Triple Junction at the Triple Point Resolved on the Individual Particle Level

Citation:

Chaudhuri, M. ; Allahyarov, E. ; Löwen, H. ; Egelhaaf, S. U. ; Weitz, D. A. Triple Junction at the Triple Point Resolved on the Individual Particle Level. Phys. Rev. Lett. 2017, 119, 128001. Copy at http://www.tinyurl.com/y4z898m4
chaudhuri2017.pdf1.54 MB

Date Published:

Sep

Abstract:

At the triple point of a repulsive screened Coulomb system, a fcc crystal, a bcc crystal, and a fluid phase coexist. At their intersection, these three phases form a liquid groove, the triple junction. Using confocal microscopy, we resolve the triple junction on a single-particle level in a model system of charged PMMA colloids in a nonpolar solvent. The groove is found to be extremely deep and the incommensurate solid-solid interface to be very broad. Thermal fluctuations hence appear to dominate the solid-solid interface. This indicates a very low interfacial energy. The fcc-bcc interfacial energy is quantitatively determined based on Young’s equation and, indeed, it is only about 1.3 times higher than the fcc-fluid interfacial energy close to the triple point.

Publisher's Version

Last updated on 11/09/2020