting of parallel, indentical, di
electric rods of finite length embedded in a medium with a different dielectric constant, 
that is confined to the region between two perfectly conducting plates that are perpen
dicular to the rods. 
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dielectric medium whose dielectric constant is tb. The resulting spatially inhomogeneous 
dielectric medium fills the region between two parallel, perfectly conducting plates 
at X3 = 0 and X3 = d. The intersections of the dielectric rods with these perfectly 
conducting plates form a two-dimensional Bravais lattice. The sites of this lattice are 
given by Eq. (2.1), and the lattice vectors of the reciprocal lattice are given by Eq. 
(2.3). The dielectric constant of the system depicted in Fig. 2, t(xlI), is a periodic 
function of xII, with the periodicity of the Bravais lattice, as is t-l(xlI)' 

To obtain the photonie band structure for the system depicted in Fig. 2 it is conve
nient to work with the electric field in the region between the conducting plates. This 
is because the boundary conditions at the perfectly conducting plates are particularly 
easy to satisfy in this case. We write the electric field in the form 

E(x; t) = E(xlw)exp( -iwt), (3.1) 

and the Maxwell equations satisfied by the components of the amplitude vector E(xlw) 
as 

1 ( fJ2 EI 82 EI 82 E2 82 E3 ) w2 
(3.2a) 

t(xlI) - 8x~ - 8x~ + 8x18x2 + 8x18x3 = -EI 
c2 

1 (82 EI 82 E2 82 E2 82 E3 ) w2 
(3.2b) 

t( xII) 8x28xl - 8x~ - 8xi + 8X28x3 = -E2 
c2 

1 (82 EI 82 E2 82 E3 82 E3 ) w2 
(3.2c) 

t( xII) 8x38xl + 8x38x2 - 8xi - 8x~ 2 E3' 
C 

The boundary conditions satisfied by the electric field are that its tangential components 
should vanish at the perfectly conducting surfaces. These conditions are automatically 
satisfied if we expand the components of E(xlw) according to 

(3.3a) 

(3.3b) 

(3.3c) 

where to = ~ and t n = 1 for n ~ 1. We also expand cl(xlI) as in Eq. (2.10). 

The equations for the coefficients {a~n)(kll + GII)} (0: = 1, 2, 3; n = 0, 1,2, ... ) for 
different n decouple, which is an attractive feature of the expansions (3.3). For n = 0 
we obtain the single equation 

(3.4) 

This is just Eq. (2.17) which yields the photonie band structure for electromagnetic 
waves of E-polarization propagating in the xlx2-plane of a two-dimensional dielectric 
structure that is periodic in Xl and X2 and is of infinite extent along X3. The resulting 
müdes are bona fide sülutions of the present problem as weIl, because E 1(x\w) and 
E2(xlw) are identically zero, while E3(xlw) is independent of X3, so that the boundary 
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conditions at the perfectly conducting plates are automatically satisfied, as are the 
Maxwell equations (3.2). 

For each value of n ~ 1 the coefficients {a~n)( kll + Oll n satisfy a set of three coupled 
matrix equations, 

L 1.(011 - 0IIH[(k2 + G~? + (n;) 21a~n)(kll + 0 (1)
Gil 

-(k1 + G~)(k2 + G~)a~n)(kll + 0 (1) + (k1 + G~) (n;) a~n)(kll + 0lln 

2 

= :2 a~n)(kll + Oll) (3.5a) 

""' ......, , '(n)...... , 
L."k(GIl- G II H-(k2 + G2 )(k1 + G1)al (kll + G 11) + 
Gil 

+[(k1 + G~? + (nd1l') 21a~n)(kll + 0 (1) + 

+(k2 + G~) (n;) a~n)(kll + 0 Iin = :: a~n\kll + Oll) (3.5b) 

~ k(OIi - 0IIH(kl + G~) (nd1l') a~n)(kll + ° (1) + 
G u 

( ') (n1l') (n)(k'" G'" ') + k2 + G2 d a2 11 + 11 + 
2 

+(kll + ° II?a~n)(kll + ° Iin = W2 a~n)(kll + Oll)' (3.5c) 
c 

Equations (3.5) constitute a standard eigenvalue problem. 
In the limit as the separation d between the perfectly conducting plates tends to 

infinity, the set of equations (3.5) decouples into a pair of equations for a~n)(kll + Oll) 

and a~n)(kll + CII)' 

(3.6a) 

(3.6b) 

and a single equation for a~n)(kll + Oll), 

(3.7) 

By comparison with Eqs. (10) of Ref.l9, Eqs. (3.6) are seen to be the equations describ
ing the propagation of electromagnetic waves of H-polarization in the xlx2-plane in a 
system that is infinite along X3. Similarly, Eq. (3.7) is just Eq. (2.17), which describes 
the propagation of electromagnetic waves of E-polarization in the same plane, in the 
same system. Thus in the limit as d -t 00 the resulting photonie band structure is the 

256 



superposition of the photonic band structures for waves of pure H- and E-polarization 
propagating in the plane perpendicular to the dielectric rods in a system that is infinite 
in the direction parallel to the rods. 

In the opposite limit as d -t 0, Eqs. (3.5) for n ~ 1 reduce to 

Lk(GIl- G (1 )a1n)(kll + G (1) = (Wd)2 a1n)(~11 + GII) 
G' n~c 

11 

(3.8a) 

~ -. -. , (n)..... ..... I ( wd ) 2 (n).... ..... 
L.Jk(GII-GII)a2 (kll+G II)= - a2 (kll+GII) 
G' n~c 

11 

(3.8b) 

a~n)(kll + GII) = O. (3.8c) 

The eigenvalues of this system of equations take two distinct values, which we write as 

wd 1 1 
(3.9) --=---, --, 

2~2nc 2~ Fa 2~ yIfb 

each of which is infinitely degenerate. Thus, in the limit as d -t 0 the photonic band 
structure of the system we study here degenerates into two dispersionless bands for each 
value of n ~ 1, whose frequencies are given by Eq. (3.9). They are the frequencies of 
electromagnetic waves of H-polarization that propagate in the xtx2-plane. 

However, although the equations describing the propagation of waves of H- and E
polarization are decoupled in both limits as d -t 00 and as d -t 0, for finite, nonzero 
values of d they are coupled, and the solutions of Eqs. (3.5) represent waves of mixed 
H- and E-polarization. 

We illustrate the preceding results for a square lattice of dielectric rods of circular 
cross section of radius Rand dielectric constant f a = 9, embedded in air, so that fb = 1. 
The filling fraction is f = 0.4488. These parameters correspond to those of the system 
studied experimentally in Ref. 22. The primitive translation vectors of this structure 
are given by 

(3.10) 

The primitive translation vectors of the reciprocallattice, obtained from Eq. (2.6), are 
then 

- 2~ - 2~ bl = -(1,0), ~ = -(0,1). 
a a 

(3.11) 

The Fourier coefficients {k(Glin in this case are again given by Eqs. (2.26). 
In Fig. 3, we present a plot of wal2~c versus wave vector kll along directions of high 

symmetry in the two-dimensional first Brillouin zone for n = O. Dispersion curves for 
the ten lowest frequency bands are shown. The curves were obtained from the matrix 
eigenvalue problem represented by Eq. (2.19), which is equivalent to Eq. (3.4), by using 
the 377 shortest reciprocallattice vectors GII to generate a finite matrix representation 
of this equation. The band structure presented in Fig. 3 is independent of d and 
agrees with the band structure for waves of E-polarization in the lattice of infinite rods 
presented in Fig. 1 b of Ref. 22. It possesses three absolute band gaps in the frequency 
range considered. 

In Figs. 4a, 4b, and 4c we present plots of wa/2~c versus kll for n = 1 and dia = 
0.5, 1, and 5, respectively. Results are shown for the ten lowest frequency bands plot ted 
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Figure 3. The photonic band structure for the n = 0 modes of a square lattice of 
lattice constant a of parallel, identical rods of circular cross section and finite length 
d, characterized by a dielectric constant f a = 9 embedded in air between parallel, 
perfectly conducting plates, so that fb = 1. The filling fraction is f = 0.4488. The band 
structure is independent of ratio d/ a. The inset shows the first Brillouin zone for the 
square lattice, with the symmetry points indicated. 

along the same symmetry directions as in Fig. 3. The 173 smallest reciprocallattice 
vectors GII were used in solving Eqs. (3.5). The results presented in Fig. 4a show that 
for d/a = 0.5 the n = 1 bands overlap the n = 0 bands depicted in Fig. 3 in such a 
way that the three absolute gaps present in the latter band structure are not elosed 
up. Similarly, the results presented in Fig. 4b show that for d/ a = 1 the n = 1 bands 
overlap the n = 0 bands in Fig. 3 in such a way that the lowest frequency absolute gap 
present in the latter band structure is not elosed up, but the two higher frequency gaps 
are. By the time the ratio d/a has reached a value of 5, the overlap of the n = 1 and 
n = 0 bands is such that the lowest frequency absolute gap present in the latter band 
structure is also elosed. 

In Figs. 5a, 5b, and 5c we present results for wa/27rc versus wavevector for n = 2 
and d/a = 0.5, 1, and 5, respectively. Results are shown for the ten lowest frequency 
bands, plot ted along the same symmetry directions as in Figs. 3 and 4. The smallest 
173 reciprocallattice vectors GII were used in the solution of Eqs. (3.5) to obtain these 
results. The n = 2 bands for d/ a = 0.5, together with the n = 1 bands for the same 
value of this ratio, do not elose up the three absolute band gaps in the band structure 
of the n = 0 modes depicted in Fig. 3. For d/a = 1 the overlap of the n = 2 and 
n = 1 bands with the n = 0 bands eloses up the two high er frequency absolute band 
gaps present in the band structure of the n = 0 modes, but leaves the lowest frequency 
absolute band gap open. However, the lowest frequency absolute band gap in the band 
structure of the n = 0 modes is elosed by the overlap of the n = 2 and n = 1 bands 
with the n = 0 bands when d/ a = 5. 

The results of this section indicate that if it is desired to use a structure of the kind 
depicted in Fig. 2 to reproduce the low frequency band structure of the electromagnetic 
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Figure 4. The photonic band structure for the n = 1 modes of a square lattice of 
lattice constant a of parallel, identical rods of circular cross section and finite length d 
characterized by a dielectric constant f a = 9 embedded in air between parallel, perfectly 
conducting plates, so that fb = 1. The filling fraction is f = 0.4488. Results are shown 
for a) dia = 0.5, b) dia = 1, and c) dia = 5. 
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Figure 5. The photonic baud structure for the n = 2 modes of a square lattice of lattice 
constant a of parallel, identical rods of circular cross section and finite length d char
acterized by a dielectric constant Ea = 9 embedded in air between parallel, perfecting 
conducting plates, so that Eb = 1. The filling fraction is f = 0.4488. Results are shown 
for a) dia = 0.5, b) dia = 1, and c) dia = 5. 
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waves of E-polarization in the corresponding structure that is infinite in the x3-direction, 
it is necessary to make dia small enough that the lowest frequency n = 1 bands lie above 
the frequencies of the n = 0 bands that it is desired to reproduce. For the square lattice 
studied here a value of dia = 1 appears to be small enough to leave the lowest frequency 
absolute gap unaffected, and even the next high er frequency absolute band gap is not 
closed by the modes with n ~ 1 if dia = 0.5. It is in fact a value of dia in this range 
that was used in the experimental work described in Ref. 22, viz. dia = 0.787. 

The results of this section also indicate that the additional degree of freedom pro
vided by the finite separation of the parallel, perfectly conducting plates in the structure 
studied here, allows the resulting photonie band structures to be modified by varying 
this parameter. This feature could be useful in designing periodic, two-dimensional, 
dielectric structures for specific applications. 

4. Defect Modes 

Up to this point we have considered only the dispersion curves (band structures) for 
electromagnetic waves in perfectly periodic, two-dimensional, dielectric structures. The 
introduction of a defect, or defects, into such a structure can give rise to states of the 
electromagnetic field that are localized in space about the defect site(s). Such localized 
states, or defect modes, are the analogues for electromagnetic excitations in otherwise 
perfectly periodic dielectric structures of the localized donor or acceptor levels associ
ated with impurities in semiconductors29, or of the localizedand gap vibrational modes 
associated with substitutional or interstitial defects in crystals30 • We conclude this 
discussion of electromagnetic states in periodic, two-dimensional, dielectric structures 
by sketching out a theory of the defect modes that can occur in such structures when 
a localized defect is introduced into them. For this purpose we examine the particular 
case of defect states of E-polarization. A theory of defect modes of H-polarization can 
be constructed alollg similar lilles, but will not be discussed here. 

The system we study is characterized by a position-dependent dielectric constant of 
the form 

(4.1 ) 

where to(xlI) is a periodic function of XII, 

(4.2) 

where XII ( C) is a translation vector of one of the five two-dimensional Bravais lattices, 
while Dt(xlI) is nonzero in only a small region of the xlx2-plane. In this structure the 
electric vector in astate of E-polarization is given by 

E(x; t) = (0,0, E3 (xlllw))exp( -iwt), (4.3) 

where the amplitude function E3(xlllw) is the solution of the equation 

( 4.4) 

In view of Eq. (4.1) we can rewrite this equation in the form 

(4.5) 
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where the differential operator L(xlI) is defined by 

(4.6) 

It is Eqs. (4.5)-(4.6) that we must solve. 
The eigenfunctions and eigenvalues of the operator L( xII) have already been obtained 

in Section 2. Thus if we define the function tPnkll (xII) by 

./. ~ ( ... ) _ ~ '" Cn(kll + CII) i(kll+GII).:i.'11 
'l'nk xII - L.J ... ... e , 

R 27r GII Ikll + GIII 
(4.7) 

where the {Cn(kll + CII)} are the eigenvectors of the matrix eigenvalue problem, 

~ M(kll + CII' kll + C II)Cn(kll + C (1) = An(k)Cn(kll + CII), (4.8) 
Gil 

with 

M(kll + CII, kll + C (1) = Ikll + Clllk(CIl - C(1)lkll + C Id, 
we find by applying the operator L(xlI) to tPnkll (xII) that 

L(xlI)tPnkll(xlI) = -An(kll)tPnkll(XII)' 

(4.9) 

(4.10) 

For the cases in which we are interested in this chapter the matrix M(kll + CII, kll + 
C (1) is real and symmetrie. The eigenvectors {Cn(kll + CII)} can then be chosen to be 
real, with no loss of generality. We can then impose the following orthonormality and 
completeness conditions on them: 

~ Cn(kll + CII)Cn,(kll + CII) = 
GII 

~Cn(kll + CII)Cn(kll + C (1) = 
n 

lj... "'" li 11 ,li 11 

If we use the result that 

fO(XII)L(XII) = (::~ + ::~) , 
and the result that follows from Eq. (4.10), 

fo(xlI)L(xlI)tPnkll(xlI) = -An(kll)fO(XII)tPnkll(XII), 

we find that 

J cf xII tP;;'qjl (xII) (::~ + ::~) tPnkll(xlI) 

= -An(kll ) J d2 xII fo(xlI)tP;;'qjl (xlI)tPnkll (xII)' 

(4.11a) 

(4.11b) 

( 4.12) 

(4.13) 

( 4.14) 

where the integrals are taken over the entire xtx2-plane. The use of Eqs. (4.7) and 
(4.11a), and the fact that tJil and kll are both restricted to lie in the two-dimensional 
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first Brillouin zone defined by the vectors {CII}, yields the result that the left hand side 

of Eq. (4.14) equals -ö(qjl - kll)Ömn . Thus, we obtain the orthonormality condition 
satisfied by the {tP nku (xII)}: 

j d2Xll fO(XII)tP;;'qu (xlI)tPnku (xII) = An~k) Ö(qjl- kll)ömn. (4.15a) 

From this result we are led directly to the completeness condition satisfied by the 

{tPnku (xII)}: 

(4.15b) 

With these results in hand we can now proceed to the solution of Eq.(4.5). 
We hegin by expanding E3(xlllw) in terms of the tPnku(xlI), 

(4.16) 

On substituting this expansion into the left hand side of Eq. (4.5), and using the 
eigenvalue equation (4.10) and the orthonormality condition (4.15a), we obtain the 
coefficient anku in the form 

2 ... 

ank = (211"?W2 A.=(kll ) w2 jd2XlltP:f(XII)Öf(XII)E3 (Xlllw). (4.17) 
u C An(kll) - ~ U 

When this result is substituted into the right hand side of Eq. (4.16) we obtain the 
relation 

(4.18) 

where the Green's function G(xlli x 11 1w2) is given by 

...... , 2 "r 2 tPnku(XII)An(kll)tP:kä(XII) 
G(xlliXlllw)=L.JJf dkll ... 2 • 

n BZ An(kll) -~~ 
(4.19) 

In Eq. (4.18) the electric field component E3 (xlllw) at any point in the Xlx2-plane 
is given in terms of its values within that region of the x}x2-plane in which &(xlI) is 
nonzero. Thus, if we denote the latter region by R, and define the function f( XII Iw ) by 

f(xlllw) = E3(xlllw) 
= 0 

XII insideR 

XII outside R, 

then f(xlllw) is the solution of the homogeneous integral equation 

(4.20a) 

(4.20b) 

(4.21) 

The solvability condition for this equation yields the frequencies of the defect mo des 
associated with the perturbation &(xlI). Once these frequencies and f(xlllw) have been 
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obtained, the electric field component E3(xlllw) in the region xII outside R can be 
obtained from Eq. (4.18). 

An alternative approach to the determination of these frequencies is provided by 
returning to Eq. (4.17) and substituting Eq. (4.16) into the right hand side of it: 

( ... ) ",2 2 

...,;An;.;;...:.......kl!.:.,I ... ::--.....Ic2o:...ank = w2 ~ r cPk{I&(nkllln'k{l)an'k" 
An(kll) 11 C n' JBZ 11 

(4.22) 

where 

(4.23) 

The solvability condition for Eq. (4.22) yields the frequencies of the defect modes. 
Once they and ank have been determined the electric field component E3(xlllw) can be 

. n 
obtained from Eq. (4.16). 

As an initial study of the defect modes given by the solutions of Eq. (4.20) we have 
considered the case, studied experimentally by Schultz et al.22 , of a square lattice of 
dielectric rods from which one of the rods has been removed. Specifically, these authors 
considered a square lattice formed of cylindrical rods of dielectric constant f a = 9 and 
filling fraction j = 0.4488. The rods were placed in a background whose dielectric 
constant is fb = 1, and a single rod was removed from the system. This array of rods 
was placed in a microwave chamber, so that a square array of infinite rods is only a 
rough approximation to the real experimental set up. A better approximation to the 
experimental set up is the set of rods between two parallel, perfectly conducting plates 
that was studied in Section 3 in connection with another experiment performed by 
Schultz et al. 22 The n = 0 parallel plate solution (corresponding to the E-polarization 
case for the infinite rod system), however, is not affected by the finite separation of the 
plates in the experimental system, as we have seen above, so the infinite rod system we 
consider theoreticallY here should correctly portray the gross properties of the single 
impurity experiments conducted by ScllUltZ et al.22 

Schultz et al. found that removing a rod from the system gives rise to an impurity 
mode whose frequency falls in the second band gap. No mode is reported to have been 
found in the lower first band gap of the system. Preliminary results from our study 
of Eq. (4.21) for the system of infinite rods of dielectric constant f a = 9 and filling 
fraction j = 0.4488 agree with these experimental observations. 

Equation (4.21) was studied numerically by converting it into a matrix equation. A 
Gauss-Legendre quadrature scheme was used to evaluate the integral in terms of rand 
8 variables, defined by 

for 

ri = R[q; + Il12 

8j = 7l"[qj + 1], 

(4.24) 

(4.25a) 

(4.25b) 

where R is the radius of a dielectric cylinder and -1 ~ qi ~ 1 for i = 1,2, ... P are the 
Gauss-Legendre quadrature abscissas corresponding to quadrature weights Wi. In terms 
of xlI(i,j) and Wi the integral equation in Eq. (4.21) becomes 

7l"R2 W 2 
j(xlI(i,j)lw) - -2' ~[WmwnG(XII(i,j),xlI(m,n)lw2) x 

4 C m,n 

x8t(xlI(m, n))j(xlI(m, n)lw) = O. (4.26) 
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For the results presented below we have taken P = 10 so that Eq. (4.26) represents a 
100x100 matrix equation. The frequencies of the impurity modes of our system are the 
zeros of the determinant of the 100x100 matrix of the coefficients in Eq. (4.26). 

We have computed the Green's function, Eq. (4.19), by using a Gauss-Legendre 
quadrat ure scheme to perform the kll integration in the first Brillouin zone. Results for 
.,pnkll(xlI)and An(kll ) used in evaluating Eq. (4.19) were obtained by numericaHy solving 

the eigenvalue problem in Eqs. (4.8)-(4.9) for an N X N matrix. To obtain the results 
presented below we have taken 100 kll points in the first Brillouin zone, and the N = 
101, 185, 241, or 305 smallest reciprocallattice vectors GII in the calculation of Eq. 
(4.19) for use in computing the determinant of Eq. (4.26). 

When 100 kll points in the first Brillouin zone are used the upper and lower edges 
of the second band gapfor N = 101 are found to occur at wa/27rC = 0.483 (11.41 GHz) 
and 0.419 (9.90 GHz), respectively. For N = 305 the upper and lower edges occur at 
wa/27rc = 0.470 (11.1 GHz) and 0.413 (9.76 Ghz), respectively. By using N = 101,185, 
241, and 305, we find frequencies of the impurity mode given by wa/27rc = 0.469, 0.454, 
0.449, and 0.445, respectively, each of which is weH within the gap. These results give 
us confidence that an impurity mode frequency given by wa/27rc = 0.45 is in error by 
no more than about 1 % . This value translates into a frequency of 10.63 GHz, which is 
a bit lower than the impurity mode frequency of 11.2 GHz measured by Schultz et al. 22 

The difference between these two results may be due to the fact that the experiments 
reported in Ref. 22 were carried out in the dielectric structure of finite extent along the 
x3-axis depicted schematically in Fig. 2. 

Currently, calculations using more kll-points in the first Brillouin zone and a larger 
number of reciprocal lattice vectors GII in the determination of the Green's function 
G(xlli x11 1w2 ) are being carried out to determine the impurity mode frequency more 
precisely. 

5. SOME DIRECTIONS FOR FUTURE WORK 

It would be worthwhile to carry out a systematic study of the photonic band structures 
of two-dimensional, periodic, dielectl·ic structures that are more general than the square 
and triangular structures studied until now. An aim of this study would be finding a 
structure, or structures, possessing the largest, common, absolute band gap for the 
propagation of electromagnetic waves of both H- and E-polarization in the plane per
pendicular to the generators of the structures. Ideally, the results of this investigation 
should also demonstrate the dependence of the position and width of such absolute band 
gaps on the connectivity of the dielectric portion of the structure, the filling fraction, 
and the dielectric contrast. They should also incorporate the consequences of the space 
group symmetry of a structure which, for example, can give rise to the degeneracy of 
bands at symmetry points in its two-dimensional first Brillouin zone that elose up band 
gaps that would occur in structures of lower symmetry. One would then have some 
basis for predicting the kinds of structures that are most favorable for possessing large, 
common, absolute band gaps. 

The development of computational approaches to the calculation of photonic band 
structures of two-dimensional, periodic dielectric structures that converge more rapidly 
than the plane wave method, particularly in the case of large dielectric contrast and 
complex unit ceHs, would be very desirable. 

The discussion in Section 2 of the propagation of electromagnetic waves in the 
infinite structure consisting of a lattice of parallel dielectric rods embedded in a medium 
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with a different dielectric constant was limited to the case in which the propagation 
occurred in a plane perpendicular to the rods. In this case electromagnetic waVeS of 
pure H-polarization and pure E-polarization exist. A straightforward, but worthwhile, 
extension of this work is the study of the photonic band structures associated with 
out-of-plane propagation, in which case waves of pure H- and E-polarization no longer 
exist. In particular, it would be of interest to determine how far out of the plane 
perpendicular to the rods the waves in the triangular lattice studied in Section 2, that 
possesses a common absolute band gap for waves of both H- and E-polarization, can 
propagate before that absolute band gap closes up. This result could be useful in the 
context of practical applications of two-dimensional photonic band gap structures. 

In the study of the localized modes introduced into an otherwise doubly periodic, 
infinite dielectric structureby the presence of a substitutional or interstitialline defect 
of the kind considered in Section 4, it would be of interest to study the modes associated 
with pairs or clusters of such defects whose symmetries are lower than that of an isolated 
defect. It may be possible to excite such defect modes preferentially by external fields 
of suitably chosen polarization and direction of propagation. 

Perhaps even more interesting would be the study of defect modes in the structure 
considered in Section 3, which is of finite extent in the x3-direction. Here, the ability to 
modify the photonic band structure of the unperturbed dielectric structure by varying 
the distance between the perfectly conducting plates could be exploited to facilitate the 
occurrence of localized defect modes, or to hin der it. 

The preceding examples hardly exhaust the possibilities for interesting work that 
can be done in the area of electromagnetic wave propagation in two-dimensional, pe
riodic or perturbed, dielectric structures. But they serve to indicate the existence of 
such possibilities and, it may be hoped, will serve to suggest other fruitful directions 
for future work in this field. 
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INTRODUCTION 

The new class of artificial periodic dielectric media called the photonie crystals, 
originally proposed by Yablonovitch[l] and John[2] a few years ago, has been attracting 
a great deal of research interests because of its highly unusual properties which offer 
exciting and challenging new problems, and beeause of its broad potentials for device 
applications from the mm to the uv wavelengths. Recently photonie crystals which 
have a full photonic bandgap have been discovered,!3] [4] Surface states as weIl as 
defeet modes[5] in these crystals have now also been studied. 

The experimental study on the photonic band structure of fec arrays of spherical 
"atoms,,[6] attracted a number of subsequent theoretical studies. At the beginning the 
studies were all based on the use of the scalar wave equation, [7] [8] [9] [lOT which for 
good reasons did not yield results that can be compared with the real physical 
situation. These studies were soon followed by realistic photonic band calculations 
based on the use of the MaxweIl's equations.lllJ [3] Unlike the corresponding electron 
band calculations, which are only approximate because of many-body effects, photonic 
band calculations using MaxweIl's equations are in principle exact, unless the medium 
is nonlinear and the electromagnetic fields are strong. Therefore these calculations 
can be directly eompared with experimental data. and have been rather helpful in 
understanding and guiding experiments efforts. The methods used were all based on 
the plane-wave (PW) expansion, although there were variations in the way in which 
the expansion was actually implemented. To the best of our knowledge, all the 
eomputed results on the photonic band structure for vector waves thus far have all 
been done with the help of the PW method. 

There are also PW calculations of two dimensional photonic erystals,l12] They 
are also interesting and have potential device applications. The interested reader 
should eonsult the article by Maradudin in this NATO conferenee proceeding. 
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The PW method has several important advantages. (1) With the exception of a 
single known pathological case,[3j the PW method yields reasonably rapidly convergent 
results. Calculations are usually done with a hundred to a few hundred PWs, 
depending on the strength of the dielectric contrast. The band stmcture can be 
obtained by diagona1izing matrices on the order of two hundred to a few hundred in 
sizes, which can easily be handled with todays computers. (2) The method is quite 
simple to implement and does not require writing lengthy computer programs. (3) 
The method is also very versatile and can be applied to handle all forms of dielectric 
modulations. This is an especially important advantage because some of the 
interesting photonic crystals have "atoms" of rather odd shapes. 

We will discuss three variations of the PW method in detailed here, and present 
a new result on the frequency dependence of the attenuation length in the 
Yablonovitch photonic bandgap crystalJ4j 

We start by considering monochromatic wave of frequency W in an 
inhomogeneous dielectric medium which is described by the Maxwell's equations 

VxE= iWJL H 
e ' 

V'(eE)=0 , V'(JLII) =0. (1) 

If we eliminate H from these equations and assume that JL= 1, we have the following 
equation for the electric field 

VxVxE=~eE, ~) 

where k~ == ebJLJ-/e 2, e == e(r)/eb, and eb is the dielectric constant of a background 
host medium. Equation (2) can also be written as 

V(V'E) - V2E=k~eE. (3) 

Now if the term V(V'E) is neglected then each component of E obeys the so-called 
scalar wave equation: 

(4) 

which is sometimes used in optics instead of the full set of Maxwell's equations. This 
aproximation is valid if the magnitude of the neglected term is small. One can make 
use of the vector identity 

V.(eE) =eV'E+E'Ve=O 

to rewrite the neglected term as 

V(V'E) = - V (E'V lne) . 

(5) 

(6) 

It is clear that this term vanishes inside a homogeneous medium and in general may 
be neglected if the variation in eis small on the scale of a wavelength. However, in 
photonic bandgap crystals the size of the photonic unit cell must be comparable to the 
wavelength which corresponds to a frequency within the bandgap. In order to have a 
sizable forbidden bandgap, the refractive index must vary considerably within the unit 
cell. Therefore this term cannot be neglected in photonic bandgap materials. Results 
obtained based on the scalar wave equation are not only quantitatively but 
qualitatively far from the actual physical reality, contrary to the claim made in one 
studyPOj 
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However, it was not an unreasonable equation to start investigating photonic 
band structure three years ago. First, there was no calculation based on the fu1l 
Maxwell's equations at that time. Second, because of the resemblance of the scalar 
wave equation with the Schrödinger's equation of a spinless electron, one can readily 
make use of the knowledge gained and computational techniques developed for the 
electron problem. Third, any computational method intended for Maxwell's equations 
should also work with certain modifications for the scalar wave equation. This does 
not mean that if a method works for the scalar wave equation then it will necessarily 
work for the Maxwell's equations. But rather, if a method fails when it is used for the 
scalar wave equation then we cannot expect that it will work for the electromagnetic 
waves. It was primarily because of this last reason that we did a calculation for SCalar 
waves.[9] 

PLANE-WAVE EXPANSION FOR SCALAR WAVE 

We work with the scalar wave equation in Eq. (3). Our major finding was that 
the PW expansion method, at least in the case of scalar wave, can be used with no 
convergence problem to calculate photonic band structure.l9] This conclusion was 
arrived at by calculating the photonic band structure using separately the PW 
expansion method and the Korringa-Kohn-Rostoker (KKR) methodp3] 

In the PW method, we use the expansions 

for the scalar field 1/1( r), and 

1/I(r) =E Ck+G ei (k+G)or , 
G 

(7) 

C(r) =E CG e i Gor, (8) 
G 

for the dielectric function, where k is a wave vector and G is a reciprocallattice vector. 
Eq. (8) is appropriate since c(r) is a periodic function of r, i.e. c(r+ R) = c(r) for any 
lattice vector R. The Fourier coefficients are given by 

CG= f dr e- iGor c(r), (9) 
cell n 

where the integral extends over the real space primitive cell whose volume is denoted 
by o. The expansions in Eqs. (7) and (8) are used in the scalar wave equation to 
obtain the result 

k~EcG'-GCk+G' - Ik+GI 2c k+G=O. (10) 
G 

This result can be cast into a standard matrix eigenvalue problem: 

1 CG'·G 1 
I k+G I ~ I k+G' I d k +G , - k~ d k +G =0, (11) 

for areal and symmetric matrix. The eigenvalues are identified as ki} and the new 
eigenvectors are given in terms of the original ones by the relation 

dk +G = I k+G I ck+G· 

The KKR method for scalar wave follows very closely the original works of 
Korringa, Kohn and Rostoker, and will not be given here. A detailed account of the 
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Figure 1. The solid eurves show the band strueture of a fee lattice of dieleetric spheres 

ealeulated with the PW expansion. The eircles are the results ealeulated with the KKR 

method. The volume-filling fraetion of spheres is 0.375 and the dielectrie ratio is 12.25. 

method for photonic band structure calculation, together with numerical results have 
in fact already been made by John and RangarajanP] 

Using Eq. (11) we calculated the photonic band structure for a fcc lattice of 
dielectric spheres of refractive index 3.6 in a host medium of refractive index 1. For 
the case of dielectric spheres considered here, we have 

E:a 
eG = S(G) - 3/(1- -)g(Ga), 

eb 
(12) 

where the function g(x) = (sinx-xcosx)/x 3, a is the radius and / is the volume 
fraction of the spheres. 'Ibis result applies as long as the spheres are not overlapping. 
The solid curves give the results computed using the PW method with 67 PWs, and the 
ovals denote those obtained by the KKR method with an angular momentum 
truncation of I max = 3. The results agree with each other reasonable weH. There was 
no noticeable change in the result by using a larger number of PWs for the PW 
calculation, or a larger I max in the case of the KKR calculation. Our results are 
basically identical with those reported by Satpathy et al., [10] who also use the PW 
method, but did not reduce the eigenvalue problem into the standard form. However, 
our results are different than those given b~ John and Rangarajan [7] who used the 
KKR method, and by Economou and Zdetsis[8] who used the augmented PW method. 
We believe that our results are indeed correct because they were obtained by two 
independent methods. 

We should also mention that for scalar waves, because the two different states of 
polarization are ignored, the lowest common gap, if it exist at all, is expected to lie 
between the first and second allowed bands. 'Ibis situation is very different from the 
actual vector wave case where the lowest common gap is expected to lie between the 
second and third allowed bands. However, as we discussed earlier there is no reason 
to expect the results calculated based on the scalar wave equation to have any bearing 
on the real physical situation. 
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PLANE·WAVE EXPANSION FOR VECTOR WAVE 

We now consider the electromagnetic case.[ll) In our original work we chose to 
work with the electric field, which obeys Eq. (2). Using the PW expansion of the 
electric field in the form 

E(r)=~ E e;(k+G)"r 
L..J k+G , (13) 
G 

Eq. (2) becomes 

[ 1 k+G 121 - (k+G)(k+G) ]-Ek+G - k~ ~ cG'-G Ek+G' =0, (14) 

where CG is defined as in Eq. (8). This equation has a standard matrix form 
(A ->. B)v = 0 ,where A and B are both symmetric matrices. 

Eq. (14) gives an infinite number of linear equations which could only be solved 
by truncation. If we keep N PWs then there are 3N eigenvectors and eigenvalues. 
However N of those correspond to zero-frequency longitudinal modes. This can be 
seen by setting k~ = 0 which gives 

[ 1 k+G 121 - (k+G)(k+G) ]-Ek+G =0. (15) 

It can be shown that the matrix involved in the above equation is indeed singular and 
so there are non-trivial solutions. This becomes more obvious if one works in a 
coordinate system in which the z-axis is parallel to the vector (k+G). For then Eq. 
(15) becomes 

[ 
1 k+G 1

2 0 0] [Ei+G] o 1 k + G 1 2 0 E{ + G = 0 . 
o 0 0 Ei+G 

(16) 

The eigenvectors are c1early given by Ei + G = E{ + G = 0, and Ei + G r= O. This means 
that these N zero-frequency modes are in fact longitudinal. 

One could get rid of these zero modes by imposing the V·D=O condition 
explicitly. This condition gives the equation 

(k+G)'~ CG-G' Ek+G, =0. (17) 
G' 

At this point, it is convenient to use matrix notation so that: 

(Ex); = (Ek+G)x (Ey); = (Ek+G)y (Ez)i = (Ek+Gj)z 

(G)ij =Oij 1 k+Gj 1 (c)ij =cGj-Gj (18) 

(X)jj=(k+G;)x (Y);j=(k+G;)y (Z);j=(k+G;)z. (19) 

The eigenvalue equation in Eq. (14) can then be rewritten as 

G 2Ex -k~ cEx -X(XEx+YEy+ZEz)=O, 

G2Ey -k~ cEy - Y(XEx+YEy+ZEz)=O, (20) 
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G2Ez - kt eEz -Z(XEx+YEy+ZEz)=O. 

The v·n =0 equation becomes 

X eEx+YeEy+Z eEz=O, (21) 

We can now use Bq. (21) to eliminate the N zero-frequency modes, and to reduce the 
3N by 3N matrix problem to a 2N by 2N one. This can be accomplished in many ways. 
For example, using Bq. (21) Ez can be expressed in terms of the other two 
components as 

(22) 

Using this result in Bqs. (20) yields the standard matrix eigenproblem of the form: 

( y2+Z2)e-1+xze-1Z-1X -XYe-1+XZe-1Z-1y 1 [Dx) _ 2[Dx) 
_YXe-f +YZe-1Z-1X (X2+Z2)e-1+YZe-1Z-1YJ Dy -kb Dy , (23) 

where D CI = eE CI for 0: = x,y,z. This equation can be written in many other equivalent 
forms. In addition, there are numerous other ways to impose the v·n=o condition, 
and we can also interchange the role of the background and the "atom". 

We note that matrix in Bq. (23) contains the factor e-1• However this factor can 
be obtained, at least in principle, without first computing e from the equation 

eG'-G = f dr e- i (G'-G)'r {1- [1- e(r)]}=ÖG,G' _ (1- ea ) f dr e- i (G'-G)'r ,(24) 
cell n eb J atom n 

and then invert this matrix to find its inverse. This is because 

-1 f dr -i (G'-G)'r 1 -~ (1 eb] f dr -i (G'-G)'r eG' G = - e -- -uG G' - - - -- e . 
- cell n e(r) , ea atom n 

(25) 

In reality because we keep only a finite number of PWs, e and e-1 calcu1ated as shown 
in Eqs. (24) and (25) do not satisfy the relation ee-1 = 1 with sufficient accuracy. 
Consequently calcu1ations that involve computing this inverse have different 
convergence rates compared with calcu1ations that do not involve computing this 
inverse. From our experience we found that much faster convergence can be obtained 
by using a calcu1ation that involves inverting a matrix containing e. 

Results calcu1ated from Bq. (23) are shown in Fig. (2), which shows the 
photonie band structure of a fee lattice of spherical voids. The volume fraction of air 
is 0.86, which is larger than the dose-pack value. Thus the atoms are actually 
overlapping and we therefore cannot use Bq.(12) to compute the matrix e. Instead the 
tripie integral for e in Bq. (8) was first reduced to a single integral, which was then 
computed numerical using qaussian quadrature. We considered this particu1ar case 
because it was explored experimentally and seemed to have a common photonie 
bandgap. [6] Our results in Fig. 2 however do not exactly have a full gap because of the 
dosing up of the bandgap at the U- and W-points. The dosing of the bandgap at the 
U-point ( or equivalent the K-point) turned out to be purely accidental. This is 
confirmed by computing the results for a different volume fraction. An example is 
shown in Fig. 3, where the volume fraction is 0.96. [14] We see that the bandgap at the 
U-point now opens up. On the other hand, the dosing up of the bandgap at the W
point is due to symmetry, wbich persists for any volume fraction. However, tbis 
degeneracy can be lifted, for example, by suitably distorting the shape of the "atoms". 
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Figure 2. The computed photonie band strueture for a 0.86 volume fraetion of spherical 

voids on a fee lattiee embedded in a dieleetric material with a refaetive index of 3.5. The 
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Figure 3. The eomputed photonie band strueture for a 0.96 volume fraetion of spherical 

voids on a fee lattice embedded in a dieleetrie material with a refaetive index of 3.5. 

This was successfully accomplished by going to a structure proposed by 
Yablonovitch.[4] Details can be found in the artide by Yablonovitch in this proceeding. 
We will only report our reslut for the attenuation length as a function of the frequency 
for the Yablonovich structure, which is shown in Fig. 4. We see that the attenuation 
length goes from zero at the forbidden band edges to about 9.0 dB / a at midgap. This 
result for the attenuation Iength is very dose to the experimental value. [4] 

Information on the attenuation length within tbc bandgap is very useful. For example 
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Figure 4. The attenuation length as a function of the frequency for propagation along 
the L 3 direction in the Yablonovitch structure. 

this means that at midgap frequency, a erystal of about 10 unit eells on a side will 
behave almost like an infinite erystal. 

We should also mention an alternate formulation of the PW method for 
electromagnetie waves by Ho, Chan and SoukoulisPl Starting with Maxwell's 
equations in Eq. (1), if the eleetric field is eliminated then the following equation for 
the magnetie field is obtained 

1 w'2 
Vx-( ) VxH(r) = zH(r). (26) 

er c 

Because H(r) obeys Bloeh's theorem and also the eondition V'H(r) = 0, it ean be 
expanded in the form 

2 
H(r) = H,,(k,r) = EE hn,.\(k+G) e.\(k+G) ei{k+G)·r , (27) 

G.\=1 

where e1(k+G) and e2(k+G) are polarization unit veetors chosen in order that the 
three vectors e1(k+G), e2(k+G) and k+G form a triad. Using this expansion for 
H(r), they obtained the following eigenvalue equation: 

I + I I + ' I -1 (e2(k+G).e2(k+G') - e2(k+G)'e1(k+G'~ 
~ k G k G eG,G' _ e1(k+G)·e2(k+G') e1(k+G)-e1(k+G') J 

x(hn'1(k+G'~ _ w;(k) (hn'1(k+G~ (28) 
hn,2(k+G'~ - c2 hn,2(k+G~' 

This form for the matrix eigenproblem is the most eonvenient, since the matrix 
involved is naturally real and symmetrie, and so this method is often adopted in many 
PW ealculations. However, results obtained by this method are identical to within 
several significant figures with those based on our method. Thus, we believe the two 
methods are totally equivalent, although we have not yet been able to find the precise 
connection between these methods' 
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THE CASE OF OVAL HOLES 

For experiment in the microwave regime, the Yablonovitch structure was made 
by direct drilling three sets of holes at polar angles 60 =cos-1.v' 2/3 off normal and with 
azimuthal angles t/J = 120° apart into the the top surface of a dielectric slab. Besides 
having a sizable bandgap, this basic structure is also interesting in that it lends itself 
readily to microfabrication on the scale of optical wavelengths by techniques such as 
reactive ion etching.f!SJ However, as a result of the fabrication process, the cylinders 
will have an oval rather than circu1ar cross-section. If a very thin mask is used in the 
fabrication process of this structure, then the eccentricity of the oval holes is given by 
1/"/3. 

We have also comRuted the photonic bands for this structure with oval holes 
using the PW method.l i'iJ In our calcu1ation, a fine mesh was set up within the 
Wigner-Seitz cell to represent the structure in real space. Its Fourier transform was 
then computed to obtain the dielectric function in reciprocal space. The number of 
PWs used in our calculation was varied from 113, to 169, 259 and then to 531 to test 
for convergence. The results reported below were obtained using 169 PWs, which we 
found to be a suitable compromise between accuracy and the required amount of 
computational time. The largest change in the lowest several eigenvalues was less 
than one percent, as compared with the corresponding results obtained using 531 
PWs. That only happened for the largest value of refractive index ratio of 5 which we 
have studied, and for a few k-points within the Brillouin zone. 

We have computed the photonic bands for a host refractive index n between 1.9 
to 5, and for the ratio of the diameter of the holes in the mask to the length of the 
conventional unit cube, d ja, between 0.30 to 0.58. We found no true bandgap for 
n <2.05. Due to the lack of suitable non-absorbing optical material whose refractive 
index is larger than 5, we have not explored the region n >5. For values of d ja above 
0.58, the structure becomes more and more fragile as it is getting elose to becoming 
non self-supporting. 

In Fig. 5, we show the photonic bands for n = 3.6 and for d /a =0.53, which is 
the optimal ratio for this refractive index contrast. We have adopted the same 
labeling of the symmetry points in the Brillouin zone as in the previous work.[4J In Fig. 
Sb, k varies within a mirror plane and the electric field can be elassified as either s
polarized (E is perpendicu1ar to the mirror plane) or p-poJarized (E lies within the 
mirror plane). The s-polarized bands and the p-polarized bands are shown by the 
solid and dashed lines, respectively. In Fig. 5a, there is no separation into s- and p
polarized bands. These bands of mixed polarizations are shown by solid lines. In both 
plots, the darker shaded regions denote the absolute bandgap for any polarization. The 
lighter shaded regions either above or below the absolute gap in Fig. 5a represent 
forbidden gaps for the s-polarized wave only. The gap size to midgap frequency ratio, 
6., is found to be 21.3%, which is about 12% larger than the optimal value in the case 
of circu1ar holes for this value of n. The volume filling fraction of air here is 80.5%, 
which is very elose to the corresponding optimal fraction for the case of circu1ar holes. 
The top of the valence band occurs elose to W, and the bottom of the conduction band 
occurs at L 1. This is exact1y the same as that found for circu1ar holes. The overall 
band structure is also quite similar as compared to that of circu1ar holes. The most 
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Figure 5. The photonic bands for the Yablonovitch structure with oval holes. The 
refractive index contrast is 3.6 and the major diameter of the holes is 0.53 in units of the 
length of the conventional unit cube, a. 

noticeable difference is in the ordering of the two valence bands. The s-polarized 
band is actually lower than the p-polarized band here. However, the frequency at the 
top of the valence remains almost identical in both cases. It is the bottom of the 
conduction band situated at LI which is pushed slightly upward and this accounts for 
the 12% improvement in the gap size to mid-gap frequency ratio. 

The variation of the gap size to mid-gap frequency ratio as a function of d ja for 
n =3.6 is shown in Fig. 6. In general, for all the values of n and d ja that we have 
computed, the top of the valence band occurs either at K 3 , or near U3 or W. In any 
case we find these eigenvalues are very elose to each other. The bottom of the 
conduction band is located either at L 3 or LI' Again, the eigenvalues differ only very 
slightly in either case. 

In Fig. 7, we show a contour plot of Ll and the mid-gap frequency as a function 
of n and d ja. The minimum threshold value of n for the present structure to exhibit a 
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Figure 6. The bandgap size to mid-gap frequency ratio as a function of the major 
diameter of the oval holes at a refractive index contrast of 3.6. 
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Figure 7. Contour plot showing the gap size to mid-gap frequency ratio and the mid
gap frequency in reduced unit as a function of both the refractive index contrast and the 
major diameter of the oval holes. 

true bandgap is found to be 2.05, and this occurs at an optimal value of d ja of about 
0.47. The optimal value of d ja is seen to shift monotonically upward with increasing 
n, while the optimal value of!l. also increases monotonically. For n =5, the optimal 
values of!l. is about 32.2%, and that occurs when d ja is about 0.58. 

The results given above assume an eccentricity of 1/'/3. In the fabrication of 
the material, by using a thicker mask during the etching process it is possible to 
increase the eccentricity of the oval holes to values larger than IjJ3. It turns out that 
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it is not profitable to do so because the optimal values for tJ. actually decrease with 
increasing eccentricity. 

CONCLUSION 

The PW method has now been fully established as a very useful way in 
computing the band structure in photonie band crystals. Although other methods for 
calcu1ating photonie band structure will be developed, because of the advantages of 
the PW method, it will no doubt continue to be used by many theorists in finding 
newer types of photonie crystals in the future. Already, by employing the superceIl 
method, one can extend the PW method to calcu1ate surface modes as weIl as defect 
properties. 
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ABSTRACT 

While three-dimensionallattices can generate complete band gaps between the first 
and second bands for both orthogonal polarizations p and s, the overlap of the p and s 
gaps in two-dimensionallattices occurs between low s bands and higher p bands. This 
leads to significant differences between two- and three-dimensionallattices. Dielectric 
grids with cylindrical air holes located at the corners of a square or tri angle can yield 
photonic band gaps common to p and s polarizations. The cross-sectional geometry 
of the cylindrical holes plays a vital role in determining the conditions to open a gap. 
Dielectric grids with holes of circular cross section located at the corners of a triangle 
or square require a similar index contrast to generate a band gap. Dielectric grids with 
holes of square cross section located at the corners of a square require a much larger 
index contrast to generate a band gap. Any defect in the cross-sectional symmetry of 
the cylindrical air holes can significantly affect the gap size in a square lattice with 
square holes, while the consequences are moderate in a triangular lattice with circular 
holes. 

INTRODUCTION 

It has been proposed1,2 that dielectric structures with a periodic index of refraction 
could give rise to photonic band gaps for which propagation of electromagnetic waves 
would be forbidden in the structure. Such band gaps could give rise, for example, 
to fundamental changes of atomic and molecular radiative properties. A search for 
periodic structures with three-dimensionap-6 and two-dimensional1- 11 lattices yielding 
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such band gaps has been carried out. The features of two-dimensional lattices are: 
(i) the bandgaps for p and 8 polarizations are not as likely to overlap as in three
dimensionallattices, (ii) the experimental fabrication of three-dimensional lattices at 
optical wavelengths remains achallenge, and (iii) there are possible applications in thin 
film optics. 

We have performed a systematic study of band gaps in two-dimensional triangular 
and square lattices. We have studied both cases of high dielectric grids with low 
dielectric holes and arrays of high dielectric rods in a low dielectric background. In 
the case of square lattices, we have considered rods with either square or circular cross 
sectionj when the cross section of the rods is circular, the rods are just touching when 
their filling fraction is 79%. This corresponds to the close-packed condition. In the 
case of triangular lattices, we have considered rods with circular cross sectionj the 
close-packed condition is reached when the filling fraction of the rods is 91%. 

Dur objective is to find a structure yielding the largest band gap for both orthogo
nal polarizations with the smallest index contrast. Furthermore, we want to study the 
effects on the gap size from defects in the cross-sectional symmetry of the rods. 

THEORY 

We start from the complete wave equation for the electric field, and use the plane 
wave expansion method. By separating the field into two orthogonal polarizations, 
the problem can be reduced to solving two standard eigenvalue equations. When the 
electric field is parallel to the rods (p polarization), the wave equation becomes: 

E (k+G)·(k+G) dG-G' AG' -w2AG = Oj (1) 
G' 

when the electric field is perpendicular to the rods (8 polarization), the wave equation 
becomes: 

(2) 

where k is the wave vector and G is the reciprocal lattice vector. The coefficients 
dG-G' carry all the information about the periodic structure such as the lattice shape, 
the index contrast and the filling fraction. The wave frequency is normalized with 
respect to 27rc/ a where a is the length of the unit cello The dispersion relations for p 
and 8 polarizations can be found from Eqs. (1) and (2), respectively. We have solved 
these equations using standard matrix diagonalization methods. The results that follow 
were obtained with matrices of dimensions 225 x 225 and the gap sizes were estimated 
to be accurate to within 1 % for the index contrasts considered in this paper. 

SQUARE LATTICE 

We first investigate dielectric grids with cylindrical air holes of either square or 
circular cross section located at the corners of a square. Figure 1 (a) shows the dispersion 
relation for a grid with square holes. While three-dimensionallattices generate complete 
band gaps from an overlap of the gaps between the first and second bands for both p 
and 8 polarizations, band gaps in two-dimensional square lattices occur from an overlap 
of the gaps between the first and second 8 bands and third and fourth p bands. The 
lower p bands are very similar for either square or circular holes, except for a degeneracy 
of the second and third p bands at the r symmetry point in the structure with circular 
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Figure 1. Photonic band structure of (a) a square lattice of air holes with square cross section in 
a dielectric material of refraction index 4, and (b) a hexagonallattice of air holes with circular cross 
section in a dielectric material of index 3.5. The filling fraction of the air holes is 65% in both cases. 
The insets show the first Brillouin zones. From Ref. 9; reprinted with permission. 

holesj both structures yield a p gap across all symmetry points between the first and 
second bands and third and fourth bands, the larger p gap occurring in the grid with 
circular holes. In the case of the lower s bands, there is a significant difference in the 
two structuresj the grid with square holes yields an s gap between the first and second 
bands while the grid with circular holes yields an s gap between the second and third 
bands (and can also yield a gap between the first and second bands for another set of 
parameters). The larger s gap occurs in the grid with square holes. The aforementioned 
observations will play an important role in finding the conditions to generate a band 
gap since the overlap of p and s gaps will not occur between the same bands in grids 
with square holes and circular holes. 

By changing the index contrast and/or the filling fraction, the p and s gaps can 
be made to shift and change in size. The largest overlap generated in a square lattice 
is shown in Fig. 2 as a function of the index contrast. The largest gap is taken over all 
filling fractions, thus each point corresponds to a different filling fraction. A grid with 
circular holes requires a significantly lower index contrast to generate a band gap than 
a grid with square holes. Indeed, the minimum index contrast required for the p and 
s gaps to overlap is 2.70 in a grid with circular holes and 3.51 in a grid with square 
holes. Although a grid with circular holes requires a lower index contrast to generate 
a band gap than a grid with square holes, Fig. 2 shows that the latter gives rise to a 
larger band gap when the index contrast is greater than 4.3. For example, when the 
index contrast is 5, the largest gap is 13.8% in a grid with square holes and 11.4% in 
a grid with circular holes. Furthermore, there seems to exist a maximum gap width 
that can be generated in a grid with circular holes. The small drop of the gap width at 
index 5.0 with respect to the value at 4.75 is probably due to an increasing numerical 
error of the gap width as the index contrast increases. 

TRIANGULAR LATTICE 

Next, we investigate dielectric grids with cylindrical air holes of circular cross 
section located at the corners of a regular triangle -·see Fig. l(b). A complete gap 
occurs between the second and third p bands and first and second s bands. The 
minimum index contrast required for p and s gaps to overlap is 2.66 when the filling 
fraction of the air rods is 66%. A triangular lattice can generate a larger gap than 
a square lattice, even for a smaller index contrast. Since the triangular lattice has a 
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Figure 2. Maximum gap width to midgap frequency ratio in a square lattice as a function of the 
index contrast. The circles correspond to holes with circular cross section and the squares correspond 
to holes with square cross section. From Ref. 10; reprinted with permission. 

more circlelike Brillouin zone than the square lattice, the gaps should be more likely 
to overlap across all symmetry points. However, the similarity between the minimum 
index contrast required to generate a gap in either square (2.70) or triangular (2.66) 
lattices with circular rods seems to suggest that the shape of the lattice is not the 
dominant parameter in trying to open a gap common to p and s polarizations in a 
two dimensionally periodic structure, since p and s bands are not degenerate at the 
symmetry points. Rather , the shape of the rods seems to play an important role in 
determining the conditions to open a gap in a square lattice. However, tri angular 
lattices can give rise to significantly larger gaps than square lattices. 

ASYMMETRY 

Since the bands for p and s polarizations are not degenerate at the symmetry 
points, the gaps are not likely to overlap. Indeed, when the index contrast is sufficiently 
large to open the gap between the first and second p bands in a square lattice, the p 
gap does not overlap the s gap. In the case of a triangular lattice, the degeneracy at the 
K symmetry point inhibits the gap between the first and second p bands from opening 
- see Fig. l(b). This symmetry induced degeneracy can be lifted by introducing an 
asymmetry in the structure. If the cross section of the cylinders is elliptical and if the 
ellipses are parallel and stilliocated at the corners of a regular triangle, the degeneracy 
of the first and second p bands is lifted. We have performed numerous calculations 
with a wide range of parameters, but we have not been able to generate an overlap 
of the gaps between the first and second bands for both p and s polarizations in an 
asymmetrie structure with an index contrast lower than 4. In the best of cases, the 
conduction band edge of p waves and the valence band edge of s waves were equal 
within our numerical error. 

We have performed a systematic study of the effect of asymmetry on the gap size 
in square lattices with square holes and triangular lattices with circular holes. We 
have found that a defect in the cross-sectional symmetry of the square holes leads 
to a significant reduction (and even the disappearance) of the gaps while the gaps 
in triangular lattices with circular holes undergo small changes. We have defined an 
asymmetry coefficient a in the square lattice as the ratio of the sides of the rectangular 
rods, and in the triangular lattice as the ratio of the two semi-axes of the elliptical 
rods. For both lattices, the largest (over all filling fractions) gap width to midgap ratio 
is generated in structures with symmetrie holes. The gap width to midgap ratio is 
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shown in Fig. 3 as a function of the fiUing fraction of the holes for several asymmetrie 
structures. In a square lattiee, a small degree of asymmetry gives rise to a signifieant 
reduction of the gap width. When the index eontrast is 4 and a = 0.96, the largest 
gap is dose to 3 times smaller than the largest gap in asymmetrie strueturej the 
gap eompletely disappears when the asymmetry coeflicient is less than 0.92. On the 
other hand, a tri angular lattiee of asymmetrie holes gives rise to large gaps. When 
the index contrast is 3.5 and a = 0.70, the largest gap is only 18% smaller than that 
of asymmetrie structure. Figure 3(b) shows that for some fiUing fractions, the gap 
width is larger in an asymmetrie structure than in asymmetrie structure. As the 
asymmetry coeflicient deereases, the fiUing fractions of the holes for whieh a band 
gap exists deerease. In addition, we have performed numerous ealculations to find 
the structure that would require the lowest index eontrast to generate a band gap. 
We found that for both lattiees, an asymmetrie structure will require a larger index 
eontrast than asymmetrie structure to generate a eomplete band gap. 
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Figure 3. Ratio of the gap width to the midgap frequency as a function of the fiIling fraction of the 
air holes in (a) a square lattice of index 4, and (b) a triangular lattice of index 3.5. From Ref. 9; 
reprinted with permission. 

DIELECTRIC RODS 

We now investigate arrays of dielectrie rods in air. In these struetures, the dis
persion relations for square and triangular lattices are similar. The arrays can give 
rise to band gaps for p and s polarizations, but degeneraeies of the bands at symmetry 
points do not allow for a complete gap to open. By introdueing asymmetry in the 
cross-sectional geometry of the rods, the degeneracies ean be lifted but we were unable 
to open a eomplete gap aeross all symmetry points. 

Sinee dielectrie grids can give rise to complete band gaps while band gaps eannot 
be opened in arrays of dielectric rods, it seems that the eonnectedness of the dielectric 
material in the periodic structure is neeessary for the generation of band gaps. However, 
this is not a suflicient condition, and further, three-dimensional band gaps have been 
predicted in disconnected three-dimensional periodie structures.6 One could probably 
get some insight on the role of the connectedness of the dieleetrie material by ealculating 
the field in the structure for the modes in the vieinity of the gap. By ealculating the 
field, one eould see whether it is located in the dielectrie material of high index and if 
it undergoes a significant change from modes under the gap to modes above the gap. 
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CONCLUSION 

We have shown that periodic arrays of cylindrical air holes with either square or 
circular cross section located on a square or tri angular lattice in a dielectric material of 
higher index exhibit photonic band gaps common to p and s polarizations. Dielectric 
grids with holes of circular cross section located at the corners of a triangle or square 
require a similar index contrast to generate a band gap (2.66 and 2.70, respectively). 
On the other hand, dielectric grids with holes of square cross section located at the 
corners of a square require a much larger index contrast of 3.51 to generate a band gap. 
However, in square lattices, when the index contrast is greater than 4.3, a grid with 
square holes can give rise to larger gaps than a grid with circular holes. 

We have also shown that the choice of lattice is not the only important parameter 
in trying to open a full gap. Indeed, the cross-sectional geometry of the cylindrical 
holes plays a vital role in determining the conditions to open a gap. However, the 
array of cylindrical air holes in a triangular dielectric lattice remains the best overall 
two-dimensional structure to open the largest gap for the smallest index contrast. 

Finally, it is possible, as expected, to lift the degeneracies of p and s bands at 
symmetry points simply by introducing a defect in the cross-sectional geometry of the 
holes. These defects can significantly affect the gap size in square lattices with square 
holes, while the consequences are moderate in triangular lattices with circular holes. 
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INTRODUCTION 

A lot of theoretical and experimental work is being done in the area of propagation 
of classical waves in periodic and disordered structures. The interest in this subject 
has grown, particularly in the last several years, due to a variety of fundamental and 
practical reasons. The possibility of the observation[1] of Anderson localization of EM 
waves in disordered dielectric structures and frequency gaps in periodic structures, in 
analogy to the electron waves, is of fundamental interest. The very large number of 
potential practical applications[2] of such photonic band gaps, such as the enhanced 
performance of semiconductor lasers, has also spurred interest in this topic. Studies 
have been done using scalar waves[3-7], EM waves[8-1O] and elastic waves[ll]. The 
existence of band gaps and localized states have been reported in a variety of cases, 
particularly in periodic and disordered arrays of spherical scatterers. However, the 
relative importance of the roles of two differrent mechanisms, single scatterer resonances 
and macroscopic Bragg-like resonances, in the formation of gaps and localized states is 
still being debated. The resolution of this quest ion is of interest for the following reason. 
Most theoretical treatments of the problem involve a lot of complicated calculations. 
In the plane wave expansion method[7-8] that we have used, a large number of plane 
waves have to be used to ensure accuracy necessitating the diagonalization of large 
matrices and the expending of a lot of computational effort. Therefore, it would be 
extremely helpful to know to what extent a single scatterer in an array maintains its 
individual identity so that, qualitatively at least, by looking at the simple case of a 
single scatterer, we can extract some initial information about the whole system with 
less effort. Also, using that information, it would be possible to formulate the problem 
in a simpler way, similar to the tight-binding formulation of the electronic problem. 
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In this paper we have attempted to find out how much the Mie resonances of a single 
sphere influence the formation of gaps by comparing them with the results that we have 
obtained[7 -8] by studying the propagation of scalar and EM waves in periodic arrays 
of spheres using the plane wave expansion method. 

Apart from our own studies, which show a distinct correspondence between the 
gaps observed and the Mie resonances of a sphere, several other investigations have 
also indicated a similar correspondence. Calculations based on the coherent poten
tial approximation (CPA) and the potential-weH analogy (PWA) done by Soukoulis et 
al.[12,13] show that the single sphere Mie res on an ces persist in strongly influencing the 
transport properties even for rat her high values of the filling ratio, which, for the CPA
PWA approximate results, can reach up to the close-packing limit. Also, Economou 
and Zdetsis[4] have found that band gaps in periodic dielectric structures can be asso
ciated with the Mie resonance frequencies. The corresponding gap disappeared when 
they omitted a particular partial wave in their augmented plane wave calculation, pro
vi ding convincing support for the view that the appearance of gaps is due to strong 
resonant scattering by each sphere. Sheng and Zhang[14] have related the occurrence 
of localization with the higher Mie resonances. 

RESULTS FOR SCALAR AND VECTOR WAVES COMPARED WITH 
MIE RESONANCES 

Using a plane wave expansion method, we made a systematic examination[7-8] 
of the photonie band structures for dielectric spheres and air spheres for the simple 
cubic, bcc, fee, and diamond lattices as a function of the filling ratio and the dielctric 
constant ratio. In our method, we made use of the periodicity of the dielectric function 
by expanding it in terms of its Fourier coefficients in the reciprocal lattice vectors. 
The wave function was also expanded in terms of plane waves following the standard 
Bloch theorem. This enabled us to cast the wave equation in the form of an eigenvalue 
equation and reduce the problem to one of diagonalizing a matrix. Our results were 
obtained with matrix sizes of the order of 750 and the frequencies converged to bett er 
than 1 %. We have made a systematic examination of the photonie band structure for 
scalar waves[7] propagating in periodic lattices of dielectric spheres (dielectric constant 
ta) in a uniform dielectric background (tb). All of the lattices studied (simple cubic, 
bcc, fee, and diamond) do possess a fuH band gap. The optimal values of the filling 
ratio 1 of the spheres and of the relative dieleetrie eontrast for the existence of a gap 
are obtained. The minimum value of the relative dielectric constant for creating a gap 
is also obtained. For vector waves[8], we observed a gap in the lower bands only for 
the diamond structure. In Fig. 1 (sealar case) and Fig. 2 (vector case), we plot the 
threshold value of the dielectric constant ratio J1 = tal tb needed to first open up a gap 
as a function of the filling ratio 1 for all the lattices we have studied. We observe that in 
all the cases a threshold value of the dielectric constant ratio J1 = 3 to 4 is necessary to 
open up a gap. In particular, comparing the diamond lattice case where we have results 
for both the scalar case (Fig. Id) and the vector case (Fig. 2, solid curve), we notice 
that the threshold value of J1 is roughly the same, i.e., equal to 4, for the two cases. 
The only difference is that the optimum value of J, Jopt ~ 0.15 for the first gap of the 
scalar case, while lopt ~ 0.35 for the first gap of the vector case. But this is expected, 
since for the vector case there are no s waves (l = 0, where I is the magnitude of the 
angular moment um) and therefore one has to compare the seeond gap of the sealar 
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Figure 1. The threshold value of the dielectric constant ratio J1 = fa/fb. The point at which the 
band gap just opens up, for the scalar case is plotted as a function of the filling ratio f for the (a) sc, 
(b) bcc, (c) fee, and (d) diamond lattices composed of dielectric spheres in air background. 
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case (p waves) with the first gap of the vector case (again a p wave). Indeed, then 
!opt ~ 0.35, for both the second gap of the scalar wave and the first gap of the vector 
wave of the diamond lattice. Can the behavior of the band gaps be interpreted by the 
Mie resonant scattering from a single sphere? For a single sphere of dielectric constant 
Ea in a dielectric background Eb, there are an infinite number of resonance frequencies 
w. In all of our numerical studies we have set Eb = 1. If Ea is much larger than Eb, very 
strong resonances appear in the total scattering cross-section roughly when 

d n + 1 
= 

Aa 2 
(1) 

where Aa , the wavelength inside the sphere, is related with the frequency w by Aa = 
27rclwyfa, d is the diameter of the sphere, n = 0,1,2,3,'" for the scalar case, and 
n = 1,2,3,," for the vector case. In Fig. 3 we plot the total scattering cross-section for 
scalar waves from a single sphere of dielectric constant Ea versus dl Aa , for different values 
of Ea • Notice that for large dielectric constants, Ea = 50 and 13, the total scattering 
cross-section shows strong peaks when dlAa = (n + 1)/2. However, as Ea is decreased, 
one starts losing the strong resonances and by the time Ea ~ 3, the resonances are no 
longer distinct. Therefore, no band gap will be created if one has a lattice of dielectric 
spheres with this low value of Ea • Similar behavior for the total scattering cross-section 
is obtained for the vector case too (see Fig. 4). Again, we note that the resonances 
become distinct only at dielectric constant ratios greater than 3. We can, therefore, say 
that there is a qualitative agreement in the threshold value of the dielectric constant 
ratio in the two cases. Here, it is necessary to mention that we are only comparing the 
results for the material spheres and not the air spheres with the Mie theory, since only in 
the case of material spheres are the scatterers spherical. For air spheres in a dielectric 
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medium the low velocity and high dielectric constant scatterers have a complicated 
geometry and therefore, Mie theory for a sphere will not be applicable. 

Apart from the threshold values of the dielectric contrast, we have also compared 
the frequencies at which the gaps are found with the resonance frequencies of a single 
scatterer (see Fig. 5 for the scalar case and Fig. 6 for the vector case). This com
parison is more revealing for the scalar case (Fig. 5) where indeed there is a strong 
correlation between the resonance frequencies of a single scatterer and the frequencies 
at which gaps appear. In Fig. 5, we plot the midgap frequency for the first two gaps 
versus the filling ratio J for all the lattices we have examined. We have presented the 
midgap frequency as d/ Aa , where d is the diameter of the sphere and Aa = 27rc/wFa 
is the wavelength inside the sphere. The first few Mie resonances in these units are 
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Figure 5. The midgap frequency, for scalar waves, of the first two gaps versus the filling ratio f for 
the sc, bcc, fee, and diamond lattices composed of dielectric spheres of (a = 13 in air background. 

given by d/ Aa = 0.53, 0.96 and 1.39 for the case of f a = 13 and fb = 1. We find that 
at low filling ratios, the frequencies at which gaps are found are elose to the values of 
d/ Aa for which Mie resonances appear. For a low concentration of scatterers J, the 
propagation of the waves takes place through the background material (fb = 1) and the 
isolated scatterers obstruct the propagation; thus, the position of the Mie resonance 
(strong scattering) is expected to almost coincide with the gap (or would be gap). As 
the filling ratio increases, we may expect the resonances to mix and broaden into bands 
and we find (Fig. 5) that the gaps tend to be located in between the resonances. This 
behavior can be understood from the following argument. For a high concentration 
of scatterers, the propagation of waves is taking place by hopping from scatterer to 
scatterer through the overlap of the local resonance states (the analog of a band made 
up from a linear combination of atomic orbitals in the electronic case). Therefore, for 
high J, it is expected that the positions of the resonances would approximately coincide 
with the center of the bands. Thus, in the scalar case, the correspondence between the 
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gaps and the res on an ces is quite dear. Such a dear correspondence does not emerge in 
the vector case as is evident from Fig. 6. For the vector case, since the resonances are 
dose to each other (see Fig. 4 for the case of Ea = 13), a hybridization is expected and 
there will be no simple apriori relation between the position of the resonances and the 
midgaps (or midbands). 

CONCLUSION 

We compared our band structure results for the propagation of scalar and EM waves 
in various cubic periodic arrangements of spheres with the information available from 
the total scattering eross-section of a single sphere. We found that the appearance and 
loeation of the resonances of a single sphere ean throw some light on the threshold 
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Figure 6. The midgap frequency, for vector waves, of the first two gaps versus the filJing ratio f for 
the diamond lattice composed of dielectric spheres of ta = 13 in an air background. 

dielectric contrast and the position of the gaps in a periodie array. It is surprising that 
the positions of the bands in periodie diclectric structures are in any way related to the 
positions of the isolated Mie res on an ces as our results indicate. One possible reason for 
the dominant role played by Mie resonances in determining the band gaps may be that 
the scatterers we have considered are spherical and as opposed, e.g., to cubic scatterers, 
eannot form new wen eonnected shapes by dustering together. The Mie resonances of 
an isolated scatterer ean be said to play the role of the energy levels of an isolated 
atom in a crystal. By carrying this analogy further, we may be able to understand 
more clearly exactly how the Mie resonances influence the formation of gaps and also 
explain the differenees between the sealar and EM eases. 
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PERIODIC DIELECTRIC STRUCTURES: THE LONG WAVELENGTH 

EFFECTIVE DIELECTRIC CONSTANT 

C.T. Chan, S. Datta, K.M. Ho,and C.M. Soukoulis 

Ames Laboratory and Department of Physics and Astronomy 
Iowa State University, Ames, Iowa 50011 

INTRODUCTION 

The study of the electromagnetic properties of heterogeneous media is an old but 
still very active subject. Initially, various effective medium approaches [1] like the 
Maxwell-Gamet approximation were used to determine the dielectric constant and 
other properties in the long wavelength limit. It was later realized that these were 
inadequate and the microgeometry of the medium needs to be taken into account even 
though it is on a much smaller scale than the probing wavelength. Several such studies 
were made by McPhedran and McKenzie [2] and others for periodic systems using the 
boundary-matching approach. The efficacy of this approach is limited to special shapes 
like spheres and cubes which do not overlap. In recent years, several [3-5] groups have 
used Fourier expansion techniques which can be used to study any periodic microge
ometry and are much wider in scope than the previous efforts. We have also used a 
Fourier expansion technique to study this problem and our method will be applied to 
find the effective dielectric constant of several dasses of "photonie band gap" (PBG) 
materials. The PBG materials are basically periodic arrangements of one type of ma
terial embedded in another. It is interesting to note that besides the possibility of 
possessing photonie gaps, some of these materials are also anisotropie and thus will 
exhibit birefringence. 

THE LONG WAVELENGTH LIMIT 

For the dass of PBG materials we are interested in, the most straightforward ap
proach to study the electromagnetic (EM) spectrum is to operate in the Fourier space, 
where the periodic boundary condition can be put in trivially by imposing Bloch's 
theorem. There is no restriction on the shape of the structural units as long as they 
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are in a periodic formation. We solve the wave equation by expanding the dielectric 
constant in plane waves of the form exp (iG.f') where the G's are the reciprocallattice 
vectors as determined by the periodicity of the system. This transforms the Maxwell 
equations into a matrix equation which, upon diagonalization, gives the frequency and 
the eigenvectors of the EM wave eigen-modes. This has recently been, with slight vari
ations, the favorite approach of many authors[6-11). The same approach can also be 
used to find the long wavelength limit of the EM dispersion curves and thus determine 
the effective dielectric constant of periodic composite materials. One obvious way is 
simply to use finite differences, where the effective dielectric constantcan be deduced 
from the slope of the EM wave dispersion curves as Ikl ~ O. What we are presenting 
here is an alternate approach in which we deduce the effective dielectric constant via 
second order perturbation theory, which leads us to the expression: 

(1) 

ß • • • •• • 
where (t~T)kkl = tkk'Qk.ßkl, (tLLhk' = tkk'(k.k') , (fh)kkl = (fkk,)(Xk.k') and (Qk,ßk, k) 
form an orthogonal triad. 

fkk' is the Fourier transform of the dielectric function. The first term at G = 0 and 
G' = 0 becomes 

( tfr f~1j) _ ((f) 0) 
yx YY - 0 () fTT fTT t 

(2) 

where 
(3) 

which is the scalar wave result for a periodic array of material of dielectric constant f2 

embedded in material of dielectric constant fl with a filling ratio f. The diagonalization 
of the second term gives the correction to the scalar wave result. 

For a cubic crystal, Eq. (1) reduces to 

0)+(00) 
(f) 0 0 

(4) 

NUMERICAL RESULTS 

Using the above method, we have calculated the effective dielectric constant in the 
long wavelength limit for a few prototypical PBG materials, including structures that 
have spheres arrayed in face-centered cubic, simple cubic, and diamond structures. We 
considered the case with material spheres embedded in air and the conjugate config
uration of air spheres embedded in materials of high refractive index. Different filling 
ratios are considered. The dielectric contrast is set at 13, which is roughly that of 
Si in air at optical wavelengths. The results for the material spheres are compared 
(Fig. 1) with the scalar wave results (which ignore the vector nature of light) and the 
Maxwell-Gamet theory (basically a Clausius-Mosotti relation), which is given by 
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f = fl (2t1 + f2 + 2f(t2 - (1)) • 

2fl + f2 - f( f2 - fd 
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Figure 1. The effeetive dieleetrie eonstant lej j for the fee, sc, and diamond structures eomposed 
of material spheres (dielectrie constant l = 13) in air background as a function of the filling ratio f 
eompared with the sealar and Maxwell-Gamet results. 

We observe that the effective dielectric constant is smaller than the scalar wave 
result in all cases and also that it is different for different structures. For the scalar 
wave result, the effective dielectric constant is independent of the microstructure of the 
media, and is determined entirely by the average dieleetric constant of the media. Wh at 
this means is the scalar wave provides no information whatever about the structure in 
the long wavelength limit. However, the vector nature of the EM waves allows some 
sensitivity to the microstructure of the media, even as Ikl ---> 0, so that for the same 
filling ratio, the effective dielectric constant changes with the structure factor of the 
material under consideration. We note that the term 0: in Eq. (4) ean be written such 
that it is aseries expansion in D.E/E1. Then 

2"'2~ ~2 fk-.O = E1[1 + (D.E/Edj - (D.E/E1) LJS (G)(x.G) + ... ] (6) 
ä 

where S(G) = A L,i'exp(iG.T)j(G) is the strueture factor. We note that the term up 
to D.E/f.1 is preeisely the sealar wave result. The leading (D.f./f.1)2 eorrection term to 
the sealar result is negative definite, so it is quite natural that all the effective dielectrie 
eonstants are smaller than the sealar wave results. The structure factor and the vector 
nature of EM waves enter at this order. 

The optieal properties of erystals in nature ean be classified into three groups: 
isotropie, uniaxial, and biaxial, depending on the symmetry of the erystal. As far as 
optieal properties are eoneerned, the PBG materials ean be viewed as man-made erys
tals. Cubie PBG systems, like the fee, sc, and diamond structures we have eonsidered, 
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Figure 2. The effective velocities 1/..jfl and 1/..j(2 for material cylinders (dielectric constant ratio 
f = 13) in the "3-cylinder" structure as a function of the propagation direction in the [111]- [101] 
plane. 

are isotropie. There is only one effective dielectrie eonstant (the index ellipsoid is a 
sphere) and the effective wave veloeities in all directions are the same. 

The "3-eylinder" structure [12,13] that has been fabrieated by Bell-eore is anisotropie 
and has the preferred axis in the [111] direction. (The structure is fabricated by drilling 
three eylinders through eaeh hole of a tri angular array at an angle of 35.26 degrees away 
from the normal and spread out 120 degrees on the azimuth.) 

In Fig. 2 we have plot ted 1/ Vfl and 1/.jf2, i.e., the effective velocities, as a fune
tion of propagation direetion in the [111] - [lOT] plane for material eylinders in the 
"3-eylinder" structure with a dielectrie eonstant ratio of 13.0 and a filling ratio of 0.32. 
We find that the two velocities eoineide in the [111] direetion and that the anisotropy 
is maximum in a direction perpendieular to it. The structure behaves like a uni axial 
erystal. An interesting aspect of PBG materials is that the anisotropy in the refractive 
index of natural erystals is dietated by nature and is usually small, while that of PBG 
materials ean be engineered to a eertain extent by man as far as teehnological eapa
bilities permit. The maximum anisotropy in the refractive index .jf. of a " 3-eylinder" 
structure is plotted as a function of the filling ratio (Fig. 3) for a fairly modest dielectrie 
eonstant ratio of 7 for both material and air eylinders and we see that quite a large 
anisotropy ean arise by optimizing the structure. We have eonsidered both "material" 
eylinders and "air" eylinders in the "3-eylinder" structure. The eommonly practiced 
fabrication proeesses involve drilling or etehing and thus give "air" eylinder eonfigura
tions. 
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CONCLUSIONS 

We have calculated the long wavelength effective dielectric constants of a few PBG 
composite materials using a Fourier space technique. The method can be applied to any 
structure as long as it is periodic and the dielectric constant is not too high (otherwise 
the number of plane waves required would be prohibitive). The latter is not a serious 
problem in the optical frequency regime, since the dielectric constant is rarely a large 
number. 
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Figure 3. The maximum anisotropy !1n/n in the effective refractive index n = .,ff of a "3-cylinder" 
structure plot ted as a function of the filling ratio f for both material and air cylinders for material of 
dielectric constant f = 7. 
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MEASUREMENTS OF LOCALIZATION AND PHOTONIC 

BAND GAP SYSTEMS IN TWO-DIMENSIONS 

ABSTRACT 

S. Schultz and D. R. Smith 

Department of Physics 
University of California, San Diego 
9500 Gilman Drive 
La J oHa, California 92093-0319 

We report the results of experimental investigations of two dimensional periodic and 
random scattering systems. The systems consist of arrays of dielectric cylindrical scatterers 
bounded on top and bottom by conducting sheets. We present the results of measurements 
made on defect modes created by removing part or all of a scatterer from an otherwise perfect 
lattice. We also present aseries of measurements made on localized modes created by 
randomly removing an increasing number of scatterers. Discussion of applications for 
photonic band gap structures is included. 

INTRODUCTION 

The basic properties of waves, whether representing a classical or quantum 
mechanical system, explicitly give rise to the possibility of exhibiting the phenomenon of 
strong localization (SL). These properties are elastic scattering, superposition, and 
interference. The phenomenon of SL occurs when waves traveling in a strongly scattering 
medium interfere in such a way as to produce abound mode centered at some location in the 
medium. This localized mode is generally characterized by a rapid (usuaHy exponential) fall 
off of the energy density in aH directions away from the central point. Whether SL occurs or 
not for a given situation depends on the strength and configuration of the scattering potential, 
and criticaHy depends on the dimension of the system. The lower the dimension of the 
system, the easier it is to achieve localization. In this work, we focus on structures which are 
effectively two-dimensional. 

One approach to understanding SL as it occurs in more complicated situations is to 
begin with the simplest system available which exhibits the essential properties. When the 
elastic scatterers are arranged in a periodic lattice, it becomes much easier to understand the 
behavior of the .system, because we have the history of experience for solutions of many 
examples of wave propagation in a periodic lattice; ranging from Bragg scattering for x-rays, 
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to the detailed electronic band structure of solids. If we neglect the complications of many 
body effects due to particle-particle interactions, any quantum mechanical particle or classical 
wave system can be represented in terms of its appropriate wave equation, and the full power 
of the well-developed band structure formalism may be utilized to determine the dispersion 
relations, i.e., the frequency k-vector relationship as a function of all parameters. When the 
wave system consists of electomagnetic waves, Maxwell's equations of course describe the 
system, and the full set of dispersion relations have been termed "photonic band 
structure".1,2 It should be clear that as this term is generally used, there is nothing 
specifically photon-related to the subject. Using "photonic" reflects a growing usage 
whenever systems or devices are examined in the range of optical frequencies, and has 
become the accepted terminology for electromagnetic band structure systems. We also adopt 
this language, even when our work is in the microwave region of the spectrum, since the 
conceptual results are direct1y scalable to optical frequencies. 

When one examines the bandstructure for an infinite system composed of periodically 
placed potential scatterers, one finds bands of frequencies corresponding to normalizable 
propagating modes, as well as regions of frequencies where no propagating modes exist, 
i.e., band gaps. If it happens that the band structure for a system has a continuous band of 
frequencies for which there is no propagating mode in any direction, the system is said to 
have a Ehotonic Rand Qap (PBG). If one breaks the translational symmetry of the lattice by 
either terrninating the system or introducing a local perturbation, then modes with frequencies 
in the band gap do occur, corresponding to eigenfunctions which grow or decay 
exponentially. If we create a defect in the lattice by, for example, altering the strength or 
shape of just one of the sites, then we introduce the possiblity of a mode occurrlng in the 
band gap region with a wavefunction which decays exponentially away in all directions from 
the defect site. This is a defect mode, and is the simplest example of SL. 

The term localization, however, as it is generally used applies to systems where the 
scattering potential strengths anel/or positions are distributed randomly throughout the 
medium. Because of the difficulty in analyzing random scattering systems analytically or 
numerically, it is difficult to determine (especially in higher dimensions) for what parameters 
SL will occur, or even if it will occur at all. Nevertheless, we can still imagine a region of 
frequency in which eigenfunctions for a given random system must either grow or decay (not 
necessarily with exponential dependence), and thus any mode for such a system would again 
be required to be abound, localized mode. In one- and two-dimensional random 
configurations it is believed that all modes are localized, and that in higher dimensions 
localized modes only occur for certain ranges of frequencies, if at all.3 

We have performed experiments at microwave frequencies for both randorn and 
periodic two dimensional arrays of cylindrical dielectric scatterers, in which we demostrate 
SL modes and PBG states, respectively. By creating single defects in a PBG system we also 
demonstrate the corresponding defect states. Studies of random scattering systems are of 
interest to determine properties such as the dependence of the ensemble average localization 
length on scattering parameters. Studies of PBG and defect systems are of interest for their 
potential application in devices. In this paper we report on a study whereby we follow the 
evolution of the defect states created by randomly removing an increasing number of 
cylinders from a square lattice until we have 50% occupancy. 

EXPERIMENT AL TECHNIQUE 

Our experiments4 were carried out at microwave frequencies (-6-20 GHz) in a 
waveguide scattering chamber (Fig. 1), 1 cm high, 46 cm wide, and 51 cm long. The 
bottom and side walls of the chamber are machined out of asolid aluminum plate. On both 
ends of the chamber are standard 8-12 GHz waveguide fittings which can be used to detect or 
inject microwaves in the chamber via a tapered region integrally machined into the main plate. 
An aluminum cover plate, free to translate laterally, completes the chamber. The scatterers 
inside the charnber are typically cylinders with height of 1 cm and of various radi i and 
dielectric constants. Accurate lattices can be constructed by placing the cylinders into a 
precision drilled styrofoam (e=l.04) template. Finally, a thick layer of low density absorber 
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Figure 1. Schematic representation of the scattering system (not to scale). (I) Bottom and sides of 
scattering chamber (made as one piece), (2) inlet and outlet waveguide ports, (3) dielectric cylinders placed on a 
square lattice, (4) microwave absorber, (5) cover plate with holes for sampling electric energy density, and (6) 
a tuned microwave probe which is placed in the sampling holes in the coverplate, and whose output is 
measured by a homodyne detector at two phases 90° apart. 
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is placed between the interior chamber side walls and the styrofoam template which serves to 
minimize reflection. 

The cylinders, styrofoam template, and absorber constitute a system of a finite array 
of scatterers (up to 900) with "free" boundary conditions. Furthermore, if the wavelength of 
the microwaves is larger than the spacing between the upper and lower metal boundaries (1 
cm), our system is effectively two-dimensional (i.e., the electric field has no dependence 
along the direction of the cyli~der axes). 

In conjunction with an HP network analyzer we are able to sweep the microwave 
frequency and make measurements of the power transmitted through the scattering region. 
We are also able to map the spatial structure of standing wave modes (e.g., defect modes) by 
weakly coupling to a tuned probe through any of a lattice of small holes in the cover plate. 
U sing standard homodyne techniques, we can measure both the phase and amplitudes of the 
fields sampled by the probe. By mapping the Mie resonances4 associated with scattering 
from a single cylinder, we have found that the probe does not significantly perturb the system 
and the chamber is adequately terminated. 

RESULTS 

Fig. 2(a) shows the transmission for the case of a single cylinder completely removed 
from a square lattice of dielectric cylinders. By mapping the phase of the electric field as a 
function of position in a region around the defect, we have determined that the defect mode 
has fourfold symmetry.5 In'Fig. 2(b) we show the transmission data for a defect consisting 
of a cylinder with radius about 25% smaller than the radii of the cylinders composing the 
lattice. In this case we also observe a defect mode in the gap, but at a different frequency; 
also, measurements of the phases at select points indicate the mode is a dipole. The 
frequencies and symmetries of the defect modes agree with a numerical calculation completed 
by Meade et al. 6 

In Figs. 3(a) and 3(b) we have removed two cylinders from the positions indicated in 
the insets. In Fig. 3(a) the defects are far enough apart spatially so the defect mode overlap is 
negligible. The frequency of each mode is thus the same and we see only one resonance in 
thebandgap. When the defects are c10ser together as in Fig. 3(b), the modes begin to interact 
and we see a splitting of the defect frequencies in the band gap; if the interaction is small we 
may presume the modes are only slightly perturbed and couple symmetrically and 
antisymmetrically. 

In Figs. 4(a)-(d) we present a sequence of transmission measurements of a periodic 
lattice with 162 sites (9 X 18) with increasing numbers of cylinders randomly removed. In 
Fig. 4(a) we have removed 3 (1.9%) cylinders. As shown in the inset, these cylinders 
happen to be distant both from each other and from the lattice boundary; thus, the 
transmission shows only one mode unperturbed within the gap, although this mode is 
actually triply degenerate. In Fig. 4(b) we have removed an additional 4 cylinders for a total 
of 7 (4.3%) defects. This time the defect modes have coupled, mainly through interaction 
with the boundary, and spread into an impurity band within the gap. In Fig. 4(c) we have 
removed a total of 20 (12.3%) cylinders from the lattice, as shown in the inset. Note that in 
addition to the broadening of the defect band in the band gap, there is an overall decrease in 
transmission for the entire spectrum; this suggests that the randomness in the lattice is 
sufficient to cause diffusive scattering in the pass band regions. This effect is even more 
noticeable in Fig. 4(d), which shows the transmission spectrum for a lattice with 30 (18.5%) 
cylinders removed. 

Finally, in Fig. 5 we show the transmission spectra taken by R. Dalichaouch of a 
much larger square lattice [36 x 27 cylinders] from which 50% of the cylinders have been 
removed. The underlying modulation due to the bandstructure is evident, despite the 
randomness of the configuration. A spatial map of the electric field energy density for a 
localized mode corresponding to one of the peaks in the transmission spectrum is presented 
in Fig. 3 of Ref. 7, where the localized nature of the mode was demonstrated. We turn now 
to a discussion of applications of photonic band gap and defect structures. 
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Figure 2. The transmitted power vs. frequency for a square array (9 x 18) of dielectric cylinders of e=9 
embedded in a styrofoam (e=1.04) template. A single cylinder has been removed in Fig. 2(a), while a cylinder 
of 25% sma11er radius has replaced a lattice cylinder in Fig. 2(b). 
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Figure 3~ A spectrum for the same lattice used in Fig. 2. We have removed two cylinders from near the 
center of the lattice (to avoid interaction with the boundary). The darkened circ1es in the insets represent the 
relative orientation of the defects with respect to each other. 
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Figure 4(a): Transmitted power versus frequency for the lattice shown in the inset (3 cylinders removed). 
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Figure 4(b). Transmitted power versus frequency for the Iattice shown in the inset (7 cylinders removed). 
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Figure 4(c). Transmitted power versus frequency for the lattice shown in the inset (20 cylinders removed). 
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Figure S. The ratio of the transmitted to incident power as a function of frequency for a set of dielectric 
cylinders (e = 9), of radius 0.98 cm, placed randomly with 50% probability on a square lattice of spacing ao 
= 1.27 cm. (a) an extended sweep range of 6-18 GHz. The sharp peaks are attributed to excitation of localized 
modes. The superimposed modulation with width of -4GHz is attributed to vestiges of the stop and pass 
bands of the underlying lattice. 

DISCUSSION 

In general, one finds satisfactory agreement between experimental results and 
numerical simulations for photonic band structures, which supports the expectation that one 
should be able to model PBG systems in two-dimensions over a broad range of frequencies 
and material parameters. Of course, there are additional effects to take into account if one 
wishes to incIude the finite conductivity of the metal plates, the loss tangent of the dielectrics, 
etc. In addition, in some applications the finite distance between the plates may have to be 
explicitly modeled, and this can also be done.8·9 A more difficult class of problem is 
perturbation due to holes in the metal plates, incIusion of coupling antennae, etc. However, 
given the powerful techniques for addressing finite boundary value problems that are now 
available, it is likely that numerical solutions will be available, if it is decided they are worth 
the computational effort. 

There is a large range of devices and applications for which PBG structures may playa 
new and important role. It should be appreciated that by using superconducting end plates, 
and going to cryogenic temperatures, very high Q values for the defect resonances should be 
readily available. Thus, with currentIy available high Tc wafer material, one should get 
Q-I06 at 77K, and with cIassical superconductors at 4 K, Q's up to _1010. In many respects 
the localized mode, or resonance state associated with a defect may be regarded as 
comparable to the familiar resonant modes in metal walled cavities. However, there are 
important differences, and these may prove particularly useful for certain applications. For 
example, the series of resonant modes in a rectangular box (or other geometrical form) can be 
specified in terms of a set of integer valued indices. There are no comparable simple sets of 
formulas for PBG structures, and the nature of the mode spacings is completely different. In 
some cases it may be possible to select parameters to have only one true PBG-defect state, or 
a selected finite set. Another difference is that one can design PBG-defect systems that have 
multiple defects, and those with varying geometrical and material structure. By placing 
defects regularly spaced, one can create the equivalent of supercells. Meade et apo have 
reported a numerical investigation of investigated surface wave modes of the PBG structure, 
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and the effects of varying the choice of the tennination plane at the interface between a 3-D 
PBG structure and that of a constant dielectric medium. 

Since the localized mode around a defect state in a PBG structure does have many 
features in common with resonant cavities, they can be considered for all the applications 
where resonant cavities are utilized. Thus, they may prove useful for filters, impedance 
matching structures, masers, lasers, experiments in QED, etc. We have been investigating 
the applicability of PBG structures for replacing resonant cavities in linear accelerators, 
where their different mode properties may make them uniquely useful. 8 

In the introduction, we mentioned that we have focused on PBG structures in 2-D (as 
opposed to 3-D) because we felt they were equally useful, but much easier to implement. 
The reason they are easier to implemement in 2-D than 3-D is not only the inherent simplicity 
of a lower dimension, but because there is a much broader range of geometric and material 
parameters for which true PBG states exist. As illustration, consider that the only lattice 
found for a PBG stucture in 3-D is diamond,ll with a minimum dielectric constant -9, 
whereas in 2-D we have also utilized a triangular lattice12 to get data similar to that shown 
here for a triangular lattice, and that the numerical simulations by Plihal et al.13 for the Rn 
field polarization parallel to the cylinder axis show that the minimum dielectric constant for a 
PBG can be as small as 2. 

We believe that extension of our experiments up to the infrared regime is reasonably 
straightforward provided that one utilizes a dielectric scattering material with an adequate 
index and loss factor at the frequencies of interest. The reflecting plates could either be first 
surface silver mirrors, or even dielectric layers optimized for reflection at band gap 
frequencies. Experiments along these lines are in progress and will be reported separately. 
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INTRODUCTION 

Recently, the problem of a classical wave (CW), such as electromagnetic (EM), 
acoustic scalar (AS), or elastic (EL), propagating in composite media, has received 
increasing interest (Sheng, 1990). In these media, problems, such as electron-electron 
and electron-phonon interactions which occur in the electronic case, do not exist. For 
this reason, it is easier to understand and study phenomena of localization. Also, future 
useful devices may be based on the problem of classical wave propagation (John, 1988; 

Yablonovitch, 1987; John, 1991). 
John and Rangarajan (1988) and Economou and Zdetsis (1989) have pointed out 

the connection between the possible localization of classical waves in disordered media 
and the possible existence of band gaps or regions of very low density of states (DOS) 
in periodic structures. Actually the band gaps will become, at least partially, regions 
of localized states as a disordering process is gradually introduced in the periodic struc
ture. As a result of this, the quest ion of band structure of classieal waves has reeeived 
increased attention. 

The scalar wave (SW) equation has been studied (only in fee structure) by several 
authors using the augmented plane wave (APW) (Economou and Zdetsis, 1989), the 
Korringa Kohn Rostoker (John and Rangarajan, 1988; Leung and Liu, 1990a) and plane 
wave (PW) (Leung and Liu, 1990a; Satpathy et al., 1990) methods. Also, the EM wave 
equation has been studied (in fee and diamond structures) using the PW method (Ho 
et al., 1990; Leung and Liu, 1990b; Zhang and Satpathy, 1990). A disordered elastie 
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discrete medium has been studied by John et al. (1983). They found that all finite 
phonons in one and two dimensions are localized and that a mobility edge separating 
low frequency extended states from high frequency localized states exist above two 
dimensions. More recently the EL and AS wave equation in the continuum have been 
·examined (Sigalas and Economou, 1992a). Yablonovitch and Gmitter (1989) did the 
first experimental work for microwaves propagating in periodic fee dielectric structures. 

In this paper, we comment first on some general points regarding all types of classi
cal waves: simple scalar waves (SSW), scalar acoustic waves propagating in a composite 
periodic medium where the mass density (as weIl as the sound velocity) varies in space 
(ASW), electromagnetic waves (EMW), and elastic waves (ELW) in a composite peri
odic solid. Then, we present some results for SSW, ASW, EMW and ELW. 

GENERAL REMARKS 

In this section, we point out some general features of wave propagation in inho
mogeneous media, we raise some yet unanswered questions, and we present arguments 
favoring the study of ASW and ELW. 

Connection Between Spectral and Mobility Gaps 

Spectral gaps in periodic media as weIl as mobility gaps (i.e., spectral regions where 
the eigenstates are localized or non-propagating) in random systems are both due to 
strong multiple-scattering and interference. Thus, there is an intimate connection be
tween the two. A particular, but very common case, which shows explicity this con
nection emerges when we gradually disorder a periodic medium possessing spectral 
gaps. The disordering process creates bandtails (Urbach tails), which consist of local
ized states and which tend to fill in the gaps. As a result, the regions of localized states 
in the weakly disordered system almost coincide with the gaps of the unperturbed pe
riodie medium. Consequently, the determination of the gaps in a periodic medium (an 
extensively studied problem for which many accurate techniques have been developed) 
allows one to approximately locate the regions of localized states in a random system, 
provided that a corresponding periodic medium can be found from which the random 
one can be generated by a weak disordering procedure. 

Bragg vs Mie 

In order to create a. spectral gap, it is necessary to have a destructive interference 
of a similar nature as in the Bragg diffraction. This implies that the wavelength, A, 
must be comparable to twice the linear dimension, a, of the fundamental cell of the 
periodic structure. However, a genuine spectral gap (i.e., one existing for all directions 
of propagation in a 2D or 3D system) requires also wide gaps for each direction (oth
erwise as the wave vector k is rotated, the gap will be wiped out). But, a wide gap in 
each direction implies strong scattering from each individual scattering center (or more 
correctly from each unit cell). We were thus led to the conclusion that a genuine gap 
will be associated with strong resonance scattering from each unit cello A classical case 
of such resonance scattering has been studied by Mie for the case of electromagnetic 
waves impinging upon a spherical dielectric. A review of resonance scattering can be 
found in arecent paper by Flax et al. (1981). If the dielectric constant of the sphere is 
very large (in comparison to that of the surrounding medium) very strong resonances 
appear in the total cross section approximately when Ai(n + 1) = 2d , where Ai is 
the wavelength inside the sphere (Ai = 27rC/WVfi,), n=I,2,3, ... and d is the diameter 
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of the sphere. Thus, to satisfy both the Bragg condition and the Mie-type resonance 
condition, d must be comparable to a, which implies that the volume fraction of the 
scatterers, x, must be appreciable on the order of at least 10 %. 

How one can make a rough estimate about the optimum values of the parameters 
for the appearance of a gap? If the individual scatterer's resonance structure is the 
dominant factor, one would expect that the most important parameter would be the 
ratio d / >..; . Indeed, at least for SSW and ASW, there is strong correlation between 
the resonance structure from an individual sphere and the appearance of gaps (see Fig. 
1,2 as weH as Fig. 5 in the paper of Datta et al. in this book). The values of d/ Ai, 
for which resonances appear, almost coincide with the positions of the midgaps (or 
the deeps in the density of states) for small x, and with the position of the middle 
of the bands for large x! The reason for this behavior is the following: For low x 
(low concentration of scatterers), the propagation is taking place through the host 
material and the scatterers impede the propagation; thus the position of the resonance 
is expected to almost coincide with the gap (or the would be gap). On the contrary, for a 
high concentration of scatterers the propagation takes place by hopping from scatterer 
to scatterer through the overlap of the local resonance states (the analog of a band 
made up from a linear combination of atomic orbitals in the electronic case); thus, for 
high x, it is expected that the position of the resonances would approximately coincide 
with the center of the bands (see Fig. 5 in the paper of Datta et al. in this book). 
When two or more resonances are elose to each other, a hybridization is expected and 
there will be no simple apriori relation between the position of the resonances and the 
midgap (or midband). It seems this is the case for EMW. 

The dominance of the resonances for the creation of gaps would also imply that 
the ratio E;/ Eo must be large (Eo is the dielectric constant of the host, high velocity 
material). Indeed, a large value of E;/Eo would produce strong resonances and, hence, 
gaps. Analysis of the numerical data show that the ratio E;/ Eo must exceed a critical 
value for a gap to appear; beyond this critical value the width of the gap grows linearly 
with E;/ Eo and then seems to saturate. Another feature of the band structure, which 
supports the dominant role of the resonances, is the observed flatness of many "optical" 
branches (see Figs. 6,7,8, 10, 11, 12, 13 and 17). Furthermore, the data show that the 
results are not so sensitive to the value of x, provided that x is in a region around its 
optimum value; this feature tends to imply a not so sensitive dependence on the exact 
satisfaction of the Bragg condition. It may even be possible that a strong short range 
order of sufficiently large range is enough to create a gap and that a perfect periodic long 
range order is not really necessary. On the other hand, the data in the electromagnetic 
case seem to indicate that gap formation is strongly enhanced if the scatterer(s) in 
each unit cell are connected to form a continuous network running through the entire 
system. This feature suggests that one cannot analyze the basic properties-at least for 
the EM case-in terms of what is happening at an isolated individual scatterer. 

Classical Waves vs Electron Waves 

The wave equation satisfied by an SSW t/J is given by: 

2 E(T) fPt/J 2 w2 

~ t/J - -;;2 8t2 = 0 or ~ t/J + "2E(T)t/J = O. (1) 

The corresponding equations for the electronic case are : 

or 
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2m 
\J2ljJ + t;!(E - V(r'))ljJ = 0 (2) 

In the time domain the electronic and the dassical wave equations are not equivalent; 
as a result, time dependent processes such as the diffusion of an initially localized 
pulse cannot be carried over from the electronic to dassical wave case without furt her 
analysis. On the other hand, in the frequency domain the two equations are equivalent. 
Since t( r') and m are positive quantities, it follows that the obvious inequality w2 ~ 0 
implies for the electronic problem that 

(3) 

i.e., the CW problem is mapped onto the electronic problem for energies larger than 
the maximum value of the potential. The gaps in the CW problem are equivalent to 
gaps for E ~ Vmax in the electronic problem. The existence of gaps in this region of 
energy for 2D and 3D periodic systems is not apriori guaranteed. As a matter of fact, 
only under rat her extreme conditions do gaps above Vmax appear. 

In the CW case, the disorder (which is incorporated in t( r')) is multiplied by w2 ; as 
a result of this in the w --+ 0 limit, we have always free-like propagation. Note also that 

the regions of low velocity, cl J t( r'), i.e., of high t( r'), correspond to regions of potential 
weIls; since a potential weIl is a stronger scatterer than a potential bump (because the 
potential weIl as opposed to the potential bump may develop resonances), we shall 
consider the high t( r'), low velocity regions, as the scatterers and the rest as the host 
material; x always denotes the volume fraction occupied by the low velo city component, 
which may be disjoint or may be joined together to form a continuous network. 

For EMW and ELW we have vector fields, where their cartesian components are 
coupled together. This is somehow analogous to the spin-orbit coupling in the electronic 
case. It is weIl-known that the presence of spin-orbit creates a new universality dass 
as far as the electronic localization is concerned. Thus, it would be of interest to make 
a comparative study of SSW, EMW, and ELW aiming at checking out whether or not 
the above cases belong to different universality classes. 

Acoustic and Elastic Waves 

Acoustic scalar waves, in an inhomogeneous fluid medium, show a richer behavior 
than the SSW described by Eq. (1). The reason is that we have two independent 
quantities, i.e., the elastic constant )'(f') and the mass density p(r'), entering the acoustic 
wave equation: 

(4) 

where p(f') is the pressure, and c2 = ).(f')1 p(f') is the square of the local speed of 
sound. If the mass density is constant, Eq. (3) reduces to the simple wave equation 
(1). In other words, the propagation of the sound wave faces, in general, both velocity 
mismatch as weIl as impedance mismatch. 

For elastic waves the physics is even richer, because we have a full vector field 
(both longitudinal and trans verse with quite different velocities, Cl, and Ct, respectively) 
encountering in its propagation transverse and longitudinal velocity mismatch as weH 
as impedance mismatch. Given the fact that the two-component EMW develops gaps 
under more extreme conditions than the one-component SSW, one expects the three
component ELW would require even more extreme conditions for the opening of gaps. 
It is conceivable, that under realistic conditions we may have always a no gap situation. 
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THE SCALAR CASE 

We have solved Eq. (2) (or its equivalent (1)) in the ease where we have non
overlapping spheres of potential V (rj = -b (or of dielectrie eonstant td arranged in a 
periodie way within a host material of potential V (rj = 0 (or of dielectrie eonstant t o ). 

For the numerieal solution, we have employed both the unsymmetrized APW method 
(Mattheiss et al., 1968; Papaeonstantopoulos, 1986) and the plane wave method (John 
and Rangarajan, 1988; Leung and Liu, 1990a). In the APW method, it is neeessary to 
limit the infinite sum over f to a finite number of terms (Mattheiss et al., 1968). In all 
the ealculations, 10 terms in this sum are suffieient to yield results whieh are accurate 
to a few mRy. The number of reeiproeal vectors, KMAX, required in order to obtain 
eonvergent results, depends on three factors: (a) the structure; (b) the value of b; and 
(e) the value of x. For the same values of band x, it is easier to find a eonvergenee 
of a few mRy for an fee structure than for a bee structure, and it is more diffieult for 
simple eubie (sc) structure. For fixed band x, we have seanned the positive energy E 
semiaxis to find the gap positions (parallel solid line in Fig. 1). 

Our results for the muffin tin electronie problem are directly applieable to the SSW 

equation (Eq. (1)). Indeed eaeh E and 8 point in Fig. 1 mapped to an w, r (= .Jti/to ) 

point by the equations (Eeonomou and Zdetsis, 1989; Soukoulis et al., 1989; Eeonomou 
and Soukoulis, 1989): 

2 _ ti 8 
r =-=l+ E , 

t o 

E 
Eo' 

(5) 

where Eo = n2 /2mR2 , R is the radius of the muffin tin sphere, and ti is the high and 
t o the low dielectrie eonstant. 

The ease where b 2: 0, eorrespond to attraetive potentials and the opposite ease 
to repulsive potentials. We expect that an arrangement of attractive potentials (for 
nonoverlapping spheres) form more easily gaps; thus, we ehoose to work only for 8 2: 0; 
this eorresponds to 0 < t o < ti in the SSW. 

Within the framework of the plane wave method, we reeast Eq. (1) as follows: 

2 2 2 t 1 - V' 1/J + T1/J = kb 1/J , T = kb [1 - - , 
Eo 

(6) 

For a periodie dieleetrie structure, T ean be expanded in terms of its Fourier components 
T( G), G being a reeiproeallattiee vector. The wave function 1/J whieh satisfies Bloeh's 
theorem ean be expanded in terms of the plane waves: 

(7) 

Equation (6) ean then be expressed in the form (Leung and Liu, 1990a): 

(8) 

where U = T/k~ and dk+O = Ik + GICk+O. For the ease of non overlapping dielectrie 

spheres, we have Uo = 3x(1 - r2 )g(IGIR) where g(y) = (siny - ycosy)/y3. The SSW 
band strueture is then obtained by solving Eq. (8) for the eigenvalues k~ for eaeh value 
of k. The APW results are in good agreement with those obtained by the PW method. 
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Figure 1. Position ofthe gaps (solid horizontallines) in fee (a), bcc (b) and sc (c) muffin-tin periodic 
potential (-6 inside the spheres, zero inside the interstitial region) for volume fraction x=O.144. The 
energy E and the depth 6 are measured in units of 1I2 /2mR2 where R is the muffin-tin radius. The 
dotted line passing through the ends of the horizontallines is a guide to the eye, roughly indicating 
the trajectories of the all band edges for positive E. The symbols indicate the dominant resonant 
scatterings responsible for the corresponding gap. No gap exists at higher energy E. 
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Figure 2. Eaeh eurve represents the threshold value of the contrast r; for whieh a frequeney gap 
of a speeifie type just opens plot ted against x for various lattiees: (a) fee; (b) bee ; (e) sc, The type 
of the gap (and eonsequently the eorresponding eurve) is eharaeterized by the dominant resonance 
responsible for its existenee, 
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Figure 3. The threshold value, r~, of the contrast r 2 == (co /C;)2 for which the pi gap just opens 
plotted against x, the volume fraction of the low velo city component, for scalar waves in a diamond 
structure. 

Results 

Using the APW method we find for eaeh x and {j the position of the gap(s) and we 
display them as horizontal solid lines in the E vs {j plane as shown in Fig. 1 for various 
lattiees (fee, bee, and sc) and for x = 0.144. In the problem of seattering from a single 
sphere, it is well-known (Eeonomou and Zdetsis, 1989; Soukoulis et al., 1989) that when 
{j inereases, the eross-section has an oseillatory variation; thus, for some values of {j the 
seattering eross-section has a maximum. These are the so-ealled resonanee seatterings 
whieh are associated with those eritieal values of {j for whieh a new bound state appears 
in the single potential well. For a given value of e, there are infinite eritieal values of 
{j denoted by {jin (n = 1,2, ... ). These values are related to the values of {j for whieh 
gaps appear in the periodie ease eonsidered here and plot ted in Fig. 1. 

The absolute threshold eontrast, T~, for whieh a frequeney gap in SSW ease just 
appears is obtained from Fig. 1 by drawing the minimum slope straight li ne through 
the origin whieh intersects a gap segment as shown in Fig. le for the sI gap, which is 
assoeiated with the first e = 0 resonanee seattering from a single sphere. We ean also 
find from our data and Eq. (5) the threshold value of T~ for eaeh partieular resonanee 
structure of Fig. 1 (sI, pI, dl, s2, p2). These various threshold values of T~ relative to 
the volume fraction x are plotted in Fig. 2a,b,e for fee, bee, se structures, respectively. 
For a partieular gap it appears that there is a threshold value of x, Xi, immediately 
above of whieh this gap appears for very large value of Tc. As x inereases beyond Xi, Tc 

deereases and reaehes a minimum, T~, for an optimum value of x, xm • As x inereases 
further beyond x m , Tc inereases slowly and approaehes infinity for an upper eut off value 
of x, XU ' Thus, the partieular gap appears only for Xi ~ X ~ xU ' 

Comparing our results in Figs. la and 2a with those of Eeonomou and Zdetsis 
(1989), we find a nearly perfect agreement for small values of {j (i.e., for Tc near its 
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Figure 4. r; as a function of x , the volume fraction of the low velocity component, for sI gap and 
scalar waves in an sh structure with c/a=0.5 (a), 0.8 (b), 1.5 (c), 2.2 (d). 

Figure 5. Calculated band structure across K-r-A axes for scalar waves in an sh structure with 
c/a= 0.5 (a), 0.8 (b), 1.5 (c) and x=0.144, r 2 = 5; a and c are the lattice constants. 
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minimum). But for very large values of {j (which corresponds to large values of r~, as 
implied by Eq. (5)), there are some diserepaneies as we ean see by eomparing our Fig. 1a 
with Fig. 1a of Eeonomou and Zdetsis (1989). Our present results are more eonvergent 
than those of Eeonomou and Zdetsis (1989) and are more reliable. In general, we found 
no disconnected closed loops in the band edge trajectories. Furthermore, the X u for the 
p3 gap is smaller than that of Eeonomou and Zdetsis (1989). 

The fee results (Figs. 1a, 2a) are similar to bee results (Figs. 1 b, 2b) and in both 
structures there is a region (10% ::; x ::; 30%) where the l'c for the sI gap is almost 
eonstant. For the sc structure the gaps appear for lower values of X u and greater values 
of r;;' (Figs. 1e, 2e). The higher gaps appear for greater values of X m (for example, the 
pI gap appears for x", i=::j 0.25 in all the structures) and the value of r;;' depends on the 
partieular structure. Note that the r;;' of pI gaps are sm aller than the r;;' of sI gaps for 
both bee and sc structures but they are nearly the same for fee structureS. Also, the 
r;;' of s2 and p2 gaps have greater values than the r;;' of sI and pI gaps. Our results 
for sI gaps of fee structures are in good agreement with the results of Satpathy et al. 
(1990) who found X m i=::j 0.1 - 0.15 and r;;' i=::j 1.7 using the PW method, and those of 
Leung and Liu (1990a) who found r;;' i=::j 1.7 using both the KKR and the PW methods. 
On the eontrary, John and Rangarajan (1988) found r;;' i=::j 2.8 using the KKR method. 

Using the PW method, we eonsidered diamond, simple hexagonal (sh) and hep 
struetures. It is already known (Ho et al. , 1990; Sigalas and Eeonomou, 1992a) that 
for diamond structures the first band is doubly degenerate aeross the W - X (Z) axis, 
so it is impossible to find the first gap, whieh is assoeiated with the lowest s-wave 
resonanee. However, there is a pseudogap in the same region of frequeneies. In the 
diamond structure, the pI gap appears for X m i=::j 0.1 - 0.15 and r;;' i=::j 2.2 as shown in 
Fig. 3. So, the pI gap for a diamond structure appears for greater values of r;;' and 
lower values of x compared with the pI gap for both fee and bee structures. 

In Fig. 4 we show the r~ relative to x diagrams for sh lattiee and different ratios 
of the lattiee eonstants e/a. For c/a i=::j 3/4, the results are quite similar with the fee 
results and this is the optimum ratio (Sigalas and Eeonomou, 1992a). When the ratio 
e/a departs from this value (either to lower or higher values), the appearanee of gaps 
beeomes more diffieult. Comparing the band struetures aeross J( - r - A axes for the 
same values of x, r, and e/a = 0.5, 0.8, 1..5 (Fig. 5), we ean see that the bands at the 
A point [7T/e(O, 0,1)] are lower for e/a = 1.5; thus, it is not easy to find a gap in any 
direetion. For e/a= 0.5, the bands at K point [7T/a(4/3, 0,0)] are lower than the bands 
at the A point. We ean also see from Fig. 5 that the band structure for e/a= 1.5 has a 
more eomplieated form beeause some bands go down to lower values of frequeney due 
to the sm aller value of 7T / e. 

For the hep structure, the first band is doubly degenerate aeross the P axis for every 
value of x and r. Thus, it is impossible to find the first gap, whieh is associated with 
the lowest s-wave resonanee. 

THE ELECTROMAGNETIC CASE 
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Maxwell's equations for EM waves ean be written as: 
...,. -+ W-+ 
V' X H = -i-fE 

c 
-+ -+ w ...... 
V'xE=i-H 

c 

vii = O. 

(9) 

(10) 

(11) 
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Figure 6. Calculated band structure for EM waves in a bcc structure x=0.144 and r 2 = 29.92; ais 
the lattice constant. 

Substituting Eq. (9) into (10) we obtain: 

(12) 

Following previous work by Ho et al. (1990), we expand the H field into plane waves: 

H(rj = L HKeiKT", 
K 

(13) 

where R = k + G and the sum is over G. Substituting Eq. (13) into Eq. (12) and 
using Eq. (11), we obtain the following eigenvalue equation: 

(14) 

where XK . j{ = 0, YK . j{ = 0, XK· YK = 0, and XK, YK are unit vectors. 
If the infinite series is approximated by a sum of N reeiproeal vectors, Eq. (14) is 

redueed to a 2N x 2N matrix eigenvalue problem. For r = f;j f o up to 6 and for an 
aeeuraey 3% in the lower lying eigenmodes, we retained N ~ 300 for all the structures 
eonsidered here exeept diamond in whieh N ~ 450. 

Dur results are in good agreement with the previous results (Ho et al., 1990; Leung 
and Liu, 1990b; Zhang and Satpathy, 1990). For the fee structure, it was found that 
a true gap does not exist due to a degeneraey of the seeond band at the W point. 
But, a pseudogap develops in the photon spectrum for moderate values of the dielectrie 
contrast and it optimizes generally for x ~ 0.3 - 0.4 (Zhang and Satpathy, 1990). For 
similar reason a true band gap is absent in bee struetures, as we ean see in Fig. 6, due 
to a degeneraey of the seeond band at Hand P points. Also, the third and fourth bands 
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Figure 7. Calculated band structure for EM waves in an sc structure ; x=O.144, r 2 = 29.92 ; ais 
the lattice constant. 
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Figure 8. Preliminary calculations for the band structure of EM waves in a diamond structure; 
x=O.34, r 2 = 38.12; ais the lattice constant. 
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Figure 9. r~ as a function of x, the volume fraction of the low velocity component, for the first 
frequency gap of EM waves in a diamond structure. 

have a crossing only at r point so a second sharp pseudogap appears in the DOS. In 
the sc structure a band gap is also absent due to a degeneracy of second band at the 
Rand M points (Fig. 7). 

On the contrary, a true photonic band gap does exist in a diamond structure for 
easily obtainable dielectric constants (Ho et al., 1990). In Fig. 8 we present preliminary 
results for the band structure of EMW for a diamond structure and very large dielectric 
contrast. Because of very large contrast and the relatively high frequency, the accuracy 
of these results is low as witnessed by the fact that the first gap (between second 
and third bands) does not appear in this particular case as it should. Thus, we must 
consider the large wide gap, (between eighth and ninth band) as doubtful until more 
accurate calculations are performed. In Fig. 9 we plot the r~ vs x for the first gap of the 
diamond structure and we find x m ~ 0.34, r::' :::; 2.2 and xi ~ 0.1. So comparing with 
the corresponding scalar results (Fig. 3), it is obvious there is a considerable difference 
in the optimum value of x but the values of the optimum rc are nearly the same. 

Finally, in the sh structure and for EM waves, the second band is doubly degenerate 
at the L point so it is impossible to find a true band gap, but the magnitude of the 
pseudogap is optimized for c/a ~ 3/4 as in the scalar case. 

ACOUSTIC AND ELASTIC CASES 

From the theory of elasticity it is well-known (Landau and Lifshitz, 1959; Lai et 
al., 1978) that the equation which relates the stress tensor, Tij, and the strain tensor 
(neglecting second order terms), 

1 ou i ou j 

Uik = -(- + -), 
2 OXj OXj 

(15) 
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is given by: 
(16) 

where Cijkt is the elastieity tensor and ui is the i-th eomponent of the displaeement 
vector u( r'). For isotropie materials: 

where A and fl are the so-ealled Lame eoeffieients (Landau and Lifshitz, 19.59; 
al., 1978). 

The equation deseribing elastie waves in inhomogeneous solids is given by: 

[Pu i 1 {)Tij 

{)t 2 - p {)Xj , 

where p == per) is the density. Using Eqs (15), (17) and (18) we obtain: 

(17) 

Lai et 

(18) 

(19) 

Equation (17), for an homogeneous material, gives rise to uneoupled longitudinal and 
transverse waves of veloeities Ct and Ct respectively, where c; = (A + 2fl) / p, c; = fl/ p. 
It must be pointed out that the reduction of Eq. (19) into two independent equations 
can be done only in the homogeneous ease where A, fl and p = eonstants. For fluids 
fl = 0 and by introducing the pressure p = -X9U, Eq. (19) is reduced to Eq. (4). 

For periodic media J(r) (f == fl, A or p-l) can be expanded in terms of its Fourier 
components Ja. In the case considered here, the periodie medium consists of identical 
spheres of radius R with sound velocities Cti and Cti plaeed periodically within a host ho
mogeneous material with sound velocities Cto and Cto, Ja = Jo8( C) + 3x(fi - Jo)g(ICIR), 
where g(y) = (siny - yeosy)/y3. The displacement vector u(r') which satisfies Bloch's 
theorem can be expanded in terms of the plane waves: u(r') = LI< uj(eir?r where 
j{ = k + C, and the summation is over G. Substituting in Eq. (19) we obtain: 

L {L P6~GiJ\jI'-ö,(k + G')c(k + Cf')i 
GI f,GII 

+flai'_ö,(k + G');{k + Cf')tlu~+ö' 
+ L[P6~ai,flai'-ö' L(k + G'}j(k + Cf')jlu~+ö'}' (20) 

Gi, , 

If the infinite series is approximated by a sum of N reciprocal vectors, Eq. (20) is 
reduced to a 3N X 3N matrix eigenvalue equation whieh can be solved numerically. 
In all the cases considered here, N did not exeeed 350. The aceuracy of the results is 
better than 2%. In the full elastic case (fl i= 0), the N must be greater compared with 
the N used in the sealar case, for the same contrast of veloeities and the same accuracy. 
For peonstant, Eq. (21) is redueed to a symmetrie matrix; on the eontrary if Pi i= Po 
Eq. (20) is of a general matrix form. 

Results 

We have examined the effects of a non eonstant density (Eq. (4)) in arecent 
paper (Sigalas and Eeonomou, 1992a) and the main conclusion was that by increasing 
y == pd po from one, the gaps tend to disappear; however, when y beeomes smaller than 
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Figure 10. The band structure across L-f-X axes für EL waves in an fee lattiee with x=0.144, 
pdPo = 1, Cto/Cti = 5.48 and cdcl ="J2 (a), 2 (b), 2.83 (e) everywhere; ais the lattiee eünstant. 
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Figure 11. The band structure für EL waves in a bec lattice with x=O.144, pd po = 1, Cto/CH = 5.48 
and cdct = "J2 everywhere; ais the lattice cünstaut. 
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Figure 12. The band structure far EL waves in an sc lattice with x=0.144, pd Po = 1, Cto/Cti = 5.48 
and cl/Ct = V2 everywhere; ais the laUice canstant. 
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Figure 13. The band structure far EL waves in an sh lattice with c/a = 3/4, x=0.144, Pi/Po = 1, 
Cto/Cti = 5.48 and cl/Ct = V2 everywhere; a and c are the lattice canstants. 
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one, the bands tend to be narrower and the gaps gets wider. Hereafter, we consider 
the full elastic case (tt, A '# 0, Eq. (19)), first for y=l and then for y,#l. 

We checked first the limiting "empty lattice" case (A, tt, P = constants). We found 
numerically that the band structure are fully separated into transverse (T) and longi
tudinal (L) modes which have a free plane wave structure in perfect agreement with 
our theoretical results; also the T mo des are double degenerate. For ,\; '# Ao and tt, p 
are constant everywhere the T bands remains free plane waves-like but the L bands 
are qualitatively similar (but not identical) with that obtained from the SSW equation. 
For Ai '# Ao and tti '# tto the band structure for both T and L modes departs from free 
plane wave structure. By increasing the contrasts ceo/ce; and Cto/Cti' it is more difficult 
to separate the bands into T and L parts. 

In Fig. 10 we plot the band structure across L-r -X axis for the fcc structure. In 
the first panel (Fig. 10a), the case ceo/Cto = cedct; = V2 (which is the lowest possible 
realistic value of the ratio ce/Ct (Landau and Lifshitz, 1959)) is shown in which the 
first gap is already present. There are a single and a double degenerate bands below as 
well as just above the gap; two nearly Rat bands are located at higher frequencies (Fig. 
10a). By increasing the ratio ce/Ct (Figs. 10b,c) the bands go up to higher frequencies 
except the Rat bands which remain nearly unchanged; also, the single band below the 
gap rises more rapidly than the double degenerate bands. Thus, the gap disappears. 
So the extreme ce/Ct = V2 (both inside and outside the sphere) case, in which the L 
and T bands have the strongest mixing, seems to provide the most favorable condition 
for gaps to appear. 

In Figs. 11, 12 and 13, we plot the band structures for bcc, sc, and sh structures, 
respectively, for characteristic cases in which the first gap has already appeared. In all 
these band structures there is a single and a double degenerate band below the gap; 
these bands become Rat near the edge of the Brillouin zone; thus, a sharp peak appears 
in the DOS as we can see from the DOS of the bcc structure. Also, for frequencies just 
above the gap we find a single and a double degenerate band; these bands coincide and 
become Rat near the center of the Brillouin zone, so another sharp peak appear in the 
DOS. For higher frequencies the bands have a more complicated form which depends 
on the structure. In lattices with a base such as diamond there are six bands below the 
gap (Sigalas and Economou, 1992a). 

We examine now the effect of increasing the contrast r == Cto/Cti on the band struc
ture, espeeially on the appearanee of gaps. In partieular, for the bec structure and 
x=0.144, ce/Ct = V2 we found the gap along r - N (~) axis is more difficult to appear 
as compared with r - H (6.), r - P (A) axis. For r just below 4.6, for which the first 
gap just opens, the single band below the gap has a crossing point across the ~ axis 
with the first double band just above the gap. So at the N point, this single band has 
a greater value than the double band which also splits into two bands (Fig. 11); in 
contrast, the first gap has already appeared in all the other axes. 

For r just above 4.6, the first gap has appeared in all the directions but has the 
smaller size at the N point; also, the double band just above the gap has a minimum 
at N point so this gap is direct. For higher r, the double band above the gap has a 
minimum at r point, as for example in Fig. (11), so the gap is indirect; also, the single 
and the double degenerate bands below the gap coincide at the P and H points, but 
not at the N point (Fig. 11). Similar behavior exists in the other lattices considered 
here. For sc (Fig. 12) and sh (Fig. 13) structures, it is more difficult to find gap across 
r - X and r - A axis, respectively. In Fig. 12 we present a case where the double 
band just above the gap is nearly Rat across r - X axis of the sc structure, thus by 
increasing the contrast r above 5.5, the gap changed from direct to indirect. 
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Figure 14. The threshold value, r c , of the eontrast r = Cio/Cli far whieh the first frequeney gap just 
opens plot ted against the volume fraction x for elastie waves in an sc (a), fee (b), and diamond (e) 
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Figure 15. r c vs x diagramsfor EL waves in sh with c/ a = 3/4 (a) and bec (b) lattiee with Pi / po = 1 
and cdCt = V2 everywhere; a and e are the lattiee constants. 
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The threshold value, rc , of the ratio r for whieh the first gap just opens as a function 
of the filling fraction x is shown in Figs. 14 and 15 for different lattiees. We remind 
the reader there is no gap for x smaller than Xi and greater than x U • The rc vs x eurve 
has a minimum at x = X m for whieh rc = r';'. The value of Xi (Figs. 14 and 15) range 
from 0.05 (in fee structure) to 0.11 (in diamond structure). We have not eonsidered the 
ease of overlapping spheres, so we do not know the exact values of X U • It is diffieult to 
pinpoint the exact value of X m beeause the reis nearly eonstant for x ~ 0.2 - 0.4 for all 
the structures eonsidered here; nevertheless, the values of x m seem to be in the range 
from 0.20 to 0.30. The value of r';' is minimum in diamond (r';' ~ 4) and maximum in 
sc and sh structures (r';' ~ 5). In fee and bee structures r';' ~ 4.2. For the sh structure 
the optimum value of e/a is about 0.8 for reasons similar to those deseribed in the 
sealar ease (section II). 

We have also eonsidered the ease where the spheres are the high velocity material 
surrounded by the low velocity material for the fee structure (Fig. 16). Due to the 
fact that we eonsidered only eases with non overlapping spheres, our fee's results are 
restricted to x ::::: 0.26. From Fig. 16 we ean see there is no gap for x larger than 
about 0.5 and that r e is nearly the same for x=0.3 and 0.26, so we expect that X m will 
not be mueh smaller than 0.25 and r';' is not mueh below 7.5; this eontrast is greater 
from that found in the opposite ease where the high velocity material surrounds the 
low velocity spheres. Similar behavior appears in the sealar waves while in the EMW 
ease gaps are found more easily when the seatterers (i.e., the low velocity material) are 
simply connected to form a network running through the entire eomposite system. 

Comparing the ELW ease with the SSW and EMW ease, we find the X m for ELW is 
mueh greater than X m for SSW waves but it is nearly the same with the eorresponding 
X m for EMW. However, the values of r';' for elastie waves are at least twiee as large as 
the r';' for SSW and EMW. The reason seems to be related with the well-known fact 
(Economou and Zdetsis, 1989) that the gaps are due to destructive mültiple seattering 
interferenee. In the EL ease we have both T and L waves mixed together in the 
interferenee proeess whieh makes the proper eonditions for destruetive interferenee more 
diffieult to satisfy. Furthermore, the velocity ratio of Land T waves eannot beeome, 
in practiee, smaller than V2; the resulting frequeney mismateh makes the destructive 
interferenee more diffieult. For the same reason, the ratio 8w/wg (where 8w is the size 
of the gap and Wg is the midgap frequeney) for elastie waves is at least by a factor 
of two sm aller as eompared with SSW (Leung and Liu, 1990a) and EMW (Ho et al., 
1990) ease (8w/wg has a maximum of about 0.06 for ELW waves and 0.2 for both SSW 
and EMW). If we plot the ratio 8w/wg relative to r == Cta/Cti for eonstant value of x, 
we find that 8w/wg is zero for r < r e (re is the value of r for whieh the first gap just 
opens), 8w/wg inereases rapidly for r just above r e and 8w/wg beeomes nearly eonstant 
for higher values of r. 

Finally, we eonsider the effects of the non-eonstant density. In Fig. 17b we plot the 
band structure aeross the L-f-X axis for the fee lattiee and y == pd Po = 1. In that ease 
a narrow gap has already appeared. For smaller values of y (Fig. 17a) aB the bands go 
to higher frequeneies but the bands below the gap rise more rapidly; thus the gap tends 
to disappear. On the eontrary, by inereasing y (Fig 17e), the bands bellow the gap go 
down to smaller frequeneies but the minimum of the bands above the gap remain at 
about the same frequeney while these bands beeome flatter, so the gap beeomes wider. 
If 8wland 8W2 are the size of the gaps for y=l, 4, respectively, the ratio 8w2/8wl ~ 3. 
As diseussed in the beginning of this section, the ASW exhibit eompletely opposite 
dependenee on y. We have no simple physieal interpretation for this unexpected result. 
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CONCLUSIONS 

We reported results of a systematically comparative study of elassical wave (CW) 
propagation in periodic structures consisting of spheres placed in a host material. We 
considered simple scalar waves (SSW), acoustic scalar waves (ASW), electromagnetic 
waves (EMW), and elastic waves (ELW) propagating in fcc, bcc, sc, diamond, sh, and 
hcp structures. We used both the APW and PW methods. Although both methods 
gave the same results, the PW approach is preferable because of its simplicity ancl its 
ability to go beyond the muffin-tin scheme. We focus our attention to the quest ion of 
the appearance of frequency gaps. Frequency gaps in CW correspond to gaps above the 
maximum value of the potential for the electronic case. As a result of this, frequency 
gaps in CW are more difficult to obtain, they tend to be narrower and easier to eliminate 
through a disordering procedure. 

The only case where wide gaps and narrow bands (reminiscent of a tight binding 
electronic case) appear is for ASW propagating in a liquid with periodically placed 
bubbles (i.e., /-l = 0, pd Po ~ 1). In all of the other cases, especially ELW, one must go 
to rather extreme conditions to obtain gaps. 

For SSW the appearance of the first gap requires, under optimum conditions (x m :::::: 

0.1 - 0.15), a velocity ratio, T, of about 2 or larger for fcc, bcc, sh (for c/a :::::: 0.8) 
structures. For sc and sh (c/a either smaller or greater than 0.8) the minimum value 
of T is larger. In lattices with a base (as diamond and hcp), the first gap does not exist 
because the first zone is doubly degenerate at certain high symmetry k-points. 

For EMW we found gaps only in the diamond lattice. In all the other structures 
considered here, it was not possible to find a true gap at least in the frequency ranges 
we studied, because there are crossings of the bands at certain high symmetry k-points 
in frequency regions where the gaps could be open. However, pseudogaps developed 
at the frequencies of crossings. In the diamond lattice, under optimum conditions 
(xm ~ 0.34), the minimum velocity ratio is about 2.2, which is nearly the same as 
the corresponding value in the scalar case, but X m is considerable greater than the 
corresponding value in the scalar case. So the scalar wave equation cannot accurately 
describe the propagation of EMW in the dielectric structure (Ho et al. , 1990; Leung 
and Liu, 1990b; Zhang and Satpathy, 1990). 

Our results for the propagation of elastic waves in a periodic arrangement of spheres 
of radius R, density pi, and sound velocities Cl; and Cii embedded in a medium of 
density Po and sound velocities Cto, Cio show that extreme conditions are required for 
the appearance of gaps. U nder optimum conditions (x m :::::: 0.2 - 0.3, cR/ Ct = v'2 
both inside and outside the spheres) the minimum required ratio of velocities is a 
little over 4 for diamond, 4.2 for fcc and bcc, and about 5 for sc and sh. Increasing 
the ratio pd Po above one improves the chan ces for the appearance of gaps. Thus, in 
order to obtain gaps in ELW propagation, we need sphere and host materials with 
cR/Ct as elose as possible to v'2 (which is the minimum realistic value of cR/Ct). The 
sphere material must be a high density, low velocity material while the host material 
must have a low density, high velocity. Possible candidates for sphere material are Bi 
(Ci = 2.27 Km/sec, cdcl = 2, P = 9.8gm/cm2 ), RbI (Ci = 2.245 Km/sec, CR/Cl = 1.87, 
P = 3.55gm/cm2 ), etc (Anderson 1965). As host materials one may consider: Be (Ci = 

13.11 Km/sec, cR/Ct = 1.44, p = 1.85gm/cm2 ), Al20 3 (Ci = 10.85 Km/sec, CR/Cl = 
1.69, p = 3.97 gm/cm2 ), Ti0 2 (Ci = 9.27 Km/sec, CR/Cl = 1.8, P = 4.26gm/cm 2 ), 

Si (Ci = 8.94 Km/sec, CR/Cl = 1.67, P = 2.33gm/cm2 ), MgO (Ci = 9.59Km/sec, 
cR/Ct = 1.59, P = 3.59 gm/cm2 ), etc (Anderson, 196.5). From the above examples one 
can see that the experimental realization of frequency gaps in EL waves will be rather 
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difficult but not impossible. As a matter of fact we found that lead or gold spheres in 
a silicon host do produce gaps (Sigalas and Economou, 1992b). 

We conclude by pointing out that the introduction of a gradual disordering pro
cedure in the periodic structures studied here will produce the following effects: Tails 
of localized states will appear in the gaps; these tails will eventually fill up the gaps 
giving rise to regions of localized states. A further increase of the disorder will increase 
the DOS in the regions (where the gaps were) while the eigenstates there will probably 
become delocalized. In the regions of pseudogaps or very low DOS, the introeluction 
of clisoreler at the beginning may possibly lead to the appearance of narrow regions of 
localized states, which will most probably become elelocalized as the elisorder increases 
further. 
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EXPERIMENTAL OBSERVATION OF BENDING WAVE LOCALIZATION 

ABSTRACT 
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Localization of bending waves has been observed for the first time for two
dimensional (2-D) acoustic wave propagation in an inhomogeneous (rough) composite 
system consisting of a steel plate decorated with Lucite blocks. A significant experimental 
feature of the localized modes is an exponential decay of the mode intensity from their peaked 
centers, with a decay length that increases as (fo - f)-1 when the mode frequency f 
approaches a quasi-mobility edge fo. The minimum attenuation length is of the order of a 
block diagonal and is about 40% of the bending wave's wavelength. The experimental data, 
as weH as results of finite-element calculations, suggest that the source of the localization 
phenomenon is strong scattering of the bending wave by shear resonances of the Lucite 
blocks. This result supports the theoretical prediction that resonant scattering enhances 
localization. It suggests that the bending-wave regime of a composite plate is particularly 
convenient for the study of c1assicallocalization in 2-D and at higher frequencies in 3-D. 
Finally, the generic nature of the localization phenomenon suggests its potential use as a 
tunable attenuation mechanism for bending waves. 

INTRODUCTION 

We report on the first direct observation of localized elastic waves in a composite 
two-dimensional system - propagation of bending waves of a steel plate decorated with 
Lucite blocks. Bending waves,l-3 or flexural waves, are a hybrid between shear and 
longitudinal waves where the top and the bottom of a plate, beam, or rod undergo 
compressional and extensional deformations. The bending wave is governed by the fuH 
compressional and shear wave equations,3 but its properties can also be derived by a simple 
bending wave theory.4 The critical assumption of this theory is that the plate (beam or rod) 
cross section remains rigid during the bending wave deformation. This condition is realized 
when the plate (beam or rod) thickness is much less than the wavelength of the bending 
wave. For plate (beam or rod) thicknesses comparable to the wavelength of either the shear, 
longitudinal, or bending wave wavelength, a fu1l3-D calculation is required. 

The propagation of elastic waves in an infinite homogeneous plate has been 
extensively studied, and a number papers can be found on the calculation of both bending 
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wave dispersion and wave propagation in thick and thin plates. 1-5 Wave propagation in 
either the thin or thick plate regimes for layered composite plates has received less attention -
experimentally and theoretically. Indeed, the present experiments were motivated by recent 
experimental observations on wave propagation in rough, inhomogeneous steel-refractory 
composite walls6 at frequencies weIl above the bending wave regime where the wall 
thickness was comparable to the longitudinal wavelength. In these experiments, the 
vibrational signals measured were found to attenuate exponentially with distance away from 
the excitation point and in addition, localized resonances were observed. These result 
disagree with the classical theory for smooth composite walls,7 and suggested to us that 
random roughnessof the wall might play an important role on the observed wave behavior. 
The present experiments on bending wave propagation in a rough steel plate-Lucite 
Composite system were designed to explore localization phenomena in both the thin (2-D, 
and thick (3-D) regimes. We report here on the first stage of this study. 

The concept of wave localization was first proposed by Anderson in the context of 
electronic transport in disordered materials.8 In its general outline, the theory of localization9 
predicts that no wave, quantum or classical, can be transported indefinitely in a one- or two
dimensional disordered system. In contrast, for a three-dimensional random medium, waves 
can be localized in some frequency regimes but delocalized outside of these regimes. The 
frequencies separating the localized from the delocalized regimes are usually denoted as the 
"mobility edges." Over the past three decades, the importance of the localization concept in 
the physics of electronic transport and metal-insulator transition has been extensively 
documented. lO However, as a phenomenon in itself, Anderson localization has eluded direct 
observation in electronic systems. This is due to both the difficulty in mapping electronic 
wave functions, as weH as the difficulty in isolating Anderson localization from ever-present 
electron-electron interaction and consequent many-body effects. The fact that such intrinsic 
difficulties are absent in classical wave systems is one reason why the study of both elastic 
wave and light localization has received so much experimental and theoretical attention in 
recent years. 11-13 

Our experiments on the steel-Lucite system have led to the discovery that strong 
re sonant scattering of bending waves leads to spatiallocalization of the bending wave over a 
broad frequency range. The localized mode of the bending wave is characterized by a peaked 
center, with an exponentiaHy-decaying intensity envelope away from the center. Spatial 
orthogonality of the localized mode has been demonstrated using a point excitation with a 
broad frequency band, and it has been shown that the excited localized state is in sensitive to 
the outside boundary conditions. Measurement of the frequency dependence of the decay 
length yields evidence for a "quasi mobility edge" which separates the strongly localized 
modes from the more extended modes, with the decay length increasing as (fo - 0-1 when 
the mode frequency f approaches the quasi mobility edge frequency fo. 

Both the experimental and theoretical results indicate that the mechanism of strong 
bending wave scattering by Lucite block resonances is the source of the observed localization 
phenomenon. The frequency spectrum of the intensity of the velocity transfer function for 
bending waves exhibits a pronounced frequency gap with a width of 1 kHz, and a gap 
attenuation of almost three orders of magnitude. The measured frequency gap and the 
resonance frequencies of Lucite-steel modes are coincident and can be calculated by finite 
element analysis or by corrections to simple quarter-wave shear and flexural resonances of 
the Lucite block. The gap can thus be tuned by changing the block height and this suggests 
its potential use as a frequency-tunable attenuation mechanism for bending waves 
propagating in structural walls. 

MEASUREMENTS 

The properties of the wave excitation generated in a homogeneous thin plate can be 
weH understood by the classical theory of bending waves. If we define w(x,y,t) as the local 
vertical displacement of the plate vibration, the governing bending wave equation is4 

340 



n4 ) h aw2(x,y,t) _ ( ) D v w(x,y,t + p at2 - q x,y,t , (1) 

where p is the density of the plate, h is the thickness, D = Eh3/12(1-a2), and E is Young's 

modulus, ais Poisson ratio, and q(x,y,t) is the excitation force. The biharmonic operator in 
the bending wave equation reflects both the compression and the extension characters of the 
plate bending deformation. The general dispersion relation for bending waves in a thin plate 

(h ~ 0) can be obtained from the above equation as (0 = k2 - ~ . -\I ph 
The excitations of an elastic plate with a finite thickness can, in general, be divided 

into two frequency regimes. 14 Due to the finite thickness of the plate, excitations in the 
vertical direction have a discrete spectrum, with a non-zero minimum frequency, fL , given 

by fL = (shear wave speed)/2h for the plate. For f ~ fL the excitation modes may be 

regarded as two-dimensional, both in the sense that hA < 1, and more importantly, that wave 
transport occurs only in the two directions parallel to the plate. For f ~ fL , plate excitations 
acquire an increasingly 3D character. For a one-inch steel plate, fL = 65kHz. In the 
frequency range, from 0 - 6 kHz, of the present experiment only two circularly-symmetric 
modes exist: the bending wave, the displacement of which is transverse in nature and 
perpendicular to the plate, and a longitudinal wave, where the displacement is compressional 
and in the plane of the plate. In the present experiment, unless otherwise noted, only the 
bending wave is excited by the impact source, as weIl as measured by the detector. 

The experimental system consists of a 1.83m x1.83m x 2.54 cm (6 ft. x 6 ft. x 1 
inch) steel plate set on four vibration-isolation supports. To reduce edge reflections, a 2.54 
cm x 2.54 cm (1 inch x 1 inch) glass bar was glued around the four sides of the steel plate, 
and the exposed sides of the glass bar were sealed with a flexible viscoelastic damping 
material (GP-3 manufactured by Soundcoat Co.). This treatment reduces the edge reflection 

coefficient for f :? 2 kHz to "" 0.5 as estimated from the quality factor of the finite-plate 
resonances; it has little effect on the edge reflections below 2 kHz. If necessary, a suitable 
graded interface on the boundary can reduce the reflection coefficient weIl below 0.5. The 
effect of edge reflections on the processed data can be reduced by appropriate windowing in 
the time domain. 

The excitation source used in the experiment is a B&K force transducer (#8203), 
which produces a pulse 0.025 - 0.04 ms in duration in an area less than 1 mm2 . The 
frequency content of the pulse is flat within 10% from 0 to 6 kHz. The detector is a B&K 
accelerometer (#4384), which is magnetically attached to the plate and measures the local 
vertical acceleration. Due to the highly polished contact surfaces of the accelerometer magnet 
and the plate, no contact, or mounting, resonance is found up to 25 kHz. The signals from 
both the force transducer and the accelerometer are analyzed with a Dual Channel Signal 
Processor (B&K 2032), whose output is the transfer function H(f) = 
<a(f)*F(f»/<F(f)*F(f», where a(f) denotes the Fourier transform of measured acceleration, 
F(f) is the Fourier transform of the excitation force, * denotes complex conjugation, and the 
angular brackets denote averaging over repeated excitation-detection measurements under the 
same condition (synchronous time averaging). H(f), in units of inverse mass, expresses the 
acceleration response of the system as a function of frequency for a given source-receiver 
configuration. A comparison of the experimental spatial intensity distribution of the transfer 
function in the bare steel plate excitation at 1.5 kHz with bending wave calculations15 shows 
excellent quantitative agreement, including the separation between the intensity maxima of 39 
cm. 

Two sets of Lucite blocks, two hundred for each set (8.89 cm x 8.89 cm x 7.62 cm 
(x 6.35 cm)), were solidly bonded to the steel plate in either a periodic checkerboard pattern 
or a random arrangement. The solid bond between the Lucite and steel was made by locally 
heating the plate above the melting point of Salol.16 Salol was chosen as a low melting point 
solid contact to elirninate absorption due to viscoelasiticity of the interface. The Salol contact 
is visibly non-uniform because Salol does not wet Lucite when it is in the liquid state. Thus, 
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even with a periodic arrangement of blocks, there remains significant randomness in the 
steel-Lucite contacts. 

Measurements of the composite system excitations were carried out with two types of 
source-receiver configurations. In each, both the hammer and accelerometer are on the side 
of the steel plate opposite to the bonded. Lucite blocks. The first type of measurement 
configuration (Type I) is a point source-point detector arrangement. The second type (Type 
11) is a line source-line detector where the average defining the transfer function includes the 
coherent addition of point source excitations along a line, with detectors also placed along a 
line parallel to the excitation line. Type 11 measurements smooth the fluctuation of the 
frequency spectrum of the transfer function for point measurements resulted from the 
reverberation of the bending wave propagation in the finite plate. In addition, for Lucite 
blocks arranged in the checkerboard pattern, the Type 11 measurements represent an average 
over different k vectors. 

DAT A AND DISCUSSION 

In this section, we present the experimental results on bending wave localization and 
compare these results to a finite-element calculation of the resonance modes of the Lucite/steel 
unit. We also discuss the effects of the periodicity in the Lucite block arrangement, as weIl as 
the effects of energy dissipation due to the vibration al damping of Lucite blocks. 

Figure 1 displays the frequency response of the composite system displacement 
velocity (displayed17 as IH(f)12jfZ) in the case where the Lucite blocks are arranged in a 
periodic "checker-board" configuration, and where the measurements were made with the 
Type 11 method with the source and detector "lines" parallel to one side of the plate and 
separated by 160 cm. The data shown have been "windowed" to remove the effect of edge 
reflections. Three frequency regimes are seen in Fig. 1. For f< 2 kHz and f> 3.5 kHz, the 
response is characterized by broad frequency continuum, where the response of the block 
loaded plate is roughly comparable to the response of the bare steel plate shown by the dotted 
line. The most striking feature of Fig. 1 is the third regime, the frequency band between 2 
kHz < f< 3.5 kHz. In this frequency band, the bending wavelength is on the order of two 
to four Lucite blocks, and the square of the transfer function is two to three orders of 
magnitude smaller (essentially indistinguishable from noise) than the response in the other 
two regimes. The same frequency gap exhibited in Fig. 1 is found when the source-detector 
lines are rotated 45°. Furthermore, the observed frequency gap is not affected by reflections 
from the boundary of the finite steel plate. This has been shown by noting the change in 
IH(f)Vf when the time window is removed. Only minor changes occur in the transmission 
bands and there is no change in the gap. The gap shown in Fig. 1 is thus isotropie and 
independent of boundary reflections. 

The spatial intensity distributions of the modes at five different frequencies are also 
exhibited in Fig. 1. These distributions were mapped with a fine mesh of detector locations 
(Type I measurement configuration for a fixed source located at the plate center). For f = 1.5 
kHz and f = 4.4 kHz, the mode configurations are essentially identical to those for the bare 
steel plate. The intensity patterns of the modes at these two frequencies show that the 
attenuation length ofthe composite system is at least the size of the system, since the effect of 
boundary reflection in establishing the modal structure is easily seen. 

In contrast, within the gap region (2 kHz - 3.5 kHz) the wave modes are clearly 
localized, with each of the localized modes characterized by a high peak, the position of 
which is independent of the source position (as long as the source remains inside the spatial 
domain where the müde has significant amplitude), with an isotropic exponentially decaying 
envelope. In terms of amplitude, the decay length is as small as 12 cm at 2.8 kHz, of the 
order of the Lucite block diagonal. This surprisingly smalliocalization length, 40% of the 
bending wavelength at 2.8 kHz, can only be understood on the basis that the strong 
interaction between the Lucite blocks and the steel plate has completely altered the character 
of the bending wave. Furthermore, excitation of the plate outside the localized 
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Figure 1. The square of the magnitude of the velocity transfer function, expressed as 
1H(f)12/f2, for the Type II measurement configuration with a line source line detector 
separation of 160 cm. The inset is a schematic drawing of the measurement configuration -
two hundred Lucite blocks (8.89 x 8.89 x 7.62 cm) bonded to the steel plate in a 
checkerboard pattern. IH(f)I2/f2 is obtained from time domain data filtered by a 3.5 ms time 
window to minimize residual edge refIections. The measured bare steel plate response is 
shown by the dashed line for comparison. Localized modes are clearly seen in the frequency 
gap extending from 2.2 kHz ~ 3.5 kHz. as shown in the 3D plots which show the measured 
bending wave intensity patterns produced by a point source at the center of the plate at five 
different frequencies. 
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Figure 2. The solid line denotes the square of the magnitude of the velocity transfer 
function, IH(t)12jf2, for the Type I measurement configuration at a source detector separation 
of 160 cm where the same Lucite blocks as in Fig. 1 are randomly bonded to the steel plate, 
as illustrated in the inset. Fig. 2 exhibits the same gap as in Fig, 1, but the response outside 
the frequency gap is different as would be expected from effect of the lack of periodicity on 
the extended states. The dashed line and the righthand scale denote the square of the 
magnitude of the block horizontal velocity transfer function for the point source-point 
detector configuration at aseparation of 80 cm when the source is present on the steel plate 
and the detector is on the side of a Lucite block. The three peaks delineated by the dashed 
line represent resonance modes of the Lucite block. The vertical arrows indicate the 
frequency positions of flexural resonances obtained by finite element calculations as 
discussed in the text. 
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Figure 3· The vibrational configurations of the three flexural resonance modes 
calculated by the finite-element method. In the lefthand figure, the vertical displacement is 
plotted, in arbitrary units, along the li ne AA'. For the two lower-frequency modes, at 2.363 
kHz and 2.479 kHz, the dominant motion is represented by the relative flexure of the upper 
Lucite block surface relative to the steel plate along the diagonal direction, accompanied by a 
slight relative vertical shift of the two corners, In the righthand figure, the configuration of 
the higher frequency resonance at 3.28 kHz is shown. For this torsionalfshear mode, the 
horizontal displacement along the line AA' is exhibited. 
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domain displays a "quiescent state" of the system where the vertical displacement and 
horizontal displacement of the Lucite blocks (as measured by detectors placed on top and 
side) fall below background and system noise. 

Figure 1 displays the system response with the Lucite blocks arranged periodicaHy in 
acheckerboard array, and it is tempting to associate the frequency gap with coherent 
scattering due to periodicity. This association is easily shown to be false. In Fig. 2 the solid 
line gives the frequency response of the system, measured with the Type I arrangement, 
where the Lucite blocks are not in acheckerboard array, but randomly arranged. The 
frequency gap observed in Fig. 1 for a periodic array is identical to that shown in Fig. 2 for 
the random array. The frequency response outside the gap in the extended state regime does 
exhibit differences for the random configuration compared to the periodic case. This 
difference is expected, since for extended states the frequency response is a function both of 
the coherent reflections from the Lucite blocks as weH as boundary reflections. 

Inside the frequency gap, localized modes on the Lucite blocks are found for the 
random arrangement as in the periodic case. However, the profiles of the localized modes 
are more varied, with some exhibiting multiple intensity peaks. The presence of the 
frequency gap in both periodic and random configurations demonstrates that coherent 
scattering due to block periodicity is not the source of the gap and implies that random 
resonant scattering due to the imperfect and random Salol bonds is sufficient to localize the 
bending wave. The random contacts are also the source of the observed variability in the 
localized müdes. 

We also exhibit in Fig. 2, by the dashed line, the measured horizontal displacement 
velocity of a Lucite block on the steel plate, when it is excited by a point impact on the steel 
plate 80 cm away. The three "shear" response peaks at 2.4 kHz, 2.6 kHz, and 3.1 kHz 
coincide remarkably weIl with the position of the observed frequency gap and are also in 
excellent agreement with the three calculated resonance frequencies using a finite element 
method which is described below. The width of the observed resonance modes also agrees 
weH with the measured lifetime of the localized modes (",2 ms). We conclude that resonant 
scattering by the resonances of the Lucite blocks is responsible for the observed bending 
wave localization. 

The significant role of resonant scattering in enhancing localization has been the 
prediction of numerous theoretical calculations.9,18 To further explore this phenomenon, a 
finite-element calculation was carried out for a Lucite block bonded on the steel plate by 
dividing the single Lucite block into 8 x 8 x 9 elements, with traction-free boundary 
conditions on five sides with the sixth side, the 8.89 cm x 8.89 cm side, joined on to an 8.89 
cm x 8.89 cm x 2.54 cm steel plate, where the bottom of the steel plate is fixed at four 
corners. The steel plate, in turn, is divided into 8x8x3 elements. A Young's modulus of 
4x109 N/m2, and a Poisson's ratio of 0.4, were taken for Lucite in the calculation. The three 
lowest vibrational eigenstates have the character of flexure and shear/torsional resonances 
with frequencies of 2.36 kHz, 2.48 kHz, and 3.28 kHz. These three resonances are 
separated by more than 1 kHz from the next higher resonance mode and span the observed 
frequency gap of Figs. 1 and 2. 

The effect of varying the boundary condition at the Lucite-steel interface was also 
exarnined by the finite-element calculation. By changing the usual displacement and traction 
continuity condition to traction free at four sides of the surface but zero displacement 
elsewhere on the surface, it was found that aH three resonances are shifted only slightly to 
2.37 kHz, 2.40 kHz, and 3.22 kHz. However, the shifts can increase to as large as four 
hundred Hertz, that is, to 2.77 kHz, 2.79 kHz, and 3.43 kHz, if the zero displacement 
condition is applied to the whole surface. These shifts offer an estimate on the effect of the 
randomness at the Lucite-steel bonding interfaces. 

The finite-element calculation gives not only the three lowest resonance frequencies, 
but also the resonance eigenstates. Figure 3 shows the configuration of the three resonance 
modes: two nearly degenerate flexural modes and one shear/torsional mode. The two lower
frequency modes at 2.36 kHz and 2.48 kHz are a consequence of the coupling between the 
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Figure 4. The square of the magnitude of the velocity transfer function, IH(f)12jf2, for 
the Type II measurement configuration at a line source point detector separation of 160 cm, 
for smaller Lucite blocks (8.89 x 8.89 x 6.35 cm). Two hundred Lucite blocks are bonded 
to the steel plate in acheckerboard pattern and IH(f)12jf2 is obtained from time domain data 
filtered by a 3.5 ms time window to minimize residual edge reflections. The measured bare 
steel plate response is also shown by the dashed line for comparison. The scale of the 
velocity transfer function for the plate is given by the lefthand logarithmic coordinate. The 
thick solid line, whose scale is given by the righthand linear coordinate, is the square of the 
magnitude of the horizontal velocity transfer function of the Lucite block. The vertical 
arrows indicate the positions of the resonance frequencies calculated by finite element 
analysis as described in the text. 
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Figure 5. Dispersion relations for the excitations of an infinite steel plate decorated with 
a periodic array of 8.89 x 8.89 x 6.35 cm Lucite blocks in acheckerboard pattern (see Fig. 
4). The Bloch wave vector k is along the [11] direction. The modes noted as T and L involve 
only displacements parallel to the steel plate which are not excited or detected in the present 
experiment. The excited bending wave is denoted by the solid circ1es. The solid horizontal 
lines indicate the region dominated by coupled Lucite resonance/bending wave modes with 
very low group velocity (the diamond symbols). The crosses denote bending waves from 
higher Brillouin zones. The vertical line corresponds to the 2D Brillouin zone and the 
intersection of this zone with the bending bave mode (solid circles) indicates the small 
acoustic gap produced by mass defect scattering. 
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flexural mode of the block and bending waves of the steel plate. They are split by the small 
vertical displacement common to the two modes, and the resulting modes involve the relative 
shear of the upper block surface with respect to the bottom in the diagonal directions. At the 
Lucite-steel interface for an three modes, the vertical displacement is in fact 8-10 times larger 
than the small horizontal displacement. 

In the absence of coupling to the steel plate, the flexural mode of the block varies 
inversely with the square of the block height, L. In the limit of D/L « 1 where D denotes 
the block side ( D = 3.5" ), the flexural resonance frequency is given by the standard 
formula 19 for a rod flexural resonance, 

f(n) = Cn Km (V) x 104. (2) 

In Eq. (2), n denotes the number of the reSonance mode, Cn is the constant for the nth mode 
(Cl = 11.3, C2 = 70.85 and C3 = 198.3), Km is the ratio of sound extensional velocity 
between that of Lucite and steel (Km = 0.35) and r is the radius of gyration of a cross
sectional area of the beam (r=D/2V3). For D/L < 1, Eq. (2) has been verified by the finite
element calculation. For D/L - 1, on the other hand, the thin rod approximation is no longer 
valid and the calculated, as weIl as the measured, resonance frequency of the flexural modes 
are about a factor of 1.8 smaller than the thin rod formula. The height dependence, however, 
remains approximately 1/L2. The higher frequency resonance of Fig. 3 (3.281illz) is about 

10% higher than the quarter wave shear resonance of the Lucite block (""Cshear/4L) and varies 
inversely with height L. 

To verify the connection between the Lucite block shear resonances, the localized 
states, and the location of the gap, we have repeated aIl the experiments with Lucite blocks 
which have only 5/6 the original height (L=2.5 inches) so that the measured shearresonances 
shift to about 3.5 - 4.5 kHz. Figure 4 gives the results. As expected, the frequency 
response gap is now at higher frequencies. Again, the measured Lucite resonances coincide 
with the observed gap. Comparison of Fig. 4 with Fig. 1 and Fig. 2 demonstrates the 
predictive power of the resonant scattering mechanism. 

To further clarify the interaction between the propagating bending wave and the 
resonances of the coupling block/plate mode, a finite-element calculation was carried out by 
dividing a single Ludte block into 8x8x12 elements, with traction-free boundary conditions 
on five sides and the sixth side joined on to the steel plate, which is, in turn, divided into 
16x16x4 elements within the unit cello Bloch boundary conditions are applied at four sides 
of the unit cello Young's moduli of 4x109 N/m2 and 2.07xlO11 N/m2, Poisson's ratios of 0.4 
and 0.286, and densities of 1.18 g/cm3 and 7.84 g/cm3 were taken for Lucite and steel, 
respectively. The results of the finite element calculation for the 2.5" high Lucite blocks are 
shown in Fig. 5 for wave propagation in the [11] direction. The following points should be 
noted: (1) The calculated gap at the Bloch wave vector k = 23.5 cm-1 corresponding to the 
edge of the first Brillouin zone in this direction is not only small (less than 100 Hz), but also 
shows directionality outside the gap shown in Fig. 3. Both observations rule out periodicity 
as the source of the observed gap of Fig. 1. (2) Three resonance (k = 0) modes introduced 
by the Lucite blocks are evident at frequencies of 3.26, 3.65, and 4.12 kHz. For finite k , 
these modes exhibit nearly flat dispersions, indicating a low group velocity that makes them 
waiting to be localized. (3) The high frequency Lucite resonance is predominantly a shear 
resonance whose frequency is lowered and whose characteristics are modified by coupling to 
the steel plate. On the other hand, the two lower modes have predominantly flexural 
characteristics. All three modes exhibit vertical displacement that are - 10% of the overall 
horizontal displacement. 

The localized mode should be insensitive to boundary conditions outside its 
localization length. This conclusion was verified in a separate experiment by removing 
successive layers of Lucite blocks centered at the intensity peak of a localized mode. It is 
found that the mode at f = 2.8 kHz does not alter its configuration up to the reinoval of the 
third layer from the center, as shown in the top figure of Fig. 6(a). Placing the source on 
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the steel plate outside the third layer is also seen not to excite the localized mode, as 
expected from the spatial orthogonality property of a localized mode. With the removal of 
the third layer, however, the intensity peak of the localized state drops abruptly (by 40%), 
together with the appearance of bending wave amplitude everywhere on the plate, as shown 
in the bottom fi&ure of Fig. 6(a). This last observation confirms that the observed 
localization is not due to dissipation. Dissipation is local in nature, hence it cannot be the 
cause of the observed large non-Iocal effect. All the observations can be understood in 
terms of wave interference resulting from scattering between the blocks. Indeed, no 
localized mode is found when only a single block is present on the steel plate. 

The spatial orthogonality of the localized mode to the extended modes is strikingly 
illustrated by the fact that when the source is outside the localized region, the excitation 
seems to go &:Qll!lQ the domain of the localized state, leaving it an island of quietude. This 
is demonstrated in Fig. 6(b), where the 3D plot shows the spatial distribution of bending 
wave when only four Lucite blocks are bonded off the center of the plate. In the tQp figure 
of Fig. 6(b), impact excitation is under the center of the four-block area. The local intensity 
maximum of the velocity displacement in the block area is the response to excitation of the 
local bending wave/block resonance which is the source of the localized state. In the 
bottom figure of Fig. 6(b), impact excitation at this case is near the center of the plate and 
not under the four-block area. With this excitation the system exhibits a propagating 
bending wave which extends to the edges of the plate. It also exhibits a near zero intensity 
distribution observed in the block area. Figure 6(b) demonstrates that the locallocalized 
state of the bending mode is indeed an exponentially decaying function of position. When 
the excitation is outside the decay length, the local vibrational mode cannot be excited. 

QUASI.MOBILITY EDGE 

The transition between localized and extended states in a two-dimensional disordered 
system is a question of considerable interest.12,20-22 For two dimensions as noted earlier, 
waves of every frequency are localized in the presence of disorder and there cannot be a true 
mobility edge. Nevertheless, it has been conjectured that there could be "quasi mobility 
edge(s)" in two-dimensional disordered systems20,21,23 which separate the strongly localized 
states from those whose localization lengths may be transcendentally large, or even power
law localized, instead of exponentially localized. In the present experimental system, 
although the perturbation introduced by the Lucite blocks appears the third dimension, the 
dominant scattering mechanism of resonant coupling to the bending waves means that the 
block/plate system is two-dimensional. 

We have measured the exponential decay length of the amplitude as a function of 
frequency in both source-detector configurations, and found it to vary as IRI = IHoI e-r/Ld 
and IRI = IHQle-r/Ld/..Jr for the Type 11 and Type I measurement configurations, respectively. 
Measurement of Ld shows that it increases rapidly as the edge of the frequency gap is 
approached. In Fig. 7, the inverse of the measured amplitude decay length, 1/Ld, is plotted 
as a function of frequency for the upper halves of the frequency gaps shown in Figs. 1 and 
3. The error bars are estimated from the spatial resolution in the measurement of a fine 
mesh of detector locations. A linear relationship is found up to Lct - 100 cm, which is 

about half the size of the system. A linear fit to the data yields Lct = a(fo - f)-1 cm, where f 

and fo are expressed in kHz, a =13cm and 18cm, and fo "" 3.5 kHz and 4.8 kHz for the 
two cases shown in Figs. 1 and 4. This behavior suggests a "quasi mobility edge" at f = 
fo. Furthermore, coincidence of the upper end of the Lucite shear resonance spectrum, 3.5 
kHz and 4.8 kHz, with the quasi mobility edge fo suggests that the physics of the quasi
mobility edge lies in the change of the localization mechanism from resonant to non
resonant scattering below and above fo. Since at a fixed measurement distance we have 

10g(IR(f)I/f) - -l/Ld(f), the frequency dependence of Ld directly translates into the 
frequency dependence of the IR(f)12/f2 gaps in Figs. 1 and 4. Therefore, the observed gap 
symmetry in Fig. I implies similar behavior for the lower halves of the gaps. This is 
shown in Fig. 8. Due to the finite size of the system, the nature of the states for f > fo are 
difficult to ascertain in the present experiment. 
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36blocks 

Figure 6(a). The spatial dependence of IHI2(f)/f2 at the frequency of 2.8 kHz measured from 
the center area (80cm x 80cm) of the steel plate as a function of the number of blocks in the 
array. The top fi~ure corresponds to measurements with the point source located in the 
center of the plate with a thiny-six block bonded array, as indicated by the inset. The bQllQm 
~ corresponds to measurements with the point source located in the center of the plate 
with a sixteen block bonded array, The 40% drop in the intensity and the appearance of 
bending wave intensity over the plate with the removal of the outside layers of the thirty-six 
block bonded array confirms the conclusion that the observed localization in the lefthand 
figure is not due to dissipation in the bonds between the Lucite blocks and the steel plate. 
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2X2 Blocks 

c 

Figure 6(b). The spatial dependence of IHI2(f)/f2 at the frequency of 2.8 kHz measured for 
the system where only four Lucite blocks are bonded in an array located off-center of the 
steel plate. The top fi~ure was obtained from measurements with the point source located 
in the center of the blocks as indicated by the insert. For this configuration of block array 
and source, a localized mode in the block area is observed. The bottom fi~ure was 
obtained from measurements with the point source located in the center of the plate and 
outside the block area as indicated by the insert. For this configuration of block array and 
source, we note that the localized mode is not excited and that the bending wave travels 
~ the block area. 
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Figure 7. The inverse exponential decay length, 1/Ld, for the magnitude of IR(f)1 plotted 
as a function of frequency for the two block sizes shown in Fig. 1 and Fig. 3 (8.89 x 8.89 x 
7.62 (6.35) cm). The decay length was measured in the Type II configuration through 
variation of the line source- line detector separation. The solid line is linear fit given by 1/Ld 

= 0.-1 (f-fo) where 0.=13 and 18 and fo =3.5 and 4.8kHz for the two block heights (7.62 
and 6.35 cm). 
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Figure 8. The inverse exponential decay length, 1/Ld for the amplitude plotted as a 
function of frequency for the case shown in Fig. 1 (8.89 x 8.89 x 7.62 cm). The extrapolated 
mobility edges at the low and high sides of the gap are at 2.2 kHz and 3.5 kHz. The 
symmetry of the frequency dependence of 11Ld with respect to the localization gap shown in 
Fig. 1 should be noted. 
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SUMMARY 

We have observed the first spatiallocalization of bending waves in a composite 
system over a relatively broad frequency range of - 1kHz. The spatial intensity mappings of 
the localized states allow us to demonstrate graphically not only the effect of localization, but 
also the spatial orthogonality between the localized modes and the extended states. The 
physical mechanism for localization is found to be resonance scattering of bending waves by 
the three resonances of the coupled Lucite blocks-steel plate system. The character of the 
three resonances are also classified, whereas the two lower-frequency resonances are flexural 
in nature, the highest frequency one is torsionlshear in nature. Since the position of the 
attenuation gap varies inversely with the block height to apower between land 2, the present 
phenomenon is thus potentially useful as a frequency-tunable attenuation mechanism for 
bending waves propagating in structural walls. 

Our experimental results show a linear frequency dependence of the inverse 
exponential decay length, and indicate the existence of a "quasi-mobility edge". Further 
experimental and theoretical work are required to understand quantitatively the relationship 
between the localization length and parameters such as the block distribution density and the 
coupling strength between the block resonance and bending waves. The present 
experimental system, with the addition of an additional smooth layer of Lucite, is capable of 

extending the present studies into the frequency range f."fL and hence the regime of 3-D 
localization. 
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MOLECULAR AND FREE ELECTRON SPONT ANEOUS EMISSION 

IN PERIODIC THREE DIMENSIONAL DIELECTRIC STRUCTURES 
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INTRODUCTION 

Sinee the predietion by PureeIl in 1946 that the spontaneous emission rate of an 

atom eould be enhaneed by placing it in a resonantly tuned high-Q eavity, a great deal of 

theoretieal and experimental work has been performed in this area. (1) In partieular, 

Klepner was able to extend Purcell's observation to both prediet and observe the inhibition 

of spontaneous emission. (2,3) This effect relies on the opposite extreme of placing the 

exeited atom in a strueture whieh has no modes available at the atomie radiation frequeney. 

The inhibition of spontaneous emission was elegantly demonstrated using high Rydberg 

state transitions and parallel plate structures in a molecular beam experiment. Tbe use of 

high Rydberg state transitions was necessitated by the requirement of a long wavelength 

emission where a strueture eould be fabrieated. Tbe molecular beam was required because 

the transition energies involved are of the order of 1O-2eV and the excited states would be 

quickly eollisionally quenched in an environment with enough atoms to directly obtain a 

fluoteseenee signal. 

Sinee this pioneering work, other experiments using trapped electrons and dye 

monolayers have also been employed to study the spontaneous emission process.(4) The 

experiments on dye monolayers showed the effect of placing a spontaneously radiating 

molecule in front of a mirror. (5,6) These experiments were among the flrst to bring the 

work doser to the visible-UV region of the spectrum where spontaneous emission plays an 

important role in many ehemieal and physieal processes. 

Tbe problems of experimentally studying the spontaneous emission process in the 

important visible-UV region are primarily related to the original issues of a structure 

eneountered in the experiments referred to earlier. Tbe two primary problems are scale 
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and losses. Tbe 3-D structures required would have to be on the seale of several hundred 

nanometers and be lossless at frequencies of 1014 - 1016sec.-l 

A recently proposed structure for tailoring the electromagnetic vacuum mode 

spectrum is the electromagnetic analogue of a 3-D lattice for electrons. Tbis structure is a 

periodic seattering structure which produces a gap in photon propagation and density-of

states over a certain frequency range in all directions of space. (7 ,8) Tbe understanding of 

the basic electromagnetic material properties and structure symmetries required to open 

this 3-D gap has generated a great deal of excitement but its fabrication at optical seales 

from suitable lossless materials is far from being realized. 

In this paper I will review recent experimental work performed at Brown 

University on molecular spontaneous emission in 3-D periodic dielectric structures. These 

structures do not have a large enough index of refraction contrast to produce forbidden 

photon propagation bands in all directions of space, but they provide the first direct 

experimental evidence that 3-D Bragg scattering can alter the spontaneous emission 

process. In addition, I will briefly discuss the potential ramifications of using a periodic 

structure with a photonic bandgap for the suppression of spontaneous emission in photo

catalysis applications. Finally, a simple model of a photonic crystal is used to show that 

the Cerenkov emission by relativistic electrons can take place efflciently in these materials 

with the near complete removal of material ener~ loss processes, such as ionization. 

MOLECULAR SPONT ANEOUS EMISSION IN A 
3-D PERIODIC DIELECTRIC STRUCTURE 

Tbe ideal photonic bandgap material briefly discussed in the introduction produces 

a gap in the photon density-of-states in all directions. To date many calculations of this 

photonic band structure have been undertaken, resulting in relatively well-defIned criteria 

for the occurrence of a 3-D bandgap. The minimum index contrasts required are in the 

range n ~ 2 and it is now weIl established that spherical atoms in an fcc structure will not 

sufflce when electromagnetic polarization considerations are taken into account. This 

latter point results in band crossings which destroy the gap in certain well-defIned 

directions. Even in this limit however, a strong suppression of the direction averaged 

density-of-states is expected.. This limit has been studied for air and dielectric spheres in 

an fcc structure with a gap near the Mie resonances by Satpathy et al.(9,10) Their results 

for a structure with a 30% volume fraction reveal that the density-of-states is strongly 

suppressed just above the Mie resonance and exhibits the expected sharp increase at the 

point analogous to van Hove singularity on each side of the gap. Based on this qualitative 

picture of an infinite size fcc structure, we would expect that atoms or molecules whose 

spontaneous emission frequency falls within the pseudo-gap would find a greatly 

diminished density of final photon states and by Fermi's golden role radiate more slowly 
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than in free space. (8) In addition, we expect that an excited molecule whose emission 

frequency was at one of the van Hove singularity points on either side of the gap might 

exhibit an enhanced radiation rate compared to free space. This may or may not be true, 

since plane transverse electromagnetic modes are no Ion ger the correct field states in a 

medium with aspace dependent dielecbic constant This deviation could, in principle, 

change the field atom-coupling for a given electromagnetic mode and possibly off-set the 

increase in density of final states. 

Tbe experimental measurement of the spontaneous emission rate of an atom or 

molecule in a 3-D fce dielecbic structure poses milny challenges, even beyond the 

fabrication of a periodic structure with hundreds of nanometer spacings between planes. 

Tbe suitable structure must be readily impregnated by the radiating molecules, which, in 

turn, must be kept away from surfaces in order to avoid nonradiative relaxation. In 

addition, the scattering properties of the structure must be controllable in terms of the 

strength of the scattering as well as the position of the Bragg resonance. Finally, an 

experimental approach capable of yielding unambiguous information about the time 

evolution of the excited state is required to probe the system dynamics. Tbis latter point is 

important because direct temporal measurements of spontaneously emitted light can be 

flawed by internal scattering and radiation rates which vary with direction. 

Tbe approach we have taken to partially solve the problems at hand relies on a 

novel structure comprised of charged polystyrene spheres in water (or CH30H) ordered in 

an fce lattice with (111) plane spacings having sub-optical dimensions.(11) This structure, 

called a colloidal crystal, results when a high density (_1014 particles/cm3) collection of 

charged spheres lower their free energy by self-organizing into a lattice. Tbe spheres have 

a narrow size distribution (5% coefficient of variation), are typically 100 nm in diameter, 

and carry about 103 negatively (-1) charged groups. In the presence of counter ions from 
the dissociated groups on the spheres, as well as the natural pH of the water, the electric 

potential from the spheres surface has a screened Coulomb behavior given by: 

e-lCR 
u-R (1) 

where 1(2 is proportional to the ion concentration. In terms of this approximate solution of 

the Poisson-Boltzman equation, one can view the crystalization as a hard sphere transition 
(Kirkwood-Adler) with a sphere radius of R - 1(-1.(12) This view shows that it is actually 

the elecbical radius which is responsible for lattice formation so that other systems using 

materials other than polystyrene may be possibly used in the future. Figure la shows a 

polycrystalline colloidal crystal with different density bands towards the top of the 

container. This illustrates how this structure's lattice spacing can be controlled by dilution 

or concentration of the spheres. In addition, the scattering strength can be controlled by 

either index matching the solution closer to the index of refraction of polystyrene or by 
using smaller or larger spheres. (11,13) 
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Figure la 
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These crystals are in many ways ideal for the experimental studies we propose, but 

they do fall short with respect to the amount of k-space over which the Bragg scattering 

modifies the density-of-states. This is due to the low index of refraction ratio of 

polystyrene to water (n = 1.17). In this regime of scattering, each of the four sets of (111) 

planes of the fcc crystal blocks photon propagation over a narrow solid angle and these 

solid angles do not overlap to form a fuH photonic bandgap. 

Figure 1 b shows the transmission of a 100 J.Un thick coHoidal single crystal 

measured normal to the (111) plane direction. The transmission at the minimum of the 

Bragg notch was measured to be -10-7. Figure lc shows the results of angling the crystal 

with a fixed frequency of illumination. These measurements can be used to estimate the 

total solid angle inhibited by one set of planes and resuIt in about -0.9 steradians/plane set. 

The crystals can be weH characterized by light-scattering analogues of x-ray 

crystallography and off er a unique structure for incorporating a high quantum efficiency 

atomic or molecular system to study the periodic dielectric effects on spontaneous 

emission. The ideal molecular systems which are naturally compatible with the colloidal 

crystal host are dye chromophores. These molecules are typically used as laser dyes and 

have strongly allowed singlet absorption and fluorescence bands in the visible region 

where the colloidal crystal structure can be manipulated. The ideal molecular dye would 

be water soluble, have a high quantum efficiency, and would possess a negatively charged 

chromophore so that it is electrically repelled by the sphere surface. These criteria were 

found to be weH satisfied by the sulforhodamine molecule which could be incorporated 

into the crystals at concentrations as high as 10-4M. 

The combined sulforhodarnine doped colloidal crystal was studied using a dual 

wavelength picosecond pump-probe system. This technique uses picosecond pulses from 

two synchronously pumped dye lasers operating at the singlet absorption (590 nm) and 

singlet fluorescence (620 nm) bands, respectively, to excite and probe the population of the 

upper singlet state. The principle of measurement relies on the gain experienced by the 

probe after excitation, which is proportional to the remaining excited state population. 

Thus, by measuring this gain in the small signal limit as a function of the delay after 

excitation, we can measure the temporal decay of the excited state. Figure 2 shows the 

experimental set-up used in the experiments. 

Experiments were performed to measure the lifetime of the dye doped colloidal 

crystal. The measurements were performed at different lattice spacings corresponding to 

the position of the Bragg notch position above and below the transition wavelength. When 

the transition wavelength is longer than the Bragg position wavelength for propagation 

normal to the planes, the spontaneous emission is expected to be essentially unaffected 

since Bragg scattering cannot occur. If, however, the emission wavelength is shorter, then 

at some angle relative to any one of the four sets of (111) planes, Bragg scattering occurs 

and the photon density-of-states for the spontaneously emitting molecule should be 

affected. The results of the experiments measuring the decay of the upper singlet state are 
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shown in Figure 3. The top curve corresponds to a DOnna! incidence scattering wavelength 

Ion ger than the emission wavelength in water and the lower curve corresponds to the case 

of the emission wavelength being the longer of the two. The measured liftetimes fit to 

exponential decays for the two cases were found to be 5.6 ns and 3.2 ns. In addition, when 

the plane spacing was set for the spontaneous inhibition position but the sphere size was 

reduced, the lifetime returned to the value in water within the allowed error of our 

measurements. These results provide the first experimental test of inhibited molecular 

spontaneous emission in a 3-D fce dielectric crystal.(14) 

The experimental findings can be understood by a treatment which estimates the 

vacuum mode amplitudes in the structure and uses the Wigner-Weisskopf formulation.(15) 

This calculation leads to a radiative rate suppression factor of -1.5 which is in good 

agreement with the values measured. A simple method to estimate the expected 

suppression is to simply consider the amount of solid angle of space over which the 

radiation channels are blocked. The previous estimate of 0.9 steradians per set of (111) 

planes as measured from the angular rejection of the Bragg Dotch leads to a total solid 

angle of inhibition about 3.6 steradians for all four (111) planes. Since in free space 41t 

steradians are available, the rate should be suppressed by the ratio of the available solid 

angle to the free space value. This estimate results in an inhibition factor of about 1.4, 

which is also in reasonable agreement with our fmdings. 

Photonie Bandgap Substrates for Photo-catalysis 

It has been known for many decades now that the reaction pathways, products, and 

rates of chemical reactions can be drastically influenced by photo-excitation of the 

reactants. One of the simplest examples is atomic oxygen which is relatively benign in its 

3p state and several orders of magnitude more reactive in its 1 D state, the latter being 

responsible for the chemical pumping of the OH laser. Another class of important 

reactions are photo-catalytic processes. In these systems the reaction rate for a process is 

enhanced by many orders of magnitude in the presence of a catalytic species in an excited 

electronic state. The field of photo-catalysis is very large and impacts various areas of 

chemical synthesis and applications in biochemistry, fuels development, and solar eDergy 

conversion. It is also important to note that the most common catalyst supports are 

semiconducting and insulating materials with bandgaps comparable to typical redox 

potentials. 

The catalytic reaction rate enhancements are related to the catalyst band structure, 

the available number of catalyst surface sites, and the detailed electronic orbital structure of 

the responsible electronlhole state. Since all solid state catalysts require as much surface 

area as possible, the catalyst supports are used in the form of ultra small particles, typically 

a fraction of a micron. In this configuration, a given volume of catalyst presents a large 

surface area and many sites for catalytic action to occur. In some catalyst reactions, the 
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excited state is quenched during the catalytic step, while in others it is not and the caialyst 

can participate in other reactions. In either case, the de-excitatiop of the catalyst by MY 

other chanpel represents a loss of valuable excitation energy which does not produce 

products. Since photo-catalysis often takes place with UV excitation (1900-3000Ä), where 

emission lifetimes are typically short (-100 psec), mootaneous emission can be the 
dominant loss chanpel for de-excitatiop of tbe catalyst. 'Ibis loss mechanism can 

determine the efficiency and cost of tbese processes which requiIC expensive pump photons 

to produce catalytic action. 

Tbe simplest considerations we have discussed lead to the ideal phoUK:atalytic 

material as one which 

(1) has an extremely large internal surface area, 

(2) allows for the efficient transport of reactants and products, and 

(3) exhibits no scattering at the excitation wavelength. 

(4) has essentially no spontaneous emission leading to catalyst de-excitation. 
All of these points are achievable using photooic bandgap crystals made of or coated 

with photo-catalytic materials such as semicooducting or insulating materials.(16) 

Tbe theoretical calculations of photonic band structure have shown that regardless of the 

crystal's symmetry, fce or diamond, bandgaps are ooly present for void fractions of 80%-

90%, resulting in an intrinsically large surface area. Furthermore, since the photonic 

crystals exceed the c10se packing volume fraction limit of 74%, they necessarily have 
connected channels which allow transport through the material. In addition, since the 

crystals have a zero density of photon states within the gap in all directions of space, they 

will inhibit spontaneous emission when the photon energy is within the gap. Finally, an 

additional improvement results in the process due to the removal of random scattering at 

the'excitation band used to pump the catalyst. Tbis results from the periodic crystal's 

structure factor, which now is centered at the fluorescence emission band. Tbe removal of 

scattering at the pump band will result in more efficient excitation of the catalytic material. 

CERENKOV EMISSION IN A PHOTONIC BANDGAP CRYST AL 

In this section a simple model of the interaction of a "free" electron with a periodic 
structure with a 3-D photonic bandgap is presented. Although it is weH-known and easily 

shown that free electrons do not emit or absorb photons, electrons traversing polarizable 

media do radiate. This effect, known as Cerenkov emission, occurs because momentum 

and energy can be conserved when material polarization is possible. (17) Tbus, the use of 

the term "free" is not exact, since the electron interacts with the material via the 

polarization it induces. Cerenkov emission further requiICs that the electron or any other 

charged partic1e move with a velocity faster than the speed of light in the medium. 

Because of this, the effect has been often cast as an electromagnetic analogue of a sonic 
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boom. In a typical situation where a relativistic elcctron ttaverses a low Z (proton number) 

material such as glass (n = 1.5) or water (n = 1.33), about 90% of the elcctron energy is 

lost to ionization events and about 10% to Cerenkov emission. This emission typically 

peaks in the blue-green region of the spectrum and is responsible for the light often seen in 

the pool of nuclear reactors. 

The process of Cerenkov emission can be treated classically as weIl as in the 

context of quantum mechanics. The latter is the approach taken here, since its connection 

with the density of photon states concept, familiar to tbe light localization and photonic 

bandgap community, is more transparent The treatment presented follows closely the 

work of Marcuse and begins with the description of tbe elcctron with the Klein-Gordon 

equation describing relativistic spinless particles. (18). 

The electron wavefunction 'I' can be found as a solution of: 

(2) 

where Mo is the electron rest mass. In an elcctromagnetic field, the canonical momentum 

is required and results in the field coupled equation for the electron: 

(3) 

where A is the vcctor potential and w is the electron energy given by: 

2 2 
m c4 [1 - (v/c)2] + m c2 v2 

2 . 0 0 
w -- 1 - (v/c)Z (4) 

Because the Hamiltonian appears in a quadratic form, no direct separation of an interaction 

Harniltonian, Hint, is possible. This situation does not pose a problem, since what we are 

really interested in is the matrix element of Hint. Mter some detailed manipulations, it can 

be shown that: 

where 'l'i and 'l'f are the initial and fmal electron wavefunctions and wi and wf are their 

respective energies. 
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The process of Cerenkov emission requires that momentum be conserved when the 

electron radiates a photon into the material. The momentum conservation condition can be 

found using the reference diagram shown below: 

Wf,Pf 

In terms of the incident mornentum, velocity, and the angle of photon emission a, 
momentum conservation requires that 

C F_ - 1 11R 
cosa = -- + ~ ~ 

~ V 2€r Pi 
(6) 

This condition serves to act as a constraint on the available density of final photon states 

for Cerenkov emission. Thus, the effective density-of-states for this process, unlike 

spontaneous emission by atoms and molecules, is not the usual photon density-of-states. 

The precise description of the Cerenkov process in a photonie crystal requires a 

detailed knowledge of the form of the vector potential solutions as well as a detailed 3-0 

dispersion relation for the crystal. This calculation would require the use of nurnerical 

solutions using the computer-generated bandstructure of one of the photonic crystallattices 

such as the diamond or nonspherical atom fee structures. In order to capture the essential 

physics of the process in an analytically tractable model, we will assume that the form of 

the electromagnetic modes is weakly affected and that it is primarily the density-of-states 

and the dispersion relation which capture the salient features of Cerenkov emission in a 

photonic crystal. 

The dispersion relation we use is that of a 1-0 dielectric array with extension to 

three dimensions. In the limit that the 1-0 Mie resonance matches the Bragg condition, the 

dispersion relation is given by: 

c (4nCOS(kL)+(1-n)2) 
C1)k = 4na arccos (1 + n)2 (7) 
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where 2a is the seattering weIl size and n is the index of refraction ratio. This dispersion 

relation has been used previously to study various QED phenomena in photonic bandgaps 

by John and Wang.(l9) Care must be taken, however, since this I-D relation exhibits 

unphysical density-of-states singularities at the band edges. In order to remedy this 

problem, the calculations are cut off at frequencies where the density-of-states reaches peak 

values comparable to those found in numerical bandstructure calculations. For example, in 

the case of the fce structure with spherical Mie resonances, the density-of-states grows to a 

peak value about ten times that of free space. (11) Thus, in using the isotropic 1-D model, 

we truncate the dispersion relation at the frequency point where the density-of-states was 

similarly enhanced over the free space density-of-states. 

Figure 4 shows the Cerenkov density-of-states (OOS) using the isotropic I-D 

dispersion relation for the case, where a single scattering resonance occurs at the Bragg 

condition (Ao = 500 nm) and the dielectric material response is not a function of frequency. 

In the uniform (no structure) dispersionless dielectric, the conventional DOS is 

proportional to o)l. while the Cerenkov DOS is proportional to 0>. 

Using the constrained density-of-states, we can examine the frequency dependence 

of the radiated power. In the case of a dispersionless uniform dielectric, the frequency of 

Cerenkov emission increases monotonically towards higher frequencies. For this 

dispersionless case, a uniform dielectric slab would emit all the frequencies in a cone with 

the same angle. When a photonic bandgap is present, the emission wavelength becomes a 

strong function of the angle. In the case of a more realistic photonic bandgap calculation, 

the multivalley structure of the bands would result in a more complicated but symmetric 

chromatic emission pattern with different colors being emitted along characteristic 

directions. A comparison of the frequency dependence of the radiated power for an 

isotropic photonic bandgap and the uniform dielectric is shown in Figure 5. 

Using the assumption of a weakly perturbed functional form for the vector 

potential, we can estimate the radiated power of an electron traversing a photonic bandgap 

material. This calculation again must be terminated before the density-of-states diverges 

due to the I-D dispersion relation. Calculations were performed for a 15% filling fraction 

crystal with a peak density-of-states corresponding to an index of refraction ratio 3.5. In 

this case, an enhancement of about a factor of ten in the DOS is expected from numerical 

bandstructure calculations.(ll) Figure 6 gives a comparison between the total power 

radiated per unit length as a function of free space wavelength for an electron with v = O.7c 

traversing the photonic crystal (n = 3.5) and the solid dielectric. 

The main results which we draw from this simple model of Cerenkov radiation in 

photonic crystal is that the peak radiated power seales at the bandedge density-of-states and 

that this can be comparable or exceed the power radiated by a uniform dielectric. This 

latter point presents a particularly interesting possibility for slowini down chariCd partic1e 

beams by purely radiatiye means. This could be accomplished using the photonic structure 

deseribed by Yablonovitch et al. which is formed by the intersection of channels which 
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extend through the entire crystal. (20) In the visible region, the channels would be of the 

order of 100 nrn in diameter allowing for the unimpeded PassUe of a collimated electron 

hcwn. This concept may prove useful for particle detectors, reactor moderators, and 

stimulated Cerenkov lasers. 
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ABSTRACT 

A single-mode light-emitting-diode (LED) can have many of the favorable 
coherence properties of lasers, while being a more reliable, threshold-less, device. 
Progress in electromagnetic micro-cavities, such as those formed by photonic band 
structure, allow all the spontaneous emission (of an LED) to be funneled into a 
single electromagnetic mode. It is shown that the internal spontaneous emission 
quantum efficiency in GaAsjAlGaAs double heterostructures can be as high as 
99.7%, and consequently, the extern al quantum efficiency and the shot-noise 
suppression in such single-mode LEDs can be comparable to those of 
semiconductor lasers, but at much lower injection level. 

INTRODUCTION 

As the interest in low-threshold semiconductor laser diodes has grown, e.g., 
for optical interconnects, its spontaneously luminescent half-brother, the light
emiuing-diode (LED) has begun to re-emerge in a new form. In this new form, 
the LED is surrounded by a specially designed optical cavity. The idea is for the 
optical cavity to make available only a single electromagnetic mode for the output 
spontaneous emission from the semiconductor diode. 

With all the spontaneous emission funneled into a single optical mode, the 
LED can begin to have many of the coherence and statistical properties normally 
associated with above-threshold lasing. The essential point is that the spontaneous 
emission factor, ß, which measures the proportion of spontaneous emission going 
into the preferred electromagnetic mode, should approach unity. (A closely related 
concept is that of the "zero-threshold laser,"l.2 in which the high spontaneous 
emission factor produces a vcry soft and indistinct threshold characteristic in the 
light output-versus-current input curve of laser diodes.) 
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The idea behind the new concept of the single-mode LED is to combine 
the advantages of the LED which is threshold-Iess and highly reliable, with those 
of the semiconductor laser which is coherent, highly efficient, and capable of 
producing sub-Poissonian light (shot-noise suppressed) into a specified 
electromagnetic mode. 

It becomes clear now2 - 4 that in addition to the spontaneous emission 
factor, ß, also the internal quantum efficiency, 11, need to be as close to unity as 
possible, in order to produce a photon stream with sub-Poissonian shot noise 
(calIed photon number-state squeezing). That is because carrier injection noise is 
determined by (1-11), while photon-number partition noise is measured by (I-ß). 
Typically, in semiconductor light emitting devices, ß« I while 11 > 90%. 
Therefore, most of the attention in this field is given to micro-resonator structures 
in which a high ß factor C > 0.1) is achievable. In this paper, we will discuss these 
two limiting factors, with emphasis given this time to an accurate measurement of 
11. Our purpose is to show that a single mode LED can be realized in a III-V 
semiconductor in the near future. 

ß: THE SPONTANEOUS EMISSION FACTOR 

The essential ingredient for the concept of single-mode LED is a single 
mode electromagnetic micro-resonator which captures alt the spontaneous 
emission from the LED active region. There has been great progress recently, in 
designing and making dielectric resonators employing the concepts of photonic 
band structure.5- 8 A photonic bandgap can occur in a 3-dimensionally periodic 
structure Ca photonie crystal), which does to photon waves what a scmiconductor 
crystal does to electron waves; it creates a forbidden band of energies irrespective of 
propagation direction in space.5 By introducing a defect into the otherwise perfect 
photonic crystal, a local electromagnetic mode forms in the forbidden gap region. 
In keeping with electronic analogy, the defect mode can be either acceptor-type or 
donor-type. This subject is further clarified in another paper in this volume.6 

Recent progress in microfabrication of photonie bandgap structures in 
GaAs/AIGaAs semiconductors7,8 shows that a wide gap may be opened up, 
similar to the photonic bandgap that was demonstrated in the microwave regime. 
The idea is to fabricate a perfect f.c.c. photonic crystal by reactive ion be am 
etching and thcn to create a local defect in the center of that "crystal" which 
accommodates a single localized electromagnetic mode that strongly overlaps with 
the emitting region. The preferred defect mode would be of the acceptor type 
since it supports a non-degenerate mode (unlike the donor type defect), does not 
have a threshold volume, and, most importantly, it can be created relatively easy. 
The acceptor defect type, a missing tiny slice in one of the structure's ribs, can be 
created in III-V semiconductors by growing an Al rich epitaxial layer and 
lithographically pauerning it down to a single dot the size of the acceptor defecL 
After regrowth of the original III-V composition and reactive ion etching of the 
photonic crystal, HF acid etching, whose9 selectivity > 108, will be used to remove 
the Al rich horizontal slice from the one rib containing such a layer. 

The quality factor CQ) of a localized mode decreases in the prescnce of 
losses. Thcrefore, the fcasible ß factor is limited by the loss tangent of the 
semiconductor from which the photonic crystal is made. Since photon localization 
is expected to be more susceptible to weak disorder than electron localization, high 
ß factor would requirc improvcd nanofabrication techniques. 
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. .,: TUE SPONT ANEOUS EMISSION INTERNAL QUANTUM EFFICIENCY 

In terms of luminescent quantum efficiency at room temperature, the direct 
gap 111-V semiconductors are rather unique substances. It has been known 10 for 
almost 20 years that good quality III-V double heterostructures can have high 
internal quantum yields, weIl over 90% efficient. When combined with direct 
electrical injection, these high quantum yields form the basis for opto-electronics. 
This has led to important applications such as light-emitting diodes (LED's), 
semiconductor lasers and solar ceIls, for each the utmost quantum yield is 
desirable. 

In this section, we will examine experimentally the absolute luminescent 
quantum yield of some good quality AIGaAsJGaAsJAIGaAs double 
heterostructures. We will find that the internal luminescent yield can be even 
higher than expected. Moreover, the high internal yield can be converted into an 
impressive externat quantum efficiency by means of a simple geometrical 
configuration: III-V thin films are fioated off their substrates by the epitaxialliftoff 
technique9 and then mounted on various high refiectivity surfaces. We will show 
how this geometry allows most of the internal luminescence to escape externaIly, 
which can make LED efficiency competitive with the best laser diodes. In the race 
for low-threshold laser arrays, we consider such LED's to be a significant 
development since they require no threshold current. 

The Cavity 

In LED's the extern al quantum efficiency is rather poor, generally only a 
few percent. The reason for this poor efficiency is the semiconductor refractive 
index is rather high, n"'" 3.54 in GaAs for example, leading to a very narrow escape 
cone for the isotropic spontaneous emission. The 16° cone angle imposed by 
Snell's Law covers a solid angle of only ;::::; (lJ4n2) x47t steradians. Because the 
refractive index is so high, 4n2 ~ 50 and the externat efficiency is only ;::::;2% in 
commonplace LED's, even when the internat efficiency happens to be close to 
unity. This problem has been addressed by incorporating a hemispherical 
semiconductor dome ll over the LED, allowing most of the internal lumincscence 
to escape at normal incidence. We will show that semiconductor hemispheres are 
unnecessary and that a simple thin film geometry, as illustrated in Fig. 1, will also 
allow most of the light to escape externally. 

A conventional n + -AIGaAsJp-GaAsJp + -AIGaAs double heterostructure is 
grown over a 500;\ thick AIAs release layer by organo-metallic chemical vapor 
deposition, where n + ;::::; 3 x 1Q18cm -3, p;::::; 3 x lQ17cm -3, and p + ;::::; 3 x 1Q18cm -3. 

The heterostructure is then separated from the GaAs substrate byepitaxialliftoft'J 
(ELO), using HF acid selective etching of the AIAs release layer. Following the 
ELO procedure, the thin fiim, supported from above bya thick wax layer, is Van 
der Waals bonded by surface tension forces onto a refiecting substrate. As shown 
in Fig. 1, this substrate refiects the emitted photons back into the GaAs where 
they may be absorbed and possibly re-emitted into the escape cone. As a 
substrate, we use high refiectivity metal mirrors coated with a low index 
transparent layer, which offers, when angle averaged, a higher effective refiectivity 
than a multilayer AIAsJGaAs Bragg refiectors.12 In principle, bonding the 
heterostructure thin film on a perfect diffuser (a white surface) may produce the 
best result since it offers the highest angle averaged refiectivity. 
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Figure 1. Schematic cross section of epi-liftoff heterostructure, Van der Waals bonded onto a glass 

coated metallic reflector. The upper and lower escape cones are depicted by the shaded area. The 

partition among extemal emission, reflection loss, and non-radiative recombination processes, is 

indicated by percentages. Refractive indices are given by n, ng , and nrn . 

Onee a lumineseent photon is emitted internally, it will have one of several 
possible destinies: (a) It ean eseape through the eseape eone at the top of the 
double heterostrueture; (b) It ean be re-absorbed by the parasitie optieal losses in 
the structure, in the bottom refiector for example; (c) It can be re-absorbed in the 
aetive layer and experienee re-inearnation as a photon, sinee the internal 
lumineseent quantum yield is quite high. If there were no parasitic optieal losses, 
and if the internal quantum effieieney, 11, were high enough, the photon would be 
re-inearnated many times, having a 4% probability of finding the eseape eone eaeh 
time. To aehieve a high external quantum effieieney, as we have done, requires 25 
or more re-inearnations of the photon! This is illustrated in Fig. 2. Therefore, the 
external efficieney, 11ext' is a sensitive funetion of the small parasitie optical losses 
and the small non-radiative loss ehannel (1-11). 

Figure 2. Typical photon trajectory in the heterostructure shown in Fig. 1. Dots 
represent absorption/emission events. High external efficiency demands 2: 25 such events 
before a photon finds the escape cone. 
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The Model 

To model the behavior of the photoluminescence in our GaAs films, we 
will invoke a statistical approach13 which was first introduced to explain the 
ergodic behavior of light in solar cells. We justify this statistical model by 
averaging over internal angle, polarization, over volume or the depth of 
luminescent material, over the wavelength band, and over thickness fluctuations or 
surface roughness. Therefore, coherent effects are ignored. Let Bint be the 
brightness (in photons/sec per cm2 per steradian) of the trapped luminescent 
radiation inside the thin film. The internal luminescence will generally be re
absorbed by surface absorption or volume absorption. The parasitic absorption at 
the surface of the reflector is: 

(1) 
n/2 41tBintA [I - R] ! BintA [1- R(O)] co sO 21tsinOdO = 4 

where 0 is the polar angle, A is the surface area, and R is the angle averaged 
reflectivity. The volume integrated absorption within the bulk is: 

(2) Ja(z) Bint dV da = 41tBintA ~aidi , 
1 

where dV is the volume element, da is the internal solid-angle element, a(z) is the 
local absorption co-efficient and ~ and di are the absorptivity and thickness of the 
ith layer, respcctively. Thc active layer re-absorbs radiation right at the band edge, 
while in the other layers there can be parasitic bulk absorption mechanisms. Wc 
assume one typical wavelength for each absorption cocfficient ai, instead of a 
careful spectral averaging. 

The band-to-band absorption in the active layer, ao, pro duces electron-hole 
pairs, which may be sub-divided into a portion l1ao which leads to re-radiation and 
a portion [1-l1]ao which leads to non-radiative recombination and heat. The 
radiative part may itsclf be furthcr sub-divided into a fraction which falls within the 
fOlward or backward going escape cone, 2 x (1/4n2), and a remaining portion 
which re-joins the trapped internal radiation. Therefore, the internal bulk 
absorption in Eq. (2) may actually be divided into 4 terms; parasitic bulk 
absorption, band-to-band absorption leading to non-radiative recombination of 
electron-hole pairs, band edge absorption leading to extern al escape of the 
photons, and band edge absorption which contributes to the trapped pool of 
photons: 

(3) 

where do is the thickness of the active layer, and aA represents parasitic bulk 
absorption. 

In steady statc, thc pump rate and the loss rates balance. The final tcrm in 
Eq. (3), l1aodo(1-1/2n2), is irrelevant, since it merely represents re-emission into 
the pool of trapped luminescent photons and pro duces no net gain or loss. The 
external efficiency, l1ext' is the escape rate divided by the sum of all the rates in 

373 



Eqs. (I) and (3): 

(4) 11ext 
11aodo/2n2 

= 
[~"d,,/2n2 + (l-~l .. do + f"ldj + (1- Rl/4] 

This may be further simplified by collecting all parasitic absorption into a loss 
term L representing the double pass parasitic absorption. 

(5) 11ext 
= 11/2n2 

[11/ 2n2 + (I -11) + L/4aodo] 

where the double pass parasitic absorption is: L == (1- R) + r4aA. 

Experimental 

The heterostructures were optically pumped using a continuous wave 
780nm AIGaAs laser, focused down to a 30011m spot. Taking into account the 
laser power (15mW), the pump photon energy, the Fresnel transmission into the 
heterostructure (68%), and the absorption fraction at the pump wavelength 
(0.27 s:: Ap :$ 0.55), we estimate the carrier injection rate to be equivalent to a 
current density between 2.5 Amp/cm2 and 5 Amp/cm2. This low level injection is, 
nevertheless, weIl into the radiative diffusion current regime (diode quality 
factor= I) and about an order of magnitude above the recombination current 
dominated injectionl4 regime, (diode quality factor= 2). We note that we are near 
the injection level at which highly efficient GaAs LED's are expected to operate. 

The luminescence was collected by an flO.3 lens, focused through an 830nm 
long-wave-pass optical filter which blocked the pump, and onto a biased Si 
photodiode. The photodiode output was fed to a lock-in amplifier tuned to the 
chopping frequency of the pump beam. In all cases, the photoluminescence signal 
was found to be linear in pump intensity (down to 20% of maximum intensity) as 
expected in our low-Ievel-injection, but radiative diffusion current dominated, 
regime. Due to substantial statistical averaging under our experimental conditions 
as discussed earlier, a Lambertiim angular distribution was always observed. 

The absolute extern al quantum efficiency, 11ext' was measured byreferencing 
the 880nm photoluminescence signals to elastically scattered light at 780nm from a 
white surface substituted for the sam pie in the identical optical setup. A minor 
correction was made for the difference in Si photodiode sensitivity between 780nm 
and 880nm wavelength. The signal ratio was then divided by the calculated pump 
absorption fraction to yield the true value for extern al quantum yield, 11ext. 

In estimating the pump absorption, we note that the Alo.3Gao.7As cladding 
layers are transparent at the pump wavelength, while the 200nm p-GaAs active 
layer has an absorption coefficientl5•16 of a p = 1.5 x 104 cm -I. The sam pie 
absorption was calculated using a multiple reflection model which takes into 
account the reflectivity of the metallic substrate and that of the air/semiconductor 
interface at the 40° incidence angle. We determined a pump absorption fraction 
Ap ~ 0.54 for good reflectors, Ap ~ 0.3 on glass, and Ap = 0.27 on the wafer before 
ELO. 
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The integrated photoluminesccnce was measured in four different types of 
specially prepared thin film structures. The four cases, (a)-(d), in Fig. 3 represent 
different amounts of parasitic optical absorption in the thin film structure: 

a. In case (a), only the Au metallic refiector absorbs light. The Alo.3Gao.7As 
layers were intentionally left undoped to eliminate free-carrier absorption. 
We calculated the absorption using the complex refractive indexl7 
nrn = 0.199 - 5.84i for Au at 880nm, near the luminescence wavelength. 
This would lead to an air-Au refiectivity R(O) = 97.8%, and an Si02"Au 
refiectivity R(O) = 96.8%. The effective refiectivity is much higher, however. 
Oue to the narrow 25° escape cone entering the Si02 layer from the 
semiconductor, most of the light is totally internally refiected, and only a 
small portion actually suffers parasitic absorption in the me~l. We have 
calculated the angle and polarization averaged reflectivity to be R = 99.2% for 
the geometry in Fig. 1. 

b. In case (b), the 150nm Alo.3Gao.7As layers were doped to 3 x 1018cm -3, as 
would be needed for electrical pumping. Assuming the free-carrier 
absorption cross-sectionsl6 for electron and hole sum to 1.1 x 1O- 16cm2, the 
additional double-pass parasitic opticalloss is L = 2%. 

c. In case (c), an additional layer of GaAs, 40nm thick, was added in Fig. 1 
between the AIGaAs layer and the Si02 layer, intentionally for the purpose 
of contributing parasitic optical absorption. Since the 40nm thick GaAs 
layer was unpassivated on one side, rapid surface recombination ensured that 
all absorbed optical energy would degrade rapidly to heat. An averaged 
band-edgelS absorption a o = 5 x 103cm -1 was assumed for the luminescent 
wavelengths. This implied an additional double pass parasitic loss L = 8%. 

d. In case (d), a Palladium mirror was substituted for the the Si02"Au mirror. 
The doped heterostructure, including the 40nm GaAs dead layer, was Van 
der Waals bonded onto Pd, a procedure which results18 in a metallurgical 
reaction and a robust bond. The GaAs-Pd mirror had a measured reflectivity 
R(O) == 70%, which when combined with the bulk losses resulted in a total 
double pass parasitic loss L = 40%. 

Analysis 

The curves in Fig. 3, extern al yield 11ext versus parasitic loss L, represent 
Eq. (5) with the internal yield 11 as a parameter. The best fit implies an internal 
quantum efficiency 11 = 99.7%! Therefore, we can estimate a non-radiative 
minority carrier lifetime, which is 300 times longer than the radiative time. The 
internal rate of spontaneous emission is expressed as Bnp, where B is the 
electron-hole radiative co-efficient and np is the product of electron and hole 
densities. B is most accurately determined by the Shockley-van Roosbroeck 
relation lS which gives19 B=13x lO- lOcm- 3sec- l , considerably larger than the 
usually accepted value. At our doping level p = 3 X 1017 cm -3 and carrier injection 
flux of 5 Amp/cm2, the minority carrier density (n) is roughly 10 times sm aller 
than the hole density (p). Hence, the internal spontaneous emission lifctime per 
electron is 2.6 nsec, wh ich imply a non-radiative electron lifetime of 0.85 J.lsec, 
similar to recent measurements20 in moderately doped n-GaAs. Moreover, 
assuming the carrier lifetime is bounded by the GaAs/AIGaAs interfacial 
recombination processes, we arrive at the conciusion that the interfacial 
recombination velocity is lower than do /2t < 12 cmjs!20 
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Figure 3. The dependence of external quantum efficiency on double·pass parasitic optical 

absotption. The theoretical curves are plots of Eq. (5), with internal quantum yield as an 

adjustable parameter. 

CONCLUSIONS 

The remarkable internal quantum efficiency and the high self absorption 
that we have demonstrated are tributes to the electronic quality of doped GaAs 
double heterostructures. These make it undoubtedly the most suitable material 
from which single mode spontaneous light sources can be made. It was shown that 
simple, non resonant, cavity effects can lead to a spontaneous emission external 
quantum efficiency that was believed to be achievable only by stimulated emission 
(above some threshold). It was also argued that the spontaneous emission factor ß 
in 111-V-based photonic structures can be made c10se to unity. In that case, we 
conc1ude that the shot noise in a single-mode LED can be suppressed to about 
-25dB [= 100og(l-lÜ] below the standard quantum limit. This possibility is 
especially attractive for low carrier injection levels (below threshold) where optical 
systems are truly shot noise limited. 
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I. INTRODUenON 

The Anderson Hamiltonian 1 

(1) 

has been the prevalent model for the investigation of localization phenomena during 

the past few decades. Here a + aare the creation and annihilation operators, 
a' a 

respectively, a,ß are the indiees for sites on a lattiee, nn denotes nearest neighbors, t is 

the hopping matrix element, and ea is the potential energy at site a, with a distribution 

P(ea) for its value. P(ea) can be either a flat distribution with width W or a Gaussian 

distribution with a variance W. 

From the results of extensive investigations based on Eq. (1), it is now widely 

accepted that the marginal spatial dimension for localization is two,2 i.e., all waves are 

localized in random media with dimensionality two or one. However, an important 

assumption underlying these investigations is the geometrie correlation length of the 

inhomogeneities is finite, so the medium is macroscopieally homogeneous and 

isotropic. This assumption does not exclude the case where the correlation of the site 

energies ea is algebraie. In fact, it has been shown3,4 that if <eaeß> = constant 
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IRa -RßI', where < > denotes ensemble averaging and Ra,Rß denote the 

impurity sites, then the loealization behavior in ID and 2D does depend strongly on the 

value of 'Y, yet the overall loealization eharaeteristics still eonform to the predietion of 

the sealing theory of loealization. This is beeause the impurity energies are 

algebraieally eorrelated, yet their spatial distribution is still maeroseopieally 

homogeneous and isotropie. 

In this paper, we consider two different models of long-range correlations where 

the assumption of isotropy and macroscopic homogeneity is violated. The first model is 

anisotropie so it breaks the isotropy symmetry. The second model is a fraetal impurity 

model whieh breaks the property of macroseopie homogeneity. We show here these 

two models exhibit novel localization eharacteristies distinet from those eonsidered 

previously. 

2. DESCRIPTION OF MODELS 

In this section, we describe the anisotropie model and the fractal model separately 

and delineate some of their salient localization features. 

2a. Anisotropie Model 

Consider a three-dimensional randomly layered system with lateral inhomogeneity 

in each layer. The value of 8a in Eq. (1) can be written to model such a system as a sum 

of two eomponents, one purely layered eomponent 'Yk and another purely isotropie 

component ." ik : 

8 a =871 ik +(1 -8hk 
with 

{
lW -,Ixls-

P('Yk) =P(71ik) =P(x) = W 2, 
0, otherwise 

(2) 

where k denotes the anisotropy axis Z, i denotes the transverse directions x and y, 'Y and 

71 are random variables with a flat distribution P of width W, and 8 is an anisotropy 

parameter, varying between 0 and 1. The function of the 8 parameter is to interpolate 

the randomness between a ID layered (8=0) and a 3D isotropie (8=1) system. From 

(2), it is easy to see that, for any 8< 1, an infinite-range eorrelation (of amount (1-8hk) 

in the site energy is introdueed in eaeh layer k. The numerieal and analytie approaehes 

used to analyze this model will be deseribed in Sections 3 and 4. The most salient 

features of the results are as folIows. First, there exists a Fermi-energy-dependent 
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critieal Oe below which the wave function is localized for arbitrarily small randomness, 

and above which the system acquires three-dimensional characteristics. An interesting 

reentry phenomenon is found in the localization phase diagram near the band edge, 

where the density of states is smalI. Expressions for the localization lengths are 

obtained analytieally in the localized regime when the randomness is smalI. The 

behavior of the localization length in the layering direction is found to follow the simple 

one-dimensional result, while in the transverse direction the localization length behaves 

differently from the standard two-dimensional result. The physieal reasons underlying 

these behaviors will be given in Section 3. Here, we only note that our anisotropie 

model should be contrasted with that arising from an isotropie dispersion of anisotropie 

scatterers (or locally anisotropie environments), usually modeled by an anisotropie 

hopping matrix element t, where the system delocalizes for sm all W as soon as the 

scattering deviates from strict one dimensionality.6 In this case, the interpolation 

between 10 and 30 is smooth and does not have a critical value of anisotropy. 

2b. Fractal Impurity Model 

In the fractal impurity model, the impurity correlation length r is larger than the 

sample size. For instance, if the impurity is a single fractal of infinite size, there exists 

no scale in the sample above whieh the system is homogeneous. Geometrieally, this 

model is complementary to systems where the electron or the wave is confined on the 

fractal objects, where it has been suggested that the localized wave function may decay 

faster than exponential, i.e., superlocalized.7 Here, instead of confining the electron or 

the wave, the fractally-correlated impurities are embedded in an otherwise 

homogeneous host medium and act as wave scatterers. 

In the fractal impurity mOdel,8 the site energy Go: in Eq. (1) is assigned as 

G ={Wo for the impurity site 

0: 0 for the host site . (3) 

Here, Wo denotes the barrier height of an impurity atom. This problem has been 

studied both numerieally and diagrammatieally in two dimensions, whieh is the marginal 

dimension of localization for the homogeneously disordered systems. What is shown is 

contrary to the conventional conc1usion that all waves are localized in 20, here the 20 

fractal impurity model exhibits a metal-insulator transition. This transition is accessible 

through the variation of either the Fermi energy or the impurity scattering strength Wo' 

Moreover, in the metallic regime the electronie transport is shown to be superdiffusive 

in nature, i.e., faster than diffusion but slower than ballistie. 
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The numerical method we use to study both the anisotropie and the fractal

impurity models is the standard finite-size scaling approach. The analytic method used 

here is based on the diagrammatieal theory of Vollhardt and WOlfle,9 with some 

generalizations. Below, we describe these methods separately for each model, along 

with the presentation of the results. For convenience, we set both the hopping matrix t 

and the lattice constant to one. 

3. TIIE ANISOTROPIe MODEL 

3a. Analytic Approach 

The self-consistent diagrammatical theory ofVollhardt and Wolfle9 is generalized 

to the anisotropie model ofEqs. (1) and (2). Schematically, the general procedure may 

be described as folIows. Starting with the Kubo formula,1O we first evaluate the 

conductivity tensor by including the ladder and maximally-crossed diagrams. The 

ladder diagrams give the bare conductivity tensor, while the maximally cross diagrams 

account for the localization effect. By summing these diagrams and using the Einstein 

relation, a set of two coupled self-consistent equations for the two diffusion constants, 

perpendicular (D.1) and parallel (DII ) to the layers, are obtained. The condition of 

vanishing diffusion constants then determines the mobility edge. In the localized 

regime, the frequency dependence of these two diffusion constants give the localization 

lengths in directions perpendicular (r .1) and parallel ( rll) to the layers. Below, we 
give a more detailed description ofthe approach.6 

The Hamiltonian given by Eq. (1) can be rewritten in the momentum 

representation as, 

(4) 

with 8(P) = Eoexp(-ip.o), and v(q)=N-l Ea8a exp(iq.fa ). Here,o denotes the 

vector pointing from a site to one of its nearest neighbors, N is the total number of sites, 

and ra is the spatial coordinate of site a. 

function has the form 

The averaged single-particle Green's 

Rp = <Gp >=l/[z-e(p)-Ep l , (5) 
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where z is the complete energy and Ep is the self-energy. Within the self-consistent 

Born approximation,5 the form of ea in Eq. (2) gives following equation for the self

energy Ep, 

W2 2 1 1 W2 1 
Ep =E(v(q)v(-q»)Rp-kl =-0 - ~----+--(1-f)2-

q ''I 12 Nptz-e(p)-E 12 N.l 

Pli 

(6) 

where N .l is the number of layers and 11, .l denote components of the vector that are 

parallel or perpendicular to the layers, respectively. The term proportional to 02 in 

Eq. (6) represents contributions from isotropie scattering, whereas the term 

proportional to (1-0)2 represents contributions from scattering in the layering, or the z 

direction. The self-energy is noted to depend only on Pli . The zero-temperature Kubo 

formula 1 0 for the conductivity tensor has the form 

(7a) 

with 

4>jf<E,w) =~ 1: v1(Pl) «PIIG -(E+)lp2 >Vk(P2) <P2IG +(E_)lpl >>; 
47r PIP2 

(7b) 

where E+=E+wI2, E is the Fermi energy, w is the exciting frequency, 

v i (p) = oPi e (p) is the velocity matrix element, AR denotes averaged advanced (-) 

and retarded (+) Green's functions, and we have neglected terms like 4>AA, 4>RR 

because they are inherently small (they have two poles on the same side). The ensuing 

calculation of 4>jf consists of evaluating two classes of diagrams: the ladder diagrams 

and the maximally crossed diagrams. The latter represents the coherent backscattering 

effect that gives rise to localization.9 

The ladder-diagram contributions to 4>jf, denoted as 4>~A(O), are shown in 

Fig. I (a). For the .l component Okk, only the first term contributes because all other 

diagrams vanish after the summation of PI or P2. By using the Einstein relation, u(E) 

= 2e2p(E)D(E), where p(E) is the density of states, we get 
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1 1 1: v ~ (p).:1Rp 

2Tp(E) N P ä 1: p 
(8a) 

Here äRp =R + -R - and ä 1: p = 1: + -1: -. For the 11 component of the 
pp pp b f "h diffusion constant, on the other hand, one can allow any num er 0 scattenngs 1D t e z 

direction, since they preserve parallel momentum. Summation of the infinite series 

yields 

(0) 2 2 2 
D II =3vlI /TW 8 p(E), (Sb) 

where 

(8c) 

We note that as 8 ... ° ,D~O)... 00, but ~) is always finite due to the scattering in 

the z direction. The vertex correction 54> ik (1) due to one set of maximally crossed 

diagrams may be expressed as 

(9) 

Here U( 0 ) represents the summation of ladder diagrams from the z scatterings as 

shown in Fig. 1(b), and U(M) consists of diagrams shown in Fig. l(c). From 54>~(1) 
one can easily write down the correction 54>~(n) due to aseries of n consecutive 

vertex corrections. By summing all the nth order contributions 54>:(n) and denoting 

the result as 54> ~ , we get 

D .l (E,w) 1 54>~ -1 F.l (E) tu -2 (E) 
---=::...:........:....-.:.... = + 1: x 
D(.l0) (E) 54> RA (0) - N K [-1 . (0) 2]2 

kk äT (E) -lW +D .l K .l 

D .l(E,w) 
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Fig. 1. (a) The ladder diagrams, eonsisting of two types of seattering. The dotted 
line denotes the z-direetion seattering. Isotropie seattering is denoted by a 
dashed line. (b) The ladder diagrams that give rise to dO) (p, PI)' (e) The 
maximally erossed diagrams that eontribute to d M ) (PI' P2)' The heavy 
lines represent the sum of isotropie and z-direetion seatterings. 

where 

( 
F .L(E)ll 

N.L . 

[ ]
-1 -1 

F.L(E) = 'lI'P(E)D~)(E) ,aT =(1-0)2 /2-y(E)02,K~ =(D~)aT) , 

TII =6/ W 202 'l1'P(E) , 

and 

. l/aEp 
T .L = -; E--=

p N 

aE 
-y(E) = -i E--P . 

P 2N 

(10a) 

(lOb) 

(lOc) 

It is stra~htforward to eheek that as 0 -+ 1, a E p =i'll'W p (E) / 6, 

TI! =T l.,D~ =Dt), and we reeover the isotropie result. For 0 -+ 0, TI! -+ 00, but 
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T .L remains finite so that tu -+ 00. That means the seeond term in Eq. (lOa) vanishes, 

and we recover the result of a one-dimensional random system. Similarly, for the 

parallel eomponent we get 

DII (E,CI» 

D(O) (E) 
11 

(11) 

where Fjl (E) =4'Y(E) / 1I"p(E) v ~ ,and v ~ is defined by Eq. (8e). Again, in the 8 -+ 1 

limit we reeover the isotropie tesuIt, wHereas when 8 -+ 0, TII -+ 00 so there is no 

loealization effeet in the parallel eomponent as it should be. We propose to introduee 

self-eonsistency into E~f" (lOa) and )11) by writing D .L (E, CI) ) and DII (E, CI» for all the 

explicitly displayed D ~) and D ~ 0 ,respeetively, but only the righthand sides.5 The 

two equations are then eoupled. 

At mobility edge, both DII (E,CI) =0 +) and D .L(E, CI) =0 +) vanish. The 

equations to determine the mobility edge beeome 

_D.=.L_(E_) =0 =1 -F .L (E)r(E)~ 
n(O) N 

1. 

1 
xL 2 2 -G(E) , 

K r(E)K .L +K
11 

(12a) 

DII (E) 1 1 
-- =0 =1 -PlII (E)- L 
D(O) N K r(E)K2 +K2 ' 

11 .L 11 

(12b) 

where r(E) =D .L (E) / DII (E) and G(E) denotes the last term on the righthand 

side of Eq.(10a) after we set D~) =D.L ~nd CI) =0. From the two equations, the 

ratio r(E) may be expressed explicitly as r(E) = Fjl (E)[ 1 -G(E)] / F .L (E). This results 

in a single equation far the mobility edge: 
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1 
x l:-----::--------=-

K F .L<E)K~ +~I (E)[1-G(E)]K~ 
(13) 

Here the summation over K represe~tsJa double integral over KII and K.b each 

having an upper cutoff of ~II ~XO 1l\\(E) and IK.LI ~XO IlJ.<E), with 

.t'1I =3.J2D~0) IVII(E), .t'lJE) =3D~) vk(E), and xo chosen so that at (J =1, 

we recover lhe known critical valuell ofWc=16.2 at E=O. 

Based on Eq. (13), mobility-edge curves of Wc«(J) are calculated for the cases of 

E=0,4, and 6 and are shown in Fig. 2 in solid lines. The interesting feature about the 

curves is that for each E there is a critical value of (J=(Jc (=0.18 for E=O, for example) 

below which all states are localized even for W=O+. 

Above (Jc , the value of W c is seen from Fig. 2 to have a peak that is above the 3D 

isotropic value. This is due to the net decrease of isotropic disorder, for a fIXed W, as (J 

decreases from 1. As a result, W c increases with decreasing (J until the effect of 1D 

scattering catches up. Another interesting effect is noted to exist for E =5-6, i.e., close 

to the band edge. Here, W c( (J) is seen to form a loop so in a range of (J values there 

can be two values of W c for a given (J. Our analysis reveals that the localization below 

the lower W c is induced by the small density-of-states near the band edge, which favors 

localization. As W increases towards the lower W c value for a fixed (J, the density-of

states near the band edge also increases (this can be seen in the coherent-potential

approximation calculation of the tight-binding modeI12), which, in turn, delocalizes the 

state far W> W c (lower). 

In the localized regime, (J < (Je, the equations for the localization lengths 

~ .L and ~II can be obtained from Eqs. (10) and (11) by first renormalizing the diffusion 

constants and then setting l~ O[ -iw I D .L,II (w ,E)] =E t~ (E). If we defi~ the 

function r(E) as the square ofthe ratio oflocalization lengths, I.e., r ~( E .LI Eil) ,the 

localization length equations become 

1 1 [ 1 =F .L(E)r(E)-l: [~ 2] 2 -F .L(E) 1 
N k r(E) E .L (E) +k.L +k ll 

1 
xl: -2 +2 2' 

k .L E .L (E) /(.L +k .L 

T .L(E)] 1 
TII (E) N.L 

(14) 

387 



30 

25 

- 20 

i 
j 15 

f 10 

5 

! 

t 

! 
! 

o 30 b 

25 

~ 20 

j 
~ 15 

I 
10 

5 

o 0.2 0.4 0.' 0.8 o 0.2 0.4 0.1 D.I 

30 

25 

~ 20 

! 15 

f 
10 

5 

Fig.2. 

388 

9 

c 

o 0.2 0.4 0.6 0.8 

8 

30 

25 

~ 20 

! 15 

f 
) 
- 10 

5 

9 

o D.2 0.4 0.1 D.I 

9 

d 

Values ofWc plotted as a function of 8 for (a) E=O, (b) E=2, (C) E=4, and 
(d) E=6. The solid lines denote the results calculated from diagrammatical 
analysis. Simulation results are denoted by solid circles together with their 
errorbars. 



and 

FII (E) 1 
l=---L . 

N k r(E)[~ -2 (E) +k2 ] +k2 
.1 .1 11 

(15) 

In general, Eqs. (14) and (15) must be solved numerieally. However, at small 

randomness the asymptotie behavior of ~ .1 and ~ 11 may be studied analytieally. By 

writing F .1, FII ,K .1 and momentum cutoffs ke.1 and k~ in Eqs. (14) and (15) to the 

first order in W2, a simple analysis yields the following results,5 

~ .1 ~e(Oi ' (16) 
W 

and 

_ r deO) 1 
~II =g(O, w)expl w 4 J ' (17) 

where e(O) and deO) are independent of W, and the W dependenee of the funetion 

g(O,W) is in a power-Iaw form. Equation (16) gives the same asymptotie behavior as 

the 1D result. However, Eq. (17) gives a behavior that is different from the standard 

2D result13 of ~ 2D ~(a1 / W2 ) exp( a2 / W2 ). 

2 
Sinee r =( ~ .1 / ~II ) -+ 0 as W -+ 0, the loealized regime below Oe is 

essentially 1D in its eharaeter. If we fix Wand let 0 approach the mobility edge 0* 
* * -1/2 ( 0 -+ 0 e as W -+ 0), our analysis shows tha t e( 0) diverges as e ( 0) oe (0 -0) . 

In this limit, both ~ .1 and ~ 11 diverge and r inereases to order one. Thus, 3D eharaeter 
is t:eeovered as the mobility edge is approached. These characteristics should be 

contrasted with those for the anisotropie hopping model, where an infinitesimal 

eoupling between the 1D ehains would yield the 3D behavior of delocalization below a 

We. 
The reason behind the existenee of Oe in our anisotropie model is the existenee of 

infinite-range eorrelation in the site energy along the layer plane, i.e., the term 

(1 -0 hk in Eq. (2). This term produces a unique ID scattering meehanism as ean be 

seen in the last term of Eq. (6). Sinee this ID scattering does not have the eoherent

baekseattering effeet for an eleetron moving along the layer direetion, this breaks the 

symmetry between the transport behaviors in the transverse and the layering direetions, 

as ean be seen from the absence of ID eoherent-baekseattering term in Eq. (11), 

eompared to Eq. (10a). It is this ID scattering meehanism whieh gives rise to all the 

novel eharaeteristies of our anisotropie model diseussed above. 

Physically, the eritical Oe ean be seen as a plausible eonsequenee of eompetition 

between isotropie scattering, whieh would give rise to an isotropie mean-free path, and 

389 



the 10 localization. As 0 increases from 0 (the 10 limit), initially the isotropic mean

free path would be so much longer than the 10 localization length that the election 

would be 10 localized before it can be scattered out of the layering direction. As 0 

approaches 0c, however, isotropie scattering becomes stronger and comparable to the 

10 scattering, until finally it be comes dominant as 0 cross es Oc. 

3b. Numerical Approach 

Since the diagrammatical analysis described above does not represent a rigorous 

theory, we have numerieally simulated the model described by Eqs. (1) and (2) to verify 

the validity of our analytical results. 

We consider a 30 sampie in a rod geometry of length N and cross section MxM, 
governed by the Hamiltonian defined in Eqs. (1) and (2). The layering direction is 

defined to be the lengthwise direction along the rod. Both ends of the rod are 

connected to perfect leads, i.e., W=O. Far such a system, the transmission amplitude of 

an electron through the disordered rod can yield the localization length LM of the rod. 

If the periodic boundary condition is chosen in the transverse direction, then the 

propagating eigenstates in the ardered region are just plane waves lab~led by a 

continuous momentum index Kz in the direction along the rod and two discrete 

transverse momentum indices Kx and Ky = 1I11/(M + 1) (n = 0, + 1, ... , + M/2 if M is even; 

n=+ 1,+2,.±.(M+ 1)/2 ifM is odd). The dispersion relation is then 

E =2(cos Kz +cos Kx +cos Ky ). (18) 

Consider each set (Kx,Ky) as a channel, denoted as I. There are a total of MxM 
channels in the rod. Far a given energy E, the real solutions of Kz from Eq. (18) 

determine the number of channels open for wave propagation. The transmission 

matrix tIJ between a channel I at one end of the rod and a channel J at the other end is 

related to Green's function GIJ(O,N + 2) which can be calculated by using the recursive 

Green's function technique as described in the wark of Lee and Fisher,14 The result is 

where the channel velocity vI in Eq. (19) is given by aE 1 aKz evaluated at Kz(I). The 

localization length LM of the rod is related to the transmission matrix by 
L 2 

-1 + -1 0
11 LM =-lnTr t t =- E tIJ 

2N 2N IJ 

with La denoting the numbers of propagating channels. The length N must be long 

enough so that LM has converged to a constant value. In addition, the variance 
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ALM(N)2 has to be small so that the value of LM is accurate. This can be achieved 

either by averaging over many configurations or by considering a long rod. From the 

knowledge of LM, the localization character of astate is determined by the behavior of 

LM/M versus M as described by MacKinnon and co-warkers,15 i.e., LMfM increasing 

with M indicates a delocalized state, whereas LM/M decreasing with M indicates a 

localized state. The mobility edge curves so determined are shown in Fig. 2 for E=O, 2, 

4 and 6. It is seen that far E=O the agreement is remarkably good. Both the peak 

value of W c as weIl as the sharp rise of W c beyond 0c=..0.18 are also in reasonable 

agreement with the numerically extrapolated value of 0c=..0.1. However, quantitative 

agreement deteriarates as E increases towards the band edge, although the numerical 

results do indeed verify the main features of the theory, e.g., the re-entrant transitions 

for E near the band edge. We have also carried out simulations up to M=9 for 0 

slightly below Oc and W smaIl, i.e., 0=0.07, W=0.5 far E=O and 0=0.1, W=1 for E=2, 

and verified that states are indeed stilllocalized at these small values of W. Thus, our 

numerical simulations confirm the existence of a critical Oc predicted by the 

diagrammatical theory. 

4. TIIE FRACfAL-IMPURITY MODEL 

In the fractal impurity model, we consider the case where the impurities form a 

connected critical percolation cluster, which has a known fractal dimension16 Cl = 1.89. 

Other random fractals, like diffusion-limited aggregates,17 are also physically plausible 

systems. We would like to emphasize that our model differs from the long-range 

correlation model studied previously3,4 where the site energy Gex in Eq. (1) is carrelated 

with a power-Iaw decay, i.e., (G ex Gß ) =C / IRex -Rß I'Y. In our case the value of c is 
not a constant and varies as a function of sampIe size. In fact, this situation is parallel 

to the case of a percolation system at the threshold Pc. If the isolated clusters are not 

removed, then the correlation function conditioned by connectivity has a power-Iaw 

decay, yet the average density of the occupied sites is always Pc, independent of sampie 

size. In our fractal model, since only the connected critical cluster is kept, J:he 

average density of the impurity decreases with the sampIe size accarding to L d-d, 

where d denotes the embedding space dimension. Thus, there exists no scale above 

which the system is macroscopically homogeneous. The fractal impurity model has 

been studied by using both numerical and analytical approaches. Since the system is 

not macroscopically homogeneous, the conventional diagrammatical method, which 

requires a uniform impurity density, does not apply. We have modified the 

diagrammatical method to study our fractal impurity model by calculating the 

conductance of a finite sam pIe of size L, where the averaged density varies with L. 

However, since the connectivity of the fractally-carrelated impurities cannot be 
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incorporated into our analytical theory, the results of the analytic calculations must be 

checked against numerical simulations. Below, we first present the numerical 

approach. 

4a. Numerical Approach 

The numerical method used here is similar in nature to that described in section 

3b. A 2D fractal impurity sampIe of size LxL is generated by the following procedure. 

At P=Pc=0.593, site percolation clusters are generated numerically using the random 

number generator.16 Only those configurations where percolation paths exist along 

both the horizontal and the vertical directions are kept. All the isolated clusters are 

removed, leaving only a single critical percolation cluster. We connect the sampIe by 

two perfect leads in the z-direction. The Hamiltonian of the disordered sampIe is 

govemed by Eqs. (1) and (3), while, in the leads, we have the dispersion relation 

E = 2(coskx+coskz). (20) 

By using the hardwall boundary condition, Kx has the values 

Kx =~,n=1,2, .. I.,L+ 1. Again, the real-number solution of kz in Eq. (20) 

determrntlthe number of propagating channels Lo. The dimensionless conductance is 

related to the transmission matrix tu by2 

L 2 
G + 0 I g =-- =Tr t t = rltIJ 

e2 / h I,J 
(21) 

Here Itu 12 is related to Green's function by Eq. (19), which can be evaluated by using 

the recursive Green's function method.14 The results of numerical calculation at 

E=O.5 are shown in Fig. 3 (solid lines). The dashed lines are the results of 

diagrammatic evaluations to be described later. It is seen that for Wo<W~ -2.9+0.5, 

<g> increases with L, indicating a delocalized behavior; whereas for Wo> W C <lng> o 
decreases with L, indicating a localized behavior. For reference, the classical 2D 

conductance, Le., pure diffusive behavior, is noted to be sample-size independent, and 

the ballistic transport behavior is gene rally characterized by linear variation of T with L, 

since in that case T is directly proportional to the number of channels. Therefore, the 

intermediate behavior of the delocalized regime, O<Wo< W C, is indicative of o 
superdiffusive transport that interpolates between diffusive and ballistic behaviors. We 

will discuss this regime in more detaillater. For Wo<W~, on the other hand, the 
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variation of <Ing> with L is nonlinear. This indicates a sub-exponentiallocalization 
behavior. 

Pos opposed to the homogeneous-impurities case, where in 20 all waves are 

localized, for impurities arranged with fractal symmetry a metal-insulator transition can 

occur in 20 through the variation of either the Fermi energy E or the scattering barrier 

height Wo, or both. In Fig. 4 we show the phase diagram calculated by the recursive 

Green's-function method as described above. For a fixed W 0=3.6, the drastic 

conductance changes as a function of E are illustrated in Fig. 5 as one crosses from the 

insulating regime to the conducting regime and then to the insulating regime again. 

The steepness of the conductance variation is noted to increase as the sampIe size 

increases. Thus for field-effect transistors it may be envisioned that based on the 

present metal-insulator transition phenomenon, one can have a gate-voltage-controlled 
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Fig.4. 
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Phase diagram as a function of Wo and E calculated from recursive Green's 
function simulations. The bars indicate estimated error for each point. The 
transition in behavior is obtained by many runs at different Wo and E, each 
averaged over 200-3000 configurations depending on the sampIe size. The 
dashed line indicates the cross section examined by Fig. 5. 

switch (through the variation of Fermi energy) if the scattering impurities can be 

arranged in a fractal pattern. 

In the extended regime, if we denote geL) - D(L) ocLs, then the mean-square 

displacement L2=D(L)T cXI."sT, or L2 oc.,2l(2-s), where s varies between 0 and 1 

depending on the values of Wo and E. At E=0.5, the value of s can be. extracted from 

Fig. 3, yielding s =0.43 and 0.33 for Wo=l and 2, respectively. 

The superdiffusive transport and the transition between the localized and 

delocalized behaviors can also be studied in the space-time domain by directly solving 

the time-dependent Schrödinger's equation ia<p / aT =H<p, where the time T is in units 

of Ti / t and H is given by Eq. (1). The diffusion constant D may often be evaluated as 

D =d <<plr21<p >/dT as a function of T. Besides offering a consistency check, the 

space-time simulation also offers the possibility of studying much larger sampIe sizes. 

We have carried out time-domain simulations on 80Ox800 sampIes by using the 

unconditionally stable numerical scheme developed by de Raedt.18 For comparison, 

we have also calculated the cases where the distribution of impurities is homogeneous. 

394 



Fig.5. 

/\ 
aI 
~ 

o.a 

0.5 

DA 

V 0.3 

a. 

= 

Loc 

• 1\ 
I \ 
I \ 

I \ 
I \ 

I 

Ext 

L .. 75 

Loc 
\ 
\ 

\ 
\ 
\ 
\-L = 15 
\ 

o \ 

\\ 
o \ , 

0.0 0.5 1.0 1.5 2.0 2 3.0 
fermi Enetgy E 

Fermi-energy dependence of exp[ <lng>] at W 0=3.6, for two sampIe sizes. 
The phenomenon of metal-insulator transition is c1early demonstrated by the 
sharp variations of the conductance as ODe crosses the mobility edges. 

Figure 6 shows the comparison of the density variations of the two impurity 

distributions as a function of distance measured from the center of a 800x800 sampIe. 

For both fractal impurity sampIe (curve a) and homogeneous impurity sampIe (curve b) 
have the same overall density of p -0.34. A wave packet with <E>=O is created at 
the center of the square, by using the projection operator method.19 Figure 7 shows 

the calculated variation ofD=d<r2>/dT as a function oftime far three different values 

of W = 1, 1.5, and 2. For the homogeneous cases, denoted by H, D is a slightly 
decreasing function of T since the waves are localized, but the localization lengths are 

large due to the low density of scatterers. As a result the behavior is nearly diffusive, 

with D -const. For the fractal-impurities case, on the other hand, D is noted to be a 

monotonically increasing function of T for Wo<3. The values of s deduced for Wo= 1 

and 2 are 0.36 and 0.3, respectively. These results are consistent with the recursive 

Green's function calculations. 

The value of s decreases monotonically to zero at W c . Figure 8 shows the 
o 

variations of D for W 0=2.5 and 3.5 on fractal impurity. The case of Wo=3.5 shows an 

insulating behavior with D .... 0. Thus, the value of w C.lies between 2.5 and 3.5. This is 
o 

again consistent with the Green's function calculation which gives W C • ..;?, Iar E..o. 
o 

395 



Fig.6. 
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Time dependenee of d<r2>/dT for two values of Wo close to the metal
insulator transition, evaluated fram simulations on a single 80Ox800 
eonfiguration. Impurities are fractally correlated. 

The physics of our model may be intuitively understood as resulting from the 

eompetition of two long-range effects: the coherent backscattering and the fraetal 

correlation. For homogeneous 2D sam pIes, the coherent backscattering effect diverges 

logarithmically as a function of L in the weak scattering limit. In the case of fractal 

seatterers, however, the density decays as apower law, and therefore one expects the 

delocalization tendency to always prevail. This is the souree of the superdiffusive 

behavior. On the other hand, when the scattering beeomes strang, i.e., Wo large, the 

wave function can decay exponentially in areas where the loeal density of seatterers is 
high. Yet, due to the decreasing density of scatterers further out, there can always be 

leakage at the exponential-tail end of the wave function. This is evideneed by the 

sublinear decay of <Ing> for Wo> WC • An interesting question is whether such small 
o 

leakage, when eombined with the linear increase in the number of channels as L 

inereases, ean eventually result in the metallic behavior for Wo>W e at extremely 
o 

large L To investigate this possibility, we have carried out diagrammatic caleulations 

on a simplified model that takes into account only the power-Iaw eorrelation of the 

scatterer density but not the conneetivity that is inherent in the critical fraetal 

percolation network. This is described in some detail in the next seetion. 

4b. Analytic Approach 

Since the average density of impurities is a funetion of sampIe size, the goal of the 

analytie theory is to ealculate the conduetance of a sampIe of finite size Land study its 
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size dependence. The Hamiltonian of a 2D infinite medium still has the form of Eq. 

(4), 

(22a) 

butwith 

e(p) =2( cos px +cos Py), (22b) 

and 

1 iq·r. 
v(q)=-Eeie 1. 

Ni 
(22c) 

For a fixed 1., we require the impurity has the average density n(L) of the critical 
percolation cluster at size L. Thus, with Eq. (3), we have 

<ei> = n(L)Wo . (23) 

We also require the correlation between site energies obeys the form 

(24a) 

(24b) 

The power 0.11 comes from the density correlation function of the critical percolation 

cluster,16 i.e., 0.11 ~d -d =2 -91/48. The value a = 0.5736 is obtained by fitting to 
the density variation of the critical percolation cluster n(L) numerically. It is easy to see 
that C(Rij) satisfies the sum rule 

L L 

(25) 

Although the impurity geometry so-constructed simulate that of the critical percolation 
cluster up to size 1., yet the connectness property is neglected in Eq. (24). We will come 
to this point in later discussion. 

398 



Since we are interested in the conductance of a sampie of size L, the coherent

back scattering effect beyond the scale L will not be included in the diagrammatic 

calculations. From Bq. (22a) the single-particle Green's function G can be expanded as 

with 

1 

z -e(p) 
, (27) 

By using Eqs. (22)-(24) and (26) the self-energy 1: p of the averaged Green's function, 

Rp ={(~Glp))c 
1 -----, 

z -e(p) -1:p 

has the following expansion 

with 

and 

where 

{' = {' (1) + {' (2) + {' (3) +. 
Llp Llp Llp Ll p ... 

2 
n (L)Wo {'S( ) GO 

N LI q p-q 
q 

(28) 

(29) 

(30) 

(31) 

S(q) = r[C(R) -1] eiq 'R (32) 
R n(L) 

Equations (24b) and (25) guarantee that S(O)=O. It is also easily seen that 

S(q) =S( -q) =S(q +0), with 0 = 27t(ni +mj) for any integers n and m. Within the 

self-consistent Born appreciation, 1: p is determined by 

n2 (L)W 2 1 
1: p(z) =n(L)Wo I 0 1:S(q)-------

N q E -e(p -q) -1: (z) 
p-q 

(33) 

Ta study the transport, we must salve the Bethe-Salpeter equation for the 

averaged two-partic1e Green's function.9 In the case with impurity correlations, the 
formal solution of the Bethe-Salpeter equation has previously been obtained by Chu 
and Zhang in Ref. [4]. 
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Let us define the renormalized energy z and self energy .1p (z) as 

(34) 

and 

(35) 

Equation (33) can be rewritten as 

(36) 

After solving Eq. (36) numerically, we obtain Rp(z) which is required for the 

calculation of the diffusion constant. The density of states z is related to the imaginary 

part of the retarded Green's function by 

(37a) 

where 

(3Th) 

Since Eq. (36) has the same form as Eq. (3) of Ref. [4], the formulation derived in Ref. 

[4] is directly applicable here, except W2 is to be replaced by n 2 (L)W~ . From Eqs. 

(20) and (23) ofRef. [4], the bare and renormalized diffusion constants are 

where 

and 

and 
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oe(p) 
up =ap 

(38a) 

(38b) 

(38c) 



- - [ ß(E) , 1 1 D(w,E) =DBA(E) 1--E 2 _, 
N q q -iw / D( w, E) 

(39a) 

with 

(39b) 

Defining the localization length ~ as lim -iw =~ -2 (E) from Eq.(39a), we 
w- 0 D(w,E) 

obtain the following equation 

(40) 

The summation of q has an upper cutoff of qu which is limited by the mean free path 

f =3DEA(E)/vE. Wehavechosenqu =0.2/l. 

Far a finite size sampIe, the diffusion constant DL (E) in the w _ 0 limit can be 

written, from Eq. (39a), as13 

- - r ß(E) " 1 1 
DL(E) =DBA(E)l1-- E 2 -2 - J. 

N q q +~L (E) 
(41) 

Besides the upper cutoff qu. the summation q in Eq. (41) possesses also a lower cutoff 

qL = 1/L which excludes the contribution of coherent backscattering effect from scales 

greater than L as mentioned earlier. By solving Eqs. (40) and (41), we find 

(42) 

and 

~L(E) =q -2 {exp[ 4~ l-l}. 
u ß(E) J (43) 

The dimensionless conductance gL(E) of can be obtained from the relation given 

byWolfle and VOllhart,13 

(44) 
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It is worthwhile to point out that, in the limit L I ~ L »1, , Eq. (44) gives the Einstein 

relation gL(E) sDL(E)p(E). While, in the other limit, LI ~L »1, the 
conductance has an exponential form gL(E) oce -L/~L. Also, as the sampIe size L 

varies, the Hamiltonian Eq. (24) also changes, so do the quantities DL>P and ~L' Thus, 

in our model, an exponential form in Eq. (44) does not guarantee an exponential decay 

of gL in the localized regime. 

The results of gdE) evaluated from Eq. (44) are plotted in dashed lines in Fig. 3 

for E=O.5 and various values of Wo' It is seen that the behavior is qualitatively similar 

to that obtained by numerical simulation, thus providing further confirmation of the 

metal-insulator transition phenomenon. The phase diagram is plotted in Fig. 9, whieh 

also has similar behavior as Fig. 4, obtained from numerical simulation. At E=O.5, we 

have plotted .e n[D(L)] vs . .e n[L] for Wo=O.6 and 1.0. Two straight lines with slopes 

s=0.136 and 0.088 are seen, demonstrating the superdiffusive transport behavior in the 

extended regimes. In the localized regime, a subexponential decay is evident. Since 

d( lng L) I dL is a decreasing function of L for Wo> 2, one can ask if there is a value of 

L at whieh d(1ng0/dL changes sign. The accurate numerieal solution of the self

consistent theory is possible up to L =250, and d(lngL)/dL is found to be strietly 

negative in this regime for W ~2. If we consider only the density effect by assuming 

C( R) in Eq. (24) has the value one when R = 0 and zero otherwise, the self-consistent 

equations may be solved analytieally. It is found for W 0=2, d(1ngL)/dL can change 

signs at L=Lo :::5xl04. Moreover, Lo increases exponentially as Wo increases. That 

means if we consider only the effect of density decay, then for L> Lo the smallleaks of 

the exponential details of the quasilocalized states can combine to delocalize. 

However, the effect of connectivity, which is neglected in the diagrammatical 
calculation, is certain to push the crossover point to even high er values of L, if not to 

infinity. Therefore, until that point is resolved, the limiting L _ 0 behavior remains an 

open question. What may be conc1uded from the calculation is that, even if there is a 

finite crossover point Lo, that partieular sampIe size is extremely large and increases 

exponentially with Wo' 

5. CONCLUSIONS 

We have introduced two different models with long-range impurity correlations: 

an anisotropie model whieh breaks the isotropie symmetry, and a fractal model whieh 

breaks the macroscopie homogeneity. Both models show novel localization 

characteristics not seen previously. 

In the anisotropie model, an infinite-range correlation is introduced to the site 

energy in each layer. This correlation produces a ID scattering mechanism and gives 
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rise to a non-zero eritieal anisotropy below whieh all states are loealized and the system 

possesses 1D localization eharaeters. Above this eritieal anistropy, three-dimensional 

loealization behavior occurs. Our anisotropie model is different to models with 

anisotropie hopping,6 where the problem ean be mapped to the isotropie ease byan 

anisotropie scale change and therefore deseribed by the one-parameter sealing 

theory.20 Here the existence of the transverse eorrelation in the randomness precludes 

the applieation of the real-spaee renormalization teehnique as generally formulated. 

This is also evident in the extra term in Eq. (lOa) (due to the one-dimensional 

scattering that preserves the transverse momentum), whieh plaees the present model 

outside the realm of one-parameter sealing. Physieally, our model eorresponds to 

predominantly layered systems, such as the Earth's subsurfaee or random superlattiees, 

with lateral inhomogeneities that may be either inherent to the system or deliberately 

introdueed. 

Fig.9. Phase diagram as a funetion of Wo and E, ealeulated from the analytie 
approach. 

In the fraetal model, the impurity is fraetally eorrelated. We have studied the case 

of eritieal pereolation clusters in two dimensions. Both numerieal and analytie results 

show a metal-insulator transition in 2D. The transport behavior in the extended regime 

is shown to be superdiffusive. In the loealized regime the eonduetanee deeays with 

sampIe size in a subexponential behavior. The question about the L... 00 limiting 

behavior is examined, with the eonelusion that even if there is a erossover in behavior, it 

has to oeeur at transeendentally large sampIe sizes. An experimental verifieation of the 

present phenomenon would be important not only scientifically but mayaIso 

demonstrate potential applieations, e.g., in field-effeet transistors. 
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Fig.10. in(DL)vs in(L) at E=0.5 for Wo=0.6 and 1.0. The linear behavior 
dernonstrates the superdiffusive behavior in the extended regime. 
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INTRODUCTION 

We consider here a form of inverse scattering, that is, the remote sensing of a complex 
material by analyzing waves which have been reflected from it A generic form of this 
problem is encountered in, e.g., exploration geophysics, where seismic waves which are 
generated at the surface penetrate the earth, scatter from inhomogeneities and, after 
possibly many multiple scatterings are reflected back to the surface where they are recorded 
and analyzed. In a simplified model consistent with the sedimentary process in many areas 
the earth is considered stratified, that is, the material rroperties are assumed to vary only 
with depth. In this case there are efficient algorithms ,2 for recovering medium properties 
at any depth provided the scattering data have been recorded perfect1y. In practice, 
however, these algorithms become unstable as they try to recover information from large 
depths. 

Photonic Band Gaps and l.ocalization, Edited by 
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There is a theoretical reason why penetration to any depth should not be possible in 
practice. For stratified media so complex they may be considered random, the phenomenon 
of localization obtains: single frequency waves are attenuated exponentially with depth 
solely by the mechanism of random multiple scattering. The application of this concept to 
classical waves has received much attention recently,3 and in particular estimates of the 
earth's localization length have been obtained.4 However, the usual form of localization 
theory is not, stricdy speaking, valid in this context since the medium is by no means a 
stationary random function of position. That is despite a stochastic microstructure there are 
significant large scale, i.e., background, trends in the material parameters.4 In this paper we 
develop a stochastic inverse theory complementary to the usual deterministic methods, for 
recovering large sc ale trends at large depths in the presence of a stochastic microstructure. 

The forward theory generalizes localization to include the two spatial scales, and 
further puts the theory into the time domain to analyze the reflection of pulses from such 
media. We assurne that the pulse width is intermediate between the two spatial scales. 
Thus, while in the absence of a macroscale we include localization phenomena, in the 
absence of a microscale we recover geometrical acoustics. The present theory, which was 
developed in Refs. 4-13, unifies the two quite different wave propagation regimes. For a 
more comprehensive review, including inverse problems, see Ref. 5. 

We consider here the backscattered signal when an acoustic plane wave pulse is 
incident on a medium as described above. This signal is not stationary in time. However, it 
is shown to be locally stationary. That is, if a time window of duration on the order of many 
pulse widths is extracted from the data record, it is a locally stationary Gaussian process 
whose statistics vary with the location of the window. We show how for each time window 
the power spectrum can be calculated by solution of an infmite system of hyperbolic 
equations. These "transport equations" do not depend on the details of the microstructure 
but only on some averaged second moments. 

For the inverse problem we show how to use the forward theory to construct a 
maximum likelihood estimator for the medium properties. It is not, however, possible to 
recover all properties, but only a single function which includes information on the large 
sc ale background variations as weIl as information on how the microstructure statistics vary 
when viewed on the macroscale. Furthermore, one cannot recover how this function varies 
with depth, but only how it varies with travel time to a given depth, where wave travel time 
is measured relative to the macroscopic background. This situation is analogous to the 
deterministic theory, where for normal incidence on~ impedance can be recovered, and 
only as a function of travel time, not of true depth. l , However, we show here that for 
constant density acoustics all macroscopic variables can be recovered, and recovered as 
functions of depth, by combining data from two distinct angles of incidence. 

REFLECTION OF A PULSED PLANE WA VE FROM A RANDOM SLAB 
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We consider the acoustic equations for pressure p and velocity u 

p~+vp=o 
IOp 
--+V·u=o 
K dt 

(I) 



where P is density and K is incompressibility. Let x = (X,y,Z)T. We next represent a slab of 
stratified medium, a function of depth z only, occupying -L < z < 0, which has a slowly 
varying background and a stochastic microstructure. To do this let V(Zhq) be, for each 
fIXed Zh a mean zero stationary random process as a function of Z2. Tbe statistics, 
however, may vary with ZI. If e is a small parameter, V(Z,z/e2) then has a microstructure to 
background length scale of e2. We now let 

1 
forz>O 

Ko 
1 1 

--= -- (l+v(z,z/e2» for-L<z<O (2) 
K(z) KI(z) 

1 
forz< -L 

K2 

Tbat is, 1/K, is the spatially varying mean of 1/K in the random slab, which is sandwiched 
between two homogeneous half spaces. We take a piece-wise constant density 

{
PO forz> 0 

P= PI for-L<z<O 

P2 forz< -L 

Tben the background speeds are 

cj = ~Kj / Pj for j = 0,1,2 

and we denote by c(z) the appropriate Cj for each of the regions in equations (2) and (3). 

(3) 

(4) 

We next consider a pulsed plane wave incident from z>O at incidence angle e. Let f(t) 
be the pulse shape and let the incident field be 

( 
sine ) 

uin<: = .Jf",1 f(.!.[t - sine x / Co + cose z / Co]) 0 
epoco e 

-cose 

Note that the pulse width is of order e , intermediate between the macroscale and 
microscale of the medium. Tbe factor e-l12 is inserted to preserve energy as E is varied. 

Tbe horizontal slowness is 

sine 
K=--

Co 

(5) 

(6) 
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Setting 

s= t-ICX , 

we seek a solution of (1) of the fonn 

u(t,x) = ii(s,z) 

p(t,x) = p(s,z) 

We introduce the scaled Fourier transfonns 

u(z,ro) = J eiaJa1e ii(s,ro) ds 

f(ro) = J eiaJa f(s) ds 

p(z,ro) = J eiaJa1e p(s,ro) ds 

(7) 

(8) 

(9) 

Insertion of (9) and (7) into (1) yields four scalar equations for u = (Ui' u2, u3) and p. The 
fmt two equations yield that 

A IC A 

u1 =-p 
P 

U2 = 0 . 

Then using (10) we obtain the two coupled equations 

0d~ = i: (~ _ ~) p 

op iro A 

-=-pu 
dz E 3 

(10) 

(11) 

To study reflections caused by the incident field (5), we must decompose u3 and p 
into up and down-going waves. Let the (oblique) impedances be 

~j=ppJ~I-IC2c/ forj=0,1,2 (12) 

and let ~ be the ~j for the appropriate region. Let the (oblique) background travel time be 

z 

( ) _f~1-IC2C2(Z') d ' 'tz,IC- , Z 
c(z) 

o 

Then we define the upgoing wave A and the downgoing wave B by the equations 

p = ~1/2 [A eimt1e _ B e -icat1e] 

u3 = ~-1/2 [A eimt1e + B e-imt1e ] 

(13) 

(14) 

Equations for A and Bare obtained by insertion of (14) into (11). However, since we 
shall only be interested in reflections, we write instead the equations obtained for the 
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reflection coefficient 

r=A/B (15) 

For z in (-L,O) the equation becomes 

dr iro {-2it11C/e 2r 2it11C/e r2} -=--n e - +e 
dZ e 

+l.. d~ {e-2it11C/e _e2it11C/e r2} 
2~ dZ ' 

(16) 

where the two-scale stochastic process n is given by 

( 2) v(z,z/ e2) 
n z, z / e ,1C = --->-;==~~= 

2cI (z) ~1-1C2 c/(z) 
(17) 

Boundary conditions for r are obtained by noting that p and u are continuous across 
interfaces and, hence, so is 

(18) 

The downgoing wave at z=O+ is given by the Fourier transform of the incident field (5) 

(19) 

We then obtain from continuity of (18) that 

( + ) (r(o-,ro)-rl(O») 
r 0 ,ro = ( ()) , 1- rl(O) r 0-,ro 

(20) 

where 

(21) 

Similarly, there is no upgoing wave below Z= -L and, hence, A and r are zero there. Thus, 

r(-L+,ro) = rl(-L) e-2it11CC- L)/e (22) 

(23) 

Here rl(O), rl(-L) are the interface reflection coefficients. 
To summarize, we solve for the reflection coefficient r in (15) by starting with the 

initial condition (22) at Z= -L+. We next solve the Riccati equation (16) to propagate r from 
z =-L+ to z=O-. Jump condition (20) now gives r at z=O+, just above the random slab, on the 

411 



side of the incident wave. To compute the reflected pressure at, say, x=O, z=O we subtract 
the incident field there. Thus, using (14), (15), (19) we obtain 

(24) 

The reflected wave at x=z=O is then given for all time t by inversion of the Fourier 
transfom (9) 

(25) 

ST ATISTICS OF TUE REFLECTED PRESSURE 

We next show how to compute the autocorrelation of the reflected pressure, 
asymptotically for small E. In particular, consider 

(26) 

By multiplying two expressions of the form (25) and taking expected values, we obtain 
(with * denoting complex conjugate) 

I(t,t)=lim _1_ Jdoo JdOO f(OO )f·(oo )e-i (IDt+ID2)iIZ 
&!o (27t)zE 1 2 1 2 

(27) 

eit (ID2 -IDt)/' E[r(O+,OOI ) r(o+ ,ooS] 

Let 001 = 00 - Eh / 2, 001 = 00 + eh / 2. Then formally letting e..t. 0 we obtain 

( -) Ir ,-I t,t = - doo e-10lt S(t,oo) , 
27t 

(28) 

where 

S(t,oo) = If(oo)r A(t, (0) (29) 

Of course, expressions (28) and (29) depend on existence of the limit in (30). We will 
show below how to calculate this limit, but first note the interpretation of these equations. 
Since the time difference in (26) is Et the proper time scale for significant autocorrelations 
is of order E, Le., on the order of the intermediate scale of a pulse width. Let us extract from 
the total data record a time window centered at macroscopic time t and of duration on the 
order of many pulse widths, measured by Et. Then for fixed t, equation (28) gives the 
autocorrelation function of a stationary process within the extracted window. It is the 
Fourier transform of apower spectrum S(t,OO), where 00 is dual to L Thus, our time 
windows are a collection of locally stationary processes with power spectra that vary with 
the location of the window center, macroscopic time t. 

For N,M nonnegative integers let 
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(31) 

To calculate A in (30) we will get equations for the expected values of 

fN.M(z,m, t + (N + M)'t(z») = ;71: J eilh rN.M(z,m,h) dh (32) 

Then from (31), (32) and (16) we obtain 

-N.M -N.M . 
~ + (N + M) (h ~ = 1m N n[ZfN.M _ e-iI11c/ E f N-l•M _ e2i111c/e r N+l•M] 

dZ dZdt e 

_ i: M n[ ZfN.M _ e2i111c/E f N.M-l _ e -2i111c/e r N.M+l ] (33) 

+ ... 

where ... are rapidly-varying terms which average to zero. The system (33) is of the form 

df - 1 ( 2)-~+ uor=- u z,'t(z)/e,z/e r+ .. · 
aZ e 

(34) 

where Uo is a deterministic operator and U is an infinite matrix that has mean zero, varies 
periodically on the 't(z)/e scale, and is random on the 'ZIe2 scale. For small e, Erf] can be 
calculated by a limit theorem (see Ref. 5, Appendix B). It satisfies an equation ot die form 

(35) 

where 

- 1 T -
UU = lim - fd't Jdz' E[U{z, 't, z'} U(z, 't,O)] 

Tt- T 0 0 
(36) 

Letting 

(37) 

we find that WN·M satisfies the transport equations 

(38) 

where 
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1-
a(z) = - JE[ V(z, z')V(z, 0)] dz' . 

40 
(39) 

In particular, we look at the "matched medium," i.e., the case where ~I (0) = ~o so that 
the homogeneous half space in z>O is impedance matched to the background effective 
properties oftherandom slab. Then rt(O)=o so that r(O+,m) = r(o-,m). We also let 
WN = WN~ to obtain 

oWN + 2 ~1-lC2C/ N oWN = 2N2 m2 a {WN+I _ 2WN + WN-I} 
oz Cl ot C/(I-lC2c/) (40) 

WNlz=_L = (rt(_L»)2N ö(t) 

From equations (29) - (32) the power spectrum is obtained from 

A(t,m)= WI(0, t,m) . (41) 

For the inversion we will use an adjoint form to (40), (41). Let VN satisfy 

oyN _2N~I-lC2CI2 oyN = -2m2a {(N +1)2 y N+I_2N2y N +(N _1)2y N-I} 
oZ CI Ot CI2(I_lC2CI2) (42) 

yNlz=o = ÖN.I ö(t) 

Then 

A(t,m)=yo(-L,m,t) . (43) 

FOT a unifonn background. with CI. a constant these equations can be solved in closed 
form, yielding 

A(t,m) = ( _ )2 
l+m2at 

(44) 

where 

_ a 
a= (1 2 2)3/2 CI -lC CI 

(45) 

In particular, consider normal incidence lC = O. Then A can be expressed in terms of the 
localization length 

c 2 
l(m) =_1- (46) 

am2 

as 

A( )_ cll(m) t,m - 2 
[l(m) + CI t] 

(47) 
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Thus, when each time segment of the data is Fourier analyzed, its frequency dependence is 
determined entirely by that of the localization length. 

In addition to including localization, its effects in the time domain, and the 
generalization of these phenomena to media which do not have a constant background, the 
transport equations also contain geometrical acoustics for the macroscale. Thus, if we take 
(X = 0 in (40), the N=1 term which determines A via (41) is obtained by propagation of a 
delta function with the appropriate reflection coefficient factor along the N=1 characteristic 
of this equation. But this amounts to propagation along a geometrical acoustics ray 
reflected from the basement interface at z = -L back to the surface at z = O. For further 
interpretation along these lines, see Ref. 5. 

THE INVERSE PROBLEM 

Some simplification of the transport equations may be achieved by making the travel 
time transformation (13) in (42), replacing z by 't = 't(Z,lC). Let z('t, lC) be the inverse of this 
transformation. Then (42) becomes 

where 

a~N -'2N a~N = -2oo2ii('t,lC){(N + 1)2 y N+1 _2N2yN +(N _1)2yN-I} 

yNI~=o = 0N,l o(t) 

(48) 

(49) 

The characteristics of equation (48) are now the straight lines t = to-2N't. Furthermore , for 
the infinite slab problem, letting L ~ 00 in (43) would correspond to letting 't ~ -00 in the 
solution of (48). However, by considering propagation of the solution along characteristics, 
we see that VN cannot change for't < -t/2. Thus 

A(t,oo) = yO('t = -t / 2,00, t) (50) 

To picture the solution of (48), note that the delta function propagated along the N=1 
characteristic is scattered into step functions by the righthand side of the equation. The step 
functions are then likewise propagated along characteristics, scattered, propagated and then 
scattered again into successively smoother functions. Details of this expansion are given in 
Ref. 7. Once this analytically calculable singular part of the solution is subtracted, the 
remaining equation is solvable by a stable numerical scheme.8 

We can now consider the statistical inverse problem, that of determining the smoothly 
varying background of the medium by analyzing reflection data. First note from (48) that 
only the function ii( 't, lC) drives this equation. Thus, for a single incidence angle lC only the 
function ii can be recovered and only as a function of the travel time 't, not as a function of 
true depth z. We will first show how to accomplish this, and then show how data from two 
distinct angles of incidence can be used to recover both Cl and (X as functions of true depth 
z. 

We will recover ii by a layer-peeling algorithm. Thus, consider a grid in time, 
'tj = j.1, j = 0,1,2," , and approximate ii('t, lC) as piece-wise linear between 'tj and 'tj+1 . 
Let iij = ii( 't j, lC) and assume that iio,ii l ,· "iij_1 have been determined. We are to recover 
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the next layer ä,j from knowledge of the preyious layers äo,ä,,.·.,äj_, and the power 
spectral estimates from the next time window S(tj,OOt), k = 1,2,.··,Nf at frequencies 0\, 
and time corresponding to the next layer at tj = -2tj. These power spectra are estimated by, 
say, Fourier transform of sampled reflection data. 

Now suppose that ä j were known but S(tj,oo ~ k = 1,2,.··,Nf were not. From the 
thec,?ry of spectral estimation for a Gaussian processl we know that the probability density 
of S is exponential with mean 

(51) 

A can be obtained by solution of (48), (50), and we emphasize its dependence on 
äo,ä,,.··,äj_l by writing A = A(tj,OOt;ä(e») . Then putting 

(52) 

we obtain the probability density of the spectral estimates in the form 

(53) 

Hnow äo,ä,,.··,äj_, as weIl as 5(t1,001o:)' k = 1,2,.··,Nf are known, the expression (53) is 
a function of the single variable a j. It is the likelihood function for estimation of this 
parameter and the value of a that maximizes it is the maximum likelihood estimator. This 
one-dimensional maximization can be accomplished numerically using a subroutine for 
solving the transport equations as described above. More details are given in Refs. 5,7,8. 
Further refinements are: allowing for an additive white noise error component in the 
spectral estimates (merely replace S br S+<J2 in (53»,8 and a Bayesian estimator that makes 
use of the fact that ä( t, K) is smooth. 3 

Suppose that data from two distinct angles, corresponding to K"K2, have been inverted 
to yield ä(t,KI ),ä(t,K2) . We will show how to combine these two functions to yield a(z), 
CI(Z). Let 

1: 1/3 

ß( t, K j ) = f[ ä( t', !Cj )] dt', j = 1,2 . (54) 

° 
Substitution of (49), (13) into (54) yields 

i(1:.1C) 1/3 

ß(t,K)= f(a(z)/cI4(Z») dz=ß(Z(t,K») . (55) 

° 
Thus ß( t l , Kl ) = ß( t 2 , K2) if and only if z( t l , !Cl) = z( t 2 , K2) . That is, matching ß for the 
two angles synchronizes the depths from which the two signals emanate. Let g(t,K"K2) be 
the "time warp" that accomplishes this synchronization. That is, define g so that 

(56) 
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Then 

(57) 

Differentiation of (56) and use of (54) yields 

(58) 

Differentiation of (13) and (57) yields 

(59) 

which can be inverted to give 

(60) 

The algorithm is then as folIows: first ß('t,KI ),ß('t,K2 ) are computed from (54). Then 
the time warp g is computed from (56), and its derivative from (58). Now z( 't, Kl ) can be 
computed from integration of (59), while the propagation speed Cl at each depth z is 
computed from (60). Finally, a.(z) is determined from (49) and knowledge of cl and Cl. 

4 

3 

o 2 

o ~------------------------
o 2 4 6 

Z 

8 

Figure 1. Noisy velocity profile. 

10 12 

An example of this inversion method is illustrated in Figures 1-3, which are reprinted 

from Ref. 5*. In Figure 1 a simulated sound speed profile is depicted. The background 
speed CI(Z) varies from an inital 3 km/sec to 1.5 km/sec at the trough of a low velocity 
region, and then returns to 3 km/sec. Superimposed on this background are 4500 small 
layers each of width 2.7 m and within which the speed varies randomly and independently 
from microlayer to microlayer. FIuctuations of I/K are 30% of the mean, and we have 
taken the value E=.03 
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Figure 2. Inversion results when Cl is known, for plane waves incident at three different angles. 
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Figure 3. Inversion results with unknown Cl, from plane waves incident at the two angles 9 = (fJ ,200. 

*Reprinted with permission from SIAM Review, volume 33, number 4, pp. 519-625. Copyright 1991 by the Society for 

Industrial and Applied Mathematics, Philadelphia, Pennsylvania. All rights reserved. 
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We generated 90 independent simulations of the medium and computed for each the 
reflected pressure when a plane wave pulse is ineident at angle a for three incidence angles 
a = 0° (normal incidence), 10° , 20°. The calculations were done by a computer code which 
is described in Ref. 5. Power spectra were estimated at times ~ with tj+l-tj = .326 and for 30 
frequeneies with Olt = 1 and 0lt+1-0lt =.36. 

First ä was computed by the layer-peeling algorithm by maximizing successively 
products of 90 likelihood functions of the form (53). Taking a as a known constant then 
enabled us to construct CI (z) from the data for each of the incidence angles. The three 
results are shown in Figure 2. 

Of course in practice a is not known but must be estimated from the data along with 
CI(Z). We accomplished this by the theory described above, using the two incidence angles 
a = 0° and a = 20°. The results are in Fig. 3. 
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INTRODUCTION 

We present several physical situations connected with wave propagation in random 

media where the classical approaches, namely the Effective Medium Theories (EMT), cannot 
provide the correct answers and we set out the new approach we have developed to go 
beyondEMT. 

We will consider the electromagnetic propenies of fractal aggregates and composites 
made with conducting inclusions in a dielectric matrix. The inclusions can be made with 
metal, carbon, conducting polymer or other conducting or semiconducting material. 

Such composites have many applications: radar stealth, infrared controlled emissivity, 
the PIC (Positive Temperature Coefficient) effect, electromagnetic shielding, radomes, ... 

During the last two decades, the electromagnetic (optical, infrared, microwaves, ... ) 

properties of composites have been the subject of an intense interest. This is due in part to the 

need for an understanding of the properties of various technological materials, but the basic 

physics of the electromagnetic response leads to interesting questions about the theoretical 

description of physical phenomena in disordered materials. As a matter of fact, despite much 

work, a complete theoretical approach for this very difficult problem was still lacking. 

Photonie Band Gaps and Localization, Edited by 
C.M. Soukoulis, Plenum Press, New York, 1993 421 



The existing theories work only for a small range of concentrations and/or for a small 

range of frequencies of incident radiation and a rather large proportion of experimental results 

is not clearly understood. 
In contrast to other theories, our approach takes fully into account the microscopic 

structure of the composite. Since fractal aggregates often occurs in such heterogeneous 
systems, we had to calculate their electromagnetic properties which turned out to be an 

interesting problem by itself. In this case, we calculate their polarization and/or their cross

sections. We use these results to calculate the electromagnetic properties of 20 and 3D 

composites. 
Part I is devoted to the definition of the problem. In Part 11, we review briefly the 

traditional approaches for the modelization of the electromagnetic properties of composite 
systems and in particular the Effective Medium Theories. The spirit of our theory is presented 

in Part ill. We present briefly the theory we have developed to calculate the optical properties 
of granular metallic films. Our theory is now more general and has been extended to many 
other cases, but the model for metallic conductors in 20 is, however, still interesting because 

it is more intuitive than the developments and it gives the essential ideas to go beyond the 

effective medium theories. Our new model for the electromagnetic properties of fractal 

aggregate and composites is presented in Part IV. 
elose to the percolation threshold, we find two main regimes. The first one can be 

identified with the theory of percolation at small frequencies. We predicted the second one for 

the first time. It leads to a different frequency dependence of the electromagnetic properties. 

We compared our theory with experimental results. It gives satisfactory answers inclu

ding the cases where classical theories are wrong but which are essential for the applications. 

I - DEFINITION OF TUE PROBLEM 

We study a composite made of spherical (or quasi-spherical) conducting grains placed in 
a dielectric matrix. 
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Figure 1. The two-dimensionnal and the three-dimensionnal cases 



The problem that we want to solve is to calculate the Reflexion, Transmission and 

Absorption coefficients of a layer of composite. It can be (see figure 1) : 

- a discontinuous planar ftlm made with grains randomly disposed on a substrate: we 
will call it the two-dimensionnal situation, 

- a layer of composite made of conducting spherical inclusions randomly dispersed in a 

dielectric matrix with thickness e: this is the three-dimensionnal situation. 
When it has areal physical meaning (to be discussed later), we will also define an 

effective dielectric permittivity ee of the mixing. ej is the permittivity of the insulating 

matrix and em the one of the metallic (or more generally conducting) inclusions. We denote 

by p the volumic concentration of the inclusions and a their radius . 

• ••• •• • •• ••• ---->-

"r-"" r 
e. e 

I m 

e e 

Figure 2. The effective medium equivalent to the composite 

11 - BACKGROUND 

In this part, we briefly review the different theories which are frequently used to 

describe the electrical and electromagnetic properties of composites. The first section deals 

with the Effective Medium Theories (EMT) and, in the second section, we briefly remind the 
theory of percolation. 

1 - Effective Medium Theories 

Composite systems are traditionally studied through Effective Medium Theories (for a 
review, see e.g., Ref.1 and Ref.2) and improvements of them. These theories are supposed 

to be valid when the particles are much smaller than the wavelength, and to predict the 
effective dielectric constant of an equivalent homogeneous medium. 

We will not detail the different EMT, since it has been done by many authors. The EMT 
which are frequently used to calculate the properties of composites are the following: 

- The Looyenga-Landau-Lifschitz theory3,4 (small contrast) 

- The Clausius-Mosotti and Maxwell Gamett theory5 (small concentration) 

- The Bruggeman Theoryli (self consistent theory which predicts the existence of a 

percolation threshold) 

We have quoted these three theories because they represent some limits (sm all 

concentration I small contrast) or because they are simple and contain a real physical meaning. 

But, there exist many other "mixing laws" which are derived by making similar approxi

mations (Böttcher, Krazewsky, ... ). For a review of these theories, one can refer, for 
example, to Ref.l and Ref.2. 
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The EMT have been shown to work quite weIl for low concentrations or for low 

contrast. But it has been increasingly recognized7-10 that they could not describe correct1y the 
electromagnetic properties of dielectric-conductor composites at intermediate concentrations, 
for example, near the insulator-conductor threshold. 

Some attempts have been made in order to fix the effective medium theories.11-14 Either 
they introduce arbitrary parameters and loose their predictive character, or they are still in 
poor agreement with the experimental results. 

In the case of dieleetric-conductor composites, according to us, the main reason for their 
failure at higher concentrations, and in particular in the vicinity of the insulator-conductor 
threshold, reHes on the fact that a proportion of the inclusions can be close enough to form 
aggregates where the current can flow or where there is a strong electromagnetic interaction 
via induced polarization between the inclusions (see figure 3). 

~ 000 
o 0 ~ 00 o ~ 0(P:) 
000 0000 

PI P2 

Figure 3. Schematie representation of a eomposite for increasing concentration 

2 - Percolation theory: areminder 

The concept of percolation was invented and analyzed by Broadbent and Hammersley in 
1957.15,16 

Percolation is a theory which is able to describe the geometrical properties of various 
classes of composite systems. Let p be the volume concentration of inclusions in the matrix. 

Let Pe the percolation threshold above which an infinite cluster of inclusions appears. 
If the percolation probability p .. is defmed as the volume fraction occupied by inclusiöns 

belonging to the infinite cluster, we have: 

p .. = 0 at p S; Pe 

P .. *Oatp > Pe 
(P .. = lfor p = 1) 

The scaling theory of percolation17,18 shows that near the concentration threshold Pe' 

there exists a typicallargest cluster size s of spatial extension ~ .We have the following 
relations: 

and: 

where a is the size ofthe inclusions and B and B' are numerical constants of order unity. 
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In addition, we have for the percolation probability: 

for p ~ Pe 

for p ~ Pe 
p close to Pe 

The two latter relations imply, for example, that the infinite cluster (and also the finite 

clusters) is fractal up to a eertain seale. In a box of size ~, the mass of the infinite cluster is: 

where d is the dimensionality of space, and then: 

In addition, for all seales L < ~ p 

Moa (L) oe Ld - ~Iv 

whieh is exaet1y the relation defming a fractal with fractal dimension: df = d - ßIv 

Aetually, for the purpose ofthe present paper, we note that aggregates with a noticeable 
size do exist with a strong oeeurrenee probability even at eoneentrations weIl below the 

percolation threshold. 

The electrical conduetivity near Pe has been shown to exhibit a new power law 

dependence on p - Pe with a characteristic critical exponent t : 

Oe = 0 for p ~ Pe 

Oe = Om (p - Pe)t for p ~ Pe 

Table 1. Values of the percolation exponents at d = 2 and d = 3 

d ß V t 
s 

s s+t 

2 0.14 1.3 1.3 1.3 0.5 

3 0.41 0.9 2.0 0.74 0.27 
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3 • Deutscher et al. models 

In a first approach, Yagil and Deutscher19 have tried to step out of the EMT. They 

consider the case of an electromagnetic wave incident on a granular metallic film and explain 

that in an optical measurement with wavelength A., one probes whether, on the scale A., 
the sam pie is essentially connected (metallic) or disconnected (dielectric). Then, in the limit of 

large values of A., the sample is either uniformly connected (p > Pe) and then T has the 

same value as for a metallic film: T '" 0 , or it is uniformly disconnected ( p < Pe) and 

T", 1 . By a renormalization procedure up to scale A., they derive near Pe the following 

form for the transmittance T: 

IIv 

T=T +(~) (p -p) 
e 21ta e 

At the threshold their theory predicts the transmittance is constant as a function of the 

wavelength. This phenomenological theory provides achalienging approach to the problem 

but cannot provide a detailed comparison with experiments, since, for example, it does not 

predict any value such as Te. 

Moreover, it is essentially a one-parameter approach and we will show that any relevant 

theory is a two-parameter one. Actually, as we will see, we predict a different behavior, in 

particular the reflectance (and also the transmittance) is not exactly constant at Pe in our 

theory. Also, we will obtain two regimes as a function of concentration near the threshold, a 

linear dependence followed by a stronger one. 

RecentlY' a scaling based model was suggested for the optical properties of 

semicontinuous 2D meta! films.20 The outlines of this approach are the following: 
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- The effective dielectric constant has no physical meaning dose to Pe. Moreover, one 

must average the reflectance and transmittance on different areas, where the film has 

different contributions. 

- The local optical response is deduced from the local complex ac conductivity on the 

relevant lengtlt scale. This quantity is described by a bimodal distribution function, 

taking into account tlte ac conductivity of tlte metallic grains and the interduster 

capacitance. 

- The relevant lengtlt scale is much shorter than tlte optical wavelengtlt and is given by 

the anomalous diffusion relation21 L(ro) - Lo (1/k)2+9 where k is the wavenumber, e '" 
0.8 for 2D and Lo is a coefficient of the order of unity. 

- The total ac conductivity of a square of linear size L<~ is calculated numerically. 



III - THEORY OF AGGREGATES: THE SPIRIT OF OUR APPROACH 

1 - Introduction 

In the following, we will study an electromagnetic radiation with pulsation ro and 

wavelength in vacuum 1.0 (it can be infrared, microwave, ... ) perpendicularly incident on a 

disordered composite. The latter is made of metallic grains of size a« 1.0 randomly 

dispersed in a dielectric matrix. The filling factor is denoted by p. 

The idea of the theory is to calculate a physical quantity (like the absorption A, for 

example) for an aggregate (C) depending on its size and frequency and taking into account 

interactions with other aggregates: A(C,ro). 

Then, we sum all the contributions of the aggregates of various shapes and sizes to 

obtain the macroscopical quantity: A(ro) = l:(C) A(C,ro) n(C) where n(C) is the probability 

of the cluster (C). The statistic of occurrence of the clusters can be given by the theory of 

percolation or by any other theory of aggregation in a composite. 

2 - Two-dimensionnal films 

Our theory of aggregates was first developed in 1988 for the case of metallic 

discontinuous films in 2D. Our theory is now more general and has been extended to many 

other cases, but it appears to us that the first version of the theory for metallic conductors in 

2D is, however, interesting because it may be more intuitive than the developments and it 
gives the essential ideas to go beyond the effective medium theories. 

So we present now briefly our approach for the case of granular films developed 

elsewhere.22,23 We consider, as an example, the case of disordered metallic films in the 

infrared wavelengths. 

Experiments have been performed by Vagil and Deutscher24 and by Gadenne and 

Lafait8,25 on disordered metallic film with Au grains of 40 to 500 A. Disagreement with 

effective medium theories is very clear, e.g., in reference,8 where at the percolation 

threshold, reflectance can be found experimentally to be approximately 30 %, whereas 

effective medium theories cannot yield better than 15 % when used with relevant values of 
the physical parameters. 

Following the general approach indicated in the previous section, we have developed a 
microseopie theory for the reflection by a disordered metallic film. This theory takes fully into 
account the geometrical structure of the clusters of metallic grains as given by the percolation 

theory, as well as other ingredients. This produces an essentially no free parameter theory, 

for the dependence of the reflectance as a function of the wavelength I. and of the concen

tration p. It gives results in good qualitative as weIl as quantitative agreement with the 

experimental results as can be seen on the above mentioned example for which we recover a 

30 % reflectance up to a few percent, in contrast with effective medium theories. These 

results have been announced in a first paper.22 The theory for the reflexion properties in the 

infrared has been first developed23,26 and the paper27 deals with the absorption properties in 

the infrared. We summarize here the results of our 2D theory. 
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We discriminated22 four regions of concentrations corresponding to four different 
situations (see Figure 2): 

• The "dielectric region" (A): it is defined by ; < 'A/2x and P < Pe . All the 
clusters except very exceptional ones are sm aller than the wavelength. Thus R,.. 0 . It is 
the "dielectric" situation. It can be calculated by the effective medium theories. 

• The "threshold region" (B): it corresponds to 'A/2x < ; . There is a significant 
number of finite (or infinite) clusters with extension larger than ')J2x so there is already a 
significant reflection due 10 these fmite but large clusters. We used the geometrical description 

of the clusters23 as it appears from the scaling theory of percolation in order to calculate the 

expression for the reflectance R. The details of the calculation can be found elsewhere.26 We 
obtained for the reflectance Rm due 10 the meta! in this range of concentration: 

where Il and TI are two numerical constants of order unity 

In particular, for p = Pe' we have: 
-~'/v 

~(P=Pe) = TI Pe p(e,'A) (~) 
2xa 

with ß'Iv'" ßblv ,.. 0.4 in two dimensions. 

If we rewrite the expression for the reflectance in the following form: 
-)Nv IIv 

Rm = K 'A (I + K' (p - Pe) 'A ) 

we see the difference between our result and the one of Yagil and Deutscher19 is the presence 

of the factor 'A -WIv which implies that, for p = Pe and 'A ~ 00, Rm tends to 0 instead of 
being constant. 

For gold in the near infrared, the reflection coefficient p(e,'A) slowly increases with 'A 

and then saturates. In contrast, (A/2xa)-WIv decreases when 'A increases. So, Rm(P=Pe) 
is almost independent of the wavelength in a range of wavelength depending on the materials, 

but is predicted 10 finally decay 10 zero for larger 'A. 
The reflectance R of the film including the effects of the meta! and of the substrate has 

the following expression:26 

R=p +T1Pe(p(e,'A)-p ) (~)-~"V(I +1l(P-Pe) (~)lIVJ 
s s 2xa 2xa 

where Ps is the reflection coefficient on a strip of substrate. 
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• The "net region" (C): it is defined by ~ < )../21t but ~ > ')..jl0 and p > Pe . The 

mean radius of the holes in the infinite cluster is smaller than ')..j21t. The partial reflectance of 

these holes of size sm aller than ')..j21t will increase the reflectance rapidly . 

• The "metallic region" (D): it is defined by ~ < )../10 and p > Pe . The holes are 

much sm aller than )../21t, so the reflectance R"" p(e,)..) is about the same as the reflectance 

of the full metallic film. 

The schematic behavior of the reflectance versus concentration is represented in figure 4. 

~---l---f------

(A) 

Ps I----=-=-=-=r..-----
1 ~ 

o 
Pe 

(D) 

1 
Concentration P 

Figure 4. The schematic behavior of the reflectance versus the filling factor as predicted by the theory of 

aggregates in the 2D case 

III - THE THEORY OF AGGREGATES: THE GENERAL NEW APPROACH 

1 - Introduction 

In the previous section, we presented the theory of aggregates for discontinuous metallic 

films in the infrared which is applicable for good metals, i.e., when the absorption is sm all 

and for 2D systems (thin films). We present here the theory that we have developed since to 

treat the general case and, in particular, to take into account metallic or non-metallic 

conductors and three-dimensional systems. 

Other approaches have been proposed, based on scaling assumptions.20,28 Our present 

approach turns out to be more predictive: we write an equation for the current on an aggregate 

taking into account its environment; the solution of the equation gives the polarization and/or 

cross-section of one single aggregate. Then, the properties of the composite are obtained by 

an appropriate summing of the properties of the aggregates. The distribution of form and size 

of the aggregates can be given by an aggregation theory. For the purpose of the present letter, 
we will restriet to the case of the usual theory of percolation. 
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In contrast to all the previous approaches, we find two main regimes in frequency for 

the dielectric permittivity. The first one can be identified as the theory of percolation at small 

frequencies. But, we predict a new regime at high frequency which is related to the 

propagation in the aggregate and leads to a different frequency dependence for the 
electromagnetic properties of the composite. 

When one wants to calculate the electromagnetic response of composites including 

aggregates, there are various cases of "electrical microstructure." The first main case is when 
every two grains are separated, they are never close enough to allow the flow of the current. 

In this case, there exists generally a narrow layer of insulator between the two inclusions. 

The electromagnetic properties of this kind of composite are generally the same as the 

properties of insulators. The dielectric permittivity is then quasi independent of frequency and 

is only weakly dependent of the aggregation in the composite. The second case is when the 

two grains are in electric contact (the current can flow from one to the other). In this case, we 

cannot neglect the effects of aggregation. For the present paper, we restrict to the second 

case, i.e., we neglect the capacitive part of the interaction between grains in contact and only 

take into account the resistive part (for grains which are not in contact, we take into account, 
of course, the capacitive interaction since it is the only one). The general case will be 

discussed in the fuH paper.29 

2 - Electromagnetic properties of one single aggregate 

Let us denote by d the dimensionality of space and df the fractal dimension of the 

aggregates. 
In Ref.30, the following expressions for the derivative of the capacitance, resistance, 

and inductance of an aggregate between plane ° and x are derived: 

( )
dr-l 

C(x) = ~o ~ ( t J 
( )

1-dr 

R(x) = ~o ~ (t J 
( )

1-<11 

L(x) = L~ ~ ( i f 
where 9\ is the radius of the aggregate and Co ' Ra ' Lo are, respectively, the capacitance, 

the resistance, and the inductance of a grain of size a. 

For percolation clusters, the exponents of the scaling laws in x are: c = s/v+d-dc 2 , 

r = tlv+drd and 1= t'/v+dcd where t' is the analog of t for inductance properties (6t). 

Note that, even for percolation clusters, the expression for C(x) is actually more complicated 

and involves several scaling laws corresponding to different contributions.29 
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These coefficients appear in a new equation that we wrote30 for the current j(x) in an 

aggregate for an incident electrical field Ho with frequency c.o: 

d2j = CC'«X» ddj + ic.o C(x) (R(x) + i L(x) c.o) j(x) + ic.o C(x) Eo 
dx2 X X 

We call it the generalized antenna equation. 

Wehave shown30 there exists a length Ö above which the current in an aggregate is not 

correlated to the current at the origin. We call Ö the current correlation length. Its frequency 
dependence depends on the relative value of the resistance and inductance. More precisely, 

we find two opposite regimes:30 

The regime (I) (R» Lc.o): 

The regime (II) (R« Lc.o): 

In the case of percolation clusters, the regime (I) can be identified to the usual case 
calculated by the "frequency dependent" theory of percolation. Since the latter theory 
calculates the properties of composites by an approximation of equivalent electrical networks, 
it is natural this regime takes place at small frequencies. 

On the contrary, we predicted the regime (II)30 for the first time. Since it takes into 
account magnetic effects as weH as electrical ones, it is clear that it is related to the 

propagation of the current wave in the aggregate. We deduced that an aggregate with 9t»ö 

can be seen as a set of blocks of size ö. 

Let us introduce another important length in the problem, the wavelength A. Since we 

always have ö::;; A , there are three principal cases for the properties of one aggregate: 

• 9t < ö: we are in the quasistatic case. The real part of the polarization of the aggregate is the 
same as the one at zero frequency and the imaginary part is small:29,30 

..e...:. = 0.' 9t3 C(9t) = 0.' Co 9t a3 ( )
df+C+2 

Eo a a 

P" = 0." c.o 9t5 R(9t) C(9t)2 = 0." c.o Ro Co2 (9t )df + r + 2c + 4 a3 
Eo a a 

in the first and the second regimesand where 0.' and 0." are two numerical constants of 
order unity. 

• 9t > Ö but 9t« A: the current propagates in the aggregate but since 9t« A , we are able 
to calculate the polarization of the aggregate. 
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- Regime (I) (R » Lw): 

where: 

P(9t,w) 

Eo 

YI= c+2 
r+c+2 

for percolation clusters, we have: 

~+ d - df 
YI= v-'---__ 

~+J. 
v v 

s+v(d-df) s+ß 
----'--~ =--

s+t s+t 

- Regime (Il) (R« Lw): 

where: Yn = 2 c + 2 
I +c +2 

for percolation clusters, we have: 

= 2 ~ + d - df = 2 s + v( d - df) = 2 s + ß 
Yn s t' s + t' s + t' -+-

V V 

<1 and ~ are two complex constants with a modulus of order unity. 

It is interesting to note that the exponent Y in regime (I) is not the same as the exponent 

predicted by the theory of percolation for the frequency dependence of the permittivity which 

is s/(s+t). In fact, we are calculating the response of one single aggregate. We will see in the 

next section that, after summing over all the aggregates with their correct statistical weight, 

we will recover in this regime (I) the exponent s/(s+t). 

• 9t > 1.. ~ 8: since the size of the aggregate is larger than the wavelength in the surrounding 

medium, we cannot calculate the polarization of the aggregate. Nevertheless, we can calculate 

the cross-sections. In fact, the aggregate can be seen as a set of blocks of size 1.. and we can 

evaluate the scattering and absorption cross-sections of an aggregate through: 

where the cross-sections of a block of size 1.. are evaluated through quasistatic formulae.29 
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3 - Electromagnetic properties oe a composite 

Let us denote by ~ the correlation length of the medium (Le., the typical size of the 

aggregates and these of the heterogeneities) and by Öp the penetration depth of the wave in 

the composite. The electromagnetic properties of the composite are to be described differently 

according to the following three main cases:31 

- ~ < A. (with ~>ö or ~<ö), the homogeneities are smaller than the wavelength and we can 

define and calculate an equivalent dielectric perrnittivity for the composite. 

- Ö < A. < ~ (but Öp > Ö), the homogeneities are larger than the wavelength and we eannot 

define an equivalent dielectric perrnittivity for the composite. But like in Ref.26, we can 

compute direetly the macroscopic hemispherical reflexion, hemispherical transmission and 

absorption of the composite. 

- Ö < A. < ~ (but Öp < ö), we cannot define an equivalent dielectric perrnittivity and moreover 

the surface penetration (2D) effects must be taken into account. 

The dielectric permittivity 0/ a composite 

We detail now the first case and we present the results for the dielectric perrnittivity of 

the composite. The other cases are detailed elsewhere.29 

The calculation29,31 assumes the statistical and geometrie al description ofthe aggregates 

as given by the scaling theory of percolation. But the theory is more general and can treat 

other laws of aggregation. 

Let 5Rs denote the radius of a cluster containing S sites. Wehave: 

SRs = k Slldf where k - 1 

The average polarization in the composite is obtained by summing over the aggregates 

and gives the equivalent dielectric perrnittivity:31 

Eeq - <I'> = L ns P(5Rs) 
s 

In Ref.31, we show there are three regions of concentrations corresponding to three 

different situations (see Figure 2). 

• The "dielectric region" (A): it is defined by ~ < Ö and p < Pe . All the clusters 

but very exceptional ones are sm aller than ö. It is the "dielectric" situation. We obtain the 

following forrnula for the dielectric perrnittivity ofthe composite: 

Eeq = qo Cc/a ( (J.' Ip -pJ -s +i (J." 0) Ip -pJ -(t + 2 s) ) 
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• The "threshold region" (B): it corresponds to S<;. There is a significant number 

of finite (or infinite) clusters with extension larger than S so that the electromagnetic 

response due to these finite but large clusters is dominant. We obtain the expression for the 

average polarization in the vicinity ofthe percolation threshold (11-1): 

which gives: 

- Regime (I) (R » Lw): 

- Regime (ll) (R « Lw): 
t - (L 1/2 C 1/2 00)- 2sJ(s+t·) 

eq 0 0 

The first regime can be identified with the theory of percolation at small frequencies and 
we find the same exponent (s/(s+t) ... 0.27). But, the second regime (high frequency) is a 

new one which takes into account the propagation in the aggregate and which leads to a 

different frequency exponent for the permittivity of the composite: 2s/(s+t') ... 0.5. 

• The "metallic region" (C): it is defmed by ; < Sand p > Pe . The behavior of the 
composite is about the same as the one of a classical conductor. In fact, the larger 

contribution is due to the infinite cluster and we have:31 

Eeq - i O"olp - pJ t 100 

We predict the dependence of the permittivity with concentration and frequency. The 
behavior for one class of systems is described in figure 5. 

e 

Pe P 

Figure 5. One of the scbematic bebavior of the dielectric permittivity versus concentration as predicted by 

the theory of aggregates 
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4 - Brief Comparison with the Experimental Results - Conclusion 

Dur theory has been compared with experiments in several cases in the first regime. The 
agreement is good for all concentrations including the vicinity of the percolation threshold 

whereas they strongly disagree with effeetive medium predietions.29 The appearanee of the 
seeond regime may have been observed, e.g., in Ref.32 where a high frequeney dependence 
follows a sm aller one. A quantitative eomparison with our theory is diffieult there because of 
the small number of experimental points. 

In addition, our theory allows us to explain the results of Ref.9 where a high diffusive 

reflection appears in the vieinity ofthe pereolation threshold (regime A.<;).29 

We have presented a new theory whieh prediets quantitatively the eleetromagnetie 
properties of fraetal aggregates and of dieleetrie-conductor eomposites. The main results are 
the following: 

- The electromagnetie properties of fraetal aggregates do not depend only on the 
transport properties but also on its fractal dimension. Let us note that our model for a 
single aggregate has been eompared with a numerieal algorithm based on completely 

different ideas. The results are in very good agreement 33 

- We reeover the results of the previous theories as limit eases. 

- We prediet the existence of a new regime for the polarization of aggregates and for the 
dieleetric permittivity of composites. This regime takes plaee at high frequencies 

(Lro»R) and leads to the introduetion of a new value for the frequeney dependence 
exponent of the permittivity (= 2s1(s+t'). 

- Our model is in good agreement with experimental results. 

- Dur theory put into evidence and explain anomalous behaviors of the permittivity 

(systems with hopping conduction between grains34) or of the reflexion/transmission 
properties (tridimensionnal eomposites in the diffusive regime and in the vieinity of the 

percolation threshold29). 
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INTRODUCTION 

The problem of localization of c1assical waves has recently attracted consider

able attention. l ,2 Classical waves have, of course, been the subject of extensive 

research already in the last century, as emphasized by Landauer in his historical 

sketch.3 A variety of interesting phenomena is associated with c1assical waves like 

seismic waves, tidal waves, acoustic as weH as optica1 waves. A major topic is the 

transport of energy or information by these waves. The current interest in c1assical 

waves is stimulated by the development of microelectronics with its very small struc
tures, in particular very thin wires (as connections between the components of inte

grated circuits) which may (or may not, depending on the situation) be considered as 

wave guides for the electrons. Similarly, optical wave guides like optica1 tibers for 

telephone connections are of technologica1 interest. The interesting analogies bet

ween microelectronics and optics have been comprehensively discussed in a recent 

book.4 There are, of course, important differences between quantum mechanical waves 

describing electrons and c1assical waves like optical or acoustic waves, as discussed 

by Landauer,3 e.g., the conservation of electrons on the one hand or non-linear 

optics on the other hand. Nevertheless, it is promising to apply approaches, which 

have been successful in one area, to the other tield.2 

In the present contribution we apply a method which has been originally intro

duced for the description of the coherent motion of electrons along a one-dimensional 

system.S Later, dissipative effects have been incorporated into this mode1.6 These 
dissipative effects arise, e. g., from inelastic scattering events of the electronic 
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waves with local modes at impurities or with phonons, thus providing the coupling of 

the electronic system with a heat bath. In this way, irreversible processes can be 

imagined, which lead to a complete loss of the phase memory. As a consequence, the 

scattered waves are incoherent with the incident waves. A similar effect can be 

imagined in optics, considering the absorption and subsequent emission of photons. 

Much more important in the optical case as weH as for other c1assical waves, 

however, is the influence of disorder. Depending on the group velocity, already small 

disorder in one-dimensional (1D) systems can crucially restriet the band width which 

is available for information transport.7 This effect can be understood as a localiza

tion of the c1assical waves due to disorder in analogy to the well-known localization 

of electronic states in disordered materials. It is the purpose of the present paper 

to study c1assical waves in a ID system and to analyze the localization of these 

waves due to disorder . 

By suitably utilizing the above-mentioned model, we can also incorporate leak

age or absorption into our investigation. This allows us to treat another essential 

problem of large technological relevance, namely the loss of intensity of the waves 

travelling along the wave guide. For example, in the optical case, absorption proces

ses as weH as scattering events at the surface of the wave guide would provide 

appropriate leaks. For tidal waves in channels, the influence of not idea1ly reflect

ing banks could be taken into account in this way. Seismic waves would suffer similar 

dissipative effects by being scattered at soft strata. AH these effects are treated 

in the same (parametrized) way in the present approach, therefore we shall use the 

terms dissipation, leakage or absorption interchangeably in the subsequent discussion. 
In the following chapters, we shall first introduce the investigated model and 

construct the overall scattering matrix. Then, we discuss the case of purely elastic 

scattering, distinguishing regimes of localization and transmission. Finally, the 

influence of dissipation or absorption and the effect of disorder are analyzed. 

MODEL OF THE SINGLE SCATTERER 

We consider aseries of N scatterers as displayed in Fig. 1. Waves travel along 

the chain between the ends 1 and 2. For each scatterer, incoming and outgoing waves 

in channels 1 and 2 are related by means of the elastic scattering matrix 

(1) 

with transmission coefficient t and reflection coefficient r. Characterizing the 

elastic scatterer by means of the transmission probability 0 yields t = ß and, as 

the scattering matrix must be unitary, r = (, -..'1=5. 
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Formally, we add two more channe1s to the single scatterer and define the total 

scattering matrix of the single scatterer, which then is a 4x4 matrix: 

1 1 [ vl-c' u 
S = s = 

Vc 1 
Vc 1 1 = [S~j) 

- vr:c' u* 
i, j = 1, 2, 3, 4 . (2) 

Here, the unitary matrix 1 supplies the coupling of the chain with the additional 

channels, controlled by the scattering strength c. The matrix -0'* must be included to 

insure8 the necessary unitarity of the matrix SI. The effect of this choice of the 

scattering matrix can be easily visualized in the special case of a = 1 , i. e. , no 

elastic scattering: An incoming wave in channel 1 is scattered into channel 3 with 

probability c. With the same probability , a wave from channel 2 leaves the scatterer 

through channel 4. Accordingly, the direct transmission is reduced and occurs with 

probability Is1212 = (H:) a. In this way, we have defmed the leaks in our wave 

guide as discussed in the introduction. 

For completeness, we note that in the original model6 current conservation laws 

are invoked for the additional channels at each scatterer, so that leakag~ is prohib

ited. As a consequence, waves scattered into channels 3 and 4 reenter the system via 

these channels, but their phase is then not related to the original phase. Thus, it 

becomes clear how the scattering matrix (2) leads to a loss of phase memory and 

therefore describes inelastic scattering. The above choice of the matrix (2) for the 

3 4 5 6 2N-1 2N 

Figure 1. Series of N general scatterers described by si, ... , l. The labels count the channels as 
described in the text. 

connection of the chain to the additional channels is a particular one, which produc

es maximal incoherence. Other possible choices have been discussed elsewhere.9 In 

this connection, it has also been shown that it is sufficient to use 4 channels for 

each scatterer in order to cover the entire range of elastic and inelastic scattering 

strengths.9 In the present context of classical waves, however, there is no need to 

require current conservation, in contrast we utilize channels 3 and 4 to allow ex

plicitly for leakage. 
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CONSTRUCTION OF THE SCATTERING MATRIX OF THE ENTIRE CHAIN 

The total scattering matrix of a ehain of N scatterers at positions xn 
(n=I, ... ,N) can easily be construeted in an iterative wayl0 as illustrated in Fig. 2. 

We assume that the scattering matrix SN-l of N-l scatterers has been found. Then the 

Mb scatterer described by sN is appended. The scattering amplitudes of l are given 

by Bq. (2), relabelling the rows and columns of the matrix sI as i,j = 1,2, 2N+ 1, 

2N+2 in agreement with Fig. 2. It is straightforward to determine the matrix elements 

of the total scattering matrix by taking all possible paths into account. We obtain, 

for example, for the transmission from ehannel 1 into ehannel 2 (compare Fig. 2): 

.N N .N-l N .N-l N .N-l 
.Y21 = s21 tp .)-21 + s21 tp .Y22 tp S-i 1 tp .Y21 

N .N-l N .N-l N .N-l + s21 tp .)-22 tp s 11 tp .Y22 tp s 11 tp .Y21 + ... (3) 

Here, tp = ea:p(iqa~ reflects the phase that the outgoing wave out of ehannel 2 of 

SN-l acquires before entering ehannel 1 of l. The wave vector q reflects the energy 

of the incoming plane wave etr.p(lq(x-xoJ) under consideration, but we do not specify a 

partieular dispersion relation. The distance between neighboring scatterers aN is 

"or--- 2 = 1 __ J .... --2 

3 4 2N+1 2N+2 3 4 2N-1 2N 

Figure 2. Adding the last scatterer sN to an effective scatterer SN-l which comprises the preceding 
series of N-l scatterers allows a recursive construction of the series in Fig. 1. 

constant in tI1e ordered ehain atfa. In order to introduee disorder into our model, we 

ehoose the nearest-neighbor distanee randomly from a uniform distribution of width W 

around this average distance a. All subsequent results for the disordered case have 

been obtained for the parameter value W=a. 

As can be seen from Bq. (3), the multiple reflections between the two scat

terers lead to a geometrie series in z = tp ~; 1 tp '.1 whieh can be easily summed. We 

obtain: 
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Sii = S'fI (4a) 

(4b) 

(4c) 

for I,J = 1,3,4, ... , 2N and i,j = 2, 2N+l, 2N+2. This recursion allows us to 

investigate relatively long chains with several hundreds of scatterers with reason

able numerical expense. A significant advantage of the iteration (4) is the exact sum 

of the geometric series of the multiple reflections. Moreover, if one is interested 

only in certain transmission probabilities, then it is sufficient to determine only a 

few of the matrix elements in Bq. (4). In particular, for the calculation of the 

overall transmission probability through the series of scatterers it is not necessary 

to treat the entire matrix SN. Therefore, the present algorithm is superior to our 

previous treatment of the chain by transforming the scattering matrix into transfer 
. 8 matnces. 

RESUL TS AND DISCUSSION 

Transmission probability through an ordered chain without dissipation 

In the following we analyze the transmission probability across the whole 

sampie, T(c ,N, W) = 1 ~ 112 in its dependence on the wave vector q of the incoming 

waves, the dissipation parameter c and the number of scatterers N. We have chosen a 

fixed value for the elastic scattering strength 0=0.7, because we know10-12 for an 
intermediate elastic scattering the effects discussed below are most clearly seen. 

For small elastic scattering, the multiple reflections become negligible so the 

interplay between constructive interference and disorder is lost. For very large 

elastic scattering, the waves cannot travel in the sampie so the importance of dis

order is reduced. In this situation, the waves cannot penetrate into the system, or, 

if they are excited within the system, they are effectively confined between two 

scatterers, and in the extreme case, the waves are reflected back and forth until 

leakage is complete. 

In Fig. 3 the dependence of the transmission probability on the number of 

scatterers N is displayed for different values of the wave vector q in the case of no 

leakage (c =0). For small wave vectors, incoming waves can only penetrate into the 

sampie for a finite distance due to destructive interference of the multiply back

scattered waves. For larger values of q, the multiple reflections lead to construc-
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tive interference producing the strong oscillations of the transmission probability 

in Fig. 3, which do not decrease for longer chains. This is the fully transparent 

regime, in contrast to the opaque regime with the "confined states" for small wave 

vectors. 

The transmission window can be seen even more c1early in Fig. 4, where the 

transmission probability is displayed in dependence on the wave vector. For the case 

without dissipation (c =0), a band of high transmission can be observed with oscilla

tions due to interference effects. There are even N-l values of the wave vector, for 

which the transmission is perfect (T= 1). On the sides of the transmission window, 

there are regions of vanishing transmission corresponding to the regime of the waves 

T 

o 10 20 

N 

30 40 

Figure 3. Transmission probability T(O,N,O) through an ordered series 
of N ·scatterers without dissipation (c =0) with transmission probability 
0=0.7 for each scatterer. The wave vector of the incoming wave is 
q=0.1, 0.15, 0.2, and 0.4 rc/a (from bottom to top). 

with finite penetration depths in Fig. 3. We note this confinement cannot be inter

preted as a localization effect as can be seen from an analogy with quantum mechan

ies: The transparent and the opaque regime correspond to bands and band gaps for 

electronic states in a perfect crystal structure. Accordingly, the width of the 

transmission window strongly depends on the scattering parameter 0 as mentioned 

above. The width increases with increasing elastic transmission probability . 
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T 

o+-----~----~------~~--~ 

o 
q 

Figure 4. Transmission probability T(c,lO,O) for an ordered series of 10 
scatterers for dissipation parameters c=O, 0.05, 0.1, and 0.2 (from top to 
bottom). The elastic transmission probability for each scaUerer is a=0.7. 

The influence of dissipation 

On the other hand, the scattering strength c does not influence the width of 

the transmission window. This can also be seen in Fig. 4, where the transmission 

probability is displayed for finite values of c, too. Due to dissipation, the oscil

lations of the transmission probability are rapidly damped and the overall transmis

sion decreases strongly. This decrease depends, of course, on the number of scatter

ers N and can be characterized by an exponential decay length l; which we define by 

_ -NIl; 
T(c,N,O) - T(O,N,O) e . (5) 

On this length scale the incoming wave loses intensity due to the leakage. The con

vergence of the dissipation-induced decay length l; is demonstrated in Fig. 5. In the 

transmission window the oscillations that were prominent in Fig. 3 are quickly damped 

already for weak leakage (cp. Fig. 5a). In the opaque regime, a large dissipation

induced decay length reflects a comparatively weak reduction of T(c,N,O) with respect 

to T(O,N,O) because the latter already decays fast with the number of scatterers (cp. 

Fig. 5b). The dependence of the dissipation-induced decay length on the parameter c 

is comprehended in Fig. 6. Here, the strongly growing influence of the leaks with 

increasing parameter c is obvious: The decay length is drastically reduced in the 

transmission window as weIl as in the opaque regime. 
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The effect of disorder 

The disorder-induced localization can be investigated in an analogous way as 

the influence effect of dissipation. We assume that the disorder gives rise to an 

exponential decay of the transmission probability , too, which is characterized by the 

respective decay length ~ defined by 
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T(c,N,W) = T(c,N,O) e-N/~. 

a 
30 

20 
t; 

10 

0 
0 100 200 300 400 

N 

b 

100 

1; 

~ 
0 

0 100 200 300 400 

N 

Figure S. Dissipation-induced decay length I; (in units of the distance a between 
adjacent scatterers) of the transmission probability T(c,N,O) through an ordered 
series of N scatterers. The elastic transmission probability for each scatterer is 
a=0.7, the wave vector q of the incoming wave and the dissipation parameter c 
are a) q=0.4 TC/a, c=0.03, 0.05, 0.07, 0.1, 0.5, and 0.9 (from top to bottom), 
and b) q=O.1 TC/a, c=O.I, 0.15, 0.2, 0.3, 0.4, and 0.5 (from top to bottom). 

(6) 



50~------------------~--~ 

o 

600 b 

1; 

300 A 

1;,;,A 

0 

A 
-300 

0 

Figure 6. Asymptotic values (for N 7 00) of the dissipation-induced 
decay length ~, the disorder-induced decay length ~, and the total 
localization length i\ (in units of the average distance a between 
adjacent scatterers) of the transmission probability through aseries 
of N scatterers for different values of the dissipation parameter c. 
The elastic transmission probability for each scatterer is 0 =0.7, 
the wave vector of the incoming wave is a) q=O.4 1[/a, b) q=O.l 1[/a. 
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The convergence of the defined length is displayed in Fig. 7. There are strong fluc

tuations due to the disorder, which decrease approximately with Vlr. It can be seen 

they are small enough for aseries of several hundred scatterers so the decay length 

can indeed be defined in the asymptotic limit. The respective results are also com

piled in Fig. 6 in dependence on the dissipation parameter c. The small influence of 

the disorder for large leaks as reflected in the long decay lengths can be understood 

. from the fact that in this regime the transmission probability is rather small al

ready because of the leakage. 

In the opaque regime, the definition (6) formally leads to negative values of 

the disorder-induced decay length, as displayed in Figs. 6b and 7b. This behavior 
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o 100 200 

N 

300 400 

Ov-----------~----------__. 

-500 .jl-~---.-'--~--.---~~.--~~ 

o 100 200 

N 

300 400 

Figure 7. Disorder-induced decay length ~ (in units of the average dist-
ance a between adjacent scatteres) of the transmission probability T(c,N,a) 
through aseries of N scatterers for different values of the dissipation para
meter, c=O.l, 0.5, 0.6, 0.7, and 0.8 (from bottom to top in a) and vice 
versa in b». The elastic transmission probability for each scatterer is 5=0.7, 
the wave vector of the incoming wave is a) q=0.4 n/a, b) q=O.l n/a. 



corresponds to an increase of the transmission probability , because the (in the 

opaque case destructive) coherence effects are reduced by the disorder. 

For an ordered series of scatterers the behavior of the transmission probabili

ty is the same for wave vectors q and TrJa - q, irrespective of the dissipation para

meter. This can be seen in Fig. 4. Correspondingly, Fig. 5b (for q = O.lTC/a) is the 

same as the respective plot for the wave vector q = O.9TC/a. This is no longer true 

if disorder is introduced into the system, because the longer waves average more 

disorder effects than the shorter waves. Accordingly, for the wave vector q = O.9TC/a 

o~----------------------~ 

·15 +-~---.---~~------.-~--I 

o 100 200 

N 

300 400 

Figure 8. Disorder-induced decay length t; as in Fig. 7h, hut for q=O.9 TC/a. 

the influence of the disorder is stronger, as reflected in the shorter decay lengths 

shown in Figs. 8 and 9 in comparison with Figs. 7b and 6b, respectively. 

The combined effect of disorder and dissipation is displayed in Figs. 6 and 9 

where we also plot the overall localization length A, defined by 

(0 0 -NIA T(c,N,W) = T ,N, ) e 

which, together with Eqs. (5) and (6), yields 

(7) 

(8) 
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From Figs. 6 and 9 it becomes c1ear that the localization length depends on the 

intricate interplay between dissipation and disorder effects. In the transmission 

window, disorder plays an important role only for small values of the dissipation 

parameter c. In the opaque regime, the influence of the disorder appears to be more 

prominent, in particular for the shorter waves. It must be taken into account, how

ever, that for the considered wave vectors q = 0.11[/0, and q = 0.91[/a the penetra

tion depth is of the order of the distance between adjacent scatterers, as can be 

seen from Fig. 3. Therefore, the comparatively long decay lengths in Figs. 6b and 9 

are not very significant. The situation would be different for wave yectors in the 

opaque regime, but c10se to the transmission window, e.g., q = 0.181[/a or 

q = 0.821[/a. Then, however, the fluctuations due to the disorder are much stronger 

and, in particular, inc1ude changes between positive and negative values of the 

disorder-induced decay length. As a consequence, convergence is more difficult to 

obtain, and longer systems must be investigated. Preliminary results show that quali

tatively the behavior of the asymptotic values of the decay lengths in Figs. 6 and 9 

is retained. A comprehensive analysis of the localization length A and its dependence 

on c, (5, q and W will be given in a forthcoming paper. 11 
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Figure 9. Decay lengths l:, ~, and A as in Fig. 6, hut for q=O.9 1[la. 

CONCLUSIONS 

We have presented an algorithm for the ca1culation of the transmission probabi

lity of c1assical waves through aseries of scatterers which allow for elastic scat

tering as weIl as dissipative effects like leakage or absorption. It was shown that 

the transmission is impeded by three effects: For small elastic transmission probabi

lity the waves can penetrate only a small distance due to destructive interference. 
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Large leaks reduce the transmission quiekly so that an effective localization re

sults. Finally, disorder also leads to strong localization, because the eonstruetive 

interferenee of multiply baekseattered waves is lost. In eontrast, in the opaque 

regime the penetration depth due to elastie seattering is enhaneed, because the 

destruetive interferenee by multiple baekseauering is likewise decreased. As demon

strated by the behavior of the various decay lengths, we have, altogether, a rieh 

variety of eompeting effects, whieh eertainly deserve further study. 
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SECOND HARMONIC GENERATION 

IN PERIODICALLY MODULATED MEDIA 

Marek Grabowski 

Department of Physics 
University of Colorado 
Colorado Springs, CO 80933 

INTRODUCTION 

Many interesting phenomena associated with the propagation of electromagnetic 
waves in spatially periodic nonlinear media have recendy been studied. Beginning with 
Delyon et al. 1, followed by Mills and Trullinger2, as well as Grabowski and Hawrylak3, 

these investigations led to fairly complete understanding of the regular (periodic), localized 
(solitons), and chaotic behavior of monochromatic waves in one-dimensional geometries. 
However, the full picture of spatio-temporal nonlinear phenomena is still missing. 

As a fIrst attempt toward understanding the propagation of pulsed classieal waves, co
propagating fundamental and second harmonie fields are studied in the long wavelength 
limit. For inversion symmetric systems, such as optical glas ses, the energy transfer between 
the two fIeids is due to third order susceptibility and must be mediated by the dc-eIectric 
fIeld of the appropriate periodicity. This spatially periodic dc-fIeld can be either internally 
self-generated, or externally imposed. 

Indeed, such a self-generated periodic dc-fIeld has been invoked as a possible 
explanation of a anomalous second harmonic generation observed in glass optical fIbers 
(for a review see Chapter 10 of Agrawal4). Here, the dc-fIeld is assumed to be externally 
imposed by periodic poling, thus allowing much more control over the resulting 
phenomena. 

The nonlinear dynamies of the energy transfer process between the fundamental and 
second harmonic fIeld in the presence of the periodic, phase matched dc-fIeld is 
investigated in the context of the Hamiltonian formalism, under the Slowly Varying 
Envelope Approximation. In contrast to previously employed methods, the explicitly 
included self and cross phase modulation nonlinear terms lead to the growth of the seeond 
harmonic signal limited by the strength of the de-fIeld. However, for the seed seeond 
harmonie fIeld exceeding a critical value, the up-conversion emcieney ean be signifIeantly 
enhanced. The new switehing phenomenon is predicted in both up and down conversion 
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regimes and its potential applieations to the opto-electronie eomputing elements are 
suggested. 

PROPAGATION EQUATIONS 

The one-dimensional propagation of eleetromagnetie waves in an optical medium is 
described by the maeroseopie wave equation for the electrie field E, and the polarization of 
the medium P: 

(1) 

This field-indueed polarization qU1 be related to the eleetrie field via the nonlinear 
suseeptibility tensor, whieh in the degenerate ease and for systems with inversion symme
try reduees to the first and third order terms5 at a frequeney co: 

n2 -1 
P(z,ro) = -"-E(z,ro)+ X(3) (ro)E3(z,ro) 

4n (2) 

Here, the eleetrie field is a superposition of a fundamental mode at a frequeney ro, a seeond 
harmonie field at a frequeney 2ro, and a statie dc-field: 

E(z,t) = E.,(z)e-iOX + Ez.,(z)e-i2OX + t Edc(z) + c.c. (3) 

Upon substitution of Eq. 3 into Eq. 2, the eoupled propagation equations for 

fundamental and seeond harmonie field amplitudes follow from Eq. 1: 

d; E., + (n; + E! + /Ei + 2/E2.,/2 )E., + 2EdcE2.,E; = 0 

d;Ez., + 4( n~., + E! + /Eztl + 2/E.,nEz., + 4EdcE; = 0 , (4) 

where x = (J)z/c, the faetor (12nX(3»1/2 has been absorbed into the field amplitudes and the 
dispersion of X(3) has been ignored. 

It is also eonvenient to eonsider Eq. 4 as arising from a Lagrangian for eomplex 
eoupled fields with the spatial eoordinate playing the role of time: 

L = /dxEi +t/dxE2i - V 

V = (n; + E!)/E.,/2 + (n;., + E!)/E2.,/2 + 

+ t(/El + /EZ.,/4) + 2/Ei/E2i + Edc ( E2.,E;; + E;.,E;) (5) 

The first two terms in the effective potential V deseribe the linear propagation of 
independent fields in a medium with the dc-field modulated refraetive index, the third and 
fourth terms are identified as the self and eross phase modulation terms, respeetively, while 
the last term is responsible for the energy transfer between the fundamental and seeond 
harmonie fields. 
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Since the Lagrangian of Eq. 5 is globally gauge invariant, it is simple to identify the 
corresponding conserved current: 

(6) 

Clearly, a/ = 0, reflecting the constancy of the energy flow in the direction of wave 
propagation. Consequently, the four degrees of freedom problem defined by Eq. 4 reduces 
to a three degrees of freedom Hamiltonian flow.3 However, assurning that the spatial 
variation of the dc-field is on the scale much larger than the wavelength of the fundamental 
wave, one can significantly reduce the dimensionality of the propagation equations, Eq. 4. 
The so-called Slowly Varying Envelope Approximation (SVE) is described in the next 
seetion. 

THE SVE APPROXIMATION 

The fields are assumed to be of the form: 

with n2 > n1 » n, and slowly varying amplitudes EI' E2, E = const in the following sense: 

(8) 

Hence, under the SVE approximation, the Lagrangian ofEq. 5 takes the form: 

(9) 

where .1n = n2 - n1 - n and all variations faster than this scale have been neglected. 
Further simplification of the Lagrangian of Eq. 9 can be accomplished by writing the 

complex fields in polar representation as, 

(10) 

and observing that the conserved current of Eq. 6 becomes (under the SVE approximation) 
the total intensity of co-propagating fields: 

(11) 

The above current conservation reduces the problem to just one degree of freedom. Indeed, 
for the variables rescaled as, 

P=~ Ai ; 
w 

the Lagrangian, Eq. 9, takes the form: 

(12) 
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L(P,,,,) = Pd,'" - V(P,,,,) 

V(P,,,,) = (1- P)[P+ (ePi/ 2 COS(", + 2L1nx)] - ( ~~ 1It ) [lIte+ nz -Hnz -lIt)P]p . 
(13) 

Furthennore, regarding the intensity of the second hannonic field, P, as the canonical 
"momentum" and the relative phase, "', as the conjugated "coordinate" one can treat the 
system described by Eq. 13 as Hamiltonian, with the "energy" function given by V(P, ljI). 
This approach is particularly convenient when the next simplification is introduced. 

To emphasize the major effects caused by the self and cross phase modulation tenns, 
perfect phase matching (An =0) is assumed and tenns proportional to (n2 - n1)«1 are 
neglected. The resulting effective Hamiltonian, 

h(P,,,,) = (1- P)[P + (ePi /2 cos",] (14) 

represents the conserved "energy" of this reduced system. Consequently, for initial 
conditions given as P(O) = Po< 1, lfI{O) = "'0< 7r/2, the dynamic of the system is restricted 
to the h > 0 manifold and the corresponding equations of motion are: 

( e )"2 
dy'" = t P (1- 3P)cos", + (1- 2P) 

(15) 

These equations can be decoupled using constancy of h, Eq. 14, and subsequently 
integrated in tenns of elliptic functions. However, these explicit fonnulas are not 
particularly illuminating and shall not be presented here. Instead, graphical discussion of 
the results is given in the next section. 

DISCUSSION OF SOLUTIONS 

The phase space representation of the solutions to the equations of motion, Fig. 1, 
allows them to be classified into two categories. For the initial (seed) intensity of the 
second hannonic field below the critical intensity (curves outside the separatrix of Fig. 1), 
the solutions are periodic with P(y) oscillating between Po and P ,with maximum 
reached for the phase difference of 7r, and lfI{y) increasing monoto:rically (rotation-like 
solutions ). For Po approaching Pe the period of spatial oscillations tends to infinity (soliton
like kink solutions represented by the separatrix in Fig.l). Finally, for Po > P, the 
solutions are again periodic, but libration-like with the phase difference lfI{y) oscilYating 
between zero and a maximum value less than 7r. These two types of the solutions are 

compared in Fig. 2. 
The two solutions shown in Fig. 2 are chosen to illustrate the drarnatic increase in the 

up conversion efficiency upon crossing of the critical seed intensity. For the fixed strength 
of the external electric field, e = 0.08, the curves represent the intensity of the generated 
second hannonic intensity as a function of the propagation length. The lower curve is for 
Po = 0.073, while the upper one is for Po = 0.098 (Pe = 0.085). Thus, increasing the initial 
second hannonic intensity by just 2.5% of the fundamental mode leads to a jump in the 
gain in up conversion efficiency from zero to 85% (when measured at y = 47r). This 
behavior will be referred to as switching. 
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Figure 1. Phase space of the solution to the equations of motion foe e = 0.08 (left panel), with zero energy 
solutions (thiek lines) and sampie solutions inside and outside the separatrix (broken line). The variation of 
the special points with einthe right panel, where the solid lines (from bottom to top) stand for the eritical 

intensity, the elliptie and hyperbolie fixed points, and the maximum intensity. The broken line indieates the 
maximum switehing gain. 
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Figure 2. The intensity of the second harmonie signal as a funetion of the propagation length for two initial 
intensities straddling the critical seed intensity: Po> Pe for the top curve, and PO< Pe for the bottom one. 
The external electric fjeld strength is again e = 0.08. 

The initial eonditions for the solutions illustrated in Fig. 2 where chosen to enhanee 
the switehing effeet -- the period of the libration-like solution is double of that for rotation
like solution. In praetiee, one would observe the generated seeond harmonie intensity at a 
fixed propagation length y = L (at finite length of the fiber or waveguide). For a fixed 
external eleetrie field strength e, the measured output intensity would depend only on the 
input seed intensity Po in the oseillatory fashion (see Fig. 3). As Po inereases from zero, the 
gain in up eonversion, g = P(L) - Po, varies between zero and the maximum gain (dashed 
line in Fig. 3) until Po reaehes the eritieal value P c where the switehing effeet takes plaee. 
For Po> P c' the gain g deereases to zero, and ehanges sign (down eonversion) only after a 
wide plateau. The down eonversion gain exhibits switehing when Po crosses the upper 
braneh of the separatrix in Fig. 1 and it is again followed by oseillations. Similar behavior 
of the gain in up eonversion effieieney is predieted6 for fixed Po and varying e. 

457 



1.0 

g 

O. 

O. 

-0. 

-1.0 
0.0 0.2 0.4 0.6 0.8 1.0 

Po 
Figure 3. The fundamental to second hannonic conversion gain g = P(4n) - Po as a function of the seed 

intensity (solid line). The dashed curve indicates the maximum gain for a given input. Note both up and down 
conversion regimes and an intervening plateau (e = 0.08). 

In conc1usion, several novel phenomena are predicted when two co-propagating 
electromagnetic waves interact and exchange energy via nonlinear cross and self phase 
modulation mediated by externally imposed, periodic electric field. Perhaps the most 
striking is the above discussed switching phenomenon with its wide ranging applications to 
integrated opto-electronic switching devices. Further studies of related phenomena of 
regular and chaotic multifrequency waves propagation are currently under way. 
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A TRANSPORT EQUATION FOR RANDOM ELECTROMAGNETIC WAVE 

PROPAGATION 

A. Tip 

FOM Instituut voor Atoom- en Molecuulfysica 

Kruislaan 407,1098 SJ Amsterdam, the Netherlands 

I. INTRODUCTION 

An important question in the study of random wave propagation is the possible oc
currence of (Anderson) localisation which leads to a vanishing diffusion coefficient. A 

complication occuring in random electron scattering is due to the Coulomb repulsion be
tween the electrons, giving rise to difficulties in the interpretation of the results of actual 
measurements. The situation is more favourable with random light scattering (as long as 
Maxwell's equations are applicable) and indeed much research is taking place in this field, 
both theoretical and experimental1,2,3. The study of diffusion is an important tool to leam 

more about localisation and it is common practice in theoretical work to try to evaluate an 
adopted expression for the diffusion coefficient D. Ordinary linear response theory is not 

applicable in the present situation (there is no thermodynamical equilibrium state, containing 
an extemal driving force F in which we can linearise) but instead we can start from one of 
the oldest notions of diffusion, where we consider the mean square displacement <x2(t». If 
the latter grows linearly with t for large times, then, apart from a numerical factor, the pro
portionality constant is identified as the diffusion coefficient D. Another way of describing 
diffusion phenomena in a random medium is by means of a transport equation. Although not 

unrelated to the above approach it has somewhat more flexibility. Such an equation is readily 

derived for the Schrödinger case but seems not to have been developed for the electromag

netic situation. The subject of the present work is to fill this lacuna. A notable exception, 

however, is the wellknown paper by Watson4. His method and aims, however, are quite 

different from ours. There are a number of reasons why the formulation of a transport 

equation for the Maxwell case is more complicated . One is that the Maxwell equations, 

being a set of coupled equations for two three-dimensional vector-fields, give rise to a more 
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complicated bookkeeping. What in fact happens are two things. The first is the continuous 

interchange of energy between the electric and magnetic field modes already present for free 

fields (even in the propagation of scalar waves in one dimension. described as a set of 

coupled first order equations in the time variable. this phenomenon occurs. leading to a two 

component state). Secondly the vector nature of the electromagnetic field. Le. its spin. 

increases the bookkeeping further. Another snag. of a more troublesome nature, is the 

presence of longitudinal field modes which do not propagate and should be decoupled from 

the propagating transverse modes. A final point that needs attention is the nature of the initial 

state. In the Schrödinger case the former is usually taken to be deterministic but here we 

have to be more careful since the permeabilities relating the various fields are precisely the 

random quantities of the model. Thus a deterministic D-field at the initial time gives rise to 

an initial random E-field etc. 

The model we consider consists of Maxwell's equations 

for a non-conducting medium with random electric and magnetic permeabilities Ero(X) and 

Jlro(x), Here is co an element of an underlying probability measure space (Q.::r, P(dco)) and 

we assume Ero(X) and Jlro(x) to be stationary under translations and rotations. Indicating av

erages ( integrals over P(dco)) by a bar. we thus have E=Ero(X) and Jl=Jlro(x) x-independent 

and Ero(X)Jlro(Y) only depending on Ix-yl etc. 

A situation often encountered in experimental set-ups is the one where light propa

gates through a uniform background medium (for which we normalize E=Jl=l) containing 
immersed particles. usually assumed to be identical and stationary in the medium and with E 

and Jl deviating from unity. Statistics enters the formalism through the distribution law for 

the positions of the particles. Explicitly we now deal with the situation where 

Ero(X) = 1 + <Dro(x) = 1 + ~ <I>(x-Xj)= 1 + fv ro(dv)<I>(x-v) 
J 

Jlro(x)= 1 + 'P ro(x) = 1 +~ 'I'(x-Xj)= 1 + fVro(dv)'I'(x-v). 
J 

(1-2) 

<I> and'l' (which have the spatial extend of a particle as their support) measure the deviation 
from unity of E and Jl of an individual particle and the Xj'S are their positions distributed ac

cording to a given probability law. Le. each <OE Q corresponds with X=(xl.x2.x3 .... ). On 
the right hand sides we have written the sums in terms of the random point measure V ro(dv). 

In fact the underlying statistics can conveniently be given in terms of such a random mea

sure5.6. In particular no intermediate step involving a thermodynamic limit is needed. 

Among the various possibilities for the probability law the Poisson process has the advan

tage that explicit expressions for certain averages can be obtained. in particular asymptoti

cally for low particle densities. On the other hand the Poisson model has the disadvantage 

that it does not describe correcdy the high density case since it allows different particles to 

occupy overlapping volumes in space. In fact a nice alternative would be to use the probabil
ity law associated with the coordinate distribution for a hard sphere gas in thermodynamic 
equilibrium. The electromagnetic energy density 

(1-3) 
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satisfies the continuity equation dtero+dx'Sro=O, where Sro=EroxHro is the Poynting vector. 

Denoting e=ero and S=~ we then have dt e + dx' S = 0 and diffusive behaviour refers to 

the situation where, as t ---7 00, S(x,t) - D dx e(x,t), D being the diffusion coefficient. A 

transport equation is then needed to actually calculate D for a given initial situation. 

Alternatively, the diffusion coefficient can be defined in terms of the long time behaviour of 

<x2(t», the average of x2 over e(x,t). 

11. DETERMINISTIC TIME EVOLUTION 

The time evolution problem (1-1) for the deterministic case has recently been dis

cussed by Dorren and the author7 in terms of a Hilbert space setting, based on energy con

servation, for a large c1ass of permeabilities e(x) and Il(x) (we refer to this reference for 

details concerning the remarks that follow). There a unitary time evolution (E is the Levi

Civita tensor density, "123=1 and E is antisymmetric in all indices, p=-idx) 

F(t)=exp[-iKt}F(O), K=AKoA, A=(e~l/2 1l~/2} Ko=(_~.p E6).2-1) 

on the Hilbert space %=L2(R3, dx, (6) was found for 

F= A (~)=A-l(~). (2-2) 

We note that K possesses the eigenvalue zero. The associated eigenspace is the subspace of 

longitudinal fields that do not propagate in time. The complementary subspace is spanned by 

the transverse fields which do propagate in time. They are characterized by the conditions 

dx.D=O, dx.B=O. Refering back to eq.(1-3) we see that e(x, t) can be expressed in terms of 

the density operator (in quantum mechanics its trace is the total probability and hence equals 

one whereas here it is the total energy which is conserved but can have any nonnegative 
value) 

( E(X)D(Y) E(X)B(Y)) 
P =FxF ~ p(x,y)= H(x)D(y) H(x)B(y) (2-3) 

associated with F, through e(x)=l/2 tr<6x6kxl p Ix>, where the trace is over the 6x6 matrix 
in (2-3). It is important to realize that only the diagonal terms in (2-3) enter into e(x). Thus 

we can change the definition of p as long as the proper diagonal terms are retained. The price 
to be paid is that p is no longer a density operator in general. In the sequel it will turn out 

that such a change will be necessary in order to arrlve at a useful transport equation. 

111. RANDOM TIME EVOLUTION 

We now turn to the random case. It is convenient to work in the space 

%=L2(Q,P(doo),%), the Hilbert space of square integrable functions over P(doo) which take 

their values in %. Explicitly, for f,gE K, 

(f,g)%= fP(dOO)fro(x)·gro(x)= fP(dOO)(fro,gro)%' (3-1) 
Q Q 

Actually % is a subspace of %, the associated projector JE being integration over P(doo); 

JEf:= fP(dOO)fro. For the time evolution we now have 
Q 
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or, now using the symbol K for the operator defined in K by this expression, etc. 

F(t)=exp[ -iKt}F(O), (3-3) 

Note that we leave the possibility open that F(O) is random. 
We shall derive a transport equation by means of the projection operator method. 

Thus let p be a density operator or, more general, an element of the traceclass ij31 (%) over % 

and suppose that L generates a time evolution on ij31 (%); p(t)= 
exp[-iLt]p. Then,ifPisaprojectoron ij31(%)' Q= I-P, 

t 

dtPp(t)= -iPLPp(t) - JPLQ exp[-iQLQs]QLPp(t-s) -iPLQ exp[-iQLQt] Qp. (3-4) 

The usual strategy is now to find a projector such that the last term on the right is a 
rapidly decaying function of time or actually vanishing. Then, at least asymptotically for 
large t, a closed equation for Pp(t) is obtained. In addition, although not strictly necessary, 
the kernel exp[-iQLQs] in the second term should preferably also decay rapidly. Finally, for 
(3-4) to be useful, P must be such that the quantities we are interested in can be expressed in 
terms of Pp(t). In our case the latter are e(t) and S(t), introduced in section 1. An obvious 
choice would be to take the random version of (2-3) for Pro and define L by exp[-iLt]p)ro = 
exp[ -iKrot] Pro exp[ +iKrot]. P could then be defined as averaging over 00. This, however, 
does not work. Even if we could take p to be deterministic, so that Qp vanishes, we run 
into the problem that P and the projector upon the transverse subspace of % do not commute 
(the latter contains Aro), leading to nondecaying contributions in exp[ -iQLQs]. Fortunately 
there is a way out of this problem since a little consideration shows that deterministic initial 
D and B-fields can be produced experimentally. Secondly the projector P: upon the trans
verse component of I =(~ )=A -l.F does not depend on 00. Thus we may hope to be able 
to define a projector that suits OUT needs. We start with 

p ro(t):= Vlro(t)xlro(t)V= exp[-iVKo A~ V-1t]Pro(O) exp[ -iV-IA~Ko Vt], (3-5) 

where V is a constant, invertible, diagona16x6-matrix. We observe that if Pro(O) is a self-ad
joint traceclass operator then so is Pro(t) and if P ro(O)e %g=p~%, then so is P ro(t), i.e. 
transversality is conserved. Next let {Mrolooe Q} be a family of operators with invertible 
average and define P by (the symmetrisation is not strictly needed but has the advantage of 
preserving selfadjointness) 

P(T ro):= Jp(dOO)1/2{ M-IMro T ro + T coMroM-1 }. (3-6) 
Q 

Now p2=p and PT= T for deterministic T. Taking V and M ro diagonal of the type (the 
nonzero entries are scalars times 3x3 unit matrices) 

(3-7) 

and requiring e(x)=l/2 tr<6x6kxl Pp Ix> we find 
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(3-8) 

We now have achieved our goal; the last tenn in (3-4) vanishes and transversality is con

served. In the general case PLP has a complicated structure. It simplifies considerably, 

however, if mw(x)f 1. Then, with c = (ew(x)-1 )-1/2 being the average velocity of light, 

PLPT= (c/2)[Ko, PTL 

+(2C)-l( A2 KoA~(PT) AJ(A2)-L (A2)-1 A~(PT) A~ Ko A2 }, (3-9) 

where A2 = (32 ?1. With P instead of Pp, the averaging being understood, and denoting 

PLPp= tp ~e hav6 (the last term on the right denotes the middle one on the right in (3-4». 
t 

dtp(t)= -itp(t) - jdSJ(S)P(t-S) , (3-10) 

IV. POISSON STATISTICS 

We now specialise to Poisson statistics, in which case the random measure vro(dv) 

is defined by the requirements5 that vro(B I), v ro(B2), vro(B3), ... are independent random 

variables for mutually disjoint Borel sets BI' B2, B3, ... in IR3 and 

JE exp[-<f, v ro>]= exp[-nfdv {1- exp[-f(v)]}], (4-1) 
00 

Thus, using [1 +a]-1= f dt exp[ -t(1 +a)] we obtain for instance 
00 0 

JE Ero(x)-I= fdt exp[-n Jdv {1- exp[-t<j>(v)]}] = 1-nfdv<j>(v)/(1+<j>(v»+C9(n2), (4-2) 
o 

JE Ero(x)-Illro(y)-I= 1-nfdv {l-[1 +<j>(v-x+y)]-I[1 Hjf(V)]-1 } +C9(n2). (4-3) 

In general, if F(p, x, Ero(X), Ilro(x» is a function of the operators p and x directly as well as 

a function of the operator x through the penneabilities, we have, recalling that <j>(x-v)= 
exp[-iv.p]<j>(x) exp[+iv.p], 

JE F(p, x, Ero(X), Ilro(x» =F(p, x, 1, 1) 
- n fdv {F(p, x, 1, 1)-F(p, x, [1+<j>(x-v)]-I, [1+'I'(x-v))]-I} + C9(n2). (4-4) 

Higher powers in n can be calculated in the same fashion but become quite cumbersome. 

V. DISCUSSION AND OUTLOOK 

In the previous sections an essentially rigorous transport equation has been obtained 

for random electromagnetic wave propagation. In contrast to the wave equation approach, 

usually adopted, polarisation effects are included. Secondly, systems containing an infinite 

number of scatterers are treated directly, no thennodynamic limit has to be taken. It allows 

calculations pertaining to random electromagnetic systems in full generality. In particular it 

can be used to study the effects of polarisation on the recently found slowing down of the 

speed of light in random systems2. In this instance it is sufficient to work to first order in the 

density, where the asymptotic expressions of section IV apply. This leads to the usual single 

463 



scatterer T-matrix in the collision operator, except that now it is a 6x6 array of operators. 

The latter can be simplified, however, and contact can be made with the corresponding 

transition operators on the wave equation level. At this stage the collision operator still 

features a time delay (the integral over ds in 3-10) and retention of the latter to first order 

beyond the Boltzmann (on shell T-matrix) contribution is essential to produce the decrease of 

the speed of light reported in ref. 2. In the analogous Schrödinger case such an effect does 

not occur unless the scatterers have internal degrees of freedom. It will be dear from section 

4 that things become quite complicated in the next order in the density and beyond (as in 

other cases logarithmic density dependence shows up) and different approximation schemes 

have to be applied (summation of "most crossed" diagrams etc.). 

ACKNOWLEDGEMENTS 

This work is part of the research programme of the Stichting voor Fundamenteel 

Onderzoek der Materie (Foundation for Fundamental Research on Matter) and was made 

possible by financial support from the Nederlandse Organisatie voor Wetenschappelijk 

Onderzoek (Netherlands Organisation for Scientific Research). 

REFERENCES 

1. Scattering and Localization ofWaves in Random Media, Ping Sheng ed. (World 

Scientific, Singapore, 1990). 

2. M. P. van Albada, B. A. van Tiggelen, A. Lagendijk and A. Tip, Speed of 

Propagation of Classical Waves in Strongly Scattering Media. Phys. Rev. Leu. 66, 

3132 (1991). 

3. Analogies in Optics and Micro Electronics, W. van Haeringen and D. Lenstra eds. 
(Kluwer, Dordrecht, 1990). 

4. K. M. Watson, Multiple Scauering ofElectromagnetic Waves in an Underdense Plasma. 

1. Math. Phys. 10, 688 (1969). 

5. W. Kirsch, Random Schrödinger operators, a Course, in "Schrödinger operators", 

H. Holden, A. Jensen eds., Springer Lecture Notes in Physics 345 (1989). 

6. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators 

(Birkhäuser, Boston, 1990). 

7. H. J. S. Dorren and A. Tip, Maxwell's Equations for Nonsmooth Media; Fractal

shaped and Pointlike Objects. J. Math. Phys. 32, 3060 (1991). 

464 



SYMMETRIZED TRANSVERSE VECTOR FIELDS 

Revik Allakhverdyan 

P. N. Lebedev Physical Institute 
Russian Academy of Sciences 
Leninsky prosp. 53, Moscow 117924 Russia 

Periodic structures in two and three dimensions, such as perfect single crystals, 
superlattices, liquid crystals, biopolymers, microwave antenna systems, have a variety 
of applications in microelectronics, quantum electronics, high temperature supercon
ductivity, molecular biophysics, holography, communication techniques information, 
and in numerous other areas, which rouses great interest in the study of general rules 
governing the propagation, scattering and emission of electromagnetic waves in these 
structures. 

The main feature of these structures is that for the radiation wavelengths I :::; 2a 
where a is the spatial structure periodicity, the plane vector waves get interrelated 
due to the Bragg scattering on periodic inhomogeneities. Two- and three-dimensional 
ordering of atoms and molecules leads to the possibility of existence in solids of one or 
more systems of atomic planes that satisfy the Bragg Law and at the same time allow 
two- or multi-wave diffraction of radiation. The field states corresponding to one-, two
and multi-wave solutions to the vector Maxwell equations for various photon energies 
in crystalline matter provide a fuH set of field states, i. e., of resonant structural modes 
possessing a band-like frequency spectrum. These states of the radiation field arise due 
to scattering on dielectric constant inhomogeneities and are similar to the Bloch band 
electron states scattered by the periodic electromagnetic field of the crystal. The theory 
of Brillouin zones and the theory of electron states are the basis for understanding the 
numerous electric and magnetic phenomena in crystals. Similarly, the band theory of 
radiation states (Bloch photons) in crystals is a basis for the X-ray and ,-ray optics of 
solids and of its applications. 

At present, at least four areas of modern applied physics can be pointed out which 
give a special interest to the creation of the band photon theory: 

1. X-ray structure of crystals and macromolecules; 

2. the problem of developing the , laser and , amplifier using the Mössbauer effect 
in solids; 

3. infrared injection lasers (as weH as amplifiers) with two-dimensional distributed 
feedback (DFB); the suppression of spontaneous emission in the given spectral 
ranges; 
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4. the three-dimensional volume holography; the image identifying of symmetrical 
objects; information encoding; multiconnected optical elements for modern archi
tecture optical computers. 

Recently, in view of possible applications of the band structure of electromagnetic 
field (EMF) in dielectric superlattices to the purposes of creating new types of semi
conductor lasers and other quantum electronic devices in the optical range, the Bloch 
photon theory has received a thorough study both in the scalar wave approximation 
1-4 and within the approach that takes into account vector properties of EMF 5,6 

The main results have been obtained numericaIly, using supercomputers of the Cray 
type, which necessitated considerable expenses and was fraught with a lack of a deal' 
interpretation of the results. On the other hand, when constructing a mathematical 
theory of the radiation-Iattice interaction and providing the physical interpretation 
of the final results, one ignores the main characteristic feature of periodic structures, 
i. e., the spatial as weIl as pint symmetry of the lattice. To pattern the EMF eigen
states in lattices, a "fuIl" set of quantum numbers corresponding to the symmetry of 
the system must be introduced into the general systematic description of the radiation 
itself. This is possible for both the free radiation and the radiation undergoing the 
potential Thomson scattering on atomic electron density inhomogeneities as well as the 
resonance scattering on the nudei in crystals. It is shown in the present contribution 
that the band photon theory in periodical structures can be constructed analytically, 
without involving the numerical methods, via the application of group theory to the 
radiation vector field. 

By analogy with the model of "free Bloch electrons" in crystals 7 we will build , 
a model of "free Bloch photons"in the approximation of an "empty" lattice, which will 
allow us to describe the general form together with the nature of degeneration of the 
models, and also set a basis for the correct description of the interaction of radiation 
with atoms,and nudei of the crystal in the approximation of "almost free photons" 8 

When describing a transverse vector field, one usually exploits either the sym
metrized fields given by the electric- and magnetic- type multipoles which form the 
basis of irreducible representations (IR) of the fuH rotation group 0(3), 01' the sym
metrized fields given by the full set of the Fourier modes of vector plane waves. To 
incorporate the spatial symmetry into the description of electromagnetic field via plane 
waves, it is necessary (much as in the case of elastic waves) to introduce a basis of 
IRs of the wave vector spatial group Gk. The wave vector k of any plane wave can 
be written as k = ko + b, where ko is the reduced wave vector and b is the reciprocal 
lattice vector. All of the points of the reduced Brillouin zone are patterned according 
to the irreducible stars of the wave vector. V ~ctor waves in different directions can be 
grouped together according to their belonging to one of the rays of the wave vector 
star. Every point of the Brillouin zone pos ses ses a point symmetry described by one 
of the wave vector point groups. A wave vector k whose length exceeds the size of the 
Brillouin zone, can always be reduced to one of the interior points of the Brillouin zone. 

The wave vector group Gk, being a subgroup of the full spatial group G, consists of 
those symmetry operators 9 = {Q Ilvl + R s } (1 = 1, ... , m) that either do not transform 
the vector k at allor map into an equivalent vector. That is, for any 9 E G, 

gk = k or gk = k + b. 

In the above, QI denotes the [th rotation operator, VI is the associated nontrivial 
translation, and R. is a trivial translation. Denote by Mal. the matrix representa-
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tion of 9 in the a th IR, and also denote by Xals the character of this matrix. Then 
Mals = e-.kR• Mal, X als = e-·kR• X al , where Mal is the matrix representation of the 
element {Qt!VI} and X al is the character of Mal. 

Now, consider the reducible representation of the wave vector group for the wave 
vector k, with the element {Qdvi + Rs } represented by the matrix Mal = e-·kR• MI 
where MI is the matrix representation of {Q t!VI}, and assume that the character of IR 
i s = e-,kR·i· 

The number which shows how many times the a th IR is contained in the reducible 
representation, is given by, 

Ca = _1_ L (Xals )* Xis = ~ L (Xal )* Xl 
mN I,s m I 

(1) 

where m equals the number of symmetry operators of the wave vector point group Fko. 
This point group is isomorphic to the factor of Gk over the translation subgroup. The 
group Fko is determined by the vector ko and is a subgroup of the group 
F of directions characterizing the crystal class. 

To determine the character of the reducible representation furnished by all the 
vector plane waves, we assume there is a fictitious molecule in the reciprocal space 
with identical atoms attached to the ends of the wave vectors. As to the characters 
of the possible symmetry elements E, Cep, Sep, I or (J' of the point group Fko' the 
following can be deduced in the case of a transverse field. The symmetry elements 
given by the inversion I and the mirror rotation Sep have zero characters, since none 
of the fictitious atoms sits in the 'fixed point' of the point group. The symmetry 
element (J' given by the reflection in a plane also has a zero character, as can be seen by 
choosing the coordinates of the 'atoms' corresponding to the two polarization vectors 
of a plane wave, orthogonal to the wave vector, with one of the atoms lying in the 
symmetry plane while the polarization vector orthogonal to the plane. Indeed, in the 
coordinate system in which the OZ axis runs along the wave vector k and OX and 
OY are directed along the polarization vectors ex and ey,respectively, and with the 
symmetry plane coinciding with the X Z (or Y Z) plane, the action of the symmetry 
element on the polarization vectors results in that one of changes sign while the other 
remains unchanged. Non-vanishing in the reducible representation furnished by 2N 
transverse plane vector waves are the character of the identity element, xf = 2N, and 
that of the rotation, X~'" = 2N coscp. Here N is the number of wave vectors that lie on 
the symmetry element. 

As an example of photon bands, consider the classification of transverse plane 
vector waves with a reduced wave vector k~ along the 0 Z axis in the Brillouin zone 
of a face-centered cubic lattice described by the spatial group Or for the diamond type 
crystals (such as germanium, silicon, and others) in the "empty" lattice approximation. 
Consider the Bloch photon energy bands w~ = c2 (k6 + bp )2, which correspond to the 
points of the reduced wave vector k ß = k~ = 2; (0,0, e) and to the reciprocal lattice 
vectors b p = 2;(pl,p2,p3) == bP1P2P3 whose indices {PIP2P3} belong to the set: 204,024, 
204 and 024. The vectors k = k6 + bp determine the frequency band SV (k6, bp ) = 

~ (2~)2 = 4+(e _4)2, which contains the characteristic X-ray radiation frequency of the 
Ka-line of copper Cu, with Aa = 1.54A . The number of vector plane waves associated 
to the same reduced wave vector k6 is equal to eight. In the general form, these waves 
are given by solutions of the wave equations ßA = w~A of the form ekie,kir with the 
wave vectors 
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k l = k~ + b l k~ + b204 (2,0,e - 4) 

k2 = k~ + b2 k~ + b024 (0,2,e -4) 

k3 = k~ + b3 k~ + b204 = (2,0,e - 4) 

k4 = k~ + b4 = k~ + b024 = (0,2,e -4) 

k2 = k l + (220); k3 = k l + (400); k4 = k1 + (220) 

This energy band connects the point r of the Brillouin zone with energy n2(r) = 20 
with a point X on the edge of the frustrum of a tetrahedron with energy n2(X) = 13. 
The group Gk corresponding to the point kc,. contains the eight rotation operators Ch: 
QI(E), Q4(C2z ), Q23(aXY )' Q24(aXY )' Q~ = IQ2(aX )' Q; = IQ3(a3), Q~7 = IQ17(ayz ), 
Q~8 = IQI8( Clz)' The characters of the reducible representation Xl for the operators 
QI and Q; are equal to, Xl = 0, Xi = ° (for i = 4,23,24,2',3',17',18'). With the IR 
characters of these operators borrowed from the tables, 7 it is not difficult to evaluate 
the multiplicities of the C4v IRs in the reducible representation: 

Thus 

(2) 

Adding up the dimensions of these IRs, we find the number of the plane waves 
involved is 1 + 1 + 1 + 1 + 2 . 2 = 8, as expected. As the initial polarization vectors of 
the plane waves, we choose the following orthonormalized vectors: 

k l (2,0,e - 4); e I 
1 eIl [(e - 4)e - 2e j' ey , 1 J4 + (e - 4)2 x z , 

I 

k 2 (0,2,e - 4); e I 
1 eIl = [(e - 4)e - 2e l' -ex, 2 J4 + (e - 4)2 y z , 2 

k" (2,0,e - 4); eI 1 eIl = [-(e - 4)e - 2e l' -ey , 3 J4+(e- 4)2 x z, 
3 

(0,2, e - 4); eI 
1 eIl k 4 = = J4 + (e _ 4)2 [-(e - 4)ey - 2ez l; = ex · 4 4 

Applying to the vector plane waves e~e·klr and e~Ie·k2r the method of projection oper
ators, it is not difficult to get the correct zeroth approximation function, given by the 
symmetrized transverse vector fields corresponding to the IRs ß I , ß~, ß2, ß~, and ß s. 
They are solutions to the free Maxwell equations in the "empty" lattice approximation. 
These symmetrized fields are determined by the "full"sets of indices, originating from 
the crystal symmetry 

where the index W p determiners the b p vector and plays the role similar to that of the 
principle atomic quantum number, kc,. is the translational index which at the same 
time determines the wave vector point group, J1 accounts for inequivalellt IRs of the 
same type, alld Q alld j label the IR itself and a li ne of it. 
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Given below are the expressions obtained using the projection operators, for the 
orthonormalized symmetrized combinations of vector plane waves (SCVPW) that trans
form under the IR of the symmetry group of the system: 

where the functions Uwp,CI',j(r) are given by, 
for one-dimensional IRs 

~ {_ (e-·b~o4r _ e-·bour) ex + (e-·b~o4r _ e-·bo~4r) ey } 

Uwp,Ci; (r) 1 1 {(~ _ 4) (e-.b~041' _ e-·b204r) e 
2J4+(~-4)2 x 

-(~ - 4) (e-·bo~4r - e-·bo24r) ey 

+2 (e-·b~o4r _ e-·b204l' + e-·bO~4l' _ e-·b024l') ez } 

~ {- (e-·b024 l' _ e-·bO~4l') ex + (e-·b204l' _ e-·b204 l') ey} 

~ 1 {(~ _ 4) (e-·b204l' _ e-·b024 l') e 
2J4+(~-4)2 x 

+(~ - 4) (e-·bo24r - e-·b204r) ey 

+2 (e-·b~04l' + e-lbo~4r + e-·b204r + e-·bo24r) ez } 

for two-dimensional IRs: 

U(2) (r)-
wp,~5,2 -

These express ions are determined by the crystalline symmetry only. Such symmetrized 
vector waves can be found for any point of the Brillouin zone in the k-space for any 
spatial symmetry group of an arbitrary crystal. 

The SCVPW characterizes the field structure within the unit cell regardless of the 
chemical composition and the number of atoms in the cell base. SCVPW reproduces 
the oscillatory 'normal' modes of the X-radiation field in the unit cell of an infinite 
crystal and illustrates the relative positions of atoms and nuclei in the unit cell with 
respect to the three-dimensional field structure. 
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Taking into account the interaction of the SCVPW with the electrons and the 
nuclei in crystals, does not change the linear approximation expressions for the field 
structures of normal modes. Therefore, for all the real periodical structures (e.g., 
crystals, superlattices,etc.) with a given space symmetry group, they are of quite a 
general nature and, in particular, are independent of the chemical composition of the 
medium, and so can be tabulated in International Tables for X-Ray Crystallography. 

The introduction of the new objects of study in classical optics, the SCVPW, 
entails the need to reconsider some of the nations of statistical optics which are related 
to the space coherence theory, noises, statistics of photons, and so forth. 

Previously, the photon, i. e., the EMF quantum, was related to the squared field 
amplitude of a single plane wave; now, a quantum should be related to the squared 
field amplitude of the multiwave configuration as a whole. Thus, the very nature of the 
free field quantization changes drastically, and new objects of study in the quantum 
optics arise, the SCVPW. 

Cross-sections of the standard quantum electrodynamics processes, such as the 
spontaneous emission, photoeffect, internal conversion, the Auger effect, and so on, 
should be reconsidered for the case of the SCVRW radiation interacting with atoms 
and nuclei in anisotropie and periodical structures such as the moleeules of crystals. 

A more detailed account of the concept of symmetrized fields, of both the trans
verse and longitudinal types, will be given in a Lebedev Institute preprint and in a 
paper submitted for publication to Physical Review Letters. 
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Valentin Freilikher 

Department of Physics 
Bar-lIan University 
Ramat-Gan 52900 
Israel 

INTRODUCTION 

One-dimensional disordered systems are considered at present as abstract. 
mathematical models which are used in the theory of wave propagation as limiting cases 
for testing approximations only. The possibility of computer simulations of all feasible 1-d 
propagation processes was the reason for the decrease in interest, during the last few 
years, in the analytical studies of such systems. 

I demonstrate in this paper that there are some practical problems which may be 
reduced, under some assumptions, to a one-dimensional Schrödinger-type equation with 
effective complex-valued random potential. All these problems, being of the different 
physical nature, nevertheless, have one trait in common: non-one-dimensionality of 
scattering processes may be taken into account by means of effective absorption term in 
1-d wave equation. The examples under consideration demonstrate cogently that in spite 
of seeming completeness of the theory of systems with 1-d disorder, there are many 
questions requiring special analytical and numerical investigations. 

UHF RADIO WAVES PROPAGATION IN THE ATMOSPHERE 

Consider the electric field E of the wave generated by a vertical dipole situated in 
the atmosphere over the earth surface. Its radial component E may be represented in the 
form 

E,(R) 
exp(ikx) W(R) , 

x 

where x is the coordinate along the earth surface, and W(R) is so-called attenuation 
function, obeying the parabolic equation 
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2ik aw + äl.W + k 2[eJx,y,z)-11W = 0 ax 

where äl. eM = e(x,y,z; t) + 2z 
a 

(2) 

and a is the equivalent radius of the earth. Since dielectric constant e depends 
parametrically on time t, W describes the instantaneous value of attenuation function W. 
In practice, however, all really measured quantities are averaged over a certain time 
interval. Let us average Eq. (2) over a finite time T (denoting the average values as 
< '" >T) and make use of the "Iocally frozen" stationary turbulence hypothesis. This 
hypothesis implies that variations of the random field c(R,t) with time result solely from the 
motion of the turbulent flow at a velocity v which can be a random value, too. Introducing 
beT = t'M(R)-<EM(R) >T and transforming Eq. (2) to the integral form we obtain 1 

x 

;!!. JdXI6tr<X~Y.Z) 
<W(X'Y'z»r = W(o,y,z)<e 2 0 >r -

x 
x ;!!. /dXI16t.,(X/~y.Z) 

1 f 2 I --< dx'e x x 
2ik 

(3) 

o 

Instead of averaging the functionals depending on Ot:T over time T, one can perform 
averaging over the ensemble of c as ärT do not contain greater scale times than T. On the 
other hand, <EM(X,y,z) >T may be considered invariant over times ts:T. Assuming statistical 
independence of v and aBT fluctuations, we can perform averaging over 15t: T, which gives 
for WT=<W(R»T 

(4) 

provided that the wave propagation can be regarded as a Markovian process, Le., the 
conditions are met 

2k2L 2 
OE .L <::1 (5) 

(here L.L = vL}+L/ and L. are, respectively, the horizontal and the vertical scale sizes of 
the inhomogeneities and a/ is the r.m.s. magnitude of fluctuations in c). The attenuation 
rate YT averaged over the fluctuations is given by the relation 
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(6) 

T 

a.m:J HyO '" (V..L 7)-1 a.m:J HzO '" [J dt(T-,)BvJr)]-1/2 

° 

V.L is the mean horizontal transfer velocity of the inhomogeneities and BJr.) is the 
correlation function of pulsations of the vertical velocity. As can be seen from Eq. (6), the 
major contribution to the damping rate Yr of the coherent field component is given by the 
components of the inhomogeneity spectrum with Hy,z > HO y,z' The function <fM(R) >r 
involved in Eq. (4) is a much slower function of x and y than fM(X,y,z). at least for 
sufficiently long averaging time. The effect of "fast" small-scale fluctuations is included now 
in the effective attenuation Yr-

If the time of averaging T is large enough \ the x and y dependencies of <fM >r can 
be totally neglected, i.e., <fM(X,y,z) >r in Eq. (4) can be replaced by fr(Z). Then the Fourier 
transform Wr(K;X,Z) of the attenuation function Wr with respect to coordinate y, 

(7) 

obeys the equation 

aWT a2WT 2 2 -
2ik- + -- + [k (e~z)-1)-1C +2iky~WT '" 0 ax az2 

(8) 

which coincides with non-stationary one-dimensional Schrödinger equation, where time is 
replaced by longitudinal coordinate x and potential energy is proportional to 

(9) 

The imaginary part 2ikYr of the effective potential describes nondissipative attenuation 
arising due to scatterings on three-dimensional small-scale fluctuations. 

SURFACE WAVES ON A RANDOM SURFACE 

Another example of an application of 1-d Schrödinger equation concerns a random 
surface scattering problem. Consider the Green function G(R,Ro) of this problem, which 
satisfies the equation 
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~ G(R,RJ + k:G(R,RJ = 21to(R,RJ 

R = (x,~ , 

and the random impedance boundary conditions 

(10) 

(11 ) 

Here ko is the vacuum wavenumber and I](x) is a small perturbation of the regular 
surface impedance 1/0, Such a boundary condition arises also in the problem of scattering 
from a slightly rough surface. In that case, q(x) is proportional to the random deviations 
of the interface from the plane Z=0.2 

Using the Green theorem, closed integral equation for 

G(x,xJ ;: G(R,RJlz=z =0 • 
o 

may be obtained, which in Fourier representation takes the form 

Here 

F(P) ;: _1 J F(x)e-iPxdx 
21t 

o(P-Po) is the Dirac delta-function, and Go is the Green function of unperturbed (lJ(x)=O) 
problem, which is equal to 

1 

iJ K: _p2 + 11 0 

(13) 

If 170>0, Go(P) has two poles at real P = ±P. = ±V~2+1/02 (discrete spectrum) 
which corresponds to surface waves (SW) with wave numbers ±Ps ' propagating without 
attenuation in opposite directions along the unperturbed surface z=O. Note that 
continuous spectrum -Ko::;P::;~ describes volume waves (VW), which, being reflected from 
the surface, pro pagate in the halfspace Z > 0 at angles 0 = ± arccos P /~. 
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Fluctuations 1l(X) of the suriace impedance effect drastically suriace waves 
propagation. There exist two kinds of scattering processes of SW when l](x) ;>!;O: SW~SW 
forward and back multiple scatterings, and SW~VW transformations which may be 
considered as single if 17(x) is small enough. The reflections are of a resonance nature in 
this case, which means that the cross section of P1~P2 scattering is proportional to the 
squared modulus of the amplitude of the spatial harmonics in the spectrum of the 
fluctuations 1l(X) with the period A = 2JC/q, q = IP1-P21. This is clear that the main 
contribution to the SW~SW scatterings are given by the spectral components with q-±2Ps 
(back) and q-O (forward), as weil as SW~VWtransitions are provided by resonant modes 
with wave numbers q of order Ps±K". 

This consideration enables us3 to select only resonant harmonics IJ(P) which is 
similar to so-called resonant approximation in the theory of 1-d disordered systems.4•5.6 

Generalizing this approximation, we introduce, instead of ll(P), four functions llss(P), l]sv(P), 
llvs(P) , and 'lw(P), which are peaked near different argument values and govern different 
scattering processes. For instance, Ilss(P) is concentrated near P=±2Ps and P=O, and 
provides SW~SW transitions between suriace waves only; Ilvs(P) in non zero only for P in 
the vicinity (Ps-K,,) and Ps +K" and provides SW~VW scatterings of suriace wave into 
volume modes. 

The same representation must be done for the Green function. We introduce the 
matrix 

(14) 

where indices indicate to what regions of wavenumbers arguments belong (first index 
indicates the location of the first argument, second corresponds to the second one). 

The equation for G may be written in the form 

where 

(16) 

Go is diagonal matrix, in this representation (see Eq. (13)), and Goss is approximately equal 
to 
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(17) 

We shall use later on the symbolic form of Eq. (15): 

(18) 

It is easy to show that matrix G obeys also the equation 

(19) 

where Gd is the solution of the equation 

(20) 

" d and ,r are the diagonal and nondiagonal parts of 'I = Ild+lr. 

If we take "SS" and "VS" matrix elements of Eq. (19), and then eliminate Gvs we find 
the equation for Gss as follows 

(21 ) 

where 

d 
V = 1lsvGv1lvs (22) 

is the renormalized effective potential for SW part of the Green function. It is important to 
stress that Gy

d is a smooth function, because all singularities are included in Gs
d and Gss 

Green functions only. This enables us to replace Gy
d to GOY in Eq. (22) and to write 

V(P,P) "'1lsvGov1lvs ;: f dPl1lS.)..P-Pl)GO.)..Pl)1lVJP1-P) '" 

'" ö(p-p)f dP1GOVW(P-P1) ;: ö(P-P)Lv(~ 
(23) 

where W(P) is determined from the equality <l/sv(P)l/sv(P~ > = ()(P+P~W(P). Taking into 
account Eqs. (20), (21), (22) and (23) we have finally: 
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c g= -----
(Ps-IPI+id0 

c = t'J o 

Ps 

(24) 

(25) 

Here /)"V = -cJm~v' which is proportional to the imaginary part of the mass operator 
calculated in the Born approximation. We omitted the real part of ~v in Eq. (25) which 
gives in this case the small correction to Ps, 

The integral equation, whieh eorresponds to the eoordinate representation of Eq. 
(24), may be written in the differential form: 

(26) 

In this way we find that the problem of derivation of SW Green funetion is reduced to one
dimensional problem with scattering potential 'Iss and effective attenuation /)"V which is of 
a nondissipative nature, but is eonnected with transitions from surface waves to outgoing 
volume ones. 

WHAT DO WE KNOW ABOUT WAVE PROPAGATION IN A LOSSY ONE
DIMENSIONAL MEDIUM? 

It is weil known that nonelastic seatterings destroy strong localization of electrons, 
but so far it is not clear enough, what is the effeet of absorption on loealization of classical 
waves. Since the behavior of the modulus of the reflection coefficient for a 1-d slab of 
absorbing random medium was studied many years ag07.6 , there are no satisfactory 
analytieal results on the transmission coefficient, wh ich is the quantity of interest for many 
applications. Dur numerical calculations ShOW8.9 that the dependence of localization length 
on absorption and on parameters of seatterers is very eomplieated, and moreover, the 
transmittivity may be, under so me ratio of parameters, a non-monotonie function of 
attenuation rate. 
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TRANSIENT WAVE PROPAGATION IN PERIODICALLY 

LAYERED MEDIA 

Do~an Turhan and Ibrahim A. Alshaikh 
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Ankara 06531, Turkey 

INTRODUCTION 

In this paper, transient wave propagation in periodieally layered eomposites eonsisting 
of alternating isotropie and homogeneous high-strength reinforeing and low-strength matrix 
layers is investigated. First, some results from our reeently published work1,2 will be 
given. In our reeent work,l, 2 the propagation of dilatational waves is investigated. The 
layers of the eomposite medium ean be plane, eireular eylindrieal or spherieal. Furthermore, 
the layers ean be linearly thermoelastie or linearly viseoelastie. The viseoelastie material of 
the bodies is modelled as a standard linear solid. A eommon formulation is used for the 
three types of layered media. The bodies are subjeeted to uniform time-dependent dynamie 
inputs at their inner surfaees and the outer surfaces are either fixed or free. The eomposite 
bodies are initially at rest. 

In the seeond part of this study, propagation of transient out-of-plane shear waves in 
layered media eonsisting of altemating reinforeing and matrix layers is investigated. The 
layers of the eomposite medium ean be plane or cireular eylindrieal. Moreover, the layers 
are isotropie, homogeneous and linearly elastic or lineady viscoelastic. The viscoelastic 
material is modelled as a standard linear solid. A eommon formulation is used by 
introducing a tracing constant p which takes the values 0 and 1 for the plane and cylindrical 
layered eomposites, respeetively. 

The eomposite bodies are subjeeted to uniform time-dependent dynamic inputs at their 
inner surfaces. The dynamic input may be shear traction or particle velocity in the axial 
direetion for the cylindrical problem and in the out-of-plane direction for the plane problem. 
The outer surfaces are either fixed or free of surfaee tractions and the bodies are assumed to 
be initially at rest. The method of characteristics is employed in obtaining the solutions. 

The numerieal results are obtained when the dynamic input applied at the inner surfaee 
is a step shear traetion with an initial ramp and the outer surfaee is free of surface tractions. 
Curves are plotted denoting the variations of the shear stress with time at different locations. 
These eurves reveal the effects of refleetions and refraetions at the boundaries and the 
interfaces of the layers, the effeets of geometry and the effects of viscosity. 

PROPAGATION OF DILATATIONAL WAVES 

The plane, eylindrieal and spherieallayered eomposites are referred, respeetively, to 
eartesian, eylindrical and spherical coordinate systems in which x denotes the distanees 
perpendieular to the layering in the plane eomposite and the radial distanee in the other two 
problems, see Fig. 1. In the thermoelastie problems, the generalized dynamieal theory of 
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Figure 1. The layered media. 

coupled thermoelasticity with thermal relaxation proposed by Lord and Shulman3 is 
employed. An exhaustive review of the literature on generalized thermoelasticity theories is 
given by Chandrasekharaiah.4 

The numerical results are obtained when the dynamic input applied at the inner surface 
is a step pressure with an initial ramp and the outer surface is free of surface tractions. 
For the thermoelastic problems, in addititon, the temperature deviation is kept zero on the 
inner and outer surfaces. Quiescent initial conditions are assumed. In Fig. 2 taken from 
our work! with the permission of Academic Press, the variation of the non-dimensional 

normal stress 0"1 I Po with dimensionless time t at the location X = 1.6 is shown for the three 
types of layered media. We note that 0"\ is the normal stress in the direction normal to the 
layering for the plane laminated composite and in the radial direction for the other two 
problems. The curves resemble a sinusoidal pattern with decreasing amplitudes. The 
highest stress levels occur in the plane problem which is followed by the cylindrical and 
spherical problems. The effects of thermal dispersion on the wave profiles are apparent in 
the curves as weIl. 

Figure 3, taken from our recent work2 with the pemlission of Elsevier Applied 

Science, displays the variation ofthe normal stress Ci! IPQ with time i at the location x = 1.123 for 
the plane, cylindrical, and spherical viscoelastic layered composites. The curves reveal the 
effects of reflections and refractions from the interfaces and the inner and outer boundaries 
of the layered media. The effects of geometry are also apparent in the curves. The highest 
levels of the normal stress O"\/P 0 occur in the plane problem which is followed by the 
cylindrical and spherical problems. Attenuation in the wave profiles caused by the viscous 
effects can be investigated by comparing the viscoelastic curves with the corresponding 
elastic curves. These together with detailed analyses of the above two problems can be 
found in the above cited references.l. 2 
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PROPAGATION OF SHEAR WAVES 

The plane and cylindrical layered viscoelastic composites in which propagation of 
transient shear waves is investigated are also referred to cartesian and cylindrical coordinate 
systems given in Fig. 1. The symmetry conditions of the problem imply that all the field 
variables depend on the distance x and time t, only. Moreover, the only nonvanishing 
displacement component is u, that is the displacement component in the axial direction for 
the cylindricallayered medium and in the out-of-plane direction for the plane problem. 
Then, the stress equation of motion in unified form for a typical layer, which can be a 
reinforcing or matrix layer, can be written as 

dt pt av 
-+-:::: p 
dX x dt 

(1) 

where 't is the axial shear stress for the cylindrical problem and the out-of-plane shear stress 
for the plane problem, v:::: dU/at is the particle velocity and p is the mass density. 
Furthermore, p is the tracing constant taking the values 0 and 1 for the plane and cylindrical 
problems, respectively. 

The constitutive equation for the standard linear solid in differential equation form can 
be written as follows5 

where ao, ab bo and b1 are specified material constants and 

E l (dU) 
2 dX 

(2) 

(3) 

is the axial shear strain for the cylindrical problem and the out-of-plane shear strain for the 
plane problem. 

The formulation of the problems is completed by stating the boundary, initial and 
interface conditions. Depending on whether the dynarnic input is a shear traction or panicle 
velocity, we might have two types of boundary conditions at the inner surface x :::: a. They 
can be expressed as 

't (a, t) :::: - f (t) H (t) or v (a, t) = v* (t) H (t) , (4) 

where f (t) and v*(t) are some prescribed functions of time and H(t) is the Heaviside step 
function. The outer surfaces x = b of the composite bodies are either free or fixed: 

't (b,t) = 0 or v (b,t) = 0 . (5) 

The bodies are assumed to be initialy at rest and hence all the field variables are zero at 
t = O. The layers of the composite bodies are assumed to be perfectly bonded to each other. 
This implies that the shear stress and the particle velocity are continuous across the 
interfaces of the layers. 

The formulation of the problems is thus complete. The goveming field equations, 
Eqs. (1-3), are now applied to each layer and the solutions are required to satisfy the 
continuity conditions at the interfaces, the boundary conditions at the inner and outer 
surfaces and quiescent initial conditions. In the analysis, the method of characteristics is 
employed. In the method of characteristics,6 the system of governing partial differential 
equations is transformed into a system of ordinary differential equations, each is valid 
along a different family of characteristic lines. These equations, called the canonical 
equations, are more suitable for numerical analysis because the use of the canonical form 
makes it possible to obtain the solution by a step-by-step integration procedure. The details 
of the method of characteristics can be found in Courant and Hilbert. 6 
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The numerical computations are carried out and the results are displayed in terms of 
non-dimensional quantities. The computer pro gram has been written for layered composites 
consisting of n pairs of layers. The numerical results have been obtained for composite 
bodies consisting of three pairs of layers. The alternating layers of the composite bodies are 
denoted as layers 1 and layers 2. All the quantities pertaining to layers 1 are denoted by 
superscripts or subscripts 1 whereas all the quantities pertaining to layers 2 are specified by 
superscripts or subscripts 2. In the numerical examples, the innermost layer of the 
composite bodies is taken as layer I, whereas the outermost layer is taken as layer 2. The 
dimensionless quantities relevant to the presentation here are defined as 

x - tCI - Pi - - b 
x = -' t = -' p'= -' a= l' b=-a' a' 1 ' , a 

PI 
(6) 

( G (i) G(i») 
2 10, IF ' 

1 

P I CI 

where i= 1,2 denote quantities pertaining to layers 1 and 2, respectively. In Eqs. (6), the 
non-dimensional quantities are shown by putting bars over them and 

(i) b (Oi) _ (i) (i) 
G (i) _ bl . G (i) - • "C = ~ 

10 - W' IF - W' I (i) 
al ao ao 

(i = I, 2) . (7) 

Furthermore, in Eqs. (6), 2hi denotes the thicknesses of the layers. 
In the numerical examples, two types of composite materials are considered. The 

numerical values assumed for the non-dimensional material properties of these two 
composites are as follows: 

a) Composite material one 

-(1) - (1) 

PI = 1.0 , G lO = 2.0 "CI 

_(2) - (2) 

P2 = 0.83 , G lO 1.33 "CI 

b) Composite material two 

_ (I) - (1) 

PI = 1.0 , G lO 2.0 "Cl 

_(2) 
P2 = 0.83 ; G 10 

- (2) 

1.33 ; "CI 

3.0 
- (1) 
G IF = 0.8 

1.5 
-(2) 
GII' = 0.266 

1.5 
-(1) 
G 1F = 0.4 

_(2) 
= 0.75 ; G IF = 0.133. 

The network of characteristic lines used in the numerical analysis is defined by 

The thicknesses of the layers and the inner and outer surfaces are taken as 

2hI =0.111 ; 2h2 =0.222 ; a=1 ; b=2.0. 

(8) 

(9) 

(10) 

(11) 

In the numerical examples, the dynamical input is assumed to be a uniform shear 
traction acting on the inner surface x = a = 1 and tte outer boundary x = b = 2 is considered 
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to be free of surface tractions. In the method of characteristics, we are free to choose any 
time dependency for the shear traction. We here choose a step time variation with an 
initial ramp, see Fig. 4. The applied shear traction is zero a1 i = 0, linearly ri!es to a constant 

value fo during a rise time of 2Ai = 0.0444, after which it remains constant. The initial 
ramp in the step variation eliminates the complicated circumstances of having fIrst-order 
discontinuities in the disturbed region; furthermore, it is physically more realistic as a 
boundary condition than a step variation without a ramp. 

The numerical results are displayed in Figs. 4-5. In Fig. 4, the variation of the 

dimensionless shear stress 'r/f 0 with i and x= 1.21 is shown for the laminated composite with 
plane layers. The curves are given for the elastic case, i.e., when the viscous effects are 

1.10 

0.60 

0.10 

c.i \.; 
--- Elestie eomposite 
-- Viseoelostie composite ( I ) 
---- Viscoelastic composite (2) 

2.00 4.00 6.00 t 
- -

Figure 4. Variation of 't/fo wilh t al x = 1.21 for a plane layered composite. 

neglected, and for the cases of viscoelastic composite materials 1 and 2. These in the sequel 
are described as elastic and viscoelastic solutions 1 and 2, respectively. The curves in Fig. 4 
denote clearly the dispersion caused by the viscous effects in the wave profIles. We note 
that composite material 2 is more viscous than land this is revealed in the curves by a larger 
discrepany with the elastic solution. Furthermore, the discrepancies between the elastic and 
viscoelastic solutions tend to increase as time passes. The sudden changes in the stress 
levels in the curves correspond to the arrivals of reflected and refracted waves from the 
boundaries and interfaces of the laminated composite at the position considered. The 
maximum values of the shear stress 't/fo are sm aller in the viscoelastic solutions than the 
elastic solution and they get even smaller as time increases. In the viscoelastic composites, 
being more pronounced in composite two, the differences between the maximum and 
minimum stress levels tends to decrease as time passes. In Fig. 5, the variation of 't/fo with 
time at the location x = 1.21 i<; displayed for the cylindrical layered composite. The curves 
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exhibit similar trends as those of plane layered eomposites. In addition, these eurves reveal 
the geometrie effects as weIl. The maximum stress levels are smaller in this ease than the 
maximum stress levels in the plane problem. 
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INTRODUCTION 

Several papers have been published recently on EM scattering and waveguiding by 
periodic strips.1 There is also interest in investigation of analogous problems for elastic 
waves in elastic body with slots. 2 

A new method is proposed for analyzing electromagnetic or elastic waves in pe
riodic systems of thin and perfectly conducting in-plane strips, or slots. Scattering, 
waveguiding, and radiation of waves in the system in arbitrary anisotropic media can 
be easily analyzed with help from the method, which is particularly effective in a case 
of low order Bragg scattering of waves. 

In a case of EM waves, sampIe analysis is presented concerning scattering by a 
system of strips (arbitrary polarization and angle of incidence), leaky wave antenna, 
and certain inhomogeneous problem of EM radiation by a supplied single strip in 
periodic systems. In the case of elastic waves, Bragg scattering of elastic guided wave 
by the in-plane system of periodic slots in the body is analyzed. A generalization of 
the method for analyzing nonperiodic systems is sketched. 

The proposed method was first presented by Chu3 and afterwards applied in the 
theory of interdigital transducers (IDT) of surface acoustic wave (SAW) concerning the 
eigenvalue problem,4 and 3-dimensional eigenvalue and nonhomogeneous problems.5 It 
was generalized to elastic,6 and EM waves,7,8 quite recently. The method is based on 
known Fourier expansion of periodic function vanishing in one domain of the period, 
and having square-root singularities at the edges of the other domain. In fact, it ex
ploits known analytical solutions to certain electrostatic problems concerning periodic 
systems of perfectly conducting strips. 

Briefly, the solution to electric charge distribution, and to electric tangential field 
in the plane of strips are correspondingly (B = 27rX / 11., 11. - strip period, 6. = 7rW / 11., W 
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is strip width, P - Legendre function4,9) 

V2,exp(jO/2) _ ~ D -i nO D D ( A) 
1/2 - L.J n e , n = .rn COSu 

(cos ° -cos 6.) n=-oo 

° V2,exp(jO/2) _ ~ E -inO _ . .!::.n( A) 
-TöT( A _ 1I)1/2 - L.J n e ,En - J I l.rn COSu 

lVI cos u cos (7 n=-oo n 

(*) 

where the validity of the left-hand sides is constrained to domains where they have real 
values. 

Most important are Fourier expansions given in the right hand si des of Eqs.(*). 
As known, the Green's function making charge distribution dependent on tangential 
electric field on the plane is in spectral domain (k real) 

(**) 

Indeed, in Eqs.(*), field components Dn and En expressed in spectral domain are 
subjected to this dependence (for k = nI<, I< = 2'1r/A, f = 1). 

The method presented in this paper exploits heavily this particular property, that 
the dependence between two certain spectral functions like D(k) and E(k), (the de
pendence given by Green's function, for instance) has the asymptotic form (**) for Ikl 
large. This helps in modelling field in spectral domain. 

In what folIows, we will use the following identities4,9 resulting from (*) 

00 -inO {V2,Ctm exp( -jmO) eiO/2, 101 < 6. E CtmPn_m(cos6.)e = ';cosO - cos6. 
n=-oo 0, 6. < 101 < 'Ir (I) 

00 { 0, E ßmSn-mPn-m(Cos 6.)e-inO = -'S V2,ßm exp( -jmO) eiO/2 
n=-oo J 0 ';cos 6. _ cos ° ' 

where Sv = 1 for /J ;::: 0, and - 1 otherwise, Ctm and ßm are arbitrary constants. 
The above pair of functions allows to model any periodic function, vanishing in one 

domain of the period, and having square-root singularities at the edges of the other 
domain, provided that the function is smooth enough in order to be represented by 
finite Fourier series exp(-jmO). There is als09 (X = cos6.) 

P_,.,{-X) = sin'lr/J f: SnP,,(X) , P_,.,{X) = sin'lr/J f: (-l)npn(x) (11) 
'Ir n=-oo /J + n 'Ir "=-00 /J + n 

Summarizing, three features make the functions (I) well-suited for modelling EM 
field in the considered structures of periodic strips: 

- they are periodic functions as required by Floquet's theorem, 
- the functions vanish in certain adjacent domains, as required for some EM field 

components by the boundary conditions on, or between strips, 
- they exhibit square-root singularity at the bounds of the above-mentioned do

mains, similar singularities occur in the EM field at the strip edges. 
In the paper, summation over n always takes place in infinite limits, like in Eqs.(I), 

for convenience the infinite summation limits will be dropped. 
The paper is organized as folIows. In the next Section, three sampie electromagnetic 

problems will be analyzed with the help of the method, presenting its usefulness in 
scattering, waveguiding and certain inhomogeneous problems. The following Section 
is devoted to mechanical problems. In Conclusions, a generalization of the method is 
sketched. 
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ELECTROMAGNETIC PROBLEMS - CONDUCTING STRIPS 

Formulation of the Scattering Problem 

Let's consider the system shown in Fig.la), where periodic strips of width wand 
period A = 211" / /{ are arranged on y = ° plane in vacuum. Harmonie electromagnetic 
field of angular frequency W (the term expjwt will be dropped throughout the paper) 
can be expressed by Hertz electric and magnetic potentials,lO äyiP and äy W (with ex
ception of a very particular case of TEM wave propagating in the y -direction), äy is 
unitary vector along y-axis 

(1) 

where 1'0' /10 and ko = WJEo/1o are standard denotations. 
The EM field in the system of periodic strips can be represented by aseries of 

harmonie waves. For example, x-components of electric field in the upper halfspace 
(index +), and the lower halfspace (index -) are 

(2) 

where ° < r < /{ (that always can be assumed), and the chosen values for s; satisfy 
the radiation condition at y -+ ±oo. 

Applying (1) we obtain (indices '+' and '-' have been dropped) 

Exn = W/1o kWn - r'nsniPn Hxn = -rnsnWn - wEokiPn 

Eyn = (r~ + k2 )iPn Hyn = (r'~ + P)Wn (3) 

Ez" = -w/1orn Wn - ks"iPn Hzn = -kSnWn+WEorniPn 

The incident wave incoming from infinity in the upper halfspace is represented by Hertz 
potentials having corresponding amplitudes '1>/ and W/ (OnI is Kroenecker delta) 

OnI (:~) exp (-jrnx + jSnY - jkz). (4) 

It results from boundary conditions at y = ° that 

E: = E; E; = E; w;;- = Wn + OnIW I 

E:n = E;n E;n = E;n iP;;- = -iPn + onIiP I , 
(5) 

where iP" and W" are scattered field amplitudes in the upper halfspace, and 

E: = 0, E; = 0, on strips 

H: - H; = [Hxl = 0, H; - H; = [Hzl = 0, between strips. 
(6) 

In the method proposed in this paper, we apply the above boundary conditions some
wh at changed, namely instead of Eqs.(6) taken for z-components of the EM field, we 
apply two equivalent conditions that the field x-derivative, oxEz, or ox( H; - H;) 
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vanishes on, or between strips, correspondingly, and additionally, that Ez = 
x = 0, ±A, ... , and H;- - H; = 0 at x = ±A/2, ±A/2 ± A, .... Explicitly, 

EE+ e-in" _ { = 0; for I'"~ < ~ 
n xn - '" 0; for ~ < ,,,, < 11' 

Zo ""'(H+ _ H- )e-in" = { '" 0; for I'"~ < ~ 
2 ~ xn xn = 0; for ~ < I'"~ < 11' 

o at 

(7) 

where Zo = VlLo/fo," = Kx, ~ = Kw/2, the term exp(-jrx- jkz) has been dropped, 
and 

.i...a E -.i... ""' _ ·r E+ e-in" _ { = 0; for I'"~ < ~ 
k x z - k L..J J n zn -...J. O· for ~ < I'"~ < 11' o 0 n -r , 

jzo a [H 1 = jzo ""' _. (H+ _ H-) -in" = { '" 0; I'"~ < ~ 
2ko x z 2ko ~ Jrn zn zn e = 0; ~ < I'"~ < 11' 

(8) 

while the above-mentioned additional conditions are 

A Method of Solution 

Let's compare (8) and (I). We see that Eqs.(8) will be satisfied if we put for every 
n separately (~ marks the represented functions) 

1 axEz ~ -r~(Wn + 6n1W1) - : rnsn(cI>n - 6n1cI>1) = L>~mSn-mPn-m 
o 0 m 

j Zo [ 1 A k 2 ""' () 2["ax Hz = -kzornSnWn + 7·ncI>n = L..JßmPn-m, Pli = Pli cos~ 
o ° m 

(10) 

where a m and ßm are arbitrary constants unknown yet, temporarily we admit summa
tion over m in some large, but finite limits. Equations (10) can be easily solved for cI>n 
and Wn which subtituted into (3) yield for Ex" and (zo/2)[Hxnl 

--/!-amSn-mPn-m - ~r ßmPn-m + (zO-kk s~Wl + rn sncI>I)6n1 
"0 n 0 's P. 

I _ k2/k~ = am n-m n-m 

:::.!l.rS amSn-mPn-m - -klo ßmP,,-m + (zornsnW1 - -/!-s~cI>1)6nl 
n 0 ~ ß' P. 

I - k2 / k~ = m n-m 

(11) 

correspondingly (the symbol Em has been dropped), where another expansion involving 
unknown a:" and ß:" is applied in order to satisfy conditions (7). 

x 

c, p,' 0 

-h metal 

a) y b) 

Figure 1. a) Periodic system of strips in vacuum. b) Periodie strips on dielectric layer. 
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Further discussion allows us to eliminate constants a:" and ß:" from the solution. 
Let's consider large values of Inl, say n < N- or n > N+, where both -N- and N+ are 
so large that we can apply approximations rn ::::: nK and Sn ::::: -ilnKI. If additionally 
we assume N- ::; I ::; N+ and allow m 

N- ::; M- ::; m ::; M+ ::; N+ + 1, (0< r < K assumed) (12) 

we will easily note that Eqs.(ll) are satisfied automatically for all n outside the limited 
domain [N-, N+], if only 

k +'ß k ß . -r.;am J m I -r.; m - Jam 

a:" = 1 _ k2 J k~ ,ßm = 1 - k2 J k~ (13) 

Equations (11) must be satisfied for all n, however. Applying (13), we thus obtain 
the following equations, which must be satisfied for each n E [N-, N+] 

~ßm (i;: -Sn-m) Pn_m(cosß) = (zo :0 s~lJ!I + rnsncl)I) SnI 

~am «: Sn-m -1) Pn_m(cosß) = (zornSnlJ!I - :0 S~cl)I) SnI 

where summation over m is assumed in limits (12). 

(14) 

There are double M+ - M- + 1 unknowns, and double N+ - N- + 1 equations (14) 
plus two additional equations resulting from (9), thus we have double N+ - N- + 2 
equations altogether. Keeping in mind (12), the limits must be 

(15) 

in order to obtain the closed system of equations for am, ßm. 
Equations (9) give (the sums over n are explicitly evaluated with the help of (11)) 

1 () '" Sn-mPn-m 1r J K "'( )m (A) -k Ez 0 = LJam K = -'--r LJ -1 amP-m-rIK -coSu = 0 
o m,n r + n SIn 1r"K m 

Zo [ A 1 1r J K '" ( _l)n Pn- m '"' () 
-2k HzC -2) = -'--r L.J ßm K = L.JamP -m-rIK cos ß = 0 

o SIn 1r"K m,n r + n m 

(16) 

Solving Eqs.(14) and (16) for unknowns a", and ßm (M- ::; m ::; M+), as dependent on 
known cl)I and lJ!I, we can evaluate Hertz potentials and EM fields in both halfspaces by 
the parameters characterizing incident wave. This concludes the solution of the problem 
(some numerical examples are given in,8 an analog to Brewster angle seemingly exists). 

For example, we can evaluate the amplitu9.e of total current flowing along strips in 
the z-direction (apply Eqs.(7) to extend the integration limits) 

. k ß 
~ ~ J~+-k m 

J -1 "'[H+ - H-]d - - Zo 1 '" 0 D -i(r+nK)zd - LJ zn zn X - 2 LJ 1 k2Jk2 rn-me X 
-w12 n -A/2 m,n - 0 

(17) 

which is dependent on 1'. Applying (II) one obtains 

(18) 
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Sampie Eigenvalue Problem 

The considered dielectric slab, Fig.l b) has its upper surface covered by periodic 
strips and its bottom surface metallized. The EM field in a vacuum above the slab is 
governed by Eqs.(1 )-(3). Similar relations for the dielectric layer can be obtained by 
substitutions f o ~ f/, 1'0 ~ 1", ko ~ k", Zo ~ Zl and Sn ~ s~. 

The EM field in the slab includes both solutions, s~ and -s~, for example, 

(19) 
n 

and similarly for q,-, E-, H-. The boundary conditions at y = -h 

(20) 

allow us to evaluate ~' and q,' by ~ and q,. 
Proceeding in the way shown in the Section above, we arrive at 

(21 ) 

!;:o..Ezn = -r~zoq,n - frnsn~n = amSn_mPn_m(cosDo) 
/co 0 

~-k:[H;;' - H;nl = -trnSnAnzoq,,, + kkoBn~n = ßmPn-m(COS Do) 

while relations (16) remain in the previous form. 
The pair of unknowns a~n and ß:n is eliminated from the above solution for EM 

field in the same manner as previously described. Taking into account that 

exp(js~2h) ~ 00, An ~ A', Bn ~ B', if n ~ 00 (n < N- or n > N+), (22) 

we obtain relations analogous to (14), which must be fulfilled for every n E [N-, N+j 

..... M+ { [ An+EnCBn-Anl A'] k S 
wm=M- a m An+GDn(Bn-Anl - A'+G(B'-A'l ko n-m-

°ß [jsn/rn Sn_rn] } p ( A) 0 
J m An+GDn(Bn-Anl - A'+G(B' A'l n-m COS u = 
..... M+ { 0 [jsn/(rnIAnBn S A'B'] 
wm=M- Jam An+GDn(Bn-An) ,,-rn - A'+G(B'-A') + (23) 

ß [ An+EnCBn-Anl A'] k} p ( A) 0 
rn An+GDn(Bn-An) - A'+G(B'-A') ko n-m cos U = 

C = 1/(1 - k2/k~), Dn = r~/(r~ + P), En = k~/(r~ + P). 

The eigenvalue problem is then closed in the system of homogeneous equations (23) 
plus (16), depending on r, k (w given). The dispersive relation is 

Det(r, kj w) = 0 (24) 

where Det is the determinant of the above-mentioned system of equations. 
The relation (24) describes wave-number of EM modes propagating in arbitrary 

direction. Following the assumption 0 < r < K, this curve is represented in a single 
Brillouin zone. Complex solutions for 7· can occur for two reasons4,5,1l 
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- Bragg reflection of waves from strips that can take place at r ~ K 12, 
- radiation of waves into a vacuum above the strips, if some Sn, for example, S-1 is 

a wave vector component of propagating mode in a vacuum. This is the generalized 
case of so-called leaky wave antenna12 (k =f:. 0). 

Summarizing this Section let's note, that in case of multilayered structure, we can 
use the presented method of analysis, applying representation of fields on the border 
between the layers like that in (4). This allows us to express fields scattered by one 
system of strips having period A, in the form of Floquet expansion suitable for another 
periodic system with different period A' and even orientation (in which case we should 
rotate the system of coordinates). There is always a finite number of field harmonics 
which must be accounted for in the expansion because, due to imaginary-valued Sn, 

higher harmonics vanish fast and do not contribute to the field in the neighbouring 
layer. 

Certain Nonhomogeneous Problem 

Let's consider a case of strips shown in Fig.la) for k = 0, Ex = 0 for simplification, 
that results in [Hz] = 0, cf) = 0, thus also ßm = 0 in expansion (10). 

Imagine that strips are transversely scratched, and in each scratch there is a uniform 
electric field Ez applied, that excites current along the strip. The scratching is infinitely 
dense and the electric source is perfectly conducting. 

In equations (16), Ez is evaluated in the strip center as dependent on spectral vari
able r (in this Section Ez =f:. 0, however). Its inverse Fourier transform (see Appendix) 
gives us the value dependent on strip number q 

k K Ir M+ 
Ez(qA)=Eq=-j}~ { .'Ir )K L (-I)mO:mP_m_r/K(-cosß)e-irqAdr (25) 

~ 10 sm 'Irr m=M-

where O:m, which are subjected to Eqs.(14) (but not to (16)), are dependent on 0:0 that 
is allowed to be a function of r. 

Let's denote the solution of Eqs.(14) by ö m • In. order to satisfy (25) we must apply 

sin 'Irr I K E eirqA 
o:o(r) = j q (26) 

'IrkolK (-I)mO:mP_m_r/K(-cosß) 

which substituted into (18), and after applying inverse Fourier transform yields 

J - --±-E lK ömP_m_r/K(cos ß) sin 'lrrl K jr(q-I')A' !...-d IK 
I' - q ()m () e sm 'Ir r . zoko 0 -1 O:mP_m_r/K-COSß K 

(27) 

This is the total current flowing in the p-th strip and excited by a given Eq , constant 
along q-th strip (k = 0). Allowitlg Eq dependent Oll z, we must account for ßm and the 
spectral variable k in the consideratiollS. 

ly 
ß = 1r/2 guided waves 

uf bulk 
wir = v 

"\=0 , slot 

~.w·,1 waves Re x 

u~ -;/ 

r--- ---- VR 

kt 
a) • Ty; p, p" A b) 1.05k, KI2 

Figure 2. a) Periodic slots in elasic body. b) Dispersive curve in Bragg reflection area. 
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ELASTIC WAVES - PLANAR PERIODIC SLOTS 

In this Section we consider the eigenvalue problem for waves propagating along a 
planar system of periodic slots in an elastic body. It can be considered, that two elastic 
halfspaces are bonded each to the other, where the bonding is perfect between slots, 
and there is a traction-free area in slots (Fig.2a). Thus 

T = T+ = T-, T = 0, on slots 

v = ox[u] = ox[u+ - u-] = 0, between slots 

[u] = 0, in the middle between slots, x = 0 

(28) 

where T = [Tyx , Tyy , Tyz ] are stress components, and u = lux, U y, uz] are particle 
displacements. In wh at follows, we will consider the case7 Tyz = 0, U z = 0 and, in 
correspondence to the previous Section, we apply k = 0 for simplicity. 

Let 's apply traction T exp(jwt - j kx) to the surface of the upper halfspace. The 
amplitude of the particle displacement vector is (apply Im{s"} < 0) 

u+ = g(k)T 

s" = (k~ - k2)1/2, v = t, I 

kt = wjf., kl = wJ >':21' 
(29) 

where p, /l, ). are mass density and Lame eonstants of the body. For lower halfspaee 
the relations are analogous, but we must apply substitution s" -t _s" in order to 
satisfy the radiation condition, the substitution resulting in g(k) -t g'( k). Note, that 
w( kR ) = 0 is the Rayleigh-wave solution. Below, k -t r + nI<. 

In accordance with the method and in order to satisfy boundary conditions (28) we 
apply a representation for n-th harmonie eomponents of T and V= ox[u] 

(a, b - vectors). On the strength of (29), the relation between them is 

v" = G(r' + nI<)Tn 

G (k) = J'2!cl [';zt 0 1 G(lkl ) S G kN /l S I 
/l 0 k"zl' -t 00 = k 00 = k; _ kl k • 

(30) 

(31 ) 

Note that the asymptotic relation between V n and T n is as required by the method, 
resulting from similar singularities of the corresponding functions at the slot edges. 

The consisteney condition (for In Ilarge) requires that 

(32) 

so that we arrive at the following equations which should be satisfied for all n 

2: [G - Sn-mGoo] amPn_m(cos ll) = 0, 
m 

(33) 
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The limits for mare given in (15), they can also be deduced from the general form of 
the matrix (33) (its dimension depends on how fast G becomes G oo ). 

Equations (33), together with the following one resulting from (28) 

(34) 
m 

are a closed system of equations, the resulting dispersive relation is like (24). 
Two examples below show how easy the method is in the case of relatively dense 

slots (strips in EM case), where (N-, N+) is narrow. 

Example - dense system of slots. Consider Tyy = 0, [uy] = 0 on y = 0, and K ~ kt 

resulting in N- = N+ = o. That is, in equations (33) we have m = 0,1 and n = 0 
only. Following the above assumption we have am = [am, 0], thus (33) yields 

(35) 

where s/l and ware evaluated from (29) at k = r. Dispersive relation (24) is 

t W p-r / K - Pr/ K 
s = , that is ~ 0 . 

2r(kl- kl) P-r/K + Pr/K 
(36) 

Because w(r) > 0 for r E (kt , kR , the solution for r exists, and kt < r < kR . It is not 
surprising. For a slot system denser and denser, we arrive at the free surface y = 0, 
where the Rayleigh wave solution exists. 

In a complementary case lux] = 0, we arrive at (36) but with replacement st -+ s', 
in which case the real solution to r does not exists (w is complex when s' is smalI). 

Example - wave-guiding and Bragg reflection by strips. This example concerns 
the case K ~ r ~ 2kt and [uy] = 0, Tyy = 0 on y = o. It is evident we must apply at 

least N- = -1 and N+ = O. Denotations are s~ = Jr2 - kl, S~l = J(r - K)2 - kl, 
and analogously w~ = ~w(r + nK)/(kl- kl). Equations (33) yield for n = -1,0 
correspondingly (denotation for a m as in previous example, and R = r - K) 

(RS1 
) (RS 1 

) (RS1 
) a-l ---;=1- + 1 + ao ---;=1- - 1 + al ---;=1- - 1 cos ß = 0 

W_l W_ 1 W_l 

( rs l
) (rs l

) (rs l 
) a-l w~ + 1 cos ß + ao w~ + 1 + al w~ - 1 = 0 

(37) 

A numerical solution to the dispersive relation resulting from the above equations 
and (34), is shown in Fig.2.b) for the case A = 0 and cos ß = o. There is a complex 
solution if K /2 is a little above kt , and a real solution for larger K. Both shows guided 
waves propagating along the system of slots, where the wave-field vanishes deep into the 
body. Complex wave number r (a stopband) results from Bragg reflections phenomena 
taking place in the periodic system of strips. 

This phenomenon is expected to have some application in SAW devices.13•14 Con
sider two piezoelectric substrates bonded by metal strips which serve as electrodes of 
IDT exciting the guided wave in the system. In stopband we have a 'resonator', a 
compact structure that need not be packed in a metal case. The device like RAC, in 
which guided wave propagate slant to strips and where 2-dimensional Bragg reflection 
is exploited, can also be constructed and analyzed in a similar way. 
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CONCLUSIONS 

We have shown the usefulness of the method3 - S in analysis of eertain wave problems 
for isotropie media. In a similar way we ean treat the anisotropie eases, dealing with E 
and H fields directly instead with Hertz potentials. Corresponding boundary eonditions 
must be, following the method, stated for fields or their derivatives exhibiting the same 
singularity at the strip edges, like [Hxl and 8xEz above. Relations will be mueh more 
eomplieated in this ease. 

It is also interesting, that relations (I) have more general form, eoneerning functions 
whieh behave as (eos ~ - eos O)/l, 11 > -1. However they are mueh more eomplieated 
and there is open quest ion, if a similar method to that presented in this paper ean 
work with them effieiently.6 

As mentioned in the Introduction, we exploited eertain solutions (*) to electrostatie 
problems (**) for periodie strips. One may arrive at the eonclusion, that having other 
and mueh more eomplieated planar system of strips, an analogous method ean be 
applied provided that the eorresponding electrostatie solution is known. The solution 
should include some degree of freedom in order to satisfy separate boundary eonditions, 
one for every strip in the group. Indeed, sueh a solution is knownll in the ease of 
periodie systems of groups of 'periodie strips'. 

However, further generalization is possible. Consider the finite plane system of 
p strips having edges at x q , q = 1, ... ,2p. The solution of the electrostatie problem 
having the required degrees of freedom in arbitrary bq (usually, they are evaluated from 
known strip potentials), isIS 

In the ease of sparse periodie systems of the above groups of strips (A large), we ean 
apply the above-expressed functions to model real fields in the system. The following 
key step in the purpose to obtain relation analogous to (*), is the applieation of FFT, 
yielding harmonie expansions with eoeffieients En and Dn = SnEn, just analogous 
to Pn and SnPn in (*). The ealculations should be performed with a long series, as 
required by the method in Eq.(12). 
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Appendix 

Let a eertain function depending on r E (0, I<) have the form (see (I) for instanee) 

F(r) = Qm(7')Pn_m(eos~) 

whieh ean be rewritten as a function spanned over a whole axis r' E (-00,00) 
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Assuming that F is a Fourier transform and r' is spectral variable, its inverse Fourier 
transform evaluated for x = pA is 
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SYNCHRONOUS FORWARD TO BACKWARD 

SURFACE ACOUSTIC WAVE COUPLING 

IN REVERSING MULTIS TRIP COUPLER 

Eugene J. Danicki 

Polish Academy of Sciences, IFTR 
21 Swi~tokrzyska Str., 00-049 Warsaw, Poland 

INTRODUCTION 

Surface acoustic wave (SAW) propagating on a surface of piezoelectric substrates is 
accompanied with a wave of electric potential on the surface. SAW can be excited by 
metal strips on the surface of a piezoelectric body when they are supplied with electric 
potential. Multistrip coupler is the directional coupler of two adjacent SAW channels 
where the coupling is provided by periodic metal strips covering both channels. 

A new reversing multistrip coupler (rmsc) is proposed and analyzed, where the strips 
are interlaced between the channels. This results in coupling of forward propagating 
potential wave in one channel to the backward propagating wave in the other channel 
in certain frequency bands. The device can find many applications in SAW technology, 
allowing construction of SAW pass-band and dispersive filters. 

An interesting mathematical problem arises in modelling the above system of in
terlaced strips. A 'continuous' eigenvalue problem with mixed electric, and mechanical 
boundary conditions must be solved to characterize SAW propagation in periodic sys
tems of thin metal strips. Another 'discrete' eigenvalue problem is encountered in rmsc, 
resulting from the equality of certain strip currents and potentials in both acoustic 
channels. 

Let's consider surface acoustic wave propagating in a piezoelectric halfspace y 2: o. 
We observe a wave of particle displacement ü exp(jwt - j kvx) on the substrate sur
face, and a wave of electric potential cpexp(jwt - jkx) accompanying SAW due to the 
substrate piezoelectricity, wand kv are angular frequency and wave-number. If the 
substrate surface is metallized, the SAW wave number takes another value, ko where 
ko > kv , and instead of surface electric potential which is zero, there is surface electric 
charge density ö.D.L equal to electric flux discontinuity on both sides of metallization. 
The relative velo city change ö.v/v = (kv - ko )/ ko is animportant parameter character
izing piezoelectric substrates (another parameter! is the 'effective surface permitivity' 
ce). 

Photonie Band Gaps and Localizt;ltion, Edited by 
C.M. SoukouIis, Plenum Press, New York, 1993 499 



In the case of part surface metallization in the form of a periodic metal strip 
deposited on the substrate surface, the corresponding wave-numbers of SAW prop
agating perpendicularly to strips are I'v and ro for free, and short-circuited strips, 
kv < r v < r o < ko ' Let the system of strips span over two adjacent acoustic channels, 
and let the SAW beam propagate only in the upper channel (Fig.1.a). The electric 
potential induced on the strips by SAW is distributed over the lower channel as weH. 
This is the travelling-wave potential which excites SAW in the lower channel. This is 
synchronous excitation because SAWs in both channels have the same velocity. The 
system of strips is then a directional coupler of two acoustic channels, the microstrip 
coupler2 (msc). 

Figure 1. a) Multistrip coupler (msc). b) Reversing msc in basic configuration and 
c) practical structure 

Let's consider periodic strips with three strips per wave-Iength of SAW. Thus, 
the following strip potentials are phase-shifted by 0°, -120°, -240°, corresponding to 
exp(jwt - jrnA), A = ~w/r and n = 0, 1,2. Let the system of strips has every second 
and third strip interlaced between the channels (Fig.2.b). In the lower channel, the 
following strips potentials have phases 0°, -240°, -120°, equivalent to 0°, 120°,240° 
respectively. This is a potential wave in synchronism with SAW propagating in the 
opposite direction as compared to SAW in the upper channel. The system shown in 
Fig.l b) is reversing directional coupler,3-5 'rmsc'. 

It is somewhat difficult to make a planar system of strips with strips crossing one 
over the other. Among several possible solutions in this paper, we consider the system 
where every third strip is grounded (Fig.1.c). Such strip structures can easily be made 
with the help of microelectronic technology. 

In the next Section, some general theoretical results necessary for description of 
msc and rmsc are presented. We apply a perfect strip model, that is, we neglect strip 
elasticity6 and mass, and also assurne perfect strip conductivity. This allows us to apply 
direct1y the developed method7,8 for analyzing waves in periodic strips. The following 
Sections present the theory of rmsc. In Conclusions, we discuss possible applications of 
rmsc in SAW devices like SAW filters, resonators, and dispersive delay lines for signal 
processing. 

SAW IN PERIODIC SYSTEM OF STRIPS 

Simplified Description Of Piezoelectric Halfspace 

Let 's apply a traction Tyj exp(jwt - j kx) to the surface y = 0 of piezoelectric 
halfspace. If k > k. where k. is cut-off wave number of bulk waves, the response of the 
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substrate will be described by a hermitian Green's matrix 

*~T. . K, *& * K, !JlL k - k '7PJ. U; = -Z;Zj _ +z;~ ,r.p = Zj~ r;::-+ ~ "" 
11 /C - 1\:11 Ce /C - /Cu Vee k - kv l;.oe 

(I) 

where K,2 = (ko - kv)/ko = flv/v, and Z; = z;(k), Z;( -k) = zt(k). 
Wave numbers kv and ko are the eigenvalues of boundary problems for free and 

metallized piezoelectric halfspace, [Tyj, flDJ.]T = G(Wj k)[u;, r.p]T = 0 and [Tyj, r.p]T = 
G'(w, k)[u;, flDJ.]T = 0, correspondingly. In narrow bounds r ~ kv, ko, both G and 
G' resulting from equations of motion of a piezoelectric body can be approximated by 
the linear functions of kj this was exploited to obtain Eqs.(I) (otherwise, we should 
apply a more general approximation9). 

Constraining k to the area elose to (kv, ko), which is usually very narrow as com
pared to kv - ks , Z; can be applied as a constant 

K, U~v) U~o) U~v) DJ.(o) 
• k ve. · · K,2 ~ _~cII(v)* d;) (2) Z; = - ve. cII(v) = vK, ee Dr)' ee = - kvcll(v) U;(o) , 4 

where capitalletters denote normalized wave-field amplitudes of SAW propagating on 
free (index v), or metallized (index 0), substrate surface y = O. 

As mentioned earlier, we apply approximation of perfect weightless conducting 
strips, that is Tyj = O. Eqs.(I) can be transformed into 

u; ve.( 1 )} A = - ~ - -r.p+ -flDJ. 
Z; K, kee 

ee(k - kv)kr.p - (k - ko)flDJ. = 0 
apply: k --+ -k and Zi +-+ zi 

for Re{k} > 0 
(3) 

for Re{k} < 0 

It should be stressed that bulk waves, which can be generated in the body by the 
surface traction if k < ks , are not ineluded in the above description, thus neglected. 

To complete characterization of SAW by its wave number k and wave-field ampli
tudes r.p and A, let's introduce SAW's amplitude a, by definition involved in the relation 
for SAW Poynting vector magnitude II = ~laI2. It can be obtained from Eqs.(I) that 

a = AJw/2 (4) 

with accuracy, little dependent on electric boundary conditions, as far as the SAW wave 
number is elose to (kv , ko ). 

Eigenvalue Boundary Problem 

The considered boundary problem concerns wave-propagation in periodic systems, 
thus applying Floquet 's theorem, the solution is searched in the form (term exp jwt 
dropped) 

00 00 

EII(x) = L Ene-j(r+nK)"', flDJ.(x) = L Dne-j(r+nK)", (5) 
n=-oo n=-oo 

where r is assumed in the first Brillouin zone (0 < r < K) and EII(x) = -8",r.p(x). 
Complex amplitudes Dn and En are dependent on each other on the strength of 

Eqs.(3), where we apply k = r + nK 

D . S r + nK - k" E 
n = -Jee n+r/K r + nK - k() n 

. {I for v > 0 En = J(r + nK)r.pn, S/I = 1 r - 0 - lor v < 
(6) 
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A ------------t-----------..:..X ~ Aoe-ir", _ 
A2 _ Y !:l.D.L = 0 Eil = O· "(K ) <= A_1e3 -r '" 

Figure 2. Periodic system of st~ips on piezoelectric halfspace 

It is assumed below, that K > ko• In fact, rmse works at K ~ 3ko ~ k., allowing 
several simplifieations in the following eonsiderations, primarily (r + nK - ktJ)/(r + 
nK - ko ) ~ 1 for all n except n = 0 or n = -1, and r in the assumed domain. 

Electrie field is shielded under perfectly eonducting strips, and the electrie charge 
ean be different from zero only on strips (Fig.2), that is 

EII(x) = 0, on strips, IA - w < x < IA + w 

ßD.L(x) = 0, between strips, (/- l)A + w < x < IA - w 

are mixed electric boundary conditions at y = 0 plane. 
The I-th strip potential and eurrent 

Vi = V(r)e-irlA, I1 = l(r)e-irIA 

depend on r. Below, we eonsider the two most important eases 
- short-eireuited (grounded) strips, where strip potentials are zero 

00 00 1 
V(r) = I: cp" = -j I: K E" = 0 

n=-oo n=-oo r + n 

- free (open) strips, where the electrie eurrent flowing to a strip is zero 

(7) 

(8) 

(9) 

w A 00 (-1)" 
I(r) = jw Lw ßD.L(X) dx = j2wsin r"2 ,,~oo r + nKDn = 0 (10) 

A Method Of Solution 

Following the method,7 we apply the representation for the given n-th harmonie 
eomponents En and Dn in the form of finite series including certain new unknowns G:m 

N+I N+I 

E" = I: G:mS,,-m P"_,,, (ß), Dn = -jee I: G:mPn-m(ß) , (11) 
m=M m=M 

where SII is as defined above in Eqs.(6) and PAß) = Pli - Legendre function (Appendix), 
ß = cos K w = 0 in the ease eonsidered in this paper, limits M ~ 0 and N ~ 0 are 
eertain integers. 

.) J.J I~ hJ I ~ hJ I H 
c) 

1~1~111~1~1 
IDT 

b) 

Fig. 3. a) One section ofrmsc. b) SAW resonator and c) dispersive delay line with rmsc. 
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The representations (11), satisfying the electric boundary conditions (7) (see Ap
pendix), will satisfy also Eqs.(6) if 

(12) 

In the considered case I< ~ ko , the number of unknowns O:m is not large. Indeed,let's 
note that the solution (11) satisfies Eq.(I2) for every n < M and n > N automatically. 
Assuming M = -1 and N = 0, we get Eqs.(6) satisfied by the solution in the above two 
domains of n, independentlyon O:m, m E [-1,1], provided that I< > ko and 0< r < I<. 

Solving Eqs.(12) and applying Eqs.(3) (A(x) = 2: Anc-i(r+nK)x), we obtain 

",2 r 
0:1 = O:OTr=7C' 

",2 f{ - r 
0:-1 = O:OTI< _ r - k' 

A . ~ee 0=-)0:0 r-

A . ",{4 
-1 = -)0:0 K - r - k ' 

where k = (kv + ko )/2 = w/k, 0:0 is arbitrary constant. 

Propagation of SA W in a Periodic System of Strips 

(13) 

The last condition to be satisfied is either Eq.(9) or (10) which can be rewritten in 
the form (evaluation of the the series over n, see Appendix) 

7r 

V(r) = 0:0'I<' / I< v,. , ) sm 7r7' 

v,. = L O:m(-1)mp_m_r/K , Ir = L O:m P-m-r/K' 
m 0:0 m 0:0 

Corresponding dispersion relations are 
v,. = 0, 7' = 7'0' for short-circuited strips, 
Ir = 0, r = rv , for open strips 

which explicitly are (apply '-' for 7'0 and '+' for 7'v ) 

WeB outside the Bragg stopband (/{/2 =I- k; in case of rmsc /{ ~ 3k), we have 

Finally, the symmetry in Eqs.(14) allows to write 

and K{4 I< - r - k 
Ao = V(7') P e ( ) (I< ) I< sin 7rr / I< 

7r -r/K r-ro -r-ro 

( ) "'{4 r - k . / 
A_1 = V r P ( )(1'/ ) I< sm 7rr I< 7r -r/K 7' - r 0 \. - r - r 0 

where, following Eqs.(3) 

are forward and backward propagating SAWs, depicted in Fig.2. 

(14) 

(16) 

(17) 

(18) 

(19) 
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THEORY OF RMSC 

Modelling of Electric Field in the System 

It is seen in Fig.1.e) that the eonsidered system is periodie with period 3A. Hence, 
the Floquet theorem requires the following representation for strip potentials and eur-
rents 

2 2 
L V(s + nK')e-i(s+nK')x, L /(s + nK')e-i (8+nK')x, x = lA (20) 
n=O n=O 

where, in order to adopt the results of the previous Section, we must apply 

o < r = s + nK' < K, K'= K 
3 

(21) 

In wh at folIows, we eonsider rmse working in a narrow frequeney band where eou
pling between forward wave in the upper aeoustie ehannel and baekward wave in the 
lower ehannel is strongest. This takes plaee at 

s = K' + b, Ibl ~ K', ru ~ K' ~ r o ~ k = w/v (22) 

so that in Eqs.(21), we must apply either n = 0, 1,2 for b < 0, or n = -1,0, 1 when 
b > 0, and similarly in Eqs.(20). 

On the strength of the previous Section and the above assumption 

/(s + nK') = Yn V n , vn = V(s + nK') 

du + b du - b 
Yo = y d + b' Yl = Y d _ b 

o 0 

(23) 

y = jW€ev'3, du = K' - ru, do = K' - ro 

and Y2 ~ 0 (or Y-l ~ 0 in ease b > 0), see Eq.(17). 

Discrete Eigen-Problem 

It is seen from Eqs.(20) that we ean eonsider only three strips numbered 1=0, 1,2 
(Fig.3a), and having potentials Vi, U, and eurrents flowing to them /, and J" in upper 
and lower ehannels eorrespondingly. Kirehhoff's laws yield 

Vo = V O + VI + V 2 = Uo = UO + U1 + u2 

VI = zVO + o:zV1 + 0:2ZV 2 = U2 = z2UO + 0:2 Z2U1 + 0:4 Z2U2 

V2 = z2VO + o:zV1 + 0:2 ZV 2 = 0 
U1 = zUO + azU1 + 0:2ZU2 = 0, /0 + Jo = YoVO + Yl VI + YoUO + YIU1 = 0 (24) 
/1 + J2 = zYo V O + O:ZYl VI + z2 yoUO + 0:2 Z2Y1 U1 = 0 
0: = exp(-jK'A) = exp(-j27r/3), 1 - 0: = -jv'3o:, 1 + 0:= _0:2 , 0:3 = 1 
z = exp( -jsA) = o:z', z' = exp( -jM) ~ 1 

resulting in the following homogeneous set of linear equations 
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-o:(do - b) 
-(do - b) 
(du - b) 

0:( du - b) 

0:( do + b) 
z'(do + b) 
(du + b) 

o:z' (du + b) 

(25) 



The determinant of the above system of equations should be equal to zero 

(26) 

which most important solutions (0 small as assumed before) are 

o~ = dod", and o~ ~ dod,,(1- ~A(d" - do)) (27) 

One may see there are stopbands in both SAW modes, having wave numbers 81 = K'+OI 
and 82 = K' + 02' This happens if On is complex, that is if dod" = (K' - ro)(K' - r,,) < 
O. From Eqs.(16), we obtain the relative stopband width is ~!:l.v/v, thus maximum 
imaginary value of On is 3k!:l.v/v when k ~ K' = K/3. 

The corresponding eigenvalue-eigenvector pairs of the system (25) are 

SAW Wave-Field in the System 

The above-discussed potential waves Vn exp( - j (8+nK')x) in the upper channel and 
Un exp( - j (8 + nK')x) in the lower one are accompanied with corresponding particle
displacement waves at the substrate surface. They. are 

Ag(r + nK')e-i(s+nK1)x, A:' I (8 + nK')e-i(s+nK1-K)x (29) 

where amplitudes A~, n = 0, -1 can be evaluated from Eqs.(18), c denote the channel. 
Most important wave-components are these which wave numbers fall in the vicinity 

of SAW wave numbers, r o or -ro, because they are closely related to SAW amplitudes, 
Eq.(3). Following the applied assumptions K' ~ k ~ r o one obtains that the important 
wave-component are Ao related to Va, Uo and A_ l related to VI, Ul . For convienence, 
their corresponding amplitudes are expressed below by means of SAW amplitudes, a 

and b in the upper and the lower channels 

(30) 

where 01 or 02 should be substituted in place of 0; thus, amplitudes a and b should be 
provided by yet another index n = 1, 2. 

Note, that Va, VI, Uo, Ul are eigenvectors dependent on on, as given by Eqs.(28). 
Let the amplitude of SAW mode corresponding to eigenvalue 01 is a and that corre
sponding to 02 is b. Hence, the SAW wave-fields in the system in upper and lower 
channels are correspondingly 

a(l + 'Ylei2Klx)e-i(KI+5tlx + b(ß + ß*'Y2ei2Klx)e-i(KI+ti2)X, 

a(l + 'Ylei2Klx)e-i(KI+5dx + b(ß* + ß'Y2ei2Klx)e-i(KI+52)X, 
(31) 

_ K' - r o + /in _ "", _ . /(' )(, ) 
'Yn - K' _ r _ 0 ' n - 1, 2, U2 '" 01 - -y K - r o K - r" 

o n 
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Let's finally note, that we can apply either +on or -on in the above relations 
(happily, ß does not depend on sign of on), or both of them, in case of finite structure. 
The corresponding waves are modes propagating right (if Im{ on} < 0), and left (if 
Im{ on} > 0), each modes composed offorward, and backward-propagating components, 
the relation between their amplitudes involves 'Yn. 

PROPERTY OF HALF-INFINITE RMSC 

In case of half-infinite system of strips, we must choose only these solutions for On 
which fulfill radiation condition at infinity (x --+ 00). For example in stopband, the 
corresponding On must have a negative imaginary value. Assuming the proper values 
are chosen for on, Eqs.(31) completely describes SAW wave-field in the system. 

Let's assurne there is incident SAW in the upper channel only (Fig.3a) 

(32) 

We need boundary conditions at the border between rmsc and the free area (x = 0). 
The only simple possibility to get this condition is to compare SAW wave-fields on both 
sides of the border which have similar wave numbers. This stays for equality of both 
particle displacements, and stress on both side of x = 0 (note that stress is expressed 
by spatial derivatives of partide-displacement field, and this is, in fact, the reason that 
we must put equality for wave components with similar wave numbers, including sign, 
separately). Hence, we obtain at x = 0 

a+ ßb = a+ } 
a + ß*b = 0 ' 

(33) 

where a- and b± are searched SAW amplitudes, Fig.3a. 
We obtain following solution, describing property of half-infinite rmsc working in 

stopband, or dose to stopband (on small assumed) 

Wo = vK'(l - ~ßv/v), w" = vK'(1 + ~ßv/v) 

1 - v(w - w,,)/(w - Wo) 
b+ ~ 0, 'Y ~ ----!.-F========~ 

1 + v(w - Wv)/(W - Wo) 

(34) 

where'Y = 'Yl ~ 'Y2, I'YI = 1 in stopband and 'Y --+ 0 for frequencies outside the stopband 
(wo, w,,). 

Let 's summarize the features of the discussed rmsc 
- its scattering property is perfect in narrow stopband, 
- there is no back reflection in the same channel (a- ~ 0), 
- there is no transmission in forward direction in the other channel (b+ ~ 0), 
as far as we consider rmsc in frame of the above developed simple theory. 

CONCLUSIONS 

The structure of rmsc can be applied in several SAW devices. First of all it can serve 
like a "mirrors" and simultaneous track-changer of SAW in SAW resonators (Fig.3b), 
making their performance better for at least three reasons 
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- reduction of bulk-wave spurious signals (bulk waves excited by IDT in one channel is 
not detected by IDT in the other channel), 
- the "mirror" good reflection performance is limited to narrow frequency band wh at 
reduces the spurious passband of the resonator, 
- the reflection of SAW by rmsc is of 'regeneration' nature so that SAW diffraction 
effects are seriously limited. 
Other advantage is simple one-step technology. 

Fig.3c) shows dispersive delay line, similar to the so-called RAC SAW device, but 
with technologically difficult surface grooved reflective array replaced by rmsc. In this 
rmsc the strip period changes along the structure so that different frequencies are 
'track-changed' in different places. This makes SAW path between IDTs dependent on 
frequency - that is, dispersive delay line. 
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Appendix 

The identity can be found lO for periodic function with period 27r (it is assumed that 
0< B < 7r and Re{,L} < 1/2) 

1 00 1 { (7r /2)1/2 sin!' B 
r( - - fJ) L P::( cos B) cos( n + -)v = (cos v - cos B)!'+I/2 ' 

2 n=O 2 0 , 

where P is Legendre function (P~ = Pv ), 

The first equation can be rewritten as follows for -7r < 0 < 7r, 0 < ß < 7r 

where Sv = 1 for 1/ 2: 0, and - 1 otherwise, Gm and ßm are arbitrary constants. 
As can be easily noticed, the above pair of functions allows modeling of any periodic 

function, vanishing in one domain of the period, and having square-root singularities 
at the edges of the other domain, provided that the function is smooth enough in order 
to be represented by finite Fourier series exp( - jmO). 
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Useful identities resulting from Dougall's expansion7,IO are 
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INTRODUCTION 

In crystalline solids electronic excitations have a band structure. Energy intervals, 
in which excitations occur, are separated by band gaps, where the density of electronic 
states vanishes. At the band edge the density-of-states (DOS) has power law singular
ities, so-called van Hove singularities. 

When a small amount of disorder is introduced into the medium, states occur inside 
the band gaps of the unperturbed system. This results in a shift of the band edge and 
a smearing of the singularity of the DOS at the new band edge. As a result, the band 
edges will have a small tail. Experiments are often fitted to an exponential decay, 
often termed as the Urbach tail [1]. Theoretical results are available for binary disorder 
(Lifshitz tail [2]), for Gaussian disorderin continuous and discrete space (Halperin-Lax 
tail [3-4]) and the Lloyd model [5]. It is the purpose of the present work to provide a 
precise theory for the DOS. 

The problem has been studied extensively, see for instance references [6-8]. Most of 
the previous approaches use either techniques like the CPA method and its extensions, 
or use field theoretical methods. Both methods have drawbacks. The first is not suited 
to calculate the tails in the DOS if the random values of the potential are bounded. In 
the second method, to our knowledge, the correct prefactors have not been calculated 
for a lattice model. It is the purpose of the present work to provide a theory using a 
field theoretical approach for the tail in the DOS without adjustable parameters. We 
show that renormalization improves our results. Furthermore, we present a new type of 
effective medium theory to calculate the DOS inside the band. We have also performed 
extensive numerical simulations, which extend previous results [9-10] to more and larger 
systems. In this way the statistical fluctuations, even in the far tail, are small and a 
comparison with the theoretical predictions over a large energy range can be made. 

Photonic Band Gaps and l.ocalization. Edited by 
C.M. Soukoulis. Plenum Press. New York, 1993 509 



THEORY 
We consider the Anderson model on a simple square lattice. Hopping is described 

by a lattice Laplacian. In addition, there is a random potential V. At each lattice site 
r, its value lI,. is drawn at random from a distribution v(V). The Hamiltonian is thus 
given by 

H= -~+ V. (1) 

We are interested in the density-of-states 

1 N 
p(E) = lim N ES(E - Ei), 

N--+oo ;=1 
(2) 

where N is the number of lattice points and where the Ei are the eigenvalues of the 
Schrödinger equa.tion H tPi = EitPi 

Apart from describing amorphous materials, the model can also be used to de
scribe electrons interacting with phonons in a pure crystal. The disorder is caused by 
displacement of atoms, hence this model is valid on short time-scales when the phonons 
are frozen. The disorder will have a Gaussian distribution. Urbach originally stated his 
experimental rule for the absorption intensity of such a system (the absorption inten
sity is closely related to the DOS, see reference [9]). The density-of-states follows from 
Green's function as 

p(E) = 7r~ EIm Gr,r(E + iO) . 
r 

(3) 

The bar indicates averaging over all disorder configurations. Green's function is written 
as a path integral 

Gr,r,(E) = J DWDWexp[E-Wr(-~ - E + lI,.)Wr]4>:4>r" 
r 

(4) 

This expression involves the two-component field \IIr = (4)Tl Xr) , where 4>r is a boson 
field and where Xr is a Grassman field [11]. This allows Green's function to be averaged 
over the impurity potentials, yielding 

(5) 

with an 'action' 
(6) 

r 

The effective potential U depends on the distribution of the disordered potential v(V), 

U(x) = -ln J dVv(V)e-VX • (7) 

For Gaussian disorder with (lI,.) = 0 and (v,?) = 0'2, the result U(x) = -0'2x2/2Ieads 
to a 4>4-field theory. 

Equation (5) is exact, and now approximations must be made to calculate it. 
The dominant contribution to the tail in the DOS can be obtained from a saddle 
point solution (also called classical solution or instanton). Fixing the instanton in the 
boson direction, one inserts Wr = (fr , 0). The action is stationary when f satisfies the 
'classical' equation of motion 

- ~f - Ef + U'(f2)f = 0 . (8) 
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The prefactor of the DOS is determined by the fluctuations around the instanton. 
At first we approximate the fluctuations with the quadratic terms. Integrating the 
fluctuations and taking care of the zero mode of the fluctuation matrices, one finally 
obtains for the tail of the density-of-states: 

(E) - (det'MT LrJ':)1/2 (-A) 
p - d M exp c' - et L 7r 

(9) 

This expression involves the determinants of the longitudinal and transversal fluctuation 
matrices 

MT = -Ll- E + U'(l) . (10) 

The matrix MT has one zero eigenvalue, which has been excluded from the evaluation 
of the determinant, as indicated by the prime. M L has one negative eigenvalue. 

RENORMALIZATION 

The above result can be improved by performing a selfconsistent one-loop renor
malization or Hartree approximation [12]. In the continuum renormalization is needed 
in two or more dimensions to obtain a finite DOS [13]. Although on the lattice the 
result without renormalization is finite, renormalization leads to an improvement in the 
prediction for the DOS. In the case of Gaussian disorder, one has a 4>4-field theory. Here 
the renormalization leads to a renormalized energy 

(11 ) 

With 9 being the return Green's function, g( E) = elLE )0,0' We use the renormalized 
energy to refine the prediction of the density-of-states [12]. Comparison with numerical 
data shows us that renormalization significantly improves the theoretical prediction for 
the tail. 

A NEW EFFECTIVE MEDIUM THEORY 

We also present a new type of coherent potential approximation for the DOS inside 
the band. It is based on the same Hartree approximation to the self-energy in OUf field 
theoretical description. As stated above, the tail of the DOS is dominated by the 
instanton solution of (6). Inside the band, the trivial solution (J = 0) becomes the 
most important one and we obtain the self consistent equation for g: 

( 1 ) 9 = 2' -Ll- E - rr 9 0,0 

(12) 

Since 9 is a complex quantity now, the DOS can be extracted immediately using 

p(E) = ~Im g(E + iO) . 
7r 

(13) 

The transition between the renormalized instanton and this regime OCCUfS at the band 
edge of the new effective medium theory. This band edge is given by 

dE 
-=0. 
dER 

(14) 
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RESULTS 

The above theory has been applied to a particle on a square lattice in the presence 
of a Gaussian white-noise potential. The potential V has average zero and is delta
correlated with variance (]'2 = t. We have solved numerically the non-linear equation of 
motion (8). The determinants were also determined numerically. The results are pre
sented in Figure 1. In the absence of disorder, the unperturbed band edge lies at E = O. 
In the presence of disorder there is a tail which extends to E = -00. The dotted curve 
in Figure 1 represents the predictions from the bare instanton calculation and already 
gives a good description of the data for energies deep in the tail. The solid curves rep
resent the predictions from the renormalized theory and further improve the theoretical 
prediction. This improvement can be seen by comparing the bare instanton theory and 
the renormalized instanton curves with the result of our numerical experiment. 

The numerical data for the density-of-states have been obtained Oll a square 
100x100 lattice with periodic boundary conditions. The matrix (1) was diagonalized by 
means of the Lanczos algorithm. The resulting eigenstates yield a strongly fluctuating 
density-of-states, corresponding to the actual configuration of the disordered potential. 
To improve the statistics, an average over 70 samples in the Hartree band edge regime 
and up to 2100 sampies in the far tail was taken. 

Figure 1 clearly shows a reasonable agreement between the numerical simulation 
and the bare instanton approach. After renormalization, the agreement is very good. 
It should be noted that the absolute values of the DOS are plot ted, as all prefactors 
are explicitly taken into account in our theory. It can also be seen that Urbach's rule, 
which would correspond to a straight li ne in Figure 1, works quite well. 

-1.0 ·~;':;-;::;-=='~=--~-7=;::::;::::::;;:~ 
2D Density 01 States 
Gaussian Disorder 

-2.0 

a: 
~ -3.0 

-4.0 

Hartree 
band-edge 

-5.0 '--_~ _____ ~-'-_~ __ ~_----l 
-0.4 -0.2 

Energy (eV) 
0.0 

Figure 1. Density-of-states for a tight-binding model on a square lattice in the presence of a 

random potential with Gaussian statistics. Histogram: data from the numerical simulation. Dashed 

curve: bare instanton theory. Full curves: instanton after Hartree summation (left part), CPA-like 

Hartree summation (right part). 
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CONCLUSION 

We have presented a precise method to calculate the tail of the density-of-states 
of a disordered system. It includes all numerical prefactors and there are no adjustable 
parameters. It can be used in the continuum and on the lattice, in all dimensions. Vari
ous disorder distributions are also possible, for instance binary [14] or uniform disorder. 
The results of our method match the numerical data very weIl, especially if renor
malization is used. We also presented a new effective medium theory to calculate the 
density-of-states inside the band. This method also agrees with numerical simulation. 

It may be possible to use the same technique for calculating transport properties 
like the ac-conductivity of disordered systems. The calculation would be more elaborate 
as two-instanton solutions are needed [15]. 
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