Publications

2011
Wang, W. ; Xie, R. ; Ju, X. - J. ; Luo, T. ; Liu, L. ; Weitz, D. A. ; Chu, L. - Y. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip 2011, 11, 1587-1592.Abstract
A hierarchical and scalable microfluidic device constructed from a combination of three building blocks enables highly controlled generation of multicomponent multiple emulsions. The number, ratio and size of droplets, each with distinct contents being independently co-encapsulated in the same level, can be precisely controlled. The building blocks are a drop maker, a connector and a liquid extractor; combinations of these enable the scale-up of the device to create higher-order multicomponent multiple emulsions with exceptionally diverse structures. These multicomponent multiple emulsions offer a versatile and promising platform for precise encapsulation of incompatible actives or chemicals, for synergistic delivery and biochemical and chemical reactions, and for engineering multicompartment materials with controlled internal phases.
[PDF]
Times Cited: 46
Vemula, P. K. ; Boilard, E. ; Syed, A. ; Campbell, N. R. ; Muluneh, M. ; Weitz, D. A. ; Lee, D. M. ; Karp, J. M. On-demand drug delivery from self-assembled nanofibrous gels: A new approach for treatment of proteolytic disease. Journal of Biomedical Materials Research Part A 2011, 97A, 103-110.Abstract
Local delivery of drugs offers the potential for high local drug concentration while minimizing systemic toxicity, which is often observed with oral dosing. However, local depots are typically administered less frequently and include an initial burst followed by a continuous release. To maximize efficiency of therapy, it is critical to ensure that drug is only released when needed. One of the hallmarks of rheumatoid arthritis, for example, is its variable disease activity consisting of exacerbations of inflammation punctuated by periods of remission. This presents significant challenges for matching localized drug delivery with disease activity. An optimal system would be nontoxic and only release drugs during the period of exacerbation, self-titrating in response to the level of inflammation. We report the development of an injectable self-assembled nanofibrous hydrogel, from a generally recognized as safe material, which is capable of encapsulation and release of agents in response to specific enzymes that are significantly upregulated in a diseased state including matrix metalloproteinases (MMP-2 and MMP-9) and esterases. We show that these self-assembled nanofibrous gels can withstand shear forces that may be experienced in dynamic environments such as joints, can remain stable following injection into healthy joints of mice, and can disassemble in vitro to release encapsulated agents in response to synovial fluid from arthritic patients. This novel approach represents a next-generation therapeutic strategy for localized treatment of proteolytic diseases. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 97A: 103-110, 2011.
[PDF]
Times Cited: 6
Tambe, D. T. ; Hardin, C. C. ; Angelini, T. E. ; Rajendran, K. ; Park, C. Y. ; Serra-Picamal, X. ; Zhou, E. H. ; Zaman, M. H. ; Butler, J. P. ; Weitz, D. A. ; et al. Collective cell guidance by cooperative intercellular forces. Nature Materials 2011, 10, 469-475.Abstract
Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell-cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer. Within the cell sheet there arise unanticipated fluctuations of mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer. Within that stress landscape, local cellular migrations follow local orientations of maximal principal stress. Migrations of both endothelial and epithelial monolayers conform to this behaviour, as do breast cancer cell lines before but not after the epithelial-mesenchymal transition. Collective migration in these diverse systems is seen to be governed by a simple but unifying physiological principle: neighbouring cells join forces to transmit appreciable normal stress across the cell-cell junction, but migrate along orientations of minimal intercellular shear stress.
[PDF]
Times Cited: 81
Thiele, J. ; Windbergs, M. ; Abate, A. R. ; Trebbin, M. ; Shum, H. C. ; Foerster, S. ; Weitz, D. A. Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab on a Chip 2011, 11, 2362-2368.Abstract
Early development drug formulation is exacerbated by increasingly poor bioavailability of potential candidates. Prevention of attrition due to formulation problems necessitates physicochemical analysis and formulation studies at a very early stage during development, where the availability of a new substance is limited to small quantities, thus impeding extensive experiments. Miniaturization of common formulation processes is a strategy to overcome those limitations. We present a versatile technique for fabricating drug nanoformulations using a microfluidic spray dryer. Nanoparticles are formed by evaporative precipitation of the drug-loaded spray in air at room temperature. Using danazol as a model drug, amorphous nanoparticles of 20-60 nm in diameter are prepared with a narrow size distribution. We design the device with a geometry that allows the injection of two separate solvent streams, thus enabling co-spray drying of two substances for the production of drug co-precipitates with tailor-made composition for optimization of therapeutic efficiency.
[PDF]
Times Cited: 8
Sinha, N. N. ; Weitz, D. A. Cocktail physics. Physics World 2011, 24, 25-28. [PDF]
Times Cited: 1
Sprakel, J. ; Lindstroem, S. B. ; Kodger, T. E. ; Weitz, D. A. Stress enhancement in the delayed yielding of colloidal gels. Physical Review Letters 2011, 106.Abstract
Networks of aggregated colloidal particles are solidlike and can sustain an applied shear stress while exhibiting little or no creep; however, ultimately they will catastrophically fail. We show that the time delay for this yielding decreases in two distinct exponential regimes with applied stress. This behavior is universal and found for a variety of colloidal gel systems. We present a bond-rupture model that quantitatively describes this behavior and highlights the role of mesoscopic structures. Our result gives new insight into the nature of yielding in these soft solid materials.
[PDF]
Times Cited: 8
Studart, A. R. ; Studer, J. ; Xu, L. ; Yoon, K. ; Shum, H. C. ; Weitz, D. A. Hierarchical porous materials made by drying complex suspensions. Langmuir 2011, 27, 955-964.Abstract
Porous structures containing pores at different length scales are often encountered in nature and are important in many applications. While several processing routes have been demonstrated to create such hierarchical porous materials, most methods either require chemical gelation reactions or do not allow for the desired control of pore sizes over multiple length scales. We describe a versatile and simple approach to produce tailor-made hierarchical porous materials that relies solely on the process of drying. Our results show that simple drying of a complex suspension can lead to the self-assembly of droplets, colloidal particles and molecular species into unique 3D hierarchical porous structures. Using a microfluidic device to produce monodisperse templating droplets of tunable size, we prepared materials with up to three levels of hierarchy exhibiting monodisperse pores ranging from 10 nm to 800 mu m. While the size of macropores obtained after drying is determined by the size of initial droplets, the interconnectivity between macropores is strongly affected by the type of droplet stabilizer (surfactants or particles). This simple route can be used to prepare porous materials of many chemical compositions and has great potential for creating artificial porous structures that capture some of the exquisite hierarchical features of porous biological materials.
[PDF]
Times Cited: 14
Steinhilber, D. ; Seiffert, S. ; Heyman, J. A. ; Paulus, F. ; Weitz, D. A. ; Haag, R. Hyperbranched polyglycerols on the nanometer and micrometer scale. Biomaterials 2011, 32, 1311-1316.Abstract
We report the preparation of polyglycerol particles on different length scales by extending the size of hyperbranched polyglycerols (3 nm) to nanogels (32 nm) and microgels (140 and 220 mu m). We use miniemulsion templating for the preparation of nanogels and microfluidic templating for the preparation of microgels, which we obtain through a free-radical polymerization of hyperbranched polyglycerol decaacrylate and polyethylene glycol-diacrylate. The use of mild polymerization conditions allows yeast cells to be encapsulated into the resultant microgels with cell viabilities of approximately 30%. (C) 2010 Elsevier Ltd. All rights reserved.
[PDF]
Times Cited: 29
Shum, H. C. ; Zhao, Y. -jin; Kim, S. - H. ; Weitz, D. A. Multicompartment polymersomes from double emulsions. Angewandte Chemie-International Edition 2011, 50, 1648-1651. [PDF]
Times Cited: 62
Shum, H. C. ; Santanach-Carreras, E. ; Kim, J. - W. ; Ehrlicher, A. ; Bibette, J. ; Weitz, D. A. Dewetting-induced membrane formation by adhesion of amphiphile-laden interfaces. Journal of the American Chemical Society 2011, 133, 4420-4426.Abstract
We introduce an approach for forming bilayer polymer membranes by adhesion of amphiphile-laden interfaces. This adhesion is induced by a reduction of solvent quality for the amphiphilic diblock copolymers through selective evaporation of good solvent in the solvent mixture. By combining this membrane formation mechanism with a double-emulsion-templated approach for vesicle formation, we fabricate monodisperse polymersomes that exhibit excellent membrane uniformity, and structural stability, using a method that has high encapsulation efficiency. Moreover, we also show that the technique is versatile and can be applied to different block copolymers. The ability to direct the assembly of amphiphiles into a membrane creates new opportunities to engineer the structures of vesicles on the level of the individual bilayer leaflets.
[PDF]
Times Cited: 22
Seiffert, S. ; Dubbert, J. ; Richtering, W. ; Weitz, D. A. Reduced UV light scattering in PDMS microfluidic devices. Lab on a Chip 2011, 11, 966-968.Abstract
Microfluidic devices which consist of polydimethylsiloxane ( PDMS) are used extensively for the production of polymer microparticles through the use of droplet templating and on-chip photopolymerization. However, in existing methods, spatial confinement of the photochemical droplet solidification is impaired by UV light scattering inside the PDMS elastomer. We present a technique to load PDMS microfluidic devices with a fluorescent dye that absorbs the scattered UV light and shifts it to longer wavelengths. By this means, the stray light is no longer harmful, and UV exposure can be limited to a desired region on the microfluidic chip.
[PDF]
Times Cited: 6
Muluneh, M. ; Sprakel, J. ; Wyss, H. M. ; Mattsson, J. ; Weitz, D. A. Direct visualization of pH-dependent evolution of structure and dynamics in microgel suspensions. Journal of Physics-Condensed Matter 2011, 23.Abstract
We use 3D confocal microscopy combined with image analysis and particle tracking techniques to study the structure and dynamics of aqueous suspensions of fluorescently labelled p(NIPAm-co-AAc) microgel particles. By adjusting the pH we can tune the interactions between the microgel particles from purely repulsive near neutral pH, to weakly attractive at low pH. This change in the interaction potential has a pronounced effect on the manner in which the suspensions solidify. We directly follow the evolution of the system after a quench from the liquid state to obtain detailed information on the route to kinetic arrest. At low pH and low concentration, dynamic arrest results mainly from crystallization driven by the attraction between particles; crystal nucleation occurs homogeneously throughout the sample and does not appear to be localized to geometric boundaries. Moreover, the growth of crystals is characterized by nucleation-limited kinetics where a rapid growth of crystal domains takes place after a long concentration-dependent lag time. At low pH and high concentration, relaxation of the suspension is constrained and it evolves only slightly, resulting in a disordered solid. At neutral pH, the dynamics are a function of the particle number concentration only; a high concentration leads to the formation of a disordered soft glassy solid.
[PDF]
Times Cited: 4
Mary, P. ; Abate, A. R. ; Agresti, J. J. ; Weitz, D. A. Controlling droplet incubation using close-packed plug flow. Biomicrofluidics 2011, 5.Abstract
Controlling droplet incubation is critical for droplet-based microfluidic applications; however, current techniques are either of limited precision or place strict limits on the incubation times that can be achieved. Here, we present a simple technique to control incubation time by exploiting close-packed plug flow. In contrast to other techniques, this technique is applicable to very short and very long incubation times. (C) 2011 American Institute of Physics. [doi:10.1063/1.3576934]
[PDF]
Times Cited: 5
Mary, P. ; Chen, A. ; Chen, I. ; Abate, A. R. ; Weitz, D. A. On-chip background noise reduction for cell-based assays in droplets. Lab on a Chip 2011, 11, 2066-2070.Abstract
Droplet-based microfluidics provides an excellent platform for high-throughput biological assays. Each droplet serves as a reaction vessel with a volume as small as a few picolitres. This is an important technology for a high variety of applications. However this technology is restricted to homogeneous assays as it is very difficult to wash reagents from the reaction vessel. To help overcome this limitation, we introduce a method to effectively dilute the content of a droplet while retaining the high throughput. We use electrocoalescence to merge the parent drop with a much larger drop containing only solvent, thereby increasing the volume of the drop by as much as a factor of 14. Three T-junctions then break the larger drop into eight smaller droplets. This dilution and break-up process can be repeated, thus leading to many drops comparable in size to the original one but with much lower concentration of reagents. The system is fully integrated in a PDMS device. To demonstrate its power, we perform a labelling reaction at the surface of the cells by coencapsulating yeast cells expressing S6 peptide tags with the enzyme SFP synthase and the fluorescent substrate CoA 488. After reaction, the droplets are diluted twice using the system and the intensity of their fluorescence is measured. This noise reduction method enables us to more easily distinguish the fluorescence at the surface of a single cell from the fluorescent background inside the droplet.
[PDF]
Times Cited: 10
Lin, Y. - C. ; Koenderink, G. H. ; MacKintosh, F. C. ; Weitz, D. A. Control of non-linear elasticity in F-actin networks with microtubules. Soft Matter 2011, 7 902-906.Abstract
We measure the elastic properties of composite cytoskeletal networks consisting of cross-linked actin filaments and microtubules. We show that even a small concentration of microtubules leads to dramatic and qualitative changes in the non-linear elastic properties of the actin filament networks. Specifically, we find that microtubules promote non-linear stiffening of F-actin networks because they are much stiffer than actin filaments and therefore suppress non-uniform strain. This finding may be relevant for interpretation of the mechanical behavior of cells, while also suggesting a new way to reinforce the non-linear elasticity of semiflexible polymer materials.
[PDF]
Times Cited: 13
Kuehne, A. J. C. ; Gather, M. C. ; Eydelnant, I. A. ; Yun, S. - H. ; Weitz, D. A. ; Wheeler, A. R. A switchable digital microfluidic droplet dye-laser. Lab on a Chip 2011, 11, 3716-3719.Abstract
Digital microfluidic devices allow the manipulation of droplets between two parallel electrodes. These electrodes can act as mirrors generating a micro-cavity, which can be exploited for a droplet dye-laser. Three representative laser-dyes with emission wavelengths spanning the whole visible spectrum are chosen to show the applicability of this concept. Sub-microlitre droplets of laser-dye solution are moved in and out of a lasing site on-chip to down-convert the UV-excitation light into blue, green and red laser-pulses.
[PDF]
Times Cited: 5
Kuehne, A. J. C. ; Weitz, D. A. Highly monodisperse conjugated polymer particles synthesized with drop-based microfluidics. Chemical Communications 2011, 47, 12379-12381.Abstract
A facile method for preparing highly monodisperse, sub-micrometre conjugated polymer particles is reported. The particles are prepared through emulsification of a conjugated polymer solution on a microfluidic chip followed by solvent evaporation. The particle size is tuned between 150 nm to 2 mu m, by controlling the polymer concentration.
[PDF]
Times Cited: 13
Kim, S. - H. ; Shum, H. C. ; Kim, J. W. ; Cho, J. - C. ; Weitz, D. A. Multiple polymersomes for programmed release of multiple components. Journal of the American Chemical Society 2011, 133, 15165-15171.Abstract
Long-term storage and controlled release of multiple components while avoiding cross-contamination have potentially important applications for pharmaceuticals and cosmetics. Polymersomes are very promising delivery vehicles but cannot be used to encapsulate multiple independent components and release them in a controlled manner. Here, we report a microfluidic approach to produce multiple polymersomes, or polymersomes-in-polymersome by design, enabling encapsulation and programmed release of multiple components. Monodisperse polymersomes are prepared from templates of double-emulsion drops, which in turn are injected as the innermost phase to form the second level of double-emulsion drops, producing double polymersomes. Using the same strategy, higher-order polymersomes are also prepared. In addition, incorporation of hydrophobic homopolymer into the different bilayers of the multiple polymersomes enables controlled and sequential dissociation of the different bilayer membranes in a programmed fashion. The high encapsulation efficiency of this microfluidic approach, as well as its programmability and the biocompatibility of the materials used to form the polymersomes, will provide new opportunities for practical delivery systems of multiple components.
[PDF]
Times Cited: 35
Knowles, T. P. J. ; White, D. A. ; Abate, A. R. ; Agresti, J. J. ; Cohen, S. I. A. ; Sperling, R. A. ; De Genst, E. J. ; Dobson, C. M. ; Weitz, D. A. Observation of spatial propagation of amyloid assembly from single nuclei. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 14746-14751.Abstract
The crucial early stages of amyloid growth, in which normally soluble proteins are converted into fibrillar nanostructures, are challenging to study using conventional techniques yet are critical to the protein aggregation phenomena implicated in many common pathologies. As with all nucleation and growth phenomena, it is difficult to track individual nuclei in traditional macroscopic experiments, which probe the overall temporal evolution of the sample, but do not yield detailed information on the primary nucleation step as they mix independent stochastic events into an ensemble measurement. To overcome this limitation, we have developed microdroplet assays enabling us to detect single primary nucleation events and to monitor their subsequent spatial as well as temporal evolution, both of which we find to be determined by secondary nucleation phenomena. By deforming the droplets to high aspect ratio, we visualize in real-time propagating waves of protein assembly emanating from discrete primary nucleation sites. We show that, in contrast to classical gelation phenomena, the primary nucleation step is characterized by a striking dependence on system size, and the filamentous protein self-assembly process involves a highly nonuniform spatial distribution of aggregates. These findings deviate markedly from the current picture of amyloid growth and uncover a general driving force, originating from confinement, which, together with biological quality control mechanisms, helps proteins remain soluble and therefore functional in nature.
[PDF]
Times Cited: 11
Kim, S. - H. ; Weitz, D. A. One-step emulsification of multiple concentric shells with capillary microfluidic devices. Angewandte Chemie-International Edition 2011, 50, 8731-8734. [PDF]
Times Cited: 18

Pages