Publications by Year: 2015

2015
Zieringer, M. A. ; Carroll, N. J. ; Abbaspourrad, A. ; Koehler, S. A. ; Weitz, D. A. Microcapsules for Enhanced Cargo Retention and Diversity. Small 2015, 11, 2903-2909. Publisher's VersionAbstract

Prevention of undesired leakage of encapsulated materials prior to triggered release presents a technological challenge for the practical application of microcapsule technologies in agriculture, drug delivery, and cosmetics. A microfluidic approach is reported to fabricate perfluoropolyether (PFPE)‐based microcapsules with a high core‐shell ratio that show enhanced retention of encapsulated actives. For the PFPE capsules, less than 2% leakage of encapsulated model compounds, including Allura Red and CaCl2, over a four week trial period is observed. In addition, PFPE capsules allow cargo diversity by the fabrication of capsules with either a water‐in‐oil emulsion or an organic solvent as core. Capsules with a toluene‐based core begin a sustained release of hydrophobic model encapsulants immediately upon immersion in an organic continuous phase. The major contribution on the release kinetics stems from the toluene in the core. Furthermore, degradable silica particles are incorporated to confer porosity and functionality to the otherwise chemically inert PFPE‐based polymer shell. These results demonstrate the capability of PFPE capsules with large core–shell ratios to retain diverse sets of cargo for extended periods and make them valuable for controlled release applications that require a low residual footprint of the shell material.

zieringer2015.pdf
Polenz, I. ; Weitz, D. A. ; Baret, J. - C. Polyurea Microcapsules in Microfluidics: Surfactant Control of Soft Membranes. Langmuir 2015, 31, 1127–1134. Publisher's VersionAbstract

Interfacial polymerization techniques offer a versatile route for microcapsule synthesis. We designed a microfluidic process to synthesize monodisperse polyurea microcapsules (PUMCs); the microcapsules are formed by an interfacial polymerization of isocyanate dissolved in the oil and an amine dissolved in water. We measure the mechanical properties of the capsule as well as transport properties through the membrane using two microfluidic methods. We show that the elasticity and the permeability of the shell are controlled by surfactant additives, added during the synthesis. The control of the nanostructure of the shell by surfactants provides new means to design encapsulation systems with tailored mechanical and physicochemical properties.

polenz2015.pdf
Akartuna, I. ; Aubrecht, D. M. ; Kodger, T. E. ; Weitz, D. A. Chemically induced coalescence in droplet-based microfluidics. Lab Chip 2015, 15, 1140-1144. Publisher's VersionAbstract

We present a new microfluidic method to coalesce pairs of surfactant-stabilized water-in-fluorocarbon oil droplets. We achieve this through the local addition of a poor solvent for the surfactant{,} perfluorobutanol{,} which induces cohesion between droplet interfaces causing them to merge. The efficiency of this technique is comparable to existing techniques providing an alternative method to coalesce pairs of droplets.

akartuna2015.pdf
Shimanovich, U. ; Efimov, I. ; Mason, T. O. ; Flagmeier, P. ; Buell, A. K. ; Gedanken, A. ; Linse, S. ; Åkerfeldt, K. S. ; Dobson, C. M. ; Weitz, D. A. ; et al. Protein Microgels from Amyloid Fibril Networks. ACS Nano 2015, 9 43–51. Publisher's VersionAbstract

Nanofibrillar forms of proteins were initially recognized in the context of pathology, but more recently have been discovered in a range of functional roles in nature, including as active catalytic scaffolds and bacterial coatings. Here we show that protein nanofibrils can be used to form the basis of monodisperse microgels and gel shells composed of naturally occurring proteins. We explore the potential of these protein microgels to act as drug carrier agents, and demonstrate the controlled release of four different encapsulated drug-like small molecules, as well as the component proteins themselves. Furthermore, we show that protein nanofibril self-assembly can continue after the initial formation of the microgel particles, and that this process results in active materials with network densities that can be modulated in situ. We demonstrate that these materials are nontoxic to human cells and that they can be used to enhance the efficacy of antibiotics relative to delivery in homogeneous solution. Because of the biocompatibility and biodegradability of natural proteins used in the fabrication of the microgels, as well as their ability to control the release of small molecules and biopolymers, protein nanofibril microgels represent a promising class of functional artificial multiscale materials generated from natural building blocks.

shimanovich2015.pdf

Pages