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We examine the contribution of rotational diffusion to quasielastic light scattering (QELS) from
fractal colloid aggregates, both theoretically and experimentally. Rotational diffusion makes a sub-
stantial contribution to QELS when the size of the clusters is large compared with the inverse of the
scattering wave vector, due to the anisotropy of the clusters at all length scales smaller than the
cluster size. We evaluate the rotational contributions to QELS by performing a multipole expansion
of the light scattered from computer-simulated clusters. Experimentally, rotational contributions
are observed through measurement of the wave-vector dependence of the first cumulant. We find
excellent agreement between cumulants calculated through our multipole-expansion technique and

those obtained in our experimental measurements.

INTRODUCTION

Considerable progress has been made in recent years in
our understanding of kinetic colloid aggregation.!=% A
key to this progress is the recognition of the scale invari-
ant structure of the aggregates, allowing them to be well
characterized as fractals. This in turn has allowed more
detailed study of colloidal aggregation by a variety of
techniques, among which light scattering has been quite
prominent. To date, the almost universally used parame-
ter for characterizing the structure of the aggregates is
their fractal dimension d,. While d; is clearly an ex-
tremely important parameter, it cannot, by itself, fully
describe the highly disordered structure that typifies an
aggregate. In particular, the fractal dimension reflects a
radially averaged quantity, atid provides no information
about structural features that are not rotationally sym-
metric. However, many physical properties of colloidal
aggregates are sensitive to their anisotropy, making a
structural characterization beyond the fractal dimension
essential. An example of one such physical property is
quasielastic light scattering (QELS), which has been wide-
ly and successfully used in studies of the dynamics of col-
loid aggregation. QELS is a measure of the intensity fluc-
tuations of the scattered light caused by the motion of the
clusters. Because of the structural anisotropy of a fractal
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object, the light intensity scattered by an aggregate
changes as it rotates. Thus both rotational and transla-
tional diffusion must be included to fully exploit QELS in
studies of colloid aggregation.® In this paper, we develop
the theoretical formalism necessary to account for the
contribution of rotational diffusion to QELS, and demon-
strate its importance by comparing our calculations to
experimental measurements.

We present a description of the structure of colloidal
aggregates that goes beyond the fractal dimension to
characterize the anisotropy of the clusters. This is
achieved by performing a multipole expansion of their
structure using computer-simulated clusters. By doing
this in momentum space we can directly determine the
contribution of rotational diffusion to the temporal auto-
correlation function of the scattered light intensity. We
calculate the full intensity autocorrelation function as is
measured experimentally, to correctly determine the rela-
tive mixing of the contributions of rotational and transla-
tional motion to the fluctuations. In addition, we explic-
itly test the validity of the Siegert relationship’ to fractal
aggregates, to determine when the intensity autocorrela-
tion function can be represented by the square of the field
autocorrelation function. Our results are compared to
the experimental measurements using very well charac-
terized colloidal gold aggregates. We show that rotation-
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al diffusion plays a crucial role in understanding the
QELS data as the cluster size increases so that kR, > 1,
where k is the scattering wave vector and R, the radius
of gyration of the cluster. Indeed, the resultant k depen-
dence of the QELS data can provide an experimental
measure of the structural anisotropy of the aggregate.
Excellent agreement is obtained between our measure-
ments and calculations.

The calculation of the multipole terms shows that the
fractal clusters not only possess structure on all length
scales, but also possess anisotropy on all length scales. It
is this feature which leads to the importance of the con-
tribution of rotational diffusion in QELS. The behavior
of the multipole terms provides a more complete descrip-
tion of both the structure and the anisotropy of highly
disordered fractal clusters, allowing a more detailed com-
parison of aggregates formed in different ways. In addi-
tion, the scaling behavior of the multipole terms may pro-
vide an alternate technique for defining a hierarchy of
fractal dimensions based solely on structure rather than
the more usual method based on growth probabilities.®

LIGHT SCATTERING FROM FRACTAL AGGREGATES

We motivate the need for considering the rotational
anisotropy of fractal aggregates by Fig. 1, which shows a
transmission electron micrograph of a cluster composed
of gold particles of 75-A radius. This cluster is typlcal of
those created under diffusion-limited conditions,® and has
a fractal dimension of ~1.8. The fractal dimension for
these aggregates has been determined through several
means; by measuring cluster mass versus radius, yielding
the relation M <R /; by measuring the two-particle
correlation function for the component particles in the
cluster, g(r)o:rdf ; and by measurmg the static struc-

ture factor of the clusters S(k)«ck ™/ with light,®

FIG. 1. Transmission electron micrograph of colloidal gold
aggregate formed under diffusion-limited aggregation condi-
tions. '
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ray,'® and neutron scattering.® These methods lead to
consistent values for the fractal dimension of these clus-
ters.. By changing the aggregation conditions to reaction
limited, a second class of fractal clusters is produced,
with d;~2.1.1!

The techniques used to find the fractal dimension all
measure radially averaged quantities. However, as is ap-
parent in Fig. 1, the fractal clusters are isotropic only in a
statistically averaged sense. Their shape is in fact highly
anisotropic, and this anisotropy extends to all length
scales, and therefore will have a profound impact upon
light scattering, since the scattered intensity depends on
the orientation of the cluster when the scattering vector
is large enough to be sensitive to the internal structure.
Thus an understanding of the effects of this anisotropy is
of key importance in interpreting light scattering data.

We illustrate the consequences of the anisotropy in
Fig. 2, where we show the calculated intensity of light
scattered by a single cluster as a function of its orienta-
tion about an arbitrary axis. We use an aggregate con-
sisting of 900 particles which is generated by computer
simulation of diffusion-limited cluster-cluster aggregation
(DLCA). The scattering data in Fig. 2 are obtained
through summation of the phase factors of the light scat-
tered,
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where k is the scattering wave vector and r; is the posi-
tion of the ith particle. The top curve shows the light
scattered when kRg << 1, so that the internal structure of
the cluster is not resolved and the scattering intensity is
independent of orientation. The middle curve shows the
light scattered from the same cluster when kR;=1. Now
the internal structure of the cluster is beginning to be
resolved, resulting in an orientation dependence of the

- scattering. The lowest curve shows the light scattered

from the cluster when kR, >>1. Here the internal struc-
ture of the cluster is well resolved, leading to very large
variations of the scattered intensity with orientation.
Therefore, when kRg R 1, as is often the case experimen-
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FIG. 2. Calculated intensity of scattered light from a simu-
lated DLCA cluster made up of 900 particles, as a function of
rotation about an arbitrary axis. In the top curve, kR, =0.1; in
the middle curve, kR, =1; in the bottom curve, kR, =10.
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tally, orientationally averaged quantities are insufficient
to provide a complete description of light scattering from
fractal colloidal aggregates. For example, choosing a
different axis for the same cluster illuminated in Fig. 2
would result in a completely different curve.

Static light scattering experiments probe the structure
factor, which reflects an orientational and ensemble aver-
age of the scattered intensity. Therefore the fluctuations
evident in Fig. 2 are not observed and only radially aver-
aged quantities are measured. Experimentally, the scat-
tered light intensity is time averaged sufficiently long to
average the fluctuations and obtain a true average. By
contrast QELS is a direct measure of the magnitude and
time dependence of the fluctuations in the scattered light
intensity. In large part, these fluctuations result from the
relative motion of different clusters due to their transla-
tional diffusion. However, as is clearly shown in Fig. 2, if
kR, > 1, the anisotropy of the clusters also leads to fluc-
tuations in the scattered intensity as they undergo rota-
tional diffusion. The calculation of the magnitude and
time dependence of these rotationally induced fluctua-
tions cannot be accomplished using radially averaged
quantities, but instead requires knowledge of the separate
multipole terms that comprise the structure factor. Each
of these terms has a different time dependence when the
cluster undergoes rotational diffusion. Thus a determina-
tion of the multipole terms, and their time dependence, is
essential to properly interpret the effects of rotational
diffusion on QELS.

THEORY

In quasielastic light scattering we study the temporal
fluctuations of the scattered light by measuring the tem-
poral autocorrelation function of the intensity.'? QELS
experiments can be divided into two classes; homodyne
and heterodyne. In a homodyne experiment, only the
light scattered by the sample is observed; in a heterodyne
experiment, the scattered light is mixed with a portion of
the incident laser light which serves as a reference oscilla-
tor. The fluctuations in the scattered intensity probed in
a QELS experiment can come from several sources.
First, the particles in the sample may move, causing a
change in the path length of the light scattered to the
detector, and consequently a change in the phase of the
electric field at the detector. In a heterodyne experiment,
variations in the phase of the scattered field relative to
the reference beam lead to fluctuations in the measured
intensity; this method is sensitive to changes in the abso-
lute position of the particles in the sample. In homodyne
scattering, the variation in the phase of the scattered field
due to the motion of the particles relative to the other
particles in the sample cause the fluctuations in the scat-
tered intensity; homodyne measurements are insensitive
to the mean velocity of the scattering system, and detect
only their relative translations. We note that a hetero-
dyne experiment can in principle probe the translation of
a single particle, whereas a homodyne experiment re-
quires at least two particles to probe a relative displace-
ment. .

A second cause of scattering fluctuations is the rota-
tion of the scatterers if they are anisotropic and when
kR, 2 1. A homodyne QELS experiment is sensitive to

‘tion
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the rotational diffusion from a single cluster, whereas two
clusters are required for a contribution from translational
diffusion. Physically, when kR4 > 1, the scattering from a
single fractal cluster can be considered to comprise of
contributions from (kR, )df independent clusters each of
size ~k ~3, and all rigidly connected. A rotation changes
the relative position of these subclusters, resulting in a
contribution to a homodyne QELS experiment.

In this paper we determine the contribution of rota-
tional diffusion to QELS from fractal clusters. Our
method is a generalization of the one used previously to
calculate the effect of the rotation of a rigid rod on
QELS.!* We represent the autocorrelation function in
terms of a multipole expansion and then calculate both
the magnitude and decay rate as a function of the wave
vector for each term using computer-simulated clusters.
Normally it is sufficient to calculate the field autocorrela-
tion function and to square it to obtain the intensity auto-
correlation function, using the Siegert relationship.’
However, as we illustrated in Fig. 2, the scattered intensi-
ty from a single cluster fluctuates as it rotates, and this
contribution would not be included within the field auto-
correlation function calculated by the standard approxi-
mation. In order to ascertain the importance of this con-
tribution, as well as to determine the correct mixing of
the contributions of rotational and translational motions,
we calculate the full intensity autocorrelation function
I,(k,t). We expand the intensity autocorrelation func-
415 and determine the contributions from each term,
allowing us to test the range of validity of the Siegert re-
lationship for fractal aggregates where the coherence
length is the size of the cluster itself, and is typically con-
siderably larger than k ~!. At later states of aggregation,
there may be relatively few independent coherence
volumes within the detection volume, requiring the
verification of the validity of the Siegert relationship.

We begin by denoting the scattered electric field from
an ensemble of N clusters, a=1,2,...,N. If n,
represents the number of particles in the ath cluster, then

N "q
E(k,t)=E, 3 3 Pfe
a=1j=1

where r7(z) is the position of the jth particle in the ath
cluster at time ¢, k is the scattering wave vector, E, is the
magnitude of the incident electric field, and P} is the po-
larizability of each particle. We set Ej=1 with the as-
sumption that the field scattered from each particle is
proportional to the incident field times a phase factor. !
This is an excellent approximation for fractal aggregates,
even for the case of gold, as shown by Chen,'” although
the polarizability must be renormalized to reflect local
field corrections. We assume that each cluster is
comprised of identical spheres. In this work we examine
only the I, polarized light scattering, with scattering
wave vectors smaller than the inverse of a particle diame-
ter; therefore we ignore the form factor of the individual
spheres and set P;=1. We assume that the concentration
of aggregates is sufficiently low that they are noninteract-
ing, so that.the motions and positions of different clusters
are uncorrelated. We also assume that our scattering
volume is sufficiently large that the clusters remain in the

k%)
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scattering volume over experimental time scales, allowing
us to ignore number fluctuation contributions to QELS; 18
this condition is generally met experimentally. Thus, we
have for the intensity autocorrelation function,

Lk,t)={ | Es(k,t)|* | E,(k,0) | *)
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Decomposing the position of the ith particle in the ath
cluster in terms of the position of the center of mass of
the cluster, R,(z), and the displacement of the particle
from that center of mass, b{(¢), :

=S S (explik[ —rie)+r}(6)—1](0) ri(t) =R (1) +b{1) , @
%,B,7,8 jik,m
+2,(0)1}) . (3)  we then write the autocorrelation function as
.
Likn= 3 3 {explik-[—Ry0)+Ry)—R(0)+R50)Jexp{ik-[—bH(1)+b)—bLO)+DYD]}) . (5
a,B,v,8 i, j,k, 1

Since different clusters are uncorrelated, the contribu-
tions of most combinations of the indices will vanish.
There are three distinct conditions to obtain a nonzero
contribution. The first condition is a=pB, i=}, v =38,
k =I, as£y, which just gives the average scattering inten-
sity, which is the time-independent background of the au-
tocorrelation function

na ny
IE=3 3 3 ()= 3 ngn, . N ()
ay i=lk=1 a,y
(azy) (asy)

This background term can be ignored in the rest of our
calculations; in analyzing an experimental measurement
of an intensity autocorrelation function, the background
value is subtracted from the data before further analysis
is done.

For time-dependent contributions to the autocorrela-
tion function, we require in Eq. (5) that =y and B=38.
This correlates the scattered fields from each cluster at
time ¢ with the scattered fields from the same cluster at
time 0. We can further distinguish two possibilities.
I

Ik, t)=
a Bt i,j k]

—

When a=p, only terms involving single clusters are ex-
amined. Thus the first exponential in Eq. (5), which
reflects translational diffusion, .does not contribute, as ex-
pected, since a homodyne experiment is insensitive to the
absolute position of a cluster. By contrast, the orienta-
tion of a single cluster does cause fluctuations in the scat-
tered intensity, so only rotational diffusion can contribute
to this set of terms. In the other case, when a=£f3, two
distinct clusters are involved; both the relative positions
of two clusters and their orientation cause fluctuations in
the scattered light intensity, so both translational and ro-
tational diffusion contribute. This yields

Lk, t) =TIk, )+ I8 (k,t)+15 , ™

1

where

INkt)=3 3 (exp{ik-[—bf()+bXz)
a i,jkl

—b%(0)+bH0)]}) ©®)

and

S 3 (exp{ik-[Ry(1)—R(0)]}exp{ik-[Ry()—R50)]}

X exp{ik-[b(1) —b%(0)]}exp{ik-[bf (1) —bf(0)]} . . )

We now see that the autocorrelation function consists
of two components, I'$")(k,¢), which depends only on the
“orientation of the clusters (and hence on rotational
diffusion), and I?(k,¢), which depends both on position
and orientation. From the summations involved, we note
that I! will scale with the number of clusters in the
scattering volume N, while I%? scales with N 2, In most
experimental situations, N is sufficiently large that I s
may be ignored; nevertheless, we shall retain the I (21) term
in order to explicitly evaluate its effects.
For simplicity, we assume that translational and rota-
tional diffusion of a cluster are uncoupled, and that each
cluster is characterized by a single translational diffusion

2 2
1(22)(k,t)= z e_'k D“te —k*Dgt
a, Bls=a)

= 2

a, Bls£a)

Lkl

—k?D_t —k?D
e " Pl TNOR TR (OIE ()

[
coefficient determined by the Stokes relation,

D,=kgT/6mmR. Here kg is Boltzmann’s constant, T
the temperature, 7 the viscosity of the solvent, and Rj is
the hydrodynamic radius of the ath cluster. The assump-
tions of a single translational diffusion coefficient and un-
coupled rotational and translational motion are reason-
able so long as the overall anisotropy of the clusters is not
too large. We then express the terms involving the center
of mass coordinates of the clusters in terms of the transla-
tional diffusion coefficients. We can also separate the
orientational terms for different clusters, since the clus-
ters are uncorrelated, and write I5?’ as

3 (exp{ik-[bf(1)—b%(0)1} ) {exp{ik-[bf()—bf(0)]})

(10)
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To perform the averages in I$? we use the Rayleigh ex-

pansion

eik.bi(1)=4ﬂ_2 llj](kbl)YI:‘n(ﬂk )Ylm [Q‘(t)] ’ (1 1)

ILm
where j; is the Ith spherical Bessel function, Y}, denotes
spherical harmonics, £, is the orientation of the scatter-
ing vector, and ,(¢) is the orientation of the displace-
ment vector b,(¢) in the laboratory frame. Thus

Ig(t)—24w<2 S il (kb@)julkbg)
Lml',m'
XYIrn(Qk)Yl'm'(Qk)Ylm(n‘:"r(t))
Y (05(0D) . 12)
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We then assign to each cluster an arbitrary reference
frame fixed to the cluster which rotates with the cluster
in the laboratory frame. The cluster-fixed and laboratory
frames are connected by the transformation Euler angles
Qr=(a,B,7), and the spherical harmonics in the two
frames are connected by the relation

YIm(‘Q'Iab) (‘Q'T)Ylm’(ncl) ’ (13)

zzDrln'm
M

where the D/, are the Wigner rotation matrices. Thus

I;g(t)=§;(2 S =) kb®)j kb VY () Y () S Y,M(Q?)Y,,MI(Qj?‘)DJ{,m(QT(t))D,{},m.(QT(O))>, (14)

Lml'ym’

where Qf now refers to the orientation of the ith particle
in the reference frame fixed to the ath cluster. All of the
time dependence is now in the transformation angles be-
tween the laboratory and cluster frames.

The time averaging which must be performed in the
above expression may be expressed as!®

()= [d00) [dan( - - )6(Q(r),1 | 2(0),0),

(15)

where G(Q(1),t | £(0),0) is the joint probability distribu-
tion for the cluster-fixed coordinate system to have angles
(t) at time ¢ and Q(0) at time ¢ =0. This probability
distribution is a solution of the rotational diffusion equa-
tion for an arbitrary anisotropic diffusor. We simplify

(D (Qp ()DL (Q1(0)))

1 _Me—,lumezfdﬂ
87 s Kmr 87

1 -
="2"‘m8”18MM'8mmre Hr+ner .

Using Eqs. (14)—(17) above, and the relation

: 2_ 2] +1
% | Vi () [ *==~= (18)
we find
IS(t)= 411'2 3 (kb (kbF)
i
X 3 Y QD) Y(Q5) ]e"”*”@a‘
=473 | S (kb)Y (QF) |2~ DO (19)

Lm i

MM

this quantity considerably by assuming that the clusters
behaves like a sphere with hydrodynamic radius R, and
has a single rotational diffusion coefficient ®@,=kyzT/
6mn(R§)%. This simplification is based on our earller as-
sumption that the overall outlines of our clusters are not
too anisotropic. Therefore!®

G(Q4(1),t | 27(0),0)

8;2 - 2‘;;11),@,, (Q(0)D4y (0 (1)
LK.M
Xe—l(1+1)®t (16)

and we obtain

0) [ dQr(0)Dy (Q (0D (Q(OND Ly (2 ()DL (21(1))

(17)

Here we define a set of multipole expansion terms

SHk)=T, 2], (kb)Y (Q2) |2 . (20)

m

Using Egs. (19) and (20) in Eq. (10), we obtain
2
IPkn= 3 3 SHKSfik)e ™  PatPs"
a, B(#a) L1
Xe

Following a similar procedure

I =3 3 SPUSH (ke I
- a LI

LU+ DO+ 1"+ 1)@
“ L (21)

"(I'+D]O ¢t ) (2.2)



In examining the three contributions to the 1nten31ty au-
tocorrelation functions, we find one term I3 5 (k,t) which
supplies a time- mdependent background and which scales
as N(N —1), where N is the number of clusters in the
scattering volume; a second term, I$¥(k,f), which in-
cludes the product of rotational and translatlonal contri-
butions to the decay of the autocorrelation function, and
also scales as N(N —1); and finally a third term,
IV (k,t), which depends solely on rotation, and scales as
N. This last term confirms our intuition that a single
cluster will be observed in a homodyne QELS experiment
because its rotational diffusion results in a contribution to
the intensity autocorrelation function, even though its
translational motion does not contribute. However, its
relative contribution will be unimportant in most experi-
mental situations, when N >>1.

Finally, we compare the intensity autocorrelation func-
tion we have calculated with the field autocorrelation
function I(k,?) to test the validity of the Siegert relation-

- ship,”’

L(k,t)y=I3(k,t)+B , (23)

where B is a baseline. Writing the field autocorrelation
function as

2, . _ .
LU= e 2" S sprye T (24)
I

[24

squaring this and comparing with Eq. (7), we see that

Iz(k’t)—

—2D%k
k)= 3 S SHISEKe T
a LI
e—[l(l+1)+l'(l'+1)]®at

+IV(k,2) . (25)

The corrections to the Slegert approximation both scale

as the number of clusters in the scattering volume N,
while the autocorrelation function scales as N2 Thus the
Siegert approx1mat10n will be valid provided there are
sufficient clusters in the scattermg volume. Later in this
paper we will numerically examine how large N needs to
be.

CALCULATIONS

The key to evaluating the autocorrelation function is
the evaluation of the multipole expansion terms Sf(k). It
is these terms which provide the explicit contribution of
the structural anisotropy to the light scattering. These
terms can also provide a more detailed characterization
of the fractal structure, including the anisotropy.'® We
have therefore examined numerically the behavior of
these multipole expansion terms. We note that we chose
to evaluate the terms in momentum space to directly
determine the consequences for light scattering. Their
real space behavior has also been studled very recently
for a different type of fractal aggregate.?

In order to calculate the S/ (k) multipole terms for a

cluster, it is necessary to know the positions of each par-
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ticle within the cluster. We therefore use clusters gen-
erated by computer simulations of the experimental con-

. ditions, for both diffusion-limited cluster-cluster aggrega-
" tion and reaction-limited cluster-cluster aggregation.®

In our calculations we set the single particle radius to 75
A to correspond with that of the gold colloid studied ex-
perimentally. The computer simulations use rules that
correspond wéll to experimental regimes, and result in
clusters that have the same fractal dimension as mea-
sured experimentally. Furthermore, the cluster mass dis-
tributions of the simulations are in agreement with those
measured experimentally.”* This gives us confidence that
the simulated clusters provide good models of the experi-
mentally produced clusters.

In Fig. 3, the / =0-7 multipole terms are sliown for an
ensemble of 20 DLCA clusters, each containing 900 par-
ticles. The large fluctuations present in the results for a
single cluster are reduced by an ensemble average over
many clusters of the same mass. When kR, <«<1, the
I =0 multipole term dominates the scattermg, implying
that only translational diffusion contributes to QELS.
This result is expected, since at long length scales the
internal structure of the cluster is not resolved so it looks
like a point scatterer. The / =0 term is constant at small
k, and then declines at larger wave vectors. For l > 1, the
multipole terms rise at small wave vectors as k%, reach a
peak value when kR, ~/, and then decline at hlgher k.
The wave-vector dependence of the multipole terms is all
contained in the spherical Bessel functions in Eq. (20).
When kR, <<1, all of the Bessel functions in the mul-
tipole terms are in their small argument limit, and scale

as k. The I >0 terms contribute appreciably to the
scattering only when they are at wave vectors greater
than or equal to their peak. The sum of the first 7 mul-
tipole terms is also shown in Fig. 3. This sum is just the
static structure factor, which by definition is.averaged
over all orientations of the clusters. This can be seen ex-
plicitly by comparing the static structure factor with the
sum of the multipole expansion terms for a single cluster,
The static structure factor can be evaluated using Eq. (1)
and averaging the results over orientations. As shown in
Fig. 4, the results are virtually identical.

6
- 10
g 5
= 4
- 10
4
. 3
S 10
43
=
= 2
100.001 0.01 0.1
k (nm-1)

FIG. 3. Multipole expansion terms averaged over 20 DLCA
clusters made up of 900 particles each vs scattering wave vector
k. The multipole terms for I =0 to 7 are shown; the uppermost

curve is the sum of the first seven multipole terms shown.
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FIG. 4. Static structure factor for a 900 particle cluster, as
calculated from the sum of the / =0 to 12 multipole terms (solid
line), and through explicit calculation of the scattering from the
cluster, averaged over 100 orientations (crosses).

In evaluating the intensity autocorrelation function, it
is necessary to consider not only the amplitude of the
multipole terms but also their rotational and translational
decay rates. For a cluster of hydrodynamic radius R,
the relevant time scale for translational diffusion is pro-
portional to RE/k? while for rotational diffusion the
time scales as (R%)*/[1(I+1)], independent of the
scattering vector. It is apparent that for small scattering
vectors, rotational diffusion will be much faster than
translational diffusion. However, the amplitude of the
higher-order Sf(k) terms is so small that the / =0 term
dominates, so the decay of the autocorrelation function is
due solely to translation. At larger wave vectors, the
higher-order terms become dominant in magnitude, while
the decay rates for translation and rotation become com-
parable.

J

a, B{#a) LI

+ 3 3 SAHKISERII +1)0,+1(I' +1)0 ] ] [

a LI

In examining the wave-vector dependence of the first cu-
mulant, we divide by k? to remove the trivial depen-
dence. The remaining k dependence is due to a combina-
tion of rotational diffusion and polydispersity. If the po-
lydispersity can be minimized, the dependence of T, /k?
on k can be used to directly measure the consequences of
the high-order multipole terms and therefore rotational
diffusion.

In order to calculate I';, we must know three terms for
each cluster: Sf(k), D,, and ®,. The multipole terms
are evaluated numerically, using the positions of the com-
ponent particles of each cluster. To obtain D, and ®, we
need to determine the hydrodynamic radius R§ of the
cluster, since D,=kpgT/61R§ and
©,=kpT/87n(RE)’. For our simulated clusters we cal-
culate the radius of gyration R/, and then use the scaling
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__The consequences of the rotational diffusion on the au-
tocorrelation function become apparent upon exathina-
tion of the magnitudes of the multipole terms shown in
Fig. 3 and their contribution to the decay shown in Eq.
(21). When kR, > 1, the autocorrelation function is a
sum of exponentials, rather than a single exponential.
Thus rotational diffusion affects the autocorrelation func-
tion in a fashion analogous to polydispersity in the size of
scatterers. For a monodisperse set of noninteracting
Brownian spheres, the QELS autocorrelation function

___measured is just a single exponential. If there is a distri-

bution of spheres with different sizes the autocorrelation
function is the sum of exponentials with different ampli-
tudes and decay rates. Thus any comparison of the cal-
culations to experimental data must include a determina-
tion of the contribution of both effects, polydispersity as
well as rotational diffusion. This is particularly impor-
tant if the QELS data are to be used to determine a true
hydrodynamic radius which characterizes the distribu-
tion when kR, > 1.

Rather than consider the entire autocorrelation func-
tion, we define the first cumulant T,

L d I(k,t)
Ti=—lim 2 7oy || @6
This defines the effective hydrodynamic radius

R =k?*k, T /6T, which includes the contribution of
rotational diffusion. We cannot therefore directly calcu-
late the true hydrodynamic radius from I';; however, we
can calculate the first cumulant of the measured auto-
correlation function for any distribution of clusters, and
use this cumulant to characterize the sample. Using our
earlier results,

S SHERISEUNKXD o +Dp) 4101 + 1)@, + "1’ +1)04]

S 3ISARSE+ S S SFKISEK) . 2
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relation between Rg and RS for fractal clusters,
Ri=BR; (Ref. 23). The proportionality constant S is
important, since the smaller S is, the larger is the effect of
rotations. This proportionality constant depends on d p
and has been calculated”? and measured® for different
classes of aggregation clusters. In this paper we consider
only diffusion-limited clusters and use 8=0.87.

Finally, we note that in our formalism we have charac-
terized the clusters by a single hydrodynamic radius.
This assumption should be valid if the overall asymmetry
of the clusters is not too large. This should be contrasted
with the anisotropy probed by our multipole expansion,
which reflects the cluster structure at large kR, at length
scales equal to or less than the cluster size. Measurement
of the overall asymmetry of the simulated clusters indi-
cates that the aspect ratio is less than 2, suggesting that
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our approximation is reasonable.

An additional consideration in analyzing QELS data
from colloidal aggregate samples is the number of clus-
ters N available in the scattering volume. Since the total
number of clusters decreases as the colloid aggregates,
this number can potentially become very small in which
case the Siegert relationship will not be valid. Earlier we
discussed contributions to the autocorrelation function
which scaled as the number of clusters N, while the gen-
erally dominant terms in the autocorrelation function
scale as N(N —1). We now examine how large N must
be for these contributions to be negligible. We first com-
pare I$" with I,. The most extreme case is when N =1.
Since the intensity of light scattered by a single cluster
does not depend on its position, translational diffusion
will not give a contribution to the intensity autocorrela-
tion function; however, rotational diffusion can give a
contribution, due to the I%! term.

For N > 1, both translation and rotation contribute. In
Fig. 5 we show I';/k? versus k calculated for samples
made of 1, 2, 10, and 100 identical clusters. We use iden-
tical clusters to eliminate any polydispersity effects, since
even clusters with the same mass and radius would have
different rotational contributions to the decay. For a sin-
gle cluster, only rotational diffusion contributes, leading
to the divergence seen at small k. However, even for
N =2, at small k we recover the limit of pure translation-
al diffusion as expected. We see that by N =10, we are
almost at the large-N limit, where the decay is due to a
product of both translational and rotational decays.
Thus for pure rotational contributions to be significant, it
is necessary to have only a very few clusters in the
scattering volume; for dramatic effects, there must be
only one.

We can also examine the validity of the Siegert approx-
imation as a function of N. We do this by examining a
polydisperse ensemble of clusters, using both the full cal-
culation and Siegert approximation. We start with a pair
of clusters of 100 and 1000 particles, and then reproduce
this pair in order to achieve the large-N limit. The
Siegert approximation remains unchanged as identical
pairs of particles are added, while the full calculation in
the intensity autocorrelation function approaches this
limit. In Fig. 6 we plot I';/k? versus k for the Siegert ap-
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FIG. 5. T';/k? vs k for 1, 2, 10, and 100 identical clusters.
We assume that 9=0.96 cP, suoitable for water at 22°C, and that

the single particle radius is 75 A.
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FIG. 6. I'y/k? vs k for 1,2, 5, and 50 pairs of DLCA clusters
made up of 100 and 1000 particles. The curve for the Gaussian
approximation is indistinguishable from the 50 pair curve on
this plot.

proximation and from I,(k,t). For N =2 the Siegert ap-

proximation is very poor; by N =4 the approximation is
becoming reasonable. At N =10 only small corrections
are needed, while at N =100 the Siegert approximation is
nearly exact. Here we have chosen a severe case of po-
lydispersity, providing the most challenge to the Siegert
approximation; in a less polydisperse system, the small-N
corrections would be less significant. |

From the preceding argument, we see that if the num- -
ber of clusters in the scattering volume is large, the calcu-
lation of the field autocorrelation function in Eq. (24),
combined with the Siegert approximation, will be
sufficient to describe QELS data. Therefore the cumulant
for an ensemble of clusters will be the weighted average
of the cumulants of the individual clusters. This provides
a potential means of obtaining the true hydrodynamic ra-
dius from the measured I'; even when rotations are im-
portant. For this, we first investigate the scaling of the
first cumulant with cluster size. The wave-vector depen-
dence of T'; /k? for a set of clusters with the same mass is
shown in Fig. 5. When kR, <<1, I"; /k*=D,, the Stokes
diffusion coefficient; therefore, in comparing cluster of
different masses, we scale the cumulant by D, for that
cluster. In addition, we scale the k vector by the radius
of gyration of the cluster. In Fig. 7 we plot (T';/k2)/D,
as a function of kR, for DLCA clusters -of
100,200,300, . . ., 1000 particles. We see that the scaled
cumulants all fall upon a single curve, indicating the scale
invariance of the anisotropy-of the DLCA clusters. The
value of T'; /k? in Fig. 7 rises to a plateau value of ~1.7.
The existence of this limiting value of I'y/k? at large
wave vectors is expected from scaling arguments. 26 Fyr-
ther analysis of the scaling of the multipole expansion
terms and their consequences will be discussed in a later
work. !?

The scaling with cluster size of the multipole expansion
terms and the cumulants derived from them makes the
calculation of the scattering from an ensemble of clusters
much simpler, and is an absolute necessity when
kR, % 12, where 12 is the order of the highest-order mul-

tipole term we can calculate numerically. In addition,
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FIG. 7. Scaling of the first cumulants, showmg (T'y/k?) /Dy,
vs kR for DLCA clusters of 100,200,300. . . ,1000 particles, us-
ing B=0.87.

this graph has a very important practical consequence. It
can be used to correct for the effects of rotational
diffusion, and thus determine the value of the hydro-
dynamic radius from the measured first cumulant, even
when kR, > 1. This condition is often unavoidable in the
study of colloidal clusters, making this correction of great
value.

EXPERIMENT

To experimentally test our calculations, we study the
aggregation of colloidal gold, which has been extensively
characterized using a variety of techniques. We begin
with a sample of nearly monodisperse gold spheres of 75-

radius suspended in water. The gold spheres have ci-
trate ions on their surface, which provide the electrostat-
ic repulsion necessary to prevent aggregation.”’” We can
control the charge on the colloidal particles through the
addition of pyridine; the neutral pyridine molecules dis-
place the charged citrate ions from the surface of the
gold. Before the addition of pyridine the repulsive bar-
rier between the gold sphere is many times k 7T, and the
colloid cannot aggregate. Through suitable addition of
pyridine, we can lower the repulsive barrier to only a few
kpT; under these conditions, when two spheres come
close together due to their diffusive motion, they are usu-
ally repelled, and do not stick, but occassionally can over-
. come the repulsive barrier, so that they touch. When two
gold particles touch, they stick together, forming a rigid
bond between spheres. This type of aggregation is called
reaction-limited or chemically limited aggregation, since
the aggregation rate depends upon the surface chemistry
of the sphere.

By adding larger amounts of pyridine to the colloid, we
can completely eliminate the charge on the spheres.
Then there is no repulsive barrier between the spheres;
they freely diffuse until they contact another sphere, at
which point they stick together. The rate of the aggrega-
tion is limited only by how fast the Brownian particles
diffuse into one another; hence this process is called
diffusion-limited aggregation. After two particles stick
together, the resulting cluster then continues to diffuse in
the suspension. While clusters can grow from contacting
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more spheres, most growth occurs when clusters contact
other clusters. Therefore this process is more fully re-
ferred to as diffusion-limited cluster-cluster aggregation,
wile when the repulsive barrier remains we have
reaction-limited cluster-cluster aggregation.

The two hmltmg cases of aggregation produce different
types of clusters.? DLCA produces more ramified clus-
ters, with a fractal dimension of ~1.8. RLCA produces
denser clusters, with d;~2.1; this is because when two
clusters come together under reaction-limited conditions,

- they can interpenetrate before they stick together, mak-

ing the resultant cluster denser than it would be under
diffusion-limited conditions. The growth rates are
different for the two classes, with RLCA being much
slower than DLCA, since each cluster must make many
attempts before it can stick to another cluster. DLCA
clusters show a power-law growth in time, while RLCA
clusters grow exponentially. Finally, the distribution of
cluster masses is different. These have been determined
through analysis of transmlssmn electron micrographs of
aggregated samples.? DLCA produces a nearly flat dis-
tribution of cluster masses, up to some maximum mass,
in agreement with the predictions based on the Smolu-
chowski equation description of the aggregation using a
constant kernel. By contrast, RLCA produces clusters
with a highly polydisperse distribution;? the number of
clusters N (M) with mass M scales as M~ 7, with 7=1.5,
which compares well with theoretical predictions. *

The distribution of cluster masses plays an important
role in light scattering. When kR, >>1, the scattered in-
tensity is proportional to the cluster mass. Thus clusters
produced under diffusion-limited conditions, where
N (M) is constant to a cutoff mass, are relatively mono-
disperse for light scattering. By contrast, the power-law
distribution of RLCA complicates the interpretation of
QELS data because 7 is sufficiently large that clusters of
all sizes contribute appreciably to I';. Since our interest
here is to isolate the contribution of rotational diffusion,
we restrict our attention to clusters formed by DLCA;
examination of the combination of the effects of cluster
mass distribution and rotational diﬁ'usion for RLCA clus-
ters will be examined in a later work.>

Our experimental setup consists of an Ar-ion laser us-
ing the 4880- A line at low power. We ensure that less
than 1 mW is incident on the cell. This is essential to
eliminate artifacts caused by sample heating due to the
absorption of the colloid. The scattered light is imaged
onto a photomultiplier tube mounted on an arm of a
goniometer, with the sample fixed at the center. The
detector arm is rotated between 10° and 150° from the
forward direction, to vary the scattering wave vector.
The intensity autocorrelation function is determined with
an autocorrelator with 264 real-time channels. The en-
tire setup is operated under computer control, facilitating
both acquisition and analysis of the QELS data. This set-
up also allows the determination of the static structure
factor of the aggregates.

The scattering volume in our experiments is ~ 10~°
cm®. To determine the importance of the various terms
in the autocorrelation function, we calculate the density
of clusters in our sample, -
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where p, is the initial density of gold spheres before ag-
gregation, N (M) is the mass distribution function, which
we approximate by assuming a sharp cutoff mass. The
mass M is expressed in units of the mass of a gold sphere,
so the lower limit of the integrals is 1. In our experi-
ments, p, is generally 1.7X 1022 cm?. For diffusion-
limited aggregation, N (M) is a constant, and p=2p,/M..
Thus when the largest clusters are ~1 pm in radius,
M, =~7000, making the number of clusters in the scatter-
ing volume around 500. Thus we do not have to worry
about small number effects until the largest clusters reach
a size greater than 5 um. For reaction-limited clusters,
due to the power-law distribution, there are always a
large number of small clusters in the sample, compared
to the diffusion-limited case. Since 7=1.5, p=py(l
—M12) /(M2 —1); if the cutoff radius is 2 pm, the
number of clusters in the scattering volume will be
~ 5000, again making small-N effects unimportant.

We investigate the effects of rotational diffusion by ex-
amining the wave-vector dependence of the autocorrela-
tion function obtained from a sample aggregated under
diffusion-limited conditions. The size of the aggregates is
carefully chosen so that kR, <1 at the smallest angles
and kR, > 1 at larger angles. This allows the true hydro-
dynamic radius to be measured at small angles, where the
effects of rotational diffusion are negligible. From this
value of the hydrodynamic radius, we can determine the
cutoff mass M, that characterizes the distribution of clus-
ters in the sample. The effects of rotational diffusion can
then be investigated by measuring the autocorrelation
function at larger angles. The desired sample is obtained
by allowing the colloid to aggregate to the appropriate
point and then adding a small amount of surfactant to
the solution. The surfactant bonds to the surface of the
gold, providing steric stabilization and arresting any fur-
ther aggregation. Separate measurements ascertain that
the thin layer of surfactant does not affect either the stat-
ic or dynamic light scattering from the aggregates. ‘

We first investigate the effects of rotational diffusion on
the shape of the autocorrelation function. An autocorre-
lation function, measured at 60°, for a sample where
kR, >1 and the effects of rotational diffusion are impor-
tant, is shown in Fig. 8. From measurements at small k,
where rotation is unimportant, we find M,=700. The
autocorrelation function, calculated without rotational
diffusion for a cluster distribution flat up to M, is shown
by the dotted curve in Fig. 8. As can be seen, the decay
calculated without rotational diffusion is much slower
than the measured decay. The increased decay rate is
due to the rotational diffusion of the clusters; the solid
line in Fig. 8 displays the autocorrelation function calcu-
lated using Eq. (9) with the same flat mass distribution of
simulated DLCA clusters. The inclusion of rotational
effects is crucial to explain the measured autocorrelation
function for kR, > 1. We note that while the autocorrela-

tion function in Fig. 8 is not a single exponential, its loga-
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FIG. 8: Intensity autocorrelation function for a sample of ag-
gregated colloid, measured at 60°. The data (crosses) are not
normalized by the background value. The dashed line shows
the calculated autocorrelation function ignoring rotational
effects for a flat distribution of clusters, with the cutoff mass
chosen to yield the decay rate measured at small scattering an-
gles, where rotational effects are negligible. The solid line is the
calculated autocorrelation function including rotational effects.

rithm does not exhibit much curvature; this is due to the
relatively dense distribution of decay rates, which tends
to reduce the curvature of the logarithm of the sum of
the decays.

We can investigate the effects of rotational diffusion in
more detail by examining the first cumulant I'; of the
measured decay as a function of scattering wave vector.
Experimentally, we adjust the sample time of our correla-
tor so that the autocorrelation function measured at each
angle decays by about a factor of 20. The baseline is
determined both from the total number of counts and
from extra channels of the correlator delayed by an addi-
tional 1024 delay times. Both these measures agree to
within ~0.1%. We subtract the baseline from the mea-
sured autocorrelation function, and take the logarithm of
the result. We then perform a fourth-order polynomial
fit on this data, with the first cumulant coming from the
linear term of the fit. Ideally the cumulant should be cal-
culated in the limit of f—0; in practice, reducing the
amount of data fitted to approach the zero time limit
does not appreciably change the measured cumulant for
our data. Thus we are confident that we are obtaining a
valid experimental measure of the first cumulant.

In Fig. 9 we show experimental measurements of .
T',/k? as a function of k. The k-independent behavior of
T,/k? at small k, indicative of purely translational
motion, is evident. The k dependence seen at higher k
would not be observed for a monodisperse system of iso-
tropic scatterers. The polydispersity of DLCA can intro-

- duce only a small-k dependence to I';/k%; any further

dependence is due to rotational effects. As can be seen in
Fig. 9, at large wave vectors, the measured value of
I';/k? is a factor of 2 higher than the small wavelength
limit. This demonstrates that the contribution of rota-
tional diffusion to I'; is almost as large as the translation-
al contribution. Thus the effects of rotational diffusion
must be included in the determination of the true hydro-
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FIG. 9. T';/k? vs k for an ensemble of DLCA clusters. The
crosses are experimental data, the dashed lines are cumulants
calculated from the multipole expansion terms using a fiat clus-
ter mass distribution with M, =500. The upper solid line shows
the cumulants calculated from the scaling of multipole expan-
sion terms using a self-preserving mass distribution with
m =220 particles. The lower solid line shows calculated results
with the self-preserving distribution not including rotational
effects.

dynamic radii of the clusters from the measured cumu-
lant when kR, X 1.

The dashed line in Fig. 9 shows I'; /k? calculated using
Eq. (27) for a distribution of clusters produced by com-
puter simulation of DLCA. Thus, we use 20 computer-
simulated clusters each for masses of 100, 200, 300, 400,
and 500. The flat cluster mass distribution corresponds
to that expected for DLCA, while the upper cutoff mass
is chosen to obtain the best fit to the data at small k. The
clusters have d =1.8, in agreement with that measured
experimentally, while we chose $=0.87 as computed for
DLCA clusters.??* The agreement between the calcula-
tion and the data is very good. The major deviation ap-
pears at large k, where the data are somewhat higher
than predicted by our calculation. This is presumably
due to our choice of cluster mass distribution, which has
a sharp cutoff. A more realistic cluster mass distribution
would have an exponential cutoff which decays more
slowly than the one used here.

Rather than generate computer-simulated clusters to
exactly replicate the expected cluster mass distribution of
DLCA, we have adopted an alternative approach which
takes advantage of the scaling of .the first cumulant,
shown for DLCA clusters in Fig. 7. Thus we replace the
first cumulant by the effective value given in Fig. 7 and
weight it by the radially averaged structure factor. In do-
ing so we have

S Ty(kRp)S (kR )IMAN (M)
M

I'i(k)=

oo (29
S S (kR JM*N (M) @9
M

where S(kR) is the scaled static structure factor for
DLCA clusters and N (M) is the cluster mass distribu-
tion.
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It is instructive to examine the physics implicit in Eq.

e wn e s

©T 7T(29). “The “scattering  intensity for each cluster is

I(M)=M*S(kR,). For kR, <<1, the phase of the scat-
tered electric field ffom each particle is identical at the
detector and adds coherently, so the scattered intensity is
proportional to M2 Since for these small clusters
S(kRy)=1, we have I(M)=M?, as expected in Eq. (29).
If the cluster is larger than k ~', the scattered phases no

‘longer add coherently. We can treat the cluster as being
“made up of subunits of volume k ~3, with each subunit

scattering coherently, while the fields from different sub-
units add randomly, The subunits have mass my(ka) 7,

- ~where m and g are the mass and radius of the constitu-
-ent particles. The scattered intensity from each subunit

is proportional to the square of its mass,vm%(ka)_ ’,

The number of subunits in a cluster is M /mgy(ka) .
Thus, for KRy, >> 1, the random addition of the phases of
the scattered fields from each subunit results in

~4rp M (ka)™ -
0

=MXkRy)™ " =M (ka)™ .

I(M)=[mq(ka)

(30)

Since for these large clusters S(kR,,)=~(kR,, )4 ,in Eg
(29), we lose one power of M and have I(M)=M (ka)”
as expected. However, the fluctuations of the phase fac-
tor which cause the decrease in the scattering intensity
from the simple M? dependence yield this result only in
the ensemble average over all orientations; for any given
orientation, the phases form the subunits add to give fluc-
tuations about this average. The contributions of these
fluctuations due to rotational diffusion of the cluster are
the subject of this paper. Within the approximation of
Eq. (29), this additional contribution is contained in the
effective diffusion coefficient T 4.

Calculation of T";/k? for the flat distribution used be-
fore gives results that are virtually identical to those

~shown in Fig. 9 using the more exact calculation with Eq.

(27). This confirms the appropriateness of our approxi-
mation and provides a relatively simple method for ex-
tending our previous treatment to include the effects of
rotation for more general forms of the cluster mass distri-
bution, and for larger clusters than is possible with direct
calculations. For diffusion-limited cluster aggregation,
we represent the cluster mass distribution by the self-
preserving distribution derived from a constant kernel
solution to the Smoluchowski equations’?

i—1

1

] ———

N
N(m;)=—L
m
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m

where m; is the mass of a cluster made of i particles, 7 is
the mean cluster mass, and Ny is the total number of
clusters of all masses. The value of 7 is set by the experi-
mentally measured values of T',/k? at small wave vec-
tors. After 7 is defined, there are no adjustable parame-
ters in the calculation of Iy from Eq. (29). The results
from these multipole expansion calculations are shown by
the solid line in Fig. 9. The agreement is excellent. The



calculated cumulants match both the magnitude of the
wave-vector dependence of the experimental data and the
range of k space over which the dependency occurs,
clearly indicating the usefulness of our multipole expan-
sion approach. The lower curve in Fig. 9 shows how
", /k? varies if only cluster mass distribution effects are
included, demonstrating that most of the wave-vector
dependence is due to rotational diffusion of the clusters.

Finally, we note that even though the k dependence of
T, /k? due to rotational diffusion is quite pronounced
when plotted in Fig. 9, the dominant k dependence of the
first cumulant is the k2 dependence of the translational
motion. Thus a plot of I'; as a function of k2 will not dis-
cern this additional k£ dependence due to the rotational
effects. Nevertheless, when plotted in the more sensitive
fashion of Fig. 9, the effects are clear.

CONCLUSION

In this paper we have investigated the effects of rota-
tional diffusion of fractal aggregates on quasielastic light
scattering. When kR, >1, we have shown that these
effects are substantial. They are determined by a mul-
tipole expansion of the scattering from the aggregates, us-
ing computer-simulated clusters. They show that the
clusters are anisotropi¢ at all length scales, and that this
anisotropy is independent of cluster mass. We also exam-
ined the consequences of the contribution of purely rota-
tional terms to the homodyne autocorrelation function,
and the applicability of the Siegert approximation relat-
ing homodyne and heterodyne autocorrelation functions.
For typical experimental conditions, the use of the
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Siegert approximation was shown to be valid, with pure

" rotational terms making a negligible contribution. We .

demonstrated the important effect of the rotational
diffusion on the experimentally measured autocorrelation
functions by examining the wave-vector dependence of
the first cumulant measured for gold clusters aggregated
under diffusion-limited conditions. The calculated mul-
tipole terms were used to determine the first cuamulant of
the autocorrelation function from an ensemble of clusters
matching the cluster mass distribution produced under
the experimental conditions. Excellent agreement was
obtained between the calculations and the experimental
measurements. The effects of rotational diffusion were
found to change the measured first cumulant by a factor
of nearly 2, demonstrating the importance of including
these effects in interpreting QELS data from fractal col-
loid aggregates. Finally, we also presented a determina-
tion of the scaling of the effective diffusion coefficient ob-
tained from the first cumulant. At small kR, this reflects
translational diffusion only, while at large kR, it includes
the effects of rotational diffusion. The scaling of the
effective diffusion coefficient can be used to correct mea-
sured data for the effects of rotational diffusion, and thus
to obtain a true hydrodynamic radius, even when
kR, > 1.
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