Publications by Year: 2013

2013
Choi, C. - H. ; Weitz, D. A. ; Lee, C. - S. One step formation of controllable complex emulsions: From functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position. Advanced Materials 2013, 25, 2536-2541. Publisher's VersionAbstract

This article presents a one‐step method for generating complex emulsions that exploits the phase separation of the emulsion droplet generated in the microchannel. This approach easily produces double, triple, quadruple, and Janus emulsions with monodisperse size. These emulsions can be used as useful templates for the synthesis of new functional materials, such as microcapsules, hemispheres, Janus particles and microcarriers that are capable of simultaneously encapsulating hydrophilic and hydrophobic compounds with selective compartmentalization in a one‐step process.

[PDF]
Abbaspourrad, A. ; Carroll, N. J. ; Kim, S. - H. ; Weitz, D. A. Polymer microcapsules with programmable active release. Journal of the American Chemical Society 2013, 135, 7744-7750. Publisher's VersionAbstract

We present a new type of microcapsule programmed with a tunable active release mechanism. The capsules are triggered by a plasticizing stimulus that induces a phase change transition of the polymeric membrane from a solid to a fluidized form; thereafter, the cargo is actively driven out of the capsule through a defect at the capsule wall with controllable release kinetics. Tuning the degree of membrane fluidity by tailoring the amount of plasticizing stimulus present allows us to obtain temporal variation of the release kinetics from a subsecond abrupt burst release to a slow sustained release of encapsulant over many minutes. Moreover, we demonstrate tuning of the collective capsule triggering response by adjusting stimulus content, polymer molecular weight, and capsule membrane thickness. For this model system, we use a microfluidic approach to fabricate polystyrene capsules triggered by a toluene stimulus. However, this active release approach is general and is applicable to diverse polymeric capsule systems; this versatility is demonstrated by extension of our trigger-release scheme to capsules fabricated from a rubberlike block copolymer. The utility of our technique further enhances the potential of these active release capsules for practical application.

[PDF]
Kim, S. - H. ; Kim, J. W. ; Kim, D. - H. ; Han, S. - H. ; Weitz, D. A. Polymersomes containing a hydrogel network for high stability and controlled release. Small 2013, 9 124-131. Publisher's VersionAbstract

Capillary microfluidic devices are used to prepare monodisperse polymersomes consisting of a hydrogel core and a bilayer membrane of amphiphilic diblock-copolymers. To make polymersomes, water-in-oil-in-water double-emulsion drops are prepared as templates through single-step emulsification in a capillary microfluidic device. The amphiphile-laden middle oil phase of the double-emulsion drop dewets from the surface of the innermost water drop, which contains hydrogel prepolymers; this dewetting leads to the formation of a bilayer membrane. Subsequently, the oil phase completely separates from the innermost water drop, leaving a polymersome. Upon UV illumination of the polymersome, the prepolymers encapsulated within the interior are crosslinked, forming a hydrogel core. The hydrogel network within the polymersomes facilitates sustained release of the encapsulated materials and increases the stability of the polymersomes through the formation of a scaffold to support the bilayer. In addition, this approach provides a facile method to make monodisperse hydrogel particles directly dispersed in water.

[PDF]
Di Benedetto, F. ; Fasano, V. ; Persano, L. ; Maruccio, C. ; Mele, E. ; Potente, G. ; Weitz, D. A. ; De Lorenzis, L. ; Pisignano, D. Rolling particle lithography by soft polymer microparticles. Soft Matter 2013, 9 2206-2211. Publisher's VersionAbstract

Elastomeric polymeric microspheres are employed as a direct-writing tool for the continuous delivery of molecular materials. The mechanical properties enabling patterning are investigated and modelled. The proposed approach provides a low cost and versatile lithographic method for transferring features with real-time dynamic control.

dibenedetto2013.pdf
Mazutis, L. ; Gilbert, J. ; Ung, W. L. ; Weitz, D. A. ; Griffiths, A. D. ; Heyman, J. A. Single-cell analysis and sorting using droplet-based microfluidics. Nature Protocols 2013, 8 870-891. Publisher's VersionAbstract

We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. Compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. As an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. Secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. The beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at similar to 200 Hz as well as cell enrichment. The microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen similar to 1 million cells, the microfluidic operations require 2-6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5-7 d.

[PDF]
Datta, S. S. ; Chiang, H. ; Ramakrishnan, T. S. ; Weitz, D. A. Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium. Physical Review Letters 2013, 111, 064501. Publisher's VersionAbstract

We use confocal microscopy to directly visualize the spatial fluctuations in fluid flow through a three-dimensional porous medium. We find that the velocity magnitudes and the velocity components both along and transverse to the imposed flow direction are exponentially distributed, even with residual trapping of a second immiscible fluid. Moreover, we find pore-scale correlations in the flow that are determined by the geometry of the medium. Our results suggest that despite the considerable complexity of the pore space, fluid flow through it is not completely random.

[PDF]
DiLauro, A. M. ; Abbaspourrad, A. ; Weitz, D. A. ; Phillips, S. T. Stimuli-responsive core-shell microcapsules with tunable rates of release by using a depolymerizable poly(phthalaldehyde) membrane. Macromolecules 2013, 46, 3309-3313. Publisher's VersionAbstract

Flow-focusing microfluidic techniques were used to provide access to core shell microcapsules in which the shell is composed of end tapped poly(phthalaldehydes) that depolymerize completely from head-to-tail in response to fluoride. Microcapsules made from these depolymerizable polymers provide an amplified response to the applied chemical signal, where the rate of the response can be tuned both by varying the length of the polymer and the thickness of the shell wall.

[PDF]
Munster, S. ; Jawerth, L. M. ; Leslie, B. A. ; Weitz, J. I. ; Fabry, B. ; Weitz, D. A. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 12197-12202. Publisher's VersionAbstract

We show that the nonlinear mechanical response of networks formed from un-cross-linked fibrin or collagen type I continually changes in response to repeated large-strain loading. We demonstrate that this dynamic evolution of the mechanical response arises from a shift of a characteristic nonlinear stress-strain relationship to higher strains. Therefore, the imposed loading does not weaken the underlying matrices but instead delays the occurrence of the strain stiffening. Using confocal microscopy, we present direct evidence that this behavior results from persistent lengthening of individual fibers caused by an interplay between fiber stretching and fiber buckling when the networks are repeatedly strained. Moreover, we show that covalent cross-linking of fibrin or collagen inhibits the shift of the nonlinear material response, suggesting that the molecular origin of individual fiber lengthening may be slip of monomers within the fibers. Thus, a fibrous architecture in combination with constituents that exhibit internal plasticity creates a material whose mechanical response adapts to external loading conditions. This design principle may be useful to engineer novel materials with this capability.

[PDF]
Yao, N. Y. ; Broedersz, C. P. ; Depken, M. ; Becker, D. J. ; Pollak, M. R. ; MacKintosh, F. C. ; Weitz, D. A. Stress-enhanced gelation: A dynamic nonlinearity of elasticity. Physical Review Letters 2013, 110, 018103. Publisher's VersionAbstract

A hallmark of biopolymer networks is their sensitivity to stress, reflected by pronounced nonlinear elastic stiffening. Here, we demonstrate a distinct dynamical nonlinearity in biopolymer networks consisting of filamentous actin cross-linked by alpha-actinin-4. Applied stress delays the onset of relaxation and flow, markedly enhancing gelation and extending the regime of solidlike behavior to much lower frequencies. We show that this macroscopic network response can be accounted for at the single molecule level by the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. DOI: 10.1103/PhysRevLett.110.018103

yao2013.pdf
Muenster, S. ; Jawerth, L. M. ; Fabry, B. ; Weitz, D. A. Structure and mechanics of fibrin clots formed under mechanical perturbation. Journal of Thrombosis and Haemostasis 2013, 11, 557-560. Publisher's Version muenster2013.pdf
Abbaspourrad, A. ; Carroll, N. J. ; Kim, S. - H. ; Weitz, D. A. Surface functionalized hydrophobic porous particles toward water treatment application. Advanced Materials 2013, 25, 3215-3221. Publisher's VersionAbstract

A microfluidic-based approach for the fabrication of organic contaminants absorbing core-shell particles is demonstrated. The hydrophobic porous core absorbs oil while the hydrophilic surface enables the particles to be well-dispersed in aqueous solutions. These particles can uptake oil from aqueous solution saturated with oil or via direct contact with oil blobs as depicted in the figure.

[PDF]
Zhou, S. ; Fan, J. ; Datta, S. S. ; Guo, M. ; Guo, X. ; Weitz, D. A. Thermally switched release from nanoparticle colloidosomes. Advanced Functional Materials 2013, 23, 5925-5929. Publisher's VersionAbstract

Nanoparticle colloidosomes, whose release can be switched on and off in response to a temperature change, are fabricated. Unlike in other systems, the switchable release does not require the colloidosome shell to deform; it instead occurs due to the adsorption or desorption of a block copolymer, dissolved in the core, at the inner surface of the colloidosome shell, concomitantly blocking or unblocking the pores in the shell. The colloidosomes are prepared using double emulsion templates produced by microfluidics, and are thus highly monodisperse; moreover, they are mechanically stable and consist of biocompatible components, making them suitable for the encapsulation, delivery, and release of a broad range of active materials.

zhou2013.pdf
Lin, T. ; Kodger, T. E. ; Weitz, D. A. Transport of charged colloids in a nonpolar solvent. Soft Matter 2013, 9 5173-5177. Publisher's VersionAbstract

In nonpolar solvents, surfactants stabilize charge through the formation of reverse micelles; this enables the dissociation of charge from the surfaces of particles, thereby charge-stabilizing particle suspensions. We investigate the dynamics of such charged particles by directly visualizing their motion across a microfluidic channel in response to an external electric field. The presence of the reverse micelles has a significant effect on particle motion: in a constant field, the particles initially move, then slow down exponentially, and eventually stop. This is due to the accumulation of reverse micelles at the channel walls, which screens the applied field, leading to the subsequent decay of the internal electric field. The time constant of decay depends on the electrical conductivity of the particle suspension and the width of the channel; this behavior is modeled as an equivalent RC circuit.

[PDF]
Krummel, A. T. ; Datta, S. S. ; Muenster, S. ; Weitz, D. A. Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. Aiche Journal 2013, 59, 1022-1029. Publisher's VersionAbstract

We report an approach to fully visualize the flow of two immiscible fluids through a model three-dimensional (3-D) porous medium at pore-scale resolution. Using confocal microscopy, we directly image the drainage of the medium by the nonwetting oil and subsequent imbibition by the wetting fluid. During imbibition, the wetting fluid pinches off threads of oil in the narrow crevices of the medium, forming disconnected oil ganglia. Some of these ganglia remain trapped within the medium. By resolving the full 3-D structure of the trapped ganglia, we show that the typical ganglion size, as well as the total amount of residual oil, decreases as the capillary number Ca increases; this behavior reflects the competition between the viscous pressure in the wetting fluid and the capillary pressure required to force oil through the pores of the medium. This work thus shows how pore-scale fluid dynamics influence the trapped fluid configurations in multiphase flow through 3-D porous media. (C) 2013 American Institute of Chemical Engineers AIChE J, 59: 1022-1029, 2013

[PDF]
Deng, N. - N. ; Wang, W. ; Ju, X. - J. ; Xie, R. ; Weitz, D. A. ; Chu, L. - Y. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics. Lab on a Chip 2013, 13, 4047-4052. Publisher's VersionAbstract

Multiple emulsions, which are widely applied in a myriad of fields because of their unique ability to encapsulate and protect active ingredients, are typically produced by sequential drop-formations and drop-encapsulations using shear-induced emulsification. Here we report a qualitatively novel method of creating highly controlled multiple emulsions from lower-order emulsions. By carefully controlling the interfacial energies, we adjust the spreading coefficients between different phases to cause drops of one fluid to completely engulf other drops of immiscible fluids; as a result multiple emulsions are directly formed by simply putting preformed lower-order emulsion drops together. Our approach has highly controllable flexibility. We demonstrate this in preparation of both double and triple emulsions with a controlled number of inner drops and precisely adjusted shell thicknesses including ultra-thin shells. Moreover, this controllable drop-engulfing-drop approach has a high potential in further investigations and applications of microfluidics. Importantly, this innovative approach opens a window to exploit new phenomena occurring in fluids at the microscale level, which is of great significance for developing novel microfluidics.

deng2013.pdf

Pages