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Reaction-limited cluster aggregation is modeled with the kinetic rate (Smoluchowski) equations, with
a kernel determined intrinsically by the clusters’ fractal geometry. The kernel scales with cluster mass
as MMy~ ! (M > M,), and M} (M= M), with A =1 in three dimensions, resuiting in exponential ki-
netics and a cluster mass distribution Car~M %, with 7= ¥, in excellent accord with experiments. The
singular nature of this solution forces the adjustment of the cluster fractal dimension, dy, thereby deter-

mining its value.

PACS numbers: 82.70.Dd, 05.40.+j, 05.70.Ln

The observation that the structure of the clusters pro-
duced by kinetic aggregation of colloidal particles can be
characterized as fractal has sparked renewed interest in
the description of the physics of the kinetic aggregation
process itself.! To date, two distinct classes of kinetic
aggregation have been investigated. One class is
diffusion-limited aggregation of clusters, where the ag-
gregation rate is limited solely by the time taken for
clusters to collide via Brownian diffusion.2"* The other
class is reaction-limited aggregation (RLA), where the
reaction rate is limited by the probability of forming a
bond upon collision of two clusters. This class of aggre-
gation has been observed experimentally in several col-
loid systems,> ' and has been modeled by computer
simulation.!!2 In this paper we discuss a theoretical in-
terpretation of this regime based on the Smoluchowski
equation. 1318

The Smoluchowski equation describes kinetic aggrega-
tion in terms of the reaction probability for clusters of
mass M, and M,. This reaction kernel, K (M ,M,), is
assumed to have some average functional dependence on
M, and M,; thus these equations are a mean-field ap-
proach to the aggregation dynamics. The solution to the
equations provides no information on the structure of the
aggregates; instead the structure must be included in the
determination of the correct kernel. In this paper we de-
scribe a geometric prescription for the appropriate RLA
kernel for fractal clusters, and we present a scaling argu-
ment to determine its functional form. The solutions to
the Smoluchowski equations obtained with this kernel
are in excellent accord with the experimental data.
Furthermore, when extended to higher spatial dimen-
sionalities, they suggest a sharp transition between the
exponential kinetics observed in few dimensions and gel-
ling kinetics in more dimensions. Surprisingly, the clus-
ter fractal dimension appears to be discontinuous at this
transition.

The experimentally observed features>™!° of RLA in-
clude clusters which have dy==2.110.1; exponential

growth kinetics of the characteristic cluster mass,
Mc~e'/"’, where 1) is a sample-dependent time con-
stant; and a power-law cluster mass distribution,
Cy~M™", with t=1.510.15. We show that these
observations can be accounted for with use of the rate
equations and the reaction kernel determined here, the
scaling of which is K(M|,M;)~M M5~ provided
A=1. Mathematically, values of A even slightly different
from 1 give qualitatively very different behavior. Physi-
cally, A is determined by dy and the cluster structures
and we will argue that the system resists a singular
change in its behavior by the adjustment of df to give
A=1 in d=3. Thus we show that the value of df is
uniquely determined by the controlling physics in the
reaction-limited aggregation process. This establishes a
causal relationship between the geometric structure of
the aggregates, as characterized by dy, and the aggrega-
tion process, through the cluster mass distribution.

The rate of two single particles in a colloidal suspen-
sion sticking is given by k ~vexp(—V/kpT), where V}
is the repulsive barrier between two approaching parti-
cles. The attempt frequency, v, is determined by the dif-
fusive motion of the particles, as well as by their radius
and concentration. When two floc clusters approach
each other closely on Brownian trajectories, there will
typically be many single-particle contacts, and the prob-
ability P of the two clusters sticking will increase rapidly
with cluster mass. Reaction-limited Kkinetics typically
occurs when Vp = kgT, making & sufficiently small that
there is a significant range of cluster size with P <1,
even though the attempt frequency, determined by dif-
fusion, remains high. If P does approach 1 the
diffusion-limited and reaction-limited rates become
equal and there is a crossover to the diffusion-limited re-
gime.

The key feature of the reaction-limited regime is that
the number of diffusion-induced collisions before aggre-
gation of two clusters succeeds is sufficiently large to al-
low clusters to sample all possible mutual bonding con-
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figurations without bias.!12 The probability of two
clusters sticking is then directly proportional to the frac-
tion of the phase space (of the assembly of rigid clusters)
for which they are in bondable contact, ¢., and their rate
of sticking per unit time is k¢,. We define two clusters
to be in bondable contact if they are within a microscop-
ic distance, w, of touching, and not overlapping. The
width of the repulsive barrier can define a natural value
for w which is typically no larger than a single-particle
radius in flocculating systems, and thus is significantly
less than the cluster size.

At low concentrations, so that three-cluster effects can
be ignored, the phase-space fraction is given by
¢ =V./V, where V, is the volume of distinct space over
which the center of the first cluster can be positioned so
that the two clusters are in bondable contact, and ¥ is
the total volume of the system. For small w, V./w is the
area of the contact surface of two given clusters, defined
by the center of cluster 1 as it is scraped all round cluster
2, as illustrated in Fig. 1. The contact surface can in
general be fractal and is a mutual but intrinsic property
of the two clusters and their structure. We obtain ¢, for
clusters with given mass by averaging the contact surface
over all configurations, including rotations.

For fixed cluster masses M and M, we assume that
the variation in ¢, is not too great and we can replace it
by the average over all such pairs in the distribution.
Thus, the rate coefficient for reaction-limited sticking
between two particular clusters is given simply by
K(M\,M3)=ko.V =kV, so that if the two species occur
in concentrations C; and C, the total aggregation rate
per unit volume is K(M,M,)C1C,. We now consider
the scaling of the kernel in the two regimes M= M,
and M > M,, which is sufficient to determine the be-

Sewtd= 3

ot P+O=M
This equation has been extensively analyzed and there
are three qualitatively distinct cases for the present form
of kernel,!™® A <1, A=1 (which, for example, corre-
sponds to the sum-of-masses kernel), and A > 1.

For A <1, Cu(¢) goes to zero at large and small
masses with a peak that has a power-law time depen-
dence, M,(¢) ~t Y= In contrast, for A= 1, Cas has a
power-law form, Cyr~M ~%, with =% for A=1 and
t=(34+A)/2>2 for A>1, up to a cutoff mass. The
time dependence of the cutoff is exponential, M. (¢)
~e'/"’ for A =1, while for A > 1, gelation occurs at a fi-
nite time, f;, and the cutoff mass diverges as M.(¢)
~(1—1/ty) “Y®=1D_ Thus A =1 is a quite singular case.
Surprisingly, it is this special case which agrees with ex-
perimental results in d =3, particularly =% and ex-
ponential kinetics.

It is the extreme singularity of the solution at A =1
that actually stabilizes the system, by forcing the adjust-

havior of the aggregation rate equation.

For solid spheres of radii R; and R, we have
V.=4n(R1+R3)*>w in d=3 for w<R,R,, giving
KM M) ~MPP+M33)2 For any two objects
which can be characterized by a dimension, it is natural
to expect a power law,

KM M) ~M, My=~M,=M, n

where for spheres (and other solid objects),
A=(d —1)/d. For fractal clusters of similar radius, we
expect V. to be larger than for spheres because their mu-
tual contact surface must be at least slightly rough. It
can be bounded by

wR? '=V,<R%or @—1)dr=r=d/d;, (2)

provided only that 2ds>d, so that the clusters cannot
totally interpenetrate. If they can, we expect A =2, but
for flocculation this requires unphysically high space
dimensionality. In general, we expect A to decrease with
higher dy, because more compact clusters will inter-
penetrate less, making the mutual contact surface less
rough, as reflected in the bounds on A stated above.

We now consider V. for two fractal clusters of similar
structure but very different masses M > M. If we con-
sider the larger cluster as M /M blobs of mass M3, then
for dy < d the smaller cluster can freely penetrate within
the overall cluster of bilobs, but not within each blob.
Thus the reaction surface is additive over blobs giving

KM M) ~MM5™Y, M >M,. 3)

The scaling properties of Eqs. (1) and (3) for
K{(M,M,) suffice to determine the behavior of the rate
equation for the cluster mass distribution, 617

K(P,0)Cp(1)Co()[6(P+Q,M) —8(P,M) —5(Q,M)]. «)

FIG. 1. The contact surface traced out by the center of clus-
ter B as it is scraped around cluster A4, keeping the cluster
orientations fixed. Expanded to a shell of width w, this gives
the volume ¥V, within which the center of B must lie for stick-
ing reactions to be attempted. In the RLA limit, where the at-
tempt frequency is low enough for all of V. to be sampled, the
sticking rate is then proportional to V5.
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ment of A through the adjustment of dy. Qualitatively,
this can be seen by our imagining the effect of increasing
A from 1. This produces relatively more small clusters as
a result of the increased t of the distribution. The
greater number of small clusters will be able to penetrate
within the large, tenuous clusters. Then the dominant
reaction event is a small cluster reacting with a large
cluster. Since the small cluster can freely penetrate
within the larger, this reaction event will tend to increase
the mass of the larger cluster without changing its ra-
dius. This will increase dy and hence force A down.
Similarly, if A is decreased from 1, the cluster mass dis-
tribution becomes more nearly monodisperse. Then the
dominant reaction event is that of two clusters of equal

FIG. 2. The aggregation of a small cluster of mass P onto a
much larger one of mass M —P. The latter is viewed as a clus-
ter of equally accessible blobs of radius R(P). The mean-
square radius of gyration R? of the added material about the
center of mass G of the larger cluster is then given by Eq. (7) if
the direction of local attachment is uncorrelated with the vec-

size. These clusters will interpenetrate substantially less tor from G.

than for A=1, and the resulting clusters will be more
open and have smaller dy, tending to increase A. Thus, the system can force A to 1 by the adjustment of d.

In a more quantitative fashion, we can show that the system is not stable for A Jjust above unity by investigating the
effect of A on dy near A =1. The fractal dimension is controlled by the average squared radius R 2(M) for clusters of a
given mass M. However, df is also related to A through the dynamics. The reaction with P+ Q=M makes clusters of
size R2(P,Q), which depend on R%(P) and R2(Q). Then R2(M) is simply the average squared radius of all the M
clusters produced in a time At,

RYAM) =3, ,6(P+Q —M)CpCoK (P,Q)RX(P,Q) [ZP,Qﬁ(P+Q —M)CPCQK(P,Q)] - (5)

If A approaches 1, the dominant contribution to R2(M) comes from P <M. To see this, we divide the sums above
into ¥p« pt+ 3 Noting that 7=(3+21)/2 and using Car~M ~C+M/2 and K (P,0) ~QP* ™!, we obtain

M ~URI2 T pO=IR[R2(P M —P) = RAM)]+ Y 'CpCoK (P,Q)IRX(P,M — P) — R2(M)] =0. ©)
PLM

While the second term remains finite for fixed M as A— 1, the first term has the potential of diverging because of the
factor P*~5Y2 Thus the cluster sizes are dominated by reactions where P is progressively smaller relative to Q, and
we must investigate the behavior of R2(P,Q) in this limit.

As long as dy <d, the small P cluster may stick to the large Q cluster throughout its interior. The mean squared dis-
tance, R?, from the center of the large cluster to the small one has the form (see Fig. 2)

R2=R2(M —P)+R2(P). @)
Then R?(P,Q) is a mass-weighted average of this R2 with R2(M — P):

RAP,M —P)=RXM—P)+C, [%

2
2P)+y| £
R%(P)+C, 7o 8)
where C; and C; are constants of order unity. Since R~M &) , we have

2
P
+Co| =] .

1+2/d;

[R2(P,M —P) — R2(M)] -RZ(M)[——%-[L] +cs[—1—’— (9)

di | M M

When A =¢1, the first term in the brackets makes a diverging contribution to the sum in Eq. (6); this must be canceled
by the second term. This, in turn, requires dr~ (. —1) "2, as one verifies by substituting Eq. (9) into Eq. (6).

Evidently, if A— 1 from above, then dy cannot remain less than d. But even if dr=d, A cannot be larger than 1, for
this would violate the bound in Eq. (2). There is therefore a range of A just above 1 which is physically unattainable; it
is this extreme lack of continuity between A =1 and A > 1 that provides a physical mechanism to stabilize the system at
A =1 by adjustment of d.

The system might also stabilize at A < 1. However, in this case the mass distribution is well peaked and A would be
expected to approach its value for a monodisperse aggregation, determined by Jullien and Kolb!'; in d =3, this results
both in 2 >1 (1.16), and in clusters with a somewhat lower d; (2.00) than is measured experimentally. Thus for d =3,
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we expect dr to be pulled up and A =1. Similarly, for
d =4, the monodisperse A is greater than 1 (1.44), and
we predict A=1 as for d =3. In contrast, in d =2, the
monodisperse A is less than 1, and we expect it to remain
stable below 1.

The solutions to the rate equations with our predicted
kernel with A =1 account for all the salient experimental
observations reported to date for reaction-limited aggre-
gation, including exponential kinetics®!? and Cpr~M ~°
with 7= % (Refs. 5 and 9). Further, a computer simula-
tion!? of RLA in d =3 found that true polydispersity de-
creased A to 1.06 +0.02 and increased dy to 2.1 =0.03
as compared to monodisperse simulations. These results
are in excellent accord with experiment and consistent
with our theory.

There are several additional tests of our predictions
that should be carried out. Experimentally the predic-
tion of power-law kinetics for slow flocculation in d =2
should be investigated. For computer simulation, an out-
standing crucial test is what happens in d =4, where we
predict exponential kinetics, with A=1 and = 3. Fi-
nally, given our form of the reaction-limited rate coeffi-
cient we predict the crossover to diffusion-limited control
at kM? = kgT/no with A =1, where 7 is the fluid viscos-
ity.

We conclude with speculation about higher dimen-
sionalities. Either exponential kinetics with A =1 persists
indefinitely, in which case dy=d —1, or there is a kinet-
ic critical dimension at which A “‘escapes” from 1 to dis-
tinctly higher values. If there is a kinetic critical dimen-
sion, it should correspond to a discontinuity of the cluster
fractal dimension, because the exponent 7-+1—A which
governs the distribution of ratio of masses will be discon-
tinuous. Thus either dr=d —1 or it is discontinuous
with space dimension. !?
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